Höhere Analysis II

Wintersemester 2018/2019

Prof. Dr. D. Lenz

Blatt 11

Abgabe Donnerstag 24.01.2019

- (1) Sei μ ein komplexes Maß auf dem messbaren Raum (X, \mathcal{A}) . Es gelt $\mu = h\nu$ mit einem positiven Maß ν und einer meßbaren Funktion $h: X \longrightarrow \mathbb{C}$ mit |h(x)| = 1 für alle $x \in X$. Zeigen Sie $|\mu| = \nu$.
- (2) Sei (X, A) ein meßbarer Raum. Sei $\mathcal{M}(X, A)$ der Vektorraum der komplexen Maße auf (X, A) ausgestattet mit der Variationsnorm $\|\mu\| := |\mu|(X)$. Zeigen Sie, daß $(\mathcal{M}(X, A), \|\cdot\|)$ vollständig ist.
- (3) Sei X ein lokalkompakter Hausdorffraum und $\Lambda: C_0(X) \longrightarrow \mathbb{C}$ eine stetiges lineares Funktional. Zeigen Sie, daß ein komplexes Maß μ auf X existiert mit

$$\Lambda(f) = \int f d\mu$$

für alle $f \in C_0(X)$.

(4) Sei c_b der Vektorraum der beschränkten Funktionen von \mathbb{N} nach \mathbb{C} ausgestattet mit der Supremumsnorm. Zeigen Sie die Existenz ein linearen stetigen $\Phi: c_b \longrightarrow \mathbb{C}$, für das es kein komplexes Maß μ auf \mathbb{N} gibt mit $\Phi(f) = \int f d\mu$ für alle $f \in c_b$.