
Lehre ist bei uns um folgende Hauptforschungsthemen konzentriert:
- Aufbau von Verteilten Systemen
- Semantic Web Technologien
- (semantische) Daten- und Prozessintegration
- mobile Informationsysteme
- Management von Forschungsdaten.
Wintersemester
-
Grundlagen algorithmischer Problemlösung (GaP)
Diese Veranstaltung ist Teil des Moduls Grundlagen informatischer Problemlösung.
In der Vorlesung zur „Algorithmischen Problemlösung“ erfolgt eine Einführung in Grundlagen der Informationsverarbeitung und eine erste Betrachtung des Algorithmusbegriffes. Aufbauend auf diesen Ausführungen werden informatische Methoden zur Problemlösung und Ansätze zur Modellierung von Problemen und Lösungsstrategien eingeführt.
-
Entwicklung verteilter Anwendungen (EVA)
Ein Großteil der heute entwickelten Softwareanwendungen sind verteilte Anwendungen: Mobile Apps beziehen Inhalte von Webservern, Messenger kommunizieren über zentrale Server oder Peer-To-Peer-Netzwerke miteinander, High-Performance-Cluster verteilen über Netzwerke Berechnungen auf viele Knoten, Logging-Systeme nutzen Blockchains zur dezentralen und manipulationssicheren Speicherung von Informationen. Bei der Entwicklung steht eine Vielzahl von Technologien zur Auswahl. In dieser Veranstaltung werden verschiedene Technologien praktisch ausprobiert und deren Funktionsweise, sowie Vor- und Nachteile betrachtet.
-
Informationsintegration
Data integration is a process that combines data from several disparate data sources. It becomes one of the key challenges within most IT projects. Since these data sources are independently engineered and developed by different people, so, they contain a large number of heterogeneities. In order to provide a unified view of these data sources, we should deal with different kinds of heterogeneities.
In this course, students will learn techniques and methodologies for integrating data from large sets of heterogeneous data sources. The course will cover the following topics:
– Importance of data integration
– Physical and virtual data integration
– data and semantic heterogeneities
– String, schema, and data matching
– Web data integrationLiterature
– AnHai Doan, Alon Halevy, Zachary Ives: Principles of Data IntegrationExternal linkExternal linkExternal link. Morgan Kaufmann, 2012.
– Ulf Leser, Felix Naumann: InformationsintegrationExternal linkExternal linkExternal link. Dpunkt Verlag, 2007.
– Luna Dong, Divesh Srivastava: Big Data Integration. Morgan External linkExternal linkExternal link& Claypool, 2015.
– Serge Abiteboul, et al: Web Data ManagementExternal linkExternal linkExternal link. Cambridge University Press, 2012.
– Jérôme Euzenat, Pavel Shvaiko: Ontology MatchingExternal linkExternal linkExternal link. Springer, 2007.
– Felix Naumann: An Introduction to Duplicate DetectionExternal linkExternal linkExternal link. Morgan & Claypool, 2012.Software and tools
– Data Matching software
– Web Data INTEgRation Framework (WInte.r)External linkExternal linkExternal link
– Minoan: Entity Resolution (ER) frameworkExternal linkExternal linkExternal link
– HoloClean: A Machine Learning System for Data EnrichmentExternal linkExternal linkExternal link
– ontology-matchingExternal linkExternal linkExternal link -
Softwareentwicklungsprojekt I & II (SWEP)
Neben fachlichen Kenntnissen sind in der Informatik auch Eigenständigkeit, Teamfähigkeit, Ergebnispräsentation, Kommunikation mit Auftraggebern, sowie Zeit- und Projektmanagement wichtige Kompetenzen im Arbeitsalltag. Diese Veranstaltung bietet die Möglichkeit im Rahmen eines Projekts diese Fähigkeiten zu trainieren. Die angebotenen Projekte befassen sich mit realen Anwendungsproblemen, welche durch Unternehmen oder Forschungsgruppen bereitgestellt werden. In einer begleitenden Vorlesung werden zudem hilfreiche Methoden und Werkzeuge vorgestellt und durch Gastvorträge Einblicke in die praktische Ausgestaltung von Softwareentwicklungsprozessen in Firmen gewährt.
Projektablauf
- Berarbeitung eines Projekts in Teams von 3 bis 4 Personen
- Vorstellung der Projekte, Rahmenbedingungen und Inhalte in der ersten Vorlesungswoche (Anwesenheit zwingend erforderlich)
- Vergabe der Projekte in der zweiten Vorlesungswoche (rechtzeitige Mitteilung der Projektwünsche zwingend erforderlich)
- Anwendung des Vorgehensmodells Scrum bei der Durchführung der Projekte
- Einführung in Scrum in der zweiten Vorlesungswoche (einmaliger Doppeltermin)
- Durchführung von Sprint Review und Planungsmeetings im Team mit dem Projektgeber (“Product Owner”) alle zwei Wochen
- Diskussion von Zwischenständen, Berichten der Retrospektiven, sowie Vorstellen der Projektergebnisse am Ende der Vorlesungszeit
Ziele der Lehrveranstaltung
- Entwicklung der Eigenständigkeit und Teamfähigkeit, sowie der Kompetenzen in Präsentation, Kommunikation, Zeit- und Projektmanagement
- Befähigung zur agilen Softwareentwicklung mit Scrum
- Befähigung zum Umgang mit Werkzeugen für die Softwareentwicklung im Team, sowie Zeit- und Projektmanagement
- Befähigung zur Anwendung individuel benötigter Technologien im Rahmen des Projekts
Belegungmöglichkeiten
- “Softwareentwicklungsprojekt 1” (SWEP-1: für den Bachelor)
- “Softwareentwicklungsprojekt 2” (SWEP-2: für den Master)
- “Offenes Softwareentwicklungsprojekt” (EAH Jena)
Voraussetzungen
- Die formalen Voraussetzungen Ihres Moduls (SWEP-1, SWEP-2, SOC-P: je nach Studiengang).
- Teamfähigkeit: Das Projekt wird im Team mit verschiedenen Rollenverteilungen durchgeführt
- Schnelle Einarbeitung in einzusetzende Technologien (je nach Projekt). Beispiele: Java, Android, NFC, HTML5, CSS, JavaScript, BPMN bzw. EPKs, Webservices, Datenbanken, Apache, etc.
-
Seminar (wechselnde Themen)
-
Semantic Web Technologies (Verteilte Systeme, Spez. I)
Die Menge der digital verfügbaren Daten —sowohl global im Internet, als auch lokal innerhalb von Organisationen— wächst kontinuierlich. Längst ist es nicht mehr möglich sämtliche verfügbaren Daten manuell zu sichten. Suchmaschinen unterstützen Benutzer beim Auffinden relevanter Datensätze oder Dokumente. Allerdings ist die automatische Weiterverarbeitung unstrukturierter Daten, wie zum Beispiel Texten in Webseiten, nicht ohne weiteres möglich. Auch die Etablierung global einheitlicher Formate für Informationen des selben Typs ist nicht realistisch. Semantic Web Technologien ermöglichen die Anreicherung von Daten mit Bedeutung (Semantik), die auch für Maschinen verständlich ist, ohne jedoch ein global einheitliches Schema vorzugeben. Dadurch vereinfachen sie den automatisierten Austausch von Informationen und ermöglichen die automatisierte Verknüpfung von Daten (Linked Data) zur Gewinnung neuer Informationen.
Ziele der Lehrveranstaltung:
- Beherrschen der grundlegenden Sprachen (RDF, OWL) und wichtiger Vokabulare (RDFS, SKOS) des Semantic Webs
- Beherrschen der Anfragesprache SPARQL zur Abfrage von Daten in RDF
- Befähigung zum Umgang mit Techniken des automatisierten Schlussfolgerns (Reasoning)
- Befähigung zum methodischen Vorgehen bei der Datenmodellierung und Datenbereitstellung mit Hilfe von RDF
- Befähigung zur Anwendung von Semantic Web Technologien zur Suche von Daten
- Befähigung zur Anwendung von Semantic Web Technologien zum Nachvollziehen der Herkunft von Informationen
Aufbau:
Die Lehrveranstaltung besteht sowohl aus theoretische als auch praktische Einheiten. In (ggf. voraufgezeichneten) Vorlesungen werden die grundlegenden Technologien des Semantic Webs eingeführt. Praktische Übungen und kleine Projekte vertiefen das Verständnis der vorgestellten Technologien.
Sommersemester
-
Grundlagen verteilter Informationssysteme (GVIS)
Informationssysteme sind heute fast immer verteilt. Diese Veranstaltung führt in die Grundlagen solcher Systeme ein. Wir betrachten, welche Ziele mit Verteilung verfolgt werden (z.B. Systeme besser skalierbar und robuster zu machen) und wie diese erreicht werden können.
Zu den Themen gehört zum Beispiel:
- Wie können Rechner überhaupt miteinander kommunzieren? (Grundlagen von Rechnernetzen, Naming, Client-Server, Peer-to-Peer)
- Wie entscheidet man, welche Daten und Prozesse man wohin verteilt? Und welche davon man repliziert?
- Wenn Daten oder Prozesse über mehrere Rechner verteilt sind, wie kann man diese synchronisieren (z.B. dafür sorgen, dass Operationen überall in derselben Reihenfolge ausgeführt werden)?
- Wenn Daten oder Prozesse repliziert sind: Wie hält man sie konsistent?
- Wie kann man Fehlertoleranz in verteilten Systemen erreichen?
Die Themen werden in der Vorlesung eingeführt und in der begleitenden Übung vertieft.
Eine ideale Ergänzung der Veranstaltung ist die jährlich im Wintersemester angebotene
Entwicklung verteilter Anwendungen (EVA)Voraussetzung für die Zulassung zum Modul: FMI-IN0021 (Grundlagen der Informations- und Softwaresysteme)
Leistungspunkte (ECTS credits): 6
Lehrform (SWS): 3V + 1Ü
-
Informationssysteme in mobilen und drahtlosen Umgebungen (ISMOD)
Blocktermine werden in Vorbesprechung gemeinsam vereinbart.
In dieser Blockveranstaltung beschäftigen wir uns mit unterschiedlichen Aspekten mobiler Datensammlung und -nutzung.
Wird im Sommersemester 2025 nicht angeboten.
-
Rechnernetze und Internettechnologien (RNIT)
Internet und WWW sind längst zum Bestandteil unseres täglichen Lebens geworden. Die Möglichkeit Information jederzeit abzurufen – aber auch jederzeit zu verbreiten, ist für viele von uns zur Selbstverständlichkeit geworden. In dieser Veranstaltung werden wir uns mit verschiedenen Grundlagen dieser Technologien beschäftigen: Wie können Rechner überhaupt miteinander kommunizieren? Wie funktioniert das Internet? Welche Sicherheitsmechanismen gibt es? Wie funktionieren Internetanwendungen, insbesondere das WWW? Was steckt hinter Web 2.0? Web 3.0?
Die Veranstaltung besteht aus 2 SWS Vorlesung und 2 SWS Übung.
-
Softwareentwicklungsprojekt I & II (SWEP)
Neben fachlichen Kenntnissen sind in der Informatik auch Eigenständigkeit, Teamfähigkeit, Ergebnispräsentation, Kommunikation mit Auftraggebern, sowie Zeit- und Projektmanagement wichtige Kompetenzen im Arbeitsalltag. Diese Veranstaltung bietet die Möglichkeit im Rahmen eines Projekts diese Fähigkeiten zu trainieren. Die angebotenen Projekte befassen sich mit realen Anwendungsproblemen, welche durch Unternehmen oder Forschungsgruppen bereitgestellt werden. In einer begleitenden Vorlesung werden zudem hilfreiche Methoden und Werkzeuge vorgestellt und durch Gastvorträge Einblicke in die praktische Ausgestaltung von Softwareentwicklungsprozessen in Firmen gewährt.
Projektablauf
- Berarbeitung eines Projekts in Teams von 3 bis 4 Personen
- Vorstellung der Projekte, Rahmenbedingungen und Inhalte in der ersten Vorlesungswoche (Anwesenheit zwingend erforderlich)
- Vergabe der Projekte in der zweiten Vorlesungswoche (rechtzeitige Mitteilung der Projektwünsche zwingend erforderlich)
- Anwendung des Vorgehensmodells Scrum bei der Durchführung der Projekte
- Einführung in Scrum in der zweiten Vorlesungswoche (einmaliger Doppeltermin)
- Durchführung von Sprint Review und Planungsmeetings im Team mit dem Projektgeber (“Product Owner”) alle zwei Wochen
- Diskussion von Zwischenständen, Berichten der Retrospektiven, sowie Vorstellen der Projektergebnisse am Ende der Vorlesungszeit
Ziele der Lehrveranstaltung
- Entwicklung der Eigenständigkeit und Teamfähigkeit, sowie der Kompetenzen in Präsentation, Kommunikation, Zeit- und Projektmanagement
- Befähigung zur agilen Softwareentwicklung mit Scrum
- Befähigung zum Umgang mit Werkzeugen für die Softwareentwicklung im Team, sowie Zeit- und Projektmanagement
- Befähigung zur Anwendung individuel benötigter Technologien im Rahmen des Projekts
Belegungmöglichkeiten
- “Softwareentwicklungsprojekt 1” (SWEP-1: für den Bachelor)
- “Softwareentwicklungsprojekt 2” (SWEP-2: für den Master)
- “Offenes Softwareentwicklungsprojekt” (EAH Jena)
Voraussetzungen
- Die formalen Voraussetzungen Ihres Moduls (SWEP-1, SWEP-2, SOC-P: je nach Studiengang).
- Teamfähigkeit: Das Projekt wird im Team mit verschiedenen Rollenverteilungen durchgeführt
- Schnelle Einarbeitung in einzusetzende Technologien (je nach Projekt). Beispiele: Java, Android, NFC, HTML5, CSS, JavaScript, BPMN bzw. EPKs, Webservices, Datenbanken, Apache, etc.
-
Management of Scientific Data (MoSD)
Data is becoming more and more crucial for scientific progress. Terms like data-intensive or even data-driven science and Big Data are evidence of that. However, this new breed of science will only be successful, if data is properly managed along its entire lifecycle. The course provides you with the necessary tools to do just that.
The course follows the data lifecycle and explores challenges, solutions and open problems of the individual steps, including:
• Overview of the data lifecycle: data collection, quality assurance, data storage and preservation, data analysis and visualization, data publication, data discovery, data reuse and hypothesis generation
• Cross-cutting topics covered include: Metadata standards and ontologies, scientific workflow management, persistent identifiers for data, data provenance and versioning.
The module will be taught in English.
-
Seminar (wechselnde Themen)
Wird im Sommersemester 2025 nicht angeboten
-
Knowledge Graphs (Verteilte Systeme, Spez. II)
Wissensgraphen sind vermutlich der aktuelle Ansatz, um verteilte Information zusammen zu bringen und zu nutzen. SNach einer kurzen Einführung werden wir uns im Seminar mit unterschiedlichen Aspekten dieses Ansatzes näher beschäftigen.
Traditional database systems and warehouses are centered around records and tuples, which can be effective and efficient when a domain is well known in advance. However, in domains where one has the need to flexibly connect all sort of, possibly unexpected kind of information to the records, the Knowledge Graphs technology has distinctive advantages. As a result, currently the term “Knowledge Graph” has become mainstream as information giants like Google, Facebook, Yahoo, Microsoft, have announced their move from traditional search and data management to “Knowledge Graphs“.
In this seminar, we aim to discuss the current topics related to “Knowledge Graphs”, which includes, but not limited to:
- Knowledge representation
- Semantic search
- Query answering
- Entity matching and resolution
- Link discovery
- Knowledge graph partitioning and clustering
- Community detection
- Application of machine learning on Knowledge graph
-
Modul: Modellierung und Systementwicklung (Unterrichtserlaubnis Informatik)
-
Informatik und Gesellschaft (Lehrauftrag)
Die Lehrveranstaltung Informatik und Gesellschaft bietet eine umfassende Einführung in grundlegende Begriffe der Informatik und legt einen besonderen Fokus auf den verantwortungsvollen Umgang mit persönlichen Daten. Die Studierenden lernen, die Konsequenzen der Datenweitergabe zu bewerten und die Vor- und Nachteile der Herausgabe persönlicher Informationen abzuwägen. Die Vorlesung beleuchtet auch historische Fakten über den technologischen Fortschritt.
Darüber hinaus werden wesentliche Themen wie Bedrohungen, Schwachstellen und Risikoanalysen behandelt. Die Studierenden erhalten einen Überblick von Schutzmechanismen, Präventionen und die Sichtbarkeit von Verteidigungsmaßnahmen. Weitere Schwerpunkte sind Konzepte der IT-Sicherheit, Computer-Forensik, Authentifizierungsmethoden und die Herausforderungen der Technik- und Computersicherheit. Zudem wird auf Malware und Chiffren eingegangen, um ein fundiertes Verständnis für den Schutz digitaler Informationen zu vermitteln. Zusätzlich wird das Thema Automatisierung sowie das Vertrauen in diese besprochen.
Ein praktischer Teil des Kurses umfasst die eigenständige Chiffrierung und Dechiffrierung von Texten, um ein tieferes Verständnis für Verschlüsselungstechniken zu entwickeln. Darüber hinaus analysieren die Teilnehmer die Effektivität und Effizienz verschiedener Sicherheitsmaßnahmen.
Insgesamt bietet die Veranstaltung eine umfassende Darstellung über den Umgang mit Daten und verdeutlicht deren Bedeutung in unserer heutigen Gesellschaft.
Vorlesung und Übung sind Teil des Moduls ”Informatik und Gesellschaft"
-
Informatik und Gesellschaft (Seminar)
Veranstaltungsbeschreibung Übung
In der begleitenden Übung zur Vorlesung ”Informatik und Gesellschaft” haben Teilnehmende die Möglichkeit, sich intensiv mit Themen wie Sicherheit, Privatsphäre, nationalen Unterschieden im Umgang mit persönlichen Daten und Risiken der Datenfreigabe auseinanderzusetzen. In interaktiven Sitzungen, in denen die Teilnehmer:innen Aufgaben und Übungen zum besseren Verständnis des menschlichen Faktors im Datenschutz, IT-Sicherheit, Computerforensik, Authentifizierung und Chiffrierung bearbeiten. Die Teilnehmenden lernen verschiedene Aspekte der IT-Sicherheit kennen, diskutieren über Schwachstellen, Bedrohungen und Risiken und setzen sich mit dem Konzept des Vertrauens auseinander.
Des Weiteren haben die Studierenden die Möglichkeit, Design Entscheidungsprozesse von Applikationen zu evaluieren und diese in ein Mock-Up (click-dummy) eigenständig zu implementieren. Hierbei liegt der Fokus auf kooperativem Lernen und der Diskussion der Ergebnisse. Außerdem sind Studierende angehalten, sich mit einem Thema aus ”Informatik und Gesellschaft” vertieft zu beschäftigen und einen Vortrag auszuarbeiten
Grundlage dafür werden ausgewählte Gewissensbits (https://gewissensbits.gi.de/External link) sein.
-
Projektmanagement (Lehrauftrag)
Projekte sind einmalige, zielorientierte und zeitbegrenzte Vorhaben und sind fester Bestandteil der Arbeitswelt geworden. Sie sind die Antwort auf steigende Herausforderungen in Form komplexer technischer Probleme, kürzer werdender Innovationszyklen, wachsenden Kostendrucks und zunehmender Vernetzung. Um die dabei auftretenden Probleme zielgerichtet zu lösen, Teams termintreu zu führen und Produkte marktgerecht zu gestalten, müssen unstrukturierte Arbeitsflüsse in Prozessen organisiert und durch konsequente Planung und Steuerung als Projekte verwirklicht werden.
Dieser Workshop gibt eine praxisnahe und kompakte Einführung in die Methoden des Projekts- und Zeitmanagements, auch bezogen auf wissenschaftliche Projekte. Die Teilnehmerinnen und Teilnehmer wenden in drei Gruppen die Theorien und Instrumente für ihre eigenen (z. B. Dissertations-) Projekte an.
Ziel des Workshops ist es, dass für drei existierende Projekte der Teilnehmenden jeweils ein Projektstrukturplan, eine Zeit- und Meilensteinplanung erstellt und eine Risiko- sowie Stakeholder-Analyse durchgeführt werden. Der Transfer vom Seminar zum Forschungsprojekt kann damit direkt erfolgen. Daneben reflektieren die Teilnehmenden Ihr Zeitmanagement und entwickeln erste Schritte zu einem effizienteren Umgang mit ihrer Zeit und dem Setzen von Prioritäten.
Folgende Schwerpunkte werden behandelt:- Grundlagen des Projektmanagements
- Definition der Projektziele
- Steuerung des Projektumfangs
- Stakeholder Management
- Steuerung von Projektrisiken
- Zeit- und Ressourcenmanagement
- Strategien des Zeitmanagements
- Effiziente Arbeitstechniken
Umfang: 2 SWS