Analysis on graphs

Course given at TU Graz March 2013

Prof. Dr. D. Lenz

Exercise Sheet II

Due to a later point of time

- (1) Let (b,c) be a graph over the finite set X and L the associated operator. Then, $e^{-tL}1 \le 1$ by general principles. Show the following:
 - (a) $e^{-tL}1 \neq 1$ for all (one) t > 0 if and only if $c \neq 0$.
 - (b) If (b, c) is connected, then $e^{-tL}1(x) < 1$ for all $x \in X$ whenever $c \neq 0$.
- (2) Let (b, c) be a graph over the finite X with associated form Q and W_{eff} the effective resistance defined in the course. Show the following:
 - (a) $W_{eff}(x, y) = \max\{|f(x) f(y)|^2 : Q(f) \le 1\}.$
 - (b) The function ρ with

$$\varrho(x,y) = W_{eff}^{1/2}$$
 for $x \neq y$ and $\varrho(x,y) = 0$ for $x = y$

is a metric on X.

- (3) Let (b,c) be a graph over the finite X with associated operator L. Show the following formula relating the associated semigroup e^{-tL} , $t \ge 0$, and the associated resolvent $(L+\alpha)^{-1}$, $\alpha > 0$:
 - (a) $e^{-tL} = \lim_{n \to \infty} \left(\frac{n}{t} (L + \frac{n}{t})^{-1} \right)^n$ for any t > 0.
 - (b) $(L+\alpha)^{-1} = \int_0^\infty e^{-t\alpha} e^{-tL} dt$ for any $\alpha > 0$.

Hint: Show the formulae first for the case that L is just a number. Then, use your favorite form of spectral theorem to deal with e^{-tL} and $(L + \alpha)^{-1}$. For example you might use the decomposition $L = \sum_{j=1}^k \lambda_j E_j$ (with the different eigenvalues λ_j and the corresponding spectral projections E_j of L) to conclude (how?) that

$$(L+\alpha)^{-1} = \sum (\lambda_j + \alpha)^{-1} E_j$$

and

$$e^{-tL} = \sum e^{-t\lambda_j} E_j.$$