Marc Hovemann
You may find further information on my previous website in Marburg:
https://www.mathematik.uni-marburg.de/~hovemann/External link
-
CV
since 9/2024 : Postdoc at the Friedrich-Schiller-University Jena
9/2023 - 8/2024 : Principal Investigator at the Philipps-University Marburg (Workgroup Numerics, DFG project "Adaptive Quarklet Methods for the numerical Solution of Elliptic Partial Differential Equations with exponential Convergence")
6/2021 - 5/2023 : Postdoc at the Philipps-University Marburg (Workgroup Numerics, DFG project "adaptive high-order quarklet frame methods for elliptic operator equations")
3/2018 - 5/2021 : Dr. rer. nat. in Mathematics at the Friedrich-Schiller-University Jena (summa cum laude)
2015 - 2017 : M. Sc. in Mathematics at the Friedrich-Schiller-University Jena (final mark : 1,0 ) (Examenspreis of the dean of the department of mathematics and computer science)2012 - 2015 : B. Sc. in Mathematics at the Friedrich-Schiller-University Jena
2002 - 2010 : Abitur at the Friedrich-Schiller-Gymnasium Eisenberg
22.06.1991 : born in Speyer (Germany) -
Publications and Preprints
M. Hovemann, M. Weimar: Oscillations and differences in Besov-Morrey and Besov-type spacesExternal link. arXiv:2405.20662
M. Hovemann: Quarklet Characterizations for bivariate Bessel-Potential Spaces on the Unit Square via Tensor ProductsExternal link. arXiv:2403.14388
M. Hovemann, M. Weimar: Oscillations and differences in Triebel-Lizorkin-Morrey spacesExternal link. Rev. Mat. Complut. , 37, 735-782, 2024.
S. Dahlke, M. Hovemann, T. Raasch, D. Vogel: Adaptive Quarklet Tree ApproximationExternal link. Adv. Comput. Math. 50, 110 (2024).
M. Hovemann, A. Kopsch, T. Raasch, D. Vogel: B-Spline Quarklets and Biorthogonal MultiwaveletsExternal link. Int. J. Wavelets Multiresolut. Inf. Process., published online.
M. Hovemann, S. Dahlke: Quarklet Characterizations for Triebel-Lizorkin spacesExternal link. J. Approx. Theory 295, 105968, 2023.
M. Hovemann: Triebel-Lizorkin-Morrey Spaces and DifferencesExternal link. Math. Nachr. 295, 725-761, 2022.
M. Hovemann: Besov-Morrey spaces and differencesExternal link. Math. Rep. (Bucur.), 23(73), No. 1-2, 175-192, 2021.
M. Hovemann: Truncation in Besov-Morrey and Triebel-Lizorkin-Morrey spacesExternal link. Nonlinear Anal., 204, 112239, 2021.
M. Hovemann, W. Sickel: Besov-type spaces and differencesExternal link. Eurasian Math. J.13(1), 25-56, 2020.
C. Zhuo, M. Hovemann, W. Sickel: Complex Interpolation of Lizorkin-Triebel-Morrey Spaces on DomainsExternal link. Anal. Geom. Metr. Spaces, 8, 268-304, 2020.
-
Awards and Funding
DFG Project "Adaptive Quarklet Methods for the numerical Solution of Elliptic Partial Differential Equations with exponential Convergence" (since 1.9.2023)
Promotionspreis des Dekans 2022 (13.1.2023, FSU Jena)
Auszeichnung für herausragende Leistungen als Übungsleiter für das Fach Analysis 2 (20.11.2020, FSU Jena, verliehen von der Physikalisch-Astronomischen Fakultät)
Landesgraduiertenstipendium der FSU Jena (1.3.2018 - 28.2.2021, zur Erstellung der Promotion)Examenspreis des Dekans 2018 (2.11.2018, FSU Jena, für die Masterarbeit "Strichartz-Charakterisierungen von F^s_{p,q}")
-
Talks
Multivariate Quarklets in the Context of Bessel-Potential Spaces on Unit Cubes ( 26.9.2024, FSDONA 24, Oberhof)
Besov-Morrey Spaces and Oscillations ( 23.7.2024, Siegmundsburg seminar)
Quarklet Characterizations for bivariate Bessel-Potential Spaces on the Unit Square via Tensor Products ( 31.5.2024, function spaces seminar Jena)
Multivariate Quarklets in the Context of Bessel-Potential Spaces on Unit Cubes ( 9.2.2024, Rhein-Ruhr-Workshop, Bestwig)
Poster: "Adaptive near-best Quarklet Tree Approximation" ( 26.9.2023, Two-day workshop on Approximation Theory, Giessen)
Triebel-Lizorkin-Morrey Spaces and Oscillations ( 28.8.2023, Siegmundsburg seminar)
Triebel-Lizorkin-Morrey Spaces and Oscillations ( 2.6.2023, function spaces seminar Jena)
Adaptive near-best Quarklet Tree Approximation ( 10.2.2023, Rhein-Ruhr-Workshop, Bestwig)
Quarklet Characterizations for Triebel-Lizorkin Spaces ( 6.10.2022, International Conference on Function Spaces and Applications, Apolda)
Adaptive near-best Quarklet Tree Approximation ( 1.8.2022, Siegmundsburg seminar)
B-Spline Quarklets and their Connections to the Theory of biorthogonal Multiwavelets ( 15.7.2022, function spaces seminar Jena)
Quarklets and their Connections to the Theory of biorthogonal Multiwavelets ( 6.7.2022, Oberseminar zur Numerik und Optimierung Marburg)
Poster: "Quarklet Characterizations for Triebel-Lizorkin spaces" ( 23.6.2022, Conference "Applied Harmonic Analysis and Friends", Strobl, Austria)
Triebel-Lizorkin-Morrey Spaces and Differences: Characterizations and Applications ( 3.3.2022, Ruhr-Universität Bochum, Research Seminar Numerical Analysis)Quarklet Characterizations for Triebel-Lizorkin Spaces ( 2.2.2022, Oberseminar zur Numerik und Optimierung Marburg)
Quarklet Characterizations for Triebel-Lizorkin Spaces ( 31.8.2021, Siegmundsburg seminar)Quarklet Characterizations for Triebel-Lizorkin and Triebel-Lizorkin-Morrey Spaces ( 2.7.2021, function spaces seminar Jena)
Quarklet Characterizations for Triebel-Lizorkin Spaces ( 16.6.2021, Oberseminar zur Numerik und Optimierung Marburg)
Triebel-Lizorkin-Morrey spaces and differences: characterizations and applications ( 16.12.2020, Oberseminar zur Numerik und Optimierung Marburg)
Truncation in Besov-Morrey and Triebel-Lizorkin-Morrey spaces ( 10.7.2020, function spaces seminar Jena)
Besov-Morrey spaces and truncations - an introduction ( 12.2.2020, function spaces seminar Jena)
Besov-Morrey spaces and differences ( 27.1.2020, PhD seminar Jena)Besov-Morrey spaces and differences (26.8.2019, Siegmundsburg seminar)
Triebel-Lizorkin-Morrey spaces and differences (14.6.2019, FSDONA, Turku, Finnland)
Triebel-Lizorkin-Morrey spaces and differences: necessary conditions ( 18.1.2019, function spaces seminar Jena)
Triebel-Lizorkin-Morrey spaces and differences: sufficient conditions (11.1.2019, function spaces seminar Jena)Triebel-Lizorkin-Morrey spaces and differences (23.11.2018, The Prague seminar on function spaces)
Strichartz-Charakterisierungen von F^{s}_{p,q} (24.7.2018, Siegmundsburg seminar)
Characterizations of Triebel-Lizorkin spaces by differences (14.5.2018, PhD seminar Jena) -
Teaching
Winter term 2024/2025: Exercise Analysis 1
Teaching in former semesters:
Lecture Nonlinear Optimization (summer term 2023)
Exercise Analysis 2 (summer term 2020)
Exercise Analysis 1 (winter term 2019/2020)
Exercise Numerische Mathematik (summer term 2019)
Exercise Mathematik 1 (B.Sc. Werkstoffwissenschaften, winter term 2018/2019)
Exercise Analysis 2 (summer term 2018)
Exercise Mathematik 1 (B.Sc. Werkstoffwissenschaften, winter term 2017/2018)
Exercise Analysis 1 (winter term 2017/2018)
Tutorial Numerische Mathematik (summer term 2017)