Höhere Analysis I

Sommersemester 2015

Prof. Dr. D. Lenz

Blatt 2

Abgabe Dienstag 05.05.2015

(1) Es seien Maße μ_n , $n \in \mathbb{N}$ auf einen messbaren Raum (X, \mathcal{A}) gegeben. Zeigen Sie, dass durch $\mu(A) := \lim_{n \to \infty} \mu_n(A)$ ein Maß definiert wird, falls $\mu_n \leq \mu_{n+1}$ für alle $n \in \mathbb{N}$ gilt.

Hinweis: Es gilt $\mu_n \leq \mu_{n+1}$, falls für alle $A \in \mathcal{A}$ die Ungleichung $\mu_n(A) \leq \mu_{n+1}(A)$

<u>Hinweis:</u> Es gilt $\mu_n \leq \mu_{n+1}$, falls für alle $A \in \mathcal{A}$ die Ungleichung $\mu_n(A) \leq \mu_{n+1}(A)$ gilt.

- (2) Gegeben seien Maße μ_n , $n \in \mathbb{N}$ auf einen messbaren Raum (X, \mathcal{A}) . Zeigen Sie für beliebige $a_n \geq 0$, $n \in \mathbb{N}$, dass $\sum_{n \in \mathbb{N}} a_n \cdot \mu_n$ ein Maß bildet.
- (3) Zeigen Sie, dass jede abzählbare Teilmenge von $\mathbb R$ eine Borelmenge ist. Untersuchen Sie die Funktion

$$f(x) := \begin{cases} x, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

auf Messbarkeit.

(4) Betrachten Sie die reelen Zahlen \mathbb{R} ausgestattet mit der Borel σ -algebra $\mathcal{B}(\mathbb{R})$. Für eine Folge $x_n \in \mathbb{R}, n \in \mathbb{N}$ definieren wir die Abbildung $\mu : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ durch $\mu := \sum_{n \in \mathbb{N}} \delta_{x_n}$ wobei

$$\delta_{x_n}(A) := \begin{cases} 1, & x_n \in A, \\ 0, & \text{sonst}, \end{cases} \qquad A \in \mathcal{B}(\mathbb{R}).$$

- (a) Wann gilt für beschränkte Intervalle $I \subseteq \mathbb{R}$, dass $\mu(I) < \infty$?
- (b) Welche Eigenschaften muss die Folge $(x_n)_{n\in\mathbb{N}}$ besitzen damit μ σ -endlich ist? <u>Hinweis:</u> Ein Maß μ heißt σ -endlich, falls messbare Mengen $A_n \in \mathcal{B}(\mathbb{R}), n \in \mathbb{N}$ existieren mit $\mathbb{R} = \bigcup_{n \in \mathbb{N}} A_n$ und $\mu(A_n) < \infty$.

Zusatz

Die Cantormenge C entsteht aus dem Intervall [0,1], indem zunächst das offene

mittlere Drittel herausgenommen wird, aus den zwei verbleibenden Intervallen wieder jeweils das offene Drittel herausgenommen wird, usw., also

$$C := [0,1] \setminus \left(\left(\frac{1}{3}, \frac{2}{3} \right) \cup \left(\frac{1}{9}, \frac{2}{9} \right) \cup \left(\frac{7}{9}, \frac{8}{9} \right) \cup \ldots \right)$$

Zeigen Sie die folgenden Aussagen.

- a) Die Menge C ist eine Lebesgue Nullmenge.
- b) Die Menge C besteht genau aus den Punkten $a \in \mathbb{R}$ mit $a = \sum_{j=1}^{\infty} a_j 3^{-j}$ mit $a_j \in \{0,2\}.$
- c) Die Menge C ist überabzählbar.