Analysis II

Sommersemester 2011

Prof. Dr. D. Lenz

Blatt 6

Abgabe Mittwoch 18.05.2011

- (1) Sei (X, d) ein metrischer Raum. Sei $e: X \times X \longrightarrow \mathbb{R}, e(x, y) = d(x, y)/(1 + d(x, y))$. Zeigen Sie:
 - (a) Es ist e eine Metrik.
 - (b) Zu beliebigen $x \in X$ und r > 0 existieren $\rho, \sigma > 0$ mit

$$U_{\rho}^{e}(x) \subset U_{r}^{d}(x),$$

$$U_{\sigma}^{d}(x) \subset U_{r}^{e}(x).$$

- (c) Es erzeugen e und d dieselbe Topologie.
- (d) Eine Folge (x_n) konvergiert gegen x bzgl. d genau dann, wenn sie bzgl. e gegen x konvergiert.
- (e) Eine Folge ist eine Cauchy Folge bzgl. e genau dann, wenn sie eine Cauchy Folge bzgl. d ist.
- (2) Sei (M, d) ein metrischer Raum und $(x_n)_{n \in \mathbb{N}}$ eine Folge in M, die gegen $x \in M$ konvergiert. Zeigen Sie, dass die Menge

$$\{x_n : n \in \mathbb{N}\} \cup \{x\}$$

kompakt ist.

(3) Sei $M \neq \emptyset$ eine endliche Menge und d_1, d_2 zwei Metriken auf M. Zeigen Sie, dass es Konstanten c, C > 0 gibt, so dass

$$cd_1(x,y) \le d_2(x,y) \le Cd_1(x,y)$$
 für alle $x,y \in M$.

- (4) Sei (M, d) ein vollständiger metrischer Raum und $\{F_n\}_{n\geq 1}$ eine Folge abgeschlossener beschränkter Mengen mit folgenden Eigenschaften:
 - (i) $F_n \supset F_{n+1}$ für alle $n \ge 1$
 - (ii) $\lim_{n\to\infty} \operatorname{diam} F_n = 0$.

Zeigen Sie, dass dann $\bigcap_{n=1}^\infty F_n \neq \emptyset$ gelten muss.

Erinnerung: Für eine beschränkte Menge $B \subset M$ bezeichnet

$$diam B = \sup\{d(x, y) : x, y \in B\}$$

den Durchmesser von B.

Zusatzaufgaben

(1) Zeigen Sie, dass der in der Vorlesung besprochene normierte Raum $\ell^2(\mathbb{N})$ vollständig ist

Anleitung: Sei $(u_n) \in \ell^2(\mathbb{N})$ eine Cauchy-Folge. Zeigen Sie der Reihe nach:

- $-u_n$ konvergiert punktweise gegen eine Folge u, d.h. für alle $m \in \mathbb{N}$ gilt $u_n(m) \to u(m)$.
- Es existiert c > 0, so dass für alle $N \in \mathbb{N}$

$$||(u)_N||_2 \le C,$$

wobei
$$(u)_N = (u_1, u_2, \dots, u_N, 0, \dots)$$
 für $u = (u_1, u_2, \dots)$ definiert ist.

- $-u \in \ell^2$.
- $\|(u u_n)_N\| \to 0$ gleichmäßig in N.
- (2) Zeigen Sie, dass es eine bijektive, stetige Abbildung von \mathbb{R} in das offene Intervall (0,1) gibt, deren Umkehrabbildung auch stetig ist.

Viel Erfolg!