Analysis III

Wintersemester 2014/2015

Prof. Dr. D. Lenz

Weihnachtszettel

Abgabe Dienstag 06.01.2015

(1) Sei $k \in \mathbb{R} \setminus \{0\}$ beliebig und die Kugelloxodrome $\gamma: (-\infty, \infty) \to \mathbb{R}^3$ definiert durch

$$\gamma(\phi) = \frac{1}{\cosh(k\phi)} \begin{pmatrix} \cos \phi \\ \sin \phi \\ \sinh(k\phi) \end{pmatrix}.$$

- (a) Zeichnen Sie γ und ihre Projektion in die x-y-Ebene.
- (b) Zeigen Sie, dass γ eine beliebig oft differenzierbare Kurve ist, deren Bild in der Einheitssphäre des \mathbb{R}^3 liegt.
- (c) Berechnen Sie die Länge von γ .
- (2) Es seien $g,h:\mathbb{R}\to\mathbb{R}$ stetig differenzierbar und $f:\mathbb{R}^2\to\mathbb{R}^2$ das Vektorfeld definiert durch

$$f(x,y) := \begin{pmatrix} g(y) \\ h(x) \end{pmatrix}$$
.

- (a) Charakterisieren Sie, unter welchen Voraussetzungen an g und h es sich bei f um ein Gradientenfeld handelt.
- (b) Geben Sie für entsprechende Funktionen aus (a) eine Stammfunktion von f an.
- (3) Sei $\Phi: \mathbb{R}^2 \to \mathbb{R}^4$ definiert durch

$$\Phi(u,v) = \begin{pmatrix} \cos u \\ \sin u \\ \cos v \\ \sin v \end{pmatrix}.$$

- (a) Zeigen Sie, dass Φ eine reguläre Parameterdarstellung ist.
- (b) Zeigen Sie, dass das Bild von Φ eine Untermannigfaltigkeit ist.
- (c) Finden Sie eine Funktion $h: \mathbb{R}^4 \to \mathbb{R}^2$, so dass das Bild von Φ als Nullstellenmenge von h beschrieben wird.

Bitte wenden.

(4) Berechnen Sie das Oberflächenintegral der Funktion

$$f: \mathbb{R}^3 \to \mathbb{R}, \quad f(x, y, z) = \begin{cases} 0 & : (x, y, z) = 0, \\ \frac{x}{\sqrt{x^2 + y^2}} & : \text{sonst.} \end{cases}$$

über die Kegelmantelfläche, die durch die Parametrisierung

$$\Phi: (0,1) \times (0,2\pi) \to \mathbb{R}^3, \quad (r,\phi) \mapsto (r\cos\phi, r\sin\phi, r)$$

gegeben ist.

(5) Sei $\gamma:[0,1]\to\mathbb{R}^2$ definiert durch

$$\gamma(t) = (t, t^a \cos(t^{-b}))$$

für $t \in (0,1]$ und $\gamma(0) = 0$. Untersuchen Sie, für welche a,b>0 die Kurve γ rektifizierbar ist.

(6) Die Simplexkoordinaten werden durch die Transformation $\Phi: \mathbb{R}^n \to \mathbb{R}^n$,

$$\Phi(u_1, \dots, u_n) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} u_1(1 - u_2) \\ u_1u_2(1 - u_3) \\ \vdots \\ u_1u_2 \dots u_k(1 - u_{k+1}) \\ \vdots \\ u_1u_2 \dots u_n \end{pmatrix}$$

definiert.

- (a) Berechnen Sie die Funktionaldeterminante von Φ .
- (b) Untersuchen Sie Φ auf lokale Umkehrbarkeit und geben Sie in diesen Punkten eine Umkehrabbildung an.

<u>Hinweis:</u> Betrachten Sie die Abbildungen $\Psi_1(u) = w$, mit $w_k = u_1 \dots u_k$ für $k = 1, \dots, n$ und $\Psi_2(w) = x$ mit $x_k = w_k - w_{k+1}$ für $k = 1, \dots, n-1$ und $x_n = w_n$, und nutzen Sie, dass $\Phi = \Psi_2 \circ \Psi_1$.

Zusatzaufgabe.

Sei $f: \mathbb{N} \to \mathbb{N}$ mit f(n+1) > f(f(n)) für alle $n \in \mathbb{N}$. Zeigen Sie, dass dann f(n) = n gilt. Hinweis: Es gilt f(k) > n für $n, k \in \mathbb{N}$ mit k > n.

Frohe Festtage!