Hausaufgabenblatt 10

Abgabe am 14.06.2017

Aufgabe 1. Sei (M, d) ein metrischer Raum und $(x_n)_{n \in \mathbb{N}}$ eine Folge in M, die gegen $x \in M$ konvergiert. Zeigen Sie, dass die Menge

$$\{x_n:n\in\mathbb{N}\}\cup\{x\}$$

kompakt ist.

Aufgabe 2. Sei (X, d) ein zusammenhängender und lokal wegzusammenhängender metrischer Raum. Zeigen Sie, (X, d) ist wegzusammenhängend.

Hinweis: Ein metrischer Raum (X, d) heißt lokal wegzusammenhängend, wenn für jedes $x \in X$ eine Umgebung $U_x \subset X$ existiert, welche wegzusammenhängend ist.

Aufgabe 3. Sei (K, d) ein kompakter metrischer Raum. Sei (f_n) eine Folge von reellwertigen stetigen Funktionen auf K, die monoton gegen eine stetige, reellwertige Funktion f auf K konvergiert. Zeigen Sie, dass (f_n) gleichmäßig gegen f konvergiert.

Aufgabe 4. Sei (X, d) ein metrischer Raum, $A \subset X$ abgeschlossen und $K \subset X$ kompakt mit $K \cap A = \emptyset$. Zeigen sie, dass eine stetige Funktion $f: X \to \mathbb{R}$ existiert mit der Eigenschaft f(x) = 0 für $x \in A$ und f(x) = 1 für $x \in K$.

Zusatzaufgabe 5. Sei M = (0,1) mit der euklidischen Metrik gegeben. Geben Sie eine offene Überdeckung von M an, die keine endliche Teilüberdeckung zulässt.

Zusatzaufgabe 6. Seien $(X_1, d_1), \ldots, (X_N, d_N)$ metrische Räume, $X = X_1 \times \ldots \times X_N$ und $d(x, y) = d_1(x_1, y_1) + \ldots + d_N(x_N, y_N), x, y \in X$.

- (a) Zeigen Sie, dass (X, d) genau dann vollständig ist, falls $(X_1, d_1), \ldots, (X_N, d_N)$ vollständig sind.
- (b) Sei (Z, e) ein metrischer Raum und $f: Z \to X, z \mapsto (f_1(z), \dots, f_N(z))$. Zeigen Sie, dass f genau dann stetig ist, falls f_1, \dots, f_N stetig sind.