Höhere Analysis II

Blatt 6

Zur Besprechung in der Übung am 08.12.2015

- (1) Sei H ein Hilbertraum und $T \colon D(T) \subset H \longrightarrow H$ ein dicht definierter Operator. Zeigen Sie: Falls $\operatorname{Re}\langle Tx, x \rangle \geq 0$ für alle $x \in D(T)$ gilt, so ist T abschließbar.
- (2) Sei (X, \mathcal{B}, μ) ein σ -endlicher Maßraum und $\varphi \colon X \longrightarrow \mathbb{C}$ messbar. Sei M_{φ} der maximale Operator der Multiplikation mit φ in $L^2(X, \mu)$.

Zeigen Sie, dass die Menge der Eigenwerte von M_{φ} gegeben ist durch

$$\sigma_{\mathbf{P}}(M_{\varphi}) = \{ \lambda \in \mathbb{C} \mid \mu(\varphi^{-1}(\lambda)) > 0 \}.$$

- (3) Sei $\Delta \colon \mathcal{S}(\mathbb{R}^n) \subset L^2(\mathbb{R}^n) \longrightarrow L^2(\mathbb{R}^n)$ der Laplace-Operator. Zeigen Sie, dass $C_c^{\infty}(\mathbb{R}^n)$ dicht in $\mathcal{S}(\mathbb{R}^n)$ bezüglich der Graphennorm $\|\cdot\|_{H^2} = (\|\cdot\|_{L^2}^2 + \|\Delta\cdot\|_{L^2}^2)^{\frac{1}{2}}$ ist.
- (4) Sei der Operator T gegeben durch

$$T \colon \mathcal{S}(\mathbb{R}) \subset L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R}), f \mapsto if'.$$

Zeigen Sie, dass T symmetrisch ist.