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Chapter 1

Introduction

In this chapter we discuss where we are coming from and where we are heading to.
We consciously avoid rigorous terms at first to put through the big picture. All
notions will be introduced rigorously in the chapters that follow.

1.1 Applied operator theory - The big picture

While the clarity of linear algebra stems from its restriction to studying linear map-
pings on finite dimensional vector spaces, the beauty of analysis is expressed as
saying that it is the ’art of taking limits’. Operator theory combines this clarity and
beauty as it is concerned with the study of linear maps on infinite dimensional space

The fundamental observations for the development is that differentiation (and inte-
gration) are linear. The idea is to extend ideas from linear algebra to study functional
equations such as

e Schrodinger equation (stationary and time dependent)
e Heat equation

which are real world problems coming from physics. Let us discuss these equations
shortly. Let  C R? be open, A = — Zd 92 the Laplacian and V : Q — [0, c0).

’i:l xX;
(More generally we let 2 be a Riemannian manifold and A the Laplace-Beltrami
operator.)

The stationary Schrodinger equation. Find £ € R and f : 0 — R smooth
with [, |f|*dz < co such that

Af(z)+V(x)f(z) = Ef(x), x€Q.

This equation models the state of a quantum mechanical particle (e.g. an electron)
in a certain media. In particular,

A ... kinetic energy,



V' ... potential energy,

f ... wave function, in particular the probability that the electron in the state
f can be found in A C Q is given by [, |f|*dz,

E € R ... total energy. The set of all E for which there is a ’suitable’ solution
f is the set of all energies the system can assume.

The map
H:f—Af+Vf

is called a Hamiltonian or Schrodinger operator. It is obviously linear, so the
Schrodinger equation

Hf=FEf
can be viewed as an ’eigenvalue equation’.

The time dependent Schrodinger equation. For given fj find f: 2 xR - R
smooth with [, |f(x,t)|?dz < oo for all ¢ € R such that

Hf =i f, f(‘ao):fo-

This equation models the time evolution of a quantum mechanical particle which

started at time zero in in state fy. The equation can be formally solved by f given
by

f(z,t) = ™ fo ().

The heat equation. For given f, find f as above

Hf ==of,  f(-0) = fo

This equation models the distribution of heat f in €2 which started as f; in depen-
dence of time. The equation can be formally solved by f given by

fla,t) = e fo(z).

If H was a symmetric matrix on a (n + 1) dimensional vector space, we could

diagonalize it in order to solve the problems above, i.e., if \y < ... < A, are the
eigenvalues and U = (uy, ..., u,) is the matrix with the eigenvectors, then
Ao
H=U U
An

This would immediately solve the stationary Schrodinger equation. Moreover for a
function ¢ : R — R we can define

©(Xo)
e(H)=U U~
SO(/\n)

which solves the time dependent Schrodinger equation and the heat equation. Of
particular importance is the smallest eigenvalue \g:



e For the Schrodinger equations it models the ground state energy which is the

lowest energy the system can assume.
e For the heat equation )\, determines the long term behavior, i.e. e ' =

e~ ] + lower order terms.
There is the following news:
e These operators are linear and function spaces are vector spaces ©
e 'Diagonalization’ is not possible for any operator on any function space ®

e The spectral theorem says that selfadjoint operators on Hilbert spaces can be
diagonalized. The ’eigenvalues’ are called the spectrum. ©

e The spectrum is usually impossible to calculate ®

e We are mathematicians - we can make assumptions and reformulate the ques-
tions ©

1.2 Spectrum of discrete Laplacians - The plan

We are concerned with the spectrum of discrete analogues of the Laplacian £. These
are difference operators on graphs. The plain vanilla model is as follows: The
underlying space X is discrete and its elements are called the vertices. Vertices are
connected by edges which are a subset of X x X. For a function ¢ : X — R the
operator L acts as

The first step is to define a selfadjoint restriction L of £ and discuss its basic prop-
erties. Then we study the spectrum of ¢(L) and the essential spectrum oegs(L). The
essential spectrum is the part of the spectrum that is stable under ’small’ perturba-
tions.

A particular focus will be put on the bottom of the (essential) spectrum

Ao = info(L)
A = inf 0o (L)

This involves the analysis of solutions on the one hand and a study of the underlying
geometry on the other.
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Chapter 2

Toolbox A. Preliminaries

2.1 Basic notions in topology

Literature: Boto von Querenburg, ’Mengentheoretische Topologie’.

Let a set X be given. A topology determines which subsets of X are open.
In particular, a topology is a subset O of the power set 2%X = {Y C X} such that

e )X €O,
e IfO, €O, 1€ J, then |J,., 0, € O, (J is an arbitrary index set),
e IfOy,...,0, €O, then (), 0; € O.

The pair (X, Q) is called a topological space. The elements of O are called open
sets. The complements X \ O of open sets O € O are called closed sets. A set
U C X is called a neighborhood of z € X if there is O € O such that x € O C U.

Examples 1. {(), X}, the trivial topology.

2. 2% the discrete topology (suitable for countable X which are sets such that there
exist an injective map X — N).

3. If (X, d) is a metric space, then the set of open sets with respect to d is a topology.
(A subset A C X is called open with respect to d if for every z € A there is € > 0
such that B.(z) == {y € X | d(z,y) < ¢} C A). In particular, K = R,C are
topological spaces with the Euclidian topology.

A set K C X is called compact if for all open coverings there is a finite subcovering,
ie., for O, € O for v € J (where J is in an index set) such that K C J,.; O, there
exist Oy, ...,0, € {O,},e; such that K C |J;_, O;.

A space X is called locally compact if every point has a compact neighborhood.

A space is called second countable if there is a countable subset of O such that every
open set can be written as a union over these sets, (i.e., there is {U;};en € O such
that for every O € O there is a sequence (i) € N such that O = |J, . U;,.) Such
a subset is called a basis.



A space X is called Hausdorff if for every x,y € X, x # y, there exist neighborhoods
O, 0, € O of x and y such that O, N O, # 0.

Examples 1. Open subsets of R?/C¢ with the topology generated by the Euclidean
metric is a locally compact, second countable Hausdorff space.

2. A set X with the discrete topology is a locally compact Hausdorff space. More-
over, X is second countable iff X is countable.

3. A compact metric space is a locally compact, second countable Hausdorff space.

Exercise 1: A second countable space X is o-compact, i.e., X is the countable
union of compact sets.

Counter-examples 1. Non locally compact spaces:

l.a. The comb C' C R? (picture) with induced topology by R? i.e. Oc ={CNO |
(OXS ORQ}.

1.b. Infinite dimensional Hilbert spaces.

2. The discrete topology on an uncountable set is not second countable.

3. Let p be a pseudo metric, that is a symmetric map p: X x X — [0, 00) that sat-
isfies the triangle inequality. If p(x,y) = 0 for some x # y, then topology generated
by the open sets with respect to p is not Hausdorff.

We now recall the definition of continuous functions.

Lemma 1. Let (X,Ox), (Y,Oy) be topological spaces and f : X — Y. Then, the
following are equivalent:

(i) For every x € X and every open neighborhood V' of f(x) there is an open
neighborhood U of x such that f(U) C V.

(ii) For every open set O CY the set f~1(O) is open in X.
Proof. (i)=(ii): Let O C Y be open. Let x € f~'(O) be arbitrary. For f(z) let

V' C O be an open neighborhood (i.e., take an arbitrary open set O’ containing f(z)
and let V= 0O'NO). By (i) there is an open neighborhood of U, of = such that

f(U;) € V. In particular U, € f~(V)) C f~1(0). Hence, [~1(0) = U,e;-11) U 1
open as it is a union of open sets.
(i)=(i): Take U = f~1(V). O

A function is called continuous if it satisfies one (and thus all) of the assumptions
of the Lemma above.

Examples 1. On a countable set with the discrete topology every function is con-
tinuous (because every set is open).

2. If X and Y are metric spaces then (i) coincides with the e-d-definition of conti-
nuity.



We denote the set of continuous functions from X to K by C(X). Moreover, the
support supp f of a function f: X — R is the closure of the set where the function
does not vanish, i.e.,

supp f = ﬂ{A C X | closed, f|x\a = 0}.
We call a function compactly supported if its support is a compact set and denote

the set of those functions by C.(X).

Exercise 2: C(X) and C.(X) are vector spaces.

2.2 Measure and integration theory

Literature: Heinz Bauer, 'Mafl und Integrationstheorie’.

2.2.1 o-algebras and measures

Let X be a set. A measure is a map that assigns to subsets a non-negative number
which can be thought as the volume (weight, energy, ...). In order to guarantee nice
properties one has to make restrictions on the set of measurable sets.

A subset A of the power set 2% is called a o-algebra if it satisfies the following
properties:

e XcA

o I[f Ac A then X\ Ac A

o If A, € A, n € N then |,y An € A
A set A C A is called measurable if A € A.

Examples 1. {0, X},

2. 2%

3. Ag={AC X | Aor X\ A countable}.

4. 1If A, for ¢ from some index set .J are o-algebras, then (), A, is a sigma algebra.
For a given subset £ C 2% we can define the smallest o-algebra Ag containing £ by
the intersection over all o-algebras containing £.

5. If X is a topological space, then the smallest o-algebra B that contains all open
sets is a o-algebra and it is called the Borel o-algebra.

We let K¢ with the Euclidean topology be always equipped with its corresponding
Borel g-algebra. We consider [0, 00] = [0,00) U {co} equipped with the o-algebra
By =BU{BU{x}| B € B}.

Let A be a g-algebra. A map p: A — [0, 00] is called a measure on (X, A) if
o 1(0) =0



o If A, € A, n €N, are mutually disjoint, then u({J, oy An) = S (A

A measure is called finite if u(X) < oo and a probability measure if p(X) = 1. We
say a property holds p-almost everywhere (p-almost surely) on X if there exists
a measurable set Xy C X with u(Xy) = 0 such that the property holds for all
re X \ X().

Example 1. f: X — R is f = 0 almost surely if there is a measurable X, with
1(Xo) = 0 such that f|x\x, = 0.

2. We say a function f is defined almost everywhere on X if there is a set X, of
measure zero such that f is a function on X \ Xy (e.g. f: X\ Xg — C). The
triple (X, A, p) is called a measure space. We will often suppress the o-algebra in
notation and simply write (X, u). A measure space (X, A, p) is called o-finite if
there is a sequence (A,,) of measurable sets such that .y An = X and pu(A,) < oo
for n € N. (It is the countable union of finite measure spaces).

Let X be a topological space and B is the Borel o-algebra. A measure p on (X, 5)
is called a Borel measure if u(K) < oo for all compact K C X. A Borel measure
pon (X, B) is called a Radon measure if it is inner reqular and locally finite, i.e.,
p(B) = SUPkcB compact M(K) and for every x € X there is a neighborhood U of
x such that u(U) < oo. If X is a second countable Hausdorff space, then inner
regularity implies local finiteness. (Exercise 3)

Examples 1. The Lebesgue measure Leb on (R% B) is a Radon measure. (The
Banach-Tarski paradox shows that a three dimensional unit ball can be decomposed
into subsets which can be composed into two unit balls. This shows that these
subsets cannot be Lebesgue measurable.) Indeed, (R?, B, Leb) is a o-finite measure
space (choose A,, = B,(0)).

2. Assume X is countable. Let A = 2% (=A, from Example 3 above). Then, all
measures on (X, 2%) are given by maps m : X — [0, oo] via

m(A) := Zm(x) (=sup{ Z m(z) | Ag C A finite}), ACX.

z€A z€AQ

(Indeed, given an arbitrary measure p on (X,2%) define m(x) = u({z}), z € X.)
The measure space (X, m) is o-finite if and only if m : X — [0, c0).

If X is equipped with the discrete topology, i.e., every set in 2% is open (and, in
particular, every singleton set {x} is open), the Borel o-algebra is given by B = 2X.
If not stated otherwise we will always choose the discrete topology and 2% as the
o-algebra for a countable set X and restrict ourselves to measures m : X — (0, 00).
We call a pair (X, m) satisfying these assumptions a discrete measure space.

2.2.2 Measurable and integrable functions

Let (X1, A1, 1), (X2, Ao, p2). A function f : X7 — X is called measurable if for
every measurable set A C X, the set f~!(A) C X, is measurable, (i.e., A € Ay
implies f1(A) € As.)

10
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Mostly, we will consider (X5, Ay, i2) to be (C, B, Leb), (R, B, Leb) or ([0, 0o|, Bw, Leb).

Let (X, A, ), be given. A function ¢ : X — C is called simple if there are
ai,...,a, € C and measurable sets Aq,..., A, C X such that ¢ = Z?:l a;ly,,
(where 1,4 is equal to 1 in A and zero otherwise.) We define the integral for a simple
function by

[ dn= [ ctwrinto) - éaiuw.

For measurable function f : X — [0, 00), we define the integral [, fdu € [0,00] by

/ fdp = / f(x)dp(r) = Sup{/ edp | 0 < ¢ < f, ¢ simple}.
X X X

A function f: X — C is called integrable if f is measurable and fX |fldp < oo. In
this case, we define

[ fin= [ ®epreau— [ Repdu+i [ qmpda=i [ (m)an

where g1 of a function g : X — R is defined as g+ = (+g) V 0.

Example. Let (X,m) be a discrete measure space (i.e., X countable set with
discrete topology, o-algebra 2% and m : X — (0,00)). The integral of f : X —
[0,00) is given by

/X fdm = Z flz)m(x) =: me

zeX

2.2.3 The circus theorems

Let (X, i) be a measure space.

Theorem 1. (Fatou [Bauer, Lemma 15.2]) Let f, : X — [0, 00], n € N, measurable.
Then,

/ liminf f,dp < lim inf/ fndpt.
X 7 JX

n—00 n

Counter-examples. Let f, =n-1; 1, on [0,1] and g, = %-1[0,71] on [0,00), n € N,
then f, — 0 pointwise and g, — 0 even uniformly. But,

fndLeb = / gndLeb =1
[0,1] [0,00]

11



Theorem 2. (Beppo Levi - Monotone convergence[Bauer, Satz 11.4]) Let f, : X —

[0,00], n € N, measurable and non-decreasing (i.e., fn < fai1 almost everywhere).
Then,

/ Sup fodji = sup / Fudp.
X neN neN J X

In particular for f :=limsup,_,. fn we have [ fdu =limsup [ fodu.

Theorem 3. (Lebesgue - Dominated convergence [Bauer, Satz 15.6]) Let f, f, :
X — C, n € N, integrable and f, — f almost everywhere and g : X — [0, 00|
integrable such that |f,| < g. Then,

/X fdu = lim /X jm

Let (Xy, Ay, 1), (Xa, Ao, p2) be o-finite measure spaces. Then (X, A, u) = (X; X
Xo, A1 ® Ay, 11 ® pip) is defined by

e A=A ® A, is the smallest o-algebra such that the projections p; : X — X,
(z1,72) = 1, i = 1,2, are measurable (i.e., for all A; C A; we have p;'(A) €
A.)

® (L = i1 ® o is the unique measure on A such that pu(A; x As) = pi(Ay) - pa(As)
for Ay € Ay, Ay € A,. (Existence: [Bauer Satz 23.3].)

Example 1. (R?, Bge, Lebg:) = (R x R, Bg ® Bg, Lebg ® Lebg).
2. Let X be countable. Then b: X x X — [0,00) is a measure via

bA)= > blx,y), ACXxX.
(z,y)EA

Then, b is a product measure if and only if there are functions by, by : X — [0, 00)
such that b(z,y) = by(x)ba(y).

Theorem 4. (Fubini-Tonelli [Bauer, Satz 23.6, Korollar 23.7]) Let (X1, Ay, 1),
(Xa, Ay, o) be o-finite measure spaces. 1. (Tonelli) Let f : X; x Xo — [0,00] be
measurable. Then,

To > f(,z2)dpy, and x> f(zy, - )dps
Xl X2

are measurable and

/X Fdn ® iy = /X [ @ aa)das) i (@) = /X [ f@ran)din @) dn(a)
(+)

(Note that the equality includes the case that one and thus all terms are cc.)

12



2. (Fubini) Let f : X1 x Xy — C be integrable. Then, f(-,x2) (respectively f(z1,-))
are for py-almost every xq (respectively ps-almost every xs ) integrable and the almost
everywhere defined functions are

To f( xe)dpy, and x> [z, -)dps
Xl X2

integrable and we have . In particular, f is integrable if either le sz | flduadpy <
0o or [y [, [fldmdus < oco.

The following examples shows that one can not omit the exceptional sets of measure

zero in the statement.
Counter-example Let Lebgz = Lebg ® Lebg on R?* and f = 1gxg. Then, by
we have

/1@XRdLesz ://dLedeLebR:/OdLeszo,
R RJQ R

while 1gxr(z,-) is not integrable if z € Q.

—
Ende 3.
Vorlesung

2.3 Operator theory

Literature: Joachim Weidmann ”Lineare Operatoren in Hilbertraumen I”

2.3.1 Hilbert spaces

Let V' be a vector space. A semi-scalar product is an anti-linear map s : V xV — K
that is linear in the second argument and positive on the diagonal (i.e., s(f,g) =

s(g, f), s(f,ag+ h) =as(f,g) + s(f, h) and s(f, f) > 0 for f,g,h € V and a € K).

To a semi-scalar product we associate the corresponding quadratic form q : V —

0,00), f > a(f) = s(f. f). We will write s(f) := q(f).
Facts:
e s(af) =|al?s(f) for a € K, in particular, s(af) = s(f) if |a| = 1.

e By the polarization identity the sesqui-linear form is completely determined
by its diagonal, i.e.,

s(,9) = 3 (5(7 +9) = 5(7 —9) +is(f —ig) — is(] +ig))

e Cauchy-Schwarz(-Bunyakowski) inequality

1s(f, ) <s(f)s(g), f,geV.

13



A semi-scalar product s(-,-) = (-, -) that is additionally positive definite (i.e., (f, f) =
0 iff f =0) is called a scalar product. A scalar product defines a norm via

=

LIl = Cf, )2,

(The other direction is characterized by the Jordan/v.Neumann theorem via the
parallelogram identity.)

fev

The space V is called complete with respect to a scalar product (-, -) if it is complete
as a metric space with respect to the metric d(f,g) = ||f — gl = (f — g, f — g)=.

A Hilbert space is called separable if there is a countable basis that is a set of
elements e, € H, + € J that is orthonormal, i.e., (e,, e} = 1,—, and for every f € H

we have
F=> e, fe..

Examples 1. K% with the Euclidian scalar product are Hilbert spaces with the
standard Euclidian basis.

2. Let (X, m) be a discrete measure space (recall m : X — (0,00)). Then

(fo9) =) f(@)g(x)m(x)

zeX

defines a scalar product on

CX,m)={f: X = K[> [f(=)m(r) < oo},

zeX

Indeed, /*(X,m) is complete and thus a Hilbert space and we can choose the func-

tions §, = ———1y,1, z € X as a basis (Exercise 4).
SRRV

3. Let (M, 1) be a o-finite measure space (e.g., M C K%). Then,

s(f.g) = /M7gdu

defines a semi-scalar product on
L3(X,pu)={f: M —K]||f|is integrable, i.e., / | f1?dp < oo}
X

It is not necessary a scalar product: If f = 1y for a set N of measure zero,
then fX fdp = u(N) = 0 although f # 0. We can circumvent this issue by fac-
toring out the functions that are zero almost everywhere: Let NV = {f | f =
0 p-almost everywhere}. Then, A is a subspace of £L(M, ) and a function f is in
N iff s(f, f) = 0. Define

LA(M, p) == LX(M, ) IN (= {f + N | f € L*(M)}).

14



That is we form equivalence classes: f and g are equivalent iff f —g € N. Thus, two
elements of an equivalence class agree p-almost everywhere. The addition, the scalar
multiplication of these equivalence classes is defined via its representatives: i.e., if
[f], [g] are equivalence classes and f and g representatives, then a[f]+ [g] = [af + ¢]
for a € K and we can define a scalar product by

(W) Lol = s/, ) = /M Fody.

It can be checked that L?(M, u) is complete and thus a Hilbert space. We will get
used to write f for [f].

Exercise 5: If (X,m) is a discrete measure space (i.e., m : X — (0,00)) then,
A(X,m) = L*(X,m).

2.3.2 Selfadjoint operators

Let H be a separable Hilbert space with scalar product (-,-). Let D C H. We
denote the closure of D in H with respect to the metric induced by metric (-, -) by

D=D"" We say that D is dense in H if D = H.

A (linear) operator on H is a linear mapping 7" from a subspace D = D(T) C H,
ie, T(af +g)=aTf+Tg, f,g € D,a € K. We call D= D(T) the domain of T
If D(T) is dense in H then we say that T' is densely defined.

An operator T is called positive if (T'f, f) > 0 for all f € D(T).
Lemma 2. Let T be a linear operator. The following are equivalent:

(i) T is bounded, i.e., there is C' > 0 such that for every f € D with | Tf| <
ClIAII-

(11) T is continuous in every f € D.
(111) T is continuous in 0 € D.
Proof. (i) = (ii): Let ¢ > 0 and f € D(T) be given. Choose § = ¢/C. Then
ITf =Tyl = T(f =9l < Cllf —gll <& forall g€ Bs(f).
(ii) = (iii): This is clear.
(iii)= (i): Let € = 1 and choose § > 0 accordingly. For arbitrary f # 0 set g = ﬁ f

which implies ||g|| = 8. Hence, |Tf|| = 1ZL||7g|| < Wle = 1) ||, Thus, we have (i)
with C' = 1/4. O

If T is bounded and densely defined we can extend 7" uniquely to a bounded operator
on H.

Examples 1. Let (M, ;1) be a measure space, H = L*(M, ) and V : M — K be a
measurable function. Then, the operator My acting as

Myf=Vf

15



on

D(My) ={f € L*(M,p) | Vf € L*(R, 1)}

is a linear operator.

Exercise 6: M, = My, My is positive ift V' > 0 p-almost everywhere and bounded
iff V' is bounded p-almost everywhere, i.e., f is in L*(R, ) which is the space
of all g-measurable functions ¢ : R — K with ||g|lc = inf{C > 0 | |[f(z)] <
C' p-almost everywhere}.

2. The operator T' = —% on C%(R) C L*(R, Leb).
Exercise 7: T is positive and unbounded.

Let T be an operator on H. Let
D* ={g € H | there is h, € H such that (h,, f) = (¢9,Tf) for all f € D(T)}.

Note that hy is determined uniquely if 7" is densely defined, D* is a subspace of H
and the map T* : D* — H, g — h, is a linear mapping (Exercise 8).

We call T* the adjoint of T. A operator T is called selfadjoint if D(T) = D(T™)
and T'=T".

Examples 1. Every Hermitian dxd matrix A, (i.e., A = A*) is a bounded selfadjoint
operator on C? with D = C?. Similarly, every symmetric real d x d matrix A, (i.e.,
A= A") is a bounded selfadjoint operator on R<.

2. The operator My from above is selfadjoint iff V' is real valued p almost surely. ——
Ende 4.
Vorlesung

2.3.3 Operators arising from forms

A semi-scalar product sy on a dense subspace Dy of a Hilbert space H is sometimes
referred to as a positive, symmetric sesqui-linear form. We call it simply a form.

To so we associate the scalar product (Exercise 9)
<'7 '>So = <'7 > + 80('7 )

The form s is called closable if every || - ||s,-Cauchy sequence (f,) with ||f.]] — 0
satisfies || fn|ls, — 0. We denote by D the closure of D, with respect to (-, -)s,-
(Weidmann, Satz 1.37). Denote by s the extension of sy to D = D(s). Moreover,
D can be interpreted as a closed subspace of H with respect to the scalar product

<'7 '>S = <'7 > + S('? )

Examples Let H = L*(R, ) with g = Leb (real valued functions) and Dy =
C>*(R).

Exercise 10*: C°(R) dense in L*(R, p).

1. Let

so(f,9) = /fl(w)gl(x)du.

16



(Exercise 11: s is a closable form (semi-scalar product)). The closure D(s) is the
space of weakly differentiable functions f in L*(R, u) whose weak derivative is in
L*(X, i) as well, i.e., to f € L*(R, u) there is a function f € L*(R, u) with

(f.9)=—(/.g) for all g € CX(R).
Example: f = f' for f € C'(R), Exercise 12: Let H = L?([—1,1], Leb). Compute

ffor f:a—|x|.
For the extension s, we have

s(.9) = [ fadn

This (resp. the analogue in R?) is called the classical energy form (classical Dirichlet
form).

2. Let V : R — [0,00) be a u = Leb measurable function and
i) = [ ghVp

Then, D(r) = L*(R, ) N LA(R, V) = {f € L*(R,pu) | VV f € L*(R, 1)}. Exercise
13: ry is a closable form.

3. Mix Example 1 and 2, i.e.,

fMﬁ@z@ﬁwMﬁmz/uy+vmmM

4. Let H = L*(R4, 1), Dy = C*(RY), A : R? — R¥™? ;;-measurable, symmetric and
non-negative and p be a Radon measure.

g = / AV - Vgdu + / fgdp.

Theorem 5. (Weidmann Abschnitt 4.2) Let so be closable form on a dense subspace
Dy of a Hilbert space H. Then, there is a unique positive selfadjoint operator T' with

D(T) C D(s) dense w.r.t. {-,-)s
and

(Tf,9)=s0(f.9), feDonND(T), g€ Dy.

Moreover,

D(T) ={f € D(s) | there exist f € H such that s(f,g) = (f,g) for g € Dy},
Tf=f feDD)
In particular, D(T) is dense in H if D(s) is dense in H.

17



Idea: s(f,g) = <T%f7 T%g> or integration by parts:

Examples. Let LQ(R u) with g = Leb (real valued functions) and Dy = C°(R).

1. so(f,9) ff’ x)dp as above. By the theorem, for f € D(T) C D(s) there
is a function f such that for all g € C°(R)

/fgduz /fg’duz —/fg”d,u.

Then, D(T) is the set of functions f € L2(R, z1) such that there is function f = f €
L*(R, i) such that
/fg”dx ~ (—/fg’dx Z)/fgdx

Tf=—F.
In particular, for f € C?(R) we have T'f = —f".

and

2. The operator from the form ro(f,g) = [V fgdp of Example 2.b is given by
Tg=Vgand D(T) = {f € LR, ) | V. € L2(R, )}

3. The operator from Example 3, ho(f,g) = [(f'g’ + fg)Vdu is given by Tf =
—f"+Vffor f,g € D,.
4. If A=1 and p = Leb, then Tf = —Af 4+ V f for f € D.

On the other hand if T" is a positive selfadjoint operator. Then
30<f7g):<Tf7g>7 fagED(T)

defines a closable form and the positive selfadjoint operator arising from the closure
of s coincides with 7". (Exercise 14.)

Corollary 1. Let sy be a densely defined, positive, symmetric sesqui-linear form
and T the corresponding operator. Then,

sup 1s0(f,9)] = sup 1s(f,9)l = sup TS|
£,9€Do, | fll=llgll=1 F.9€D(s), I fll=lgll=1 FeD(T), | f|=1

In particular, sg, s and T are all either bounded or unbounded.

Proof. Note first that

[T f|| =sap{|{T'f,9)| | f € D(T), g9 € H,||f]| = llg]l =1}
=sup{[(Tf,9) | f,9 € D(T),[If| = llgll = 1}
since by Cauchy-Schwarz inequality ||Tf]|lgll > [{Tf,g)| we get <’ and with g =
HTfHTf we get ||T'f|| = (T'f,g) and, thus, >’. The second statement follows since

D(T) is dense in H by the theorem above. Now, the equalities of the statements
follow since Dy and D(T') are dense in D(s). O

—
Ende 5.
Vorlesung
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2.4 Dirichlet forms

Literature: Fukushima, Oshima, Takeda ”Dirichlet Forms and symmetric Markov
processes”

We now restrict our attention the case H = L*(M, ), where M is a locally compact
second countable Hausdorff space and p a Radon measure.

An important class of forms on L?(M, 1) are so called Dirichlet forms. They measure
the ’energy’ of a function. They are characterized by being well compatible with so
called normal contractions.

A map C : R — R is called a normal contraction if

C0)=0, |C(u)—C)| <|u—wv|foru,veR.

Examples. v |ul, u = uA 1l u— uVO0.

Let s be a form such that for every normal contraction C' : R — R and every
f € D(s)

(C) CofeD(s)and s(Co f) <s(f) for f e D(s).

If s is additionally closed it is called a Dirichlet form. The important axiom is
the second one which says that the ’energy becomes smaller’ the less the function
"fluctuates’.

Exercise 15: Show that if a form satisfies the assumptions for C' being u +— |ul,
u+—uAland u+— uVO0, then it is a Dirichlet form.

A Dirichlet form s is called regular if D(s) N C.(X) is dense in
e D(s) with respect to || - ||s
e [°(X) with respect to || - ||co-

This means that the form can be approximated very well by compactly supported
functions.

Theorem 6. [Fukushima et al Theorem 3.1.1] Let so be a closable form on L*(X, 1)
that satisfies (C). Then, the closure s is a Dirichlet form.

The examples above are regular Dirichlet forms, see Fukushima et al.

19
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Chapter 3

Forms and operators on graphs

3.1 Graphs

Let X be a countable set, b: X x X — [0,00) be such that
(b1) b(x,z) =0 for x € X,

(b2) b(x,y) = b(y,x) for z,y € X,

(b3) > ,cxb(x,2) < oo forz e X,

and ¢ : X — [0, 00).

We can think of (b, ¢) as a graph over X in the following way: Let X be the set of
vertices (nodes). Two vertices z,y € X are connected by an edge of weight b(z, y)
whenever b(z,y) > 0. In this case, we write for the edge and x ~ y. The weight
can be thought as the conductivity, thickness or inverse length of an edge. We think
of all vertices € X with ¢(z) > 0 to have an one-way edge with weight c¢(x) to a
(imaginary) vertex at infinity.

We call a graph locally finite if the set {y € X | b(z,y) > 0} is finite for every
re X.

Example Let b : X x X — {0,1} and ¢ = 0. Then, (b3) implies that (b, ¢) is locally
finite. We call (b,0) an unweighted graph.

A path is sequence of vertices (xo,...,x,) with 2,y ~ x;, i = 1,...,n. We say n
is the length of the path. A graph is called connected if any two vertices can be
connected by a path.

We define the following distance function d on X which we call the natural graph
metric (or distance). Let d(z,y) be the minimal n such that x and y can be connected
by a path of length n. (Exercise 16: d is a metric iff (b, ¢) is connected.)

Moreover, the topology induced by d is the discrete topology (i.e., O = 2%).
(Exercise 17.) Thus, every function f : X — R is continuous (Exercise 18)
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and we denote the set of continuous functions by C(X).

3.2 Borel measures on discrete spaces

Let X be countable and discrete (equipped with the discrete topology). The Borel
o-algebra over X is then 2X. We know from the previous section that every o-finite
measure on X is given by a function m : X — [0, 00) by letting

m(A) =) m@), ACX

Additionally, we assume that m has full support, i.e., m(x) > 0 for all x € X,
(otherwise, replace X by X' = {z € X | m(z) > 0}. In the case where a graph (b, c)
over X is given one can also replace (b, ¢) by (b, ¢’) which are defined as b' = b| x/x x/

and ¢ = ¢|x + ZyEX\X' b(-,y)).

We call such a pair (X, m) a discrete measure space.

Example 1. m = 1.
2. For a graph (b,c) over X and n: X — [0, 00)

n(z) =Y bla,y) + ()

yeX

let m = n. If (b,c) is unweighted (i.e., b(z,y) € {0,1} and ¢ = 0) then n is the
vertex degree, i.e.,

n(z) = deg(z) = #{y € X |y ~ x}

3.3 Function spaces

Let (X, m) be a discrete measure space. Then, the space

CX,m) ={f: X > R| Y _|f(x)*m(z) < oo}

rzeX

equipped with the scalar product

(f.9) = 3 f@)gleym(z) = 3 fgm

zeX

is a Hilbert space.
Lemma 3. Convergence in (*(X, m) implies pointwise convergence.
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Proof. Let f,, f € (*(X,m), n € N and x € X arbitrary. Then,

1= 1= (32 ule) = @) Pmi@)) = |falw) = f(@)lm(a)?

zeX

which implies the statement. O

If m =1, we denote ¢*(X) := (*(X,1).
Moreover, let C.(X) be the space of finitely supported functions, i.e.,
Co(X)={f: X = R|supp f:={z € X | f(x) # 0} is finite}

which is obviously a subset of 2(X,m).
Exercise 19C,(X) is dense in *(X, m).

Finally, let £°(X) be the space of bounded functions,
(X)={f: X =>R| su£|f(x)| < oo}
zE

Note that £>°(X) does not depend on the choice of m.

Clearly, C.(X) C £>°(X). Moreover, if Y _m(z) < oo then £*(X) C *(X,m).
On the other hand, if inf,cx m(x) > 0, then £*(X,m) C (*(X).

Exercise 20: Find a counterexample such that neither ¢2(X,m) includes ¢*(X)
nor vice versa.

3.4 Forms on graphs

Let (b, c) be a graph over a discrete measure space (X, m). Let H = (*(X,m) and
Dy = C,(X). We consider the form Q® = Ql()?c) on Dy given by

Q(f,9) = % > bz y)(f(x) = f)(g(x) — gw) + Y c) f(x)g(=),

for f,g € C.(X). It will be shown in Lemma 4] that the sum converges absolutely
and is a closable positive sesqui-linear form.

First, we motivate how Q) is a discrete analogue of continuum energy forms

E(f.9) = [(AV[-Vg+V fg)du on R

3.4.1 Motivation of discrete analogue
So, we want to 'differentiate’ functions on X. On R?, we say a function f is differ-
entiable in x € R? in the direction r € R, r # 0, if

. — h , — h .
o) = g FELEE o BT = 0

::d(z,z+rh)f(w)

22



exists. On a graph we can think of the directions from a vertex z as the pairs
(z,y) for x # y. Indeed, only the (x,y) for y which have distance one from x will
be relevant, i.e., (x,y) such that b(z,y) > 0. Hence, the difference quotient for a
function f € C'(X) can be written as

f(@) = f(y)

d(z,y) f\_/

(and dzz) f(z) = 0). However, as there is only one point in the direction (x,y),
this is the closest we can get to x. So, we consider d(,,) f(z) as the directional
derivative in the direction from x to y, i.e., Ouy) f(x) = d@y f(z). Note that
Ay f(x) = —d(y ) f(y). (In this sense C'(X) = C(X).) Let d : C(X) — C(X x X)
be the linear operator given by

df($7 y) = d(ac,y)f(‘r)

Now we can consider b as a measure on X x X by bJ(Ax B) =3, pb(z,y) and
c as a measure on X by c¢(A) = > _,c(x). So we integrate the divergence term
with respect to b and the potential term with respect to ¢, i.e.,

At =3 | diepdgaman+ [ fode

:%Zb(m,y (d(ay) f(2))(d(zy9(x +Zf

z,yeX zeX

(Indeed, b has the density (z,y) — b(z,y)/m(z)m(y) with respect to m ® m and ¢
has the density ¢/m with respect to m).

If b(xz,y) € {0,1}, c =0 then

Q=53 St ydg(e,y)

J/

-~

=V f(z)Vg(x)=>"1_, 8 f(2)d;g(x)

—
Ende 7.
Vorlesung

3.4.2 Properties of Q)

Define Q : £2(X, m) — [0, 00] acting as

=2 S b (@)~ F@) + Y cla) (o)

z,yeX reX

and

D={fe€*X,m)|Q(f) < oo}.
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Since CNQ satisfies the parallelogram identity on D we can extend @ to D x D by
polarization. We define the scalar product

(g =)+ Q)
and the corresponding norm by || - [|5.
Lemma 4. Let Q) be given as above.
1. 1QU(f,9)| < oo for f,g € C(X).
2. QO s a positive symmetric sesqui-linear form.

3. QWO s closable.

Proof. The first item follows from (b3) and the Cauchy-Schwarz inequality, the
second from non-negativity of (b2) and the the third item follows from Fatou’s
lemma.

Let us be more specific: 1. Let f € C.(X) and F = suppf. We estimate

QU =5 3 W) (@)~ )P+ 32 F@P Y by + 3 @) () < oo

zyel z€F yeX\F zeF
. ~~ _/ \
<oo, since F finite <o, by (b3) <oo, since F finite
-~ >

<00, since F finite

By Cauchy-Schwarz inequality we see that for f, g € C.(X)

Q(f.9)* < Q(f)Q(g) < oo.

2. Sesqui-linearity is clear. Symmetry follows from the symmetry of b, that is (b2).
Positivity follows from non-negativity of b and c.

3. We first show that @Q is closed, i.e. that the scalar product space (D, ]| - ||) is
complete: Let f, € D, n > 1, and f € (X, m) with f, — f pointwise or in (2.
From Fatou’s lemma it follows that @) is lower semi continuous, i.e.

Q(f) = Q(iminf f,) = lim inf Q(f,).

Hence, if lim inf@(fn) < oo then f € D. Suppose (fn)isa|l - H@ Cauchy sequence.
Since (2(X,m) is complete, there is f € (2(X,m) such that f,, — f with respect to
| - [|- It remains to show, that f, — f with respect to || - [|5. By Fatou’s lemma

By the Cauchy sequence property the statement follows. O
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3.4.3 The form

Let
D(Q) = C(X) e

and denote the restriction of Q to D(Q) x D(Q) by Q = Qs

Lemma 5. Q) is a regular Dirichlet form and

Q(f) = lim QU (f,),

n—o0

where (f,) are functions in C.(X) = D(Q?) that converge to f € D(Q) with respect
to || - llg-

Proof. Let C : R — R be a normal contraction and f € C.(X). Then, Cof € C.(X)

and [C(f(z)) = C(f(y)| < |f(z) = f(y)| and |C(f(2))] < [C(f(2))| for all z,y € X
and f € C.(X). Hence, Q(C o f) < QO(f). Moreover, by Theorem |§| we have

that the closure is a Dirichlet form.
Let (f,) be functions in C.(X) = D(Q(”) that converge to f € D(Q) with respect
to ). Then, for large n we get by Fatou’s

QN2 = Q) < QU — £u)? +1Q(f)2 = QV(f)2] < liminf Q(f, — fi)?
which is small as (f,) is a || - |5 Cauchy sequence. This finishes the proof. O

Example Let b: X x X — {0,1} and ¢ = 0. Then, by (b3) the graph (b, c) must
be locally finite. Then, Q® on Dy = C.(X) is given by

Q) =3 X (F@)~ FW)ale) - 9(w))

z,yeX,z~vy

Lemma 6. All reqular Dirichlet forms on the measure space (X, m) are given by
graphs (b,c¢) as Qp.c.

Proof. Let € be a regular Dirichlet form on D(€) C ¢*(X,m). We have to show that
there is a graph (b, ¢) such that £ = Q..

Step 1. Ce(X) € D(E): Let x € X and ¢, = 1(5. If we show ¢, € D(E) then we
are done as D(&) is a vector space. Since D(E) N C.(X) is dense in (C.(X), || - ||oo)
there is ¢ € D(E) such that ¢(z) = 2 and ¢(y) < 1 for y # x. Since £ is a regular
Dirichlet form 1 A € D(E). It follows that ¢, =1 — (1 AY) € D(E).

Step 2. E(pz,py) < 0 for & # y: For x # x let u = ¢, — ¢, and note that
|u| = ¢, + ¢y. Since € is a Dirichlet we have £(|u|) < &(u) and thus

E(pz) +2E(px, py) + E(py) < E(p2) — 2E (0, 0y) + E(py)

which implies the statement.
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Step 3. >, cx E(¢r, py) € [0,00) for x € X: Fix z € X. By Step 2. we have that
Y Elprpy) < Elpr) < o0
yeX

On the other hand, let K C X be finite with x € X and let € > 0. Set u = 1 + e,
and note that 1 Au = 1x. Since € is a Dirichlet we have £(1 Au) < £(u) and, thus,

5(1[() < 8(1[() + 288((,096, 1K) + 528<30m).

This implies
€
> E(pepy) = Een, 1x) 2 —5E () = 0
yeK

as € — 0. On the other hand, exhausting X by compact sets K we get the statement
of Step 3.

Set b(z,y) = —E(pa, y) for v # y, b(x,x) = Oand c(x) = >_,  E(pz: y). Moreover,
every ¢ € C¢(x) can be represented as ¢ = > ¥(x)p, and we get

EW) = Y @WW)E(Parpy)

=2 Y ) ) )+ X e Y Epn )
z,yEX,zy zeX yeX
=5 3 b)) — )+ Y cl)ele)

Since C.(X) is dense in D(E) with respect to || - ||¢ the statement follows by polar-
ization. [

3.5 Integrated Leibniz rule

On R there is the Leibniz rule

Vig(x) = fVg(zx) + gV f().

For the discrete case one has

(fg(x) = fg(y)) = f(@)(9(x) —g(y)) + g(v)(f(z) — f(y))
= f(x)(9(x) — g(y) +g(x)(f(x) — f(y) — (f(x) = fW)(g(z) — g(y))

However, we have an integrated Leibniz rule.
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Lemma 7. (Leibniz rule) Let f,g,h € C(X). Then,

> b y)(fg(x) = (f9)())(h(x) = h(y))

= > by f@)(g(x) = gw)(hx) = h(y) + Y bz, y)g(@)(f(x) = f)(hx) = h(y)),

whenever two of the terms converge absolutely.

Proof. The statement follows directly from the first formula above by renaming x
and y in the second sum. O

Define

=

dyf(2,y) = bz, y)2df (z,y) = b(x.y)
for f € C(X) and dyf - dpg by

(f(z) = f(y))

(dof - dug)(x) =D dof (,y)dbg(z,y) = D bla,y)(f(x) — () (g(x) — 9(y))

yeX yeX

whenever the sum converges absolutely. Then, the Leibniz rule reads as

> dy(fg) - dbh =" fdyg - dyh+ Y gdyf - dyh
X X X

—
Ende 8.
Vorlesung

3.6 Selfadjoint operators

In the previous section we learned that Q(© is closable and in the previous Toolbox
section we discussed how to extract a self adjoint operator from a closable form. In
this section we will show that this operator L is a restriction of the formal Laplacian
L given as

—fy)+ c(x)f(x),

m(z)
defined on

F={felX |bey\f )| < oo for all x € X}.

yeX

(In some sense one can consider "F = C?*(X)’). Obviously, C.(X) C F and if (b, c)
is locally finite, then F = C(X).
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Theorem 7. There is a selfadjoint operator L with domain D(L) dense in £*(X, m)

Q(f,9) =(Lf,g), feD(L),ge DQ)

which is a restriction of L, i.e., L is acting as
1
Lf(z) = Wyesz(%y)(f(x) — W)+ —=

Moreover,
D(L) = {f € A(X,m) | there is fe 2(X,m) such that Q(f,g) = (f, g) forall g € C.(X)}

Proof. By Theorem [5| from Section there is a densely defined selfadjoint oper-
ator L such that Q) (f,g) = (Lf,g) for f € D(L),g € D(Q). As Q is the closure
of Q) we also have Q(f,g) = (Lf,g) for f € D(L), g € D(Q). Moreover, for z € X
let ¢, = 1z /m(x). Clearly ¢, € Co(X) C D(Q). Then, we have for f € D(L)

Lf(z) = (Lf, ) = Q(f, ¥z)

= s 2 M) = FEN L) ~ Ly () + s S e W)L )
= S b))~ f0) + @) ()

As the left hand side is finite, so is the right hand side and, in particular, the sum
> yex b(x,y) f(y) converges absolutely. Thus, D(L) C F. O

To determine D(L) is usually not an easy question. In particular, we will show
below that in general not even C.(X) C D(L).

By let us give two canonical examples first.

Examples Let b : XxX — {0,1} and ¢ = 0. Then, Q(f) =1 ZxNy(f(ﬁ)—f(y)P
Define the (vertex) degree deg : X — Ny by

deg(w) = Y b(x,y) = #{y ~ z},

yeX

1. Let m = 1. Denote the closure of Q® in ¢2(X) by Qi, i.e. the closure with
respect to || f[|3, = Doy 2+ Q(f). Then, the corresponding operator L = A acts
as

Af(x) =Y (f(x) = fy), fe D).

Yy~

One calls A the Laplacian.
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2. Let m = deg. Denote the closure of Q in ¢2(X,deg) by Qdeg, 1.€., the closure
with respect ||f||g2deg = Y [2deg+QO(f). Then, the corresponding operator

L=A acts as

- 1

Af(z) = > (fx) = f(y). feDA)

deg(z) £

and A is called the normalized Laplacian. We will see next that A is a bounded
operator.

3.7 Boundedness

The following theorem characterizes when the operator L is bounded and since D(L)
is dense in ?(X,m) it follows D(L) = ¢*(X,m) (Exercise 21). Define weighted
degree Deg : X — [0, 00)

Deg(x (Z b(z,y) + c(x )
yeX

Theorem 8. (Boundedness) The following are equivalent:

(i) Deg is bounded,

(’LZ) Q 18 bounded, i.e., SupfvgeD(Q)»HfH:”gH:l |Q(f, g)| < 00,
(iii) L is bounded on (*(X,m),

(iv) L is bounded on (*°(X).
In this case, Q, L and L]~ are bounded by 2sup,¢y Deg(x).

Proof. (i)=(ii): As (o + 8)% < 202 + 232

=2 3 b (@)~ F@) + Y cla) (o)

z,yeX zeX

<_bey bey y)2+ZC(95)f(95)2
z,yeX a:yeX zeX

<2 Deg(a) f(a)m(x)
rzeX

< 2dJ| f1%,

where d := sup, x Deg(x). The statement for Q(f, g) follows from polarization.

(ii)=(i): Let 0y = 1ay//m(z’). Then,
= 23 b ) (0w () — (1) + 3 ef@)é()? = Deg(a).
2

z,yeX zeX
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(i) (iil): Follows from Corollary [1] in Section [2.3.3]

(i)=(iv): The statement follows as for f € ¢*°(X) we can estimate using |f(x) —

)=
Tl <21 f
L1 < 20 o] 3 blw.9) + ()] = 21l Det(o).

(iv)<=(i): Using 1y, we see that L1,)(x) = Deg(z) and the theorem follows. [

Examples Let b: X x X — {0,1} and ¢ = 0. Recall deg(z) = #{y ~ z}.

L. For Af(x) =32, . (f(x) = f(y)) on £2(X) we get that A is bounded iff deg is
bounded as Deg = deg in this case.

2. For Af(z) = ﬁzyw(f(x) — f(y)) on £2(X,deg) we get that A is always

deg

bounded by 2 as Deg(z) = ﬁ > ywe 1 =1, 2 € X, in this case.

3.8 Green’s formula

The classical Green formula for  C R? open with smooth boundary reads as

LVf-Vg=/9<Af>g—/aﬂg<Vf-u>=/Qf<Ag>— [ 19g-0).

We want to give a discrete analogue for €2 = X. We are particulary interested in
the case when the boundary terms vanish. Indeed, the various phenomena depend
on the fact that this is not always the case. To this end we leave ¢? for a while and
consider a larger universe of functions which we can put into Q.

For f,g € C(X) define

9) = % > bl y)(f(z) = F)(gle) = g(y) + Y clx) f()g(x)

z,yeX zeX

whenever the sum converges absolutely.

Assume that f,g € C(X) satisfy the following assumptions

> byl f@)llgw)l < oo, Y bla,y)lf(@)llg(x)] < oo, Y e(w)|f(@)lg(w)| < oo,

z,yeX z,y€X rx€X
(Q)

Lemma 8. Let f,g € C(X). If f,g satisfies (Q) then the sum of Q converges
absolutely. If f € F and g € C.(X), then f,g satisfy (Q).

30



Proof. The first statement is clear. For the second statement let f € F and g €
Co(X). Then,

> bl y) f@)gw) =D lgw) D> bz, y)lf(y)] < oo

z,yeX yeX z€X
<oo‘,§€]-'
and
> bz y) f@)g(@)] =D 1f@)lg@)] Y ble,y)
z,yeX zeX yeX
—_———
<00, by (b3)
Finally, > ¢|fg| < oo as it is a finite sum since g € C.(X). O
Ende 9.
Vorlesung

Lemma 9. (Green’s formula) Let f,g € F satisfy (Q). Then,
Q(f,9) = (Lf)gm = Zf Lg)m
X
and all three sums converge absolutely. This is in particular the case if f € F and

g € Ce(X).

Remark: One should think of the statement as [Vf - Vgdz = [(Af)gdx =
[ f(Ag)dz.

Proof. By the assumption that the sums converge absolutely we have that |Q(f, g)]
can be estimated by these three sums and thus converges. Moreover,

% Y b y)(f(@) = F)lg(e) = g(v) + Y elx) f(@)g(x)

I:yGX zeX

=5 3 W) (@) — o) — 5 3 b))~ F@)aly) + 3 ele)f2)g(e)

z,yeX z,yeX reX

where the first two sums converge absolutely by (Q) and the triangle inequality.
Thus, we continue to calculate

L= W@y (fe) = f)g(@) + ) ex) fla)g(x)

T,yeX zeX

=Y (Lf(x)g()m(z).

The other equality follows analogously. O
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3.9 C.(X)C D)

In this section we address the question whether the compactly supported functions
are included in the domain of L.
Theorem 9. The following are equivalent:

(i) The functions ¢, : X — R, y — befT;)) are in (*(X,m) for allx € X.
(ii) LC(X) C (X, m).

(111) Co(X) € D(L).

This is, in particular, the case if (b, c) is locally finite or inf,cx m(x) > 0.

Proof. (i)« (ii): The statement LC,(X) C £*(X,m) is equivalent to L1,y € (2(X, m)
for all z € X (since C.(X) = lin{lyy | v € X}). We have

| i (Seex bl ) + ) y=u,
Ll (y) = { —mmb@y) = —tuly) Yy Fa

Thus,
1 2 b(z,y)?
110117 = 31D (@, 2) + @) m(z)+ ) ( )2 m(y) = Co + ||[¢hu]*.
m(z) m(y)
zeX P yeX\{z}
::C’:<oo

Hence, L1,y € (2(X,m) iff ¢, € £(X,m).

(ii)=>(iii): By Theorem [7] we have to show that for all ¢ € C¢(X) there is fe
(*(X,m) such that Q(p, g) = (f, g) for all g € C.(X). Set f = L. By assumption
Lo € (X, m) and by Greens formula, Lemma @ (which is applicable as ¢, g €
Ce(X) C F)

Q(e,9) =D _(Lp)gm = (L, g).

X
Thus, ¢ € D(L).

(iii)=-(ii): This is clear as L is a map D(L) — ¢*(X,m) and Lf = Lf for f € D(L)
by Lemma [7]

If (b,c) is locally finite, then ¢, € C.(X) for all z € X. If ¢ := inf,cx m(xz) > 0,
then

ot = S < IS e <1 e+ X sen) <o

yeX yeX y,b(z,y)>1 y.b(z,y)<1
A TV - A TV -
<00, finite sum by (b3) <00, by (b3)

(or as one also can say (!(X) C (*(X).)
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Example 1.For the operator A, the graph (b,¢) is always locally finite. Thus,

) b(z,y)
Yy 1y — m(y)
above.

2. Since A is bounded on (2(X,deg) by Theorem |8 we trivially have D(A) =
(X, deg) 2 Ce(X).

is compactly supported and we have C.(X) C D(A) by the theorem

3. Finally, we give an example of a graph (b, ¢) over a (X, m) with C.(X) € D(L).
Let X = Ny, b(0,n) = b(n,0) = 73—2 and b(n,n’) = 0 otherwise and ¢ = 0. Thus,
(b3) is satisfied. Choose m such that m(0) = 1 and m(n) = =5. Thus, ¢ from
Theorem [9]is given by y(n) = n? is not in (X, m).
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Chapter 4

Toolbox B. Spectrum of operators

4.1 The spectrum

Let T be an operator on a Hilbert space H. Spectral theory is motivated by the
study of solutions of the equation

(I'=z0)f=y

for given g € H and z € C. Desirable properties of the solution f € D(T) are:

e Existence of a solution for all g, (T"— z onto)

e Uniqueness of the solution, (T" — z one-to-one)

e Continuity of the solution with respect to g, (T — 2z)~! is continuous)

e Continuity of the solution with respect to z, (if (i), (ii), (iii) are satisfied)
Define the resolvent set p(7T) as

p(T)={2€C| (T —z): D(T) — H is bijective and (T — z)~* is continuous}.
Moreover, we call its complement set
o(T) = €\ p(T)

the spectrum of T' (as Hilbert did).

Examples 1. Let A € C¥? on C™?, Then, (A — z) is bijective iff z is no eigenvalue
and in this case (A — z)~! is continuous. Hence,

0(A) = {z € C | there is u # 0 such that Au = zu} = {eigenvalues of A}.

2. Let V : R? — R continuous and let My be the operator on L?([0, 1]¢, Leb) given
by

D(My) = {f € L*([0,1]%,Leb) | Vf € L*([0,1]%,Leb)}, Myf =V}
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Since M _1_ is the inverse of My _ for all z & ranV := {V(z) | z € [0,1]¢}, we have

o(My) = ranV.

3. Let (X,u) be a o-finite measure space and V' : X — R be a p-measurable
function. Let My be given as above

D(My) ={f € L*(X,n) | Vf € L*(X,n)}, Myf=VF.
Then,
o(My) =ran,(V) :={E€R | u(V'(E —¢ E+¢)) >0 for all e > 0}.

This example shows that the spectrum of a multiplication is easy to analyze. In
the next section we will see that every selfadjoint operator can be represented as a
multiplication operator.

4.2 The spectral theorem and its consequences

The spectral theorem is the ticket to a better mathematical life.

Let (Hy,, (-,*)n), n € N, be Hilbert spaces. Then,
H=@H,={(fa) | fn € Hyand Y _||f[|2 < o0}

neN

is a Hilbert space with respect to the scalar product (f,g) = >, .x{(fn,gn)n for
f = (fu),9 = (g.) € H, Moreover, if T,, are selfadjoint operators on H, and P,
the orthogonal projection H — H, (i.e., P, = P* and P? = I), then there exists a
selfadjoint operator 1" on H such that

D(T) ={f € H|Pof € Dn, 3 ITPufI* < o0}, Tf = (TPuf)
neN
and 0(T') = U,en o(Th). (Exercise 22).
Example. Let (M, p,), n € N be measure spaces. Then, there is a measure space

(M, p) such that L*(M, p) = €D,y L* (M, 1) (Exercise 23, choose the o-algebra
generated by the compact sets).

Let Hy, Hy be Hilbert spaces. An operator U : Hy — H; is called a unitary operator
if U'U =UU* =1, ie., U =U"

Theorem 10. (Spectral theorem for selfadjoint operators) Let T be a selfadjoint
operator on a separable Hilbert space H. Then, there is a o-finite measure space
(M, i) and a measurable function V : M — R such that T is unitarily equivalent to
My on L*(M, i), i.e., there is a unitary operator

U:L*(M,u) — H with T = UMyqU™".
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Picture: commutative diagram

Remark Indeed (M, p) can be chosen such that L*(M, u) = @, o L*(R, 1) where
i, are Radon measures and V' is the identity function id : x — z on the copies.

Unfortunately it is usually very hard (impossible) to determine U.

Examples 1. Let A € R%? be symmetric on R, u,,...,us be an orthonormal
basis of eigenfunctions to the eigenvalues Ej, ..., E;. For U = (uy,...,uy) we have
U'U =UU* =1 and UAU* = diag(Ey, ..., Ey). If all E; have multiplicity one then
let p = 22:1 0g, , where 9, is the point measure at x and V' = id. If the multiplicity
is higher take respectively more copies.

2. The Laplace operator —A on L?(R% Leb) is unitarily equivalent via Fourier
transform to V : R? — R, k +— |k|? on L*(RY, Leb)

Corollary 2. o(T) ={EeR | u(VHE —¢,E+¢)) >0 for alle > 0}(=ran,V).
In particular, if V =id, then u(C\ o(T)) = 0.

We get the following corollary.

Corollary 3. Let s be a positive, symmetric closed sesquilinear form and T the
corresponding selfadjoint operator from Theorem [5. Then,

info(T) = inf{s(f, f) | f € D(s), |[f]| = 1} = inf{so(f, f) [ f € Do, [l | = 1}
supo(T) = sup{s(f, f) | f € D(s), [ f] = 1} = sup{so(f, f) | f € Do, [lf]| = 1}

Proof. LetM = @, R, p = @5, ptn and U : H — L(M, ) be the unitary
operator such that U*TU = M;q. Then,

O'(T) = U(Mi )

For ¢ € L*(M, ;1) = @,,» L*(R, i) denote by ¢, the component of ¢ on L*(R, f1,,).
We calculate,

inf o(Miq) = inf su = inf inf/t o ()2 d s, (
(Mia) PP A peL?(M,p),llell=1n21 JR onlt) dpn(?)

= inf Mg, ) = inf UTU g,
= inf TU o, U0y = inf (Tf, f).
weLZ(M,u),Hcp||:1< 4 ?) feH,||f||:1< 1. 1)

By density of Dy and D(T') in D(s) with respect to || - ||s the statement follows from
the corollary above. O

The spectral theorem allows is to define functions of selfadjoint operators T'. This
is referred to as the functional calculus. Let a measurable function ¢ : o(T) — C
be given and define

o(T) := UM oy U™
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ie.,
D(o(T)) :=UD(Mpov), ©(TUf =UMgovf.
Facts:
o o(T) =(T)
e (T is bounded if ¢.

Examples 1. For a symmetric matrix A with eigenvectors U = (uy,...,uq) and
eigenvalues Fy, ..., E; one defines p(A) = Udiag(¢o(E), ..., p(Eq)) U™

2. For the Laplacian —A and the Fourier transform F' define ¢(A) = F M .2 F~'.

Clearly, multiplication by a characteristic function of a measurable set is a projec-
tion on L? (i.e., an idempotent selfadjoint operator). we now can easily deducible
following proposition from the spectral theorem and the properties of multiplication
operators.

Proposition 1. Then 14(T) is an orthogonal projection for every measurable A C
R. The map

E : B — orthogonal projections, E(A) = 14(T)

15 a projection valued measure, i.e.,

Bl A = G%E(Aj), A; € B with A;N A, =07 #k
VIS

that is E(A\)E(4;) = B(A;)E(Ay) =0 for j # k and || S0y E(A;) f — B(A)f]| —
0, n — oo, for all f € H and

E(R)=1 and E(0})=0.
Moreover, we have
o(T)=suppE :={NeR|EN—¢e,A\+¢)#0 for alle > 0}.
Proof. Exercise 24 O

The mapping E is called the spectral family of T. It is unique in contrast to the
mapping U above. By F and f € H we can define a the spectral measure with of f
with respect to T' by

pr(A) = (BA)f, f) = |E(A)fII*, A€ B
It has the following fundamental property.

Proposition 2. Let ¢ : o(T) — C be measurable. Then f € D(p(T)) iff ¢ €
L*(R, py). In this case | p(T)fII* = [ |o[*dpuy

Proof. Exercise 25. O]
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4.3 Semigroups, resolvents and characterization
of Dirichlet forms

Two particular important examples of functions ¢ are x ﬁ for A & o(T) and
x +— e~ ¢ >0 which yield the resolvent (7' — \)~! and the semigroup e~'T.

Indeed, for T' = —A we see that given f € L?(RY), A < 0, the resolvent g = (A+X)~*
solves the Poisson equation

(A+Ag=f
and the semigroup ¢; = e ** f solves the heat equation
Apy = 0o, po= [

Semigroups and resolvents are connected by the following important formula.

Lemma 10. Let T be a selfadjoint operator on a Hilbert space H. For A < inf o(T')
we have

(T —\)7'f = / eMe T fdt, f e H,
0
where the integral on the right hand side is a Riemann integral.

Proof. For A < \g = inf o(T") the identity

1 o
= / e~ @ Nt gy
T —A 0

holds for x > \g. By the spectral theorem and Fubini’s theorem

(f.(L=X)7'f) —/A x%duf(x)
_ R e*“e*)‘tdtd,uf(x) (: <f; /oo e*/\teftAdth
Xo Jo 0

—/ 6_’\t/ e "dus(z)dt
0 Xo

— / h e M(f, e fdt.
0

By polarization

(0. (L— N = / T Mg Thdl, fige H
0

and the statement follows. O]
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The importance of regular Dirichlet forms rises from the fact that their resolvents
and semi-groups have particulary nice properties.

Let s be a positive closed form s on L*(M, ). Recall that s is called a Dirichlet
forms if for all f € D(s) we have C'o f € D(s) and s(C o f) < s(f) for all normal
contractions C' : R — R. Let T" be the selfadjoint operator arising from s.

A function f: M — R is called positive if f(x) > 0 for almost all x € M and f # 0.
It is called strictly positive if f(x) > 0 for almost all z € M and we write f > 0.
Accordingly, for functions f, g, h we write f < g if g — f is positive.

Theorem 11. (Second Beurling-Deny criteria) The following are equivalent.
(i) s is a Dirichlet form.
(ii) 0 < e ™ f<1,¢t>0, for f € L*(M,p) with 0 < f < 1.

(iii) 0 < a(T + )7 f <1, for f € L3(M,u) with 0 < f < 1.

The equivalence (ii)=>(iii) follows from the lemma above. For proof see Fukushima,
Oshima, Takeda ’Dirichlet Forms and symmetric Markov processes’ Theorem 1.4.1.

—
Ende 11.

Corollary 4. [fe_tTf Z O, t 2 O, fOT’f < LQ(M, /,L) w’bth f Z 0 Then, (T_)\)_lf Z Vorlesung
0, for all X < info(T) and f € L*(M,u) with f > 0.

Proof. By the lemma above

(L—=X\)7'f= /OO e T fdt.
0

4.4 Weyl sequences

Stollmann 'Caught by disorder’ Lemma 1.4.4 and Proposition 4.1.10.

Theorem 12. Let s be closed, positive, symmetric form and let T' be the associated
selfadjoint operator on a Hilbert space H. Then the following are equivalent

(1) Aea(T),
(1) There are u, € D(T) with ||u,|| =1, n € N, and

(T = Aunll =0, 1 — o0,

(111) There are v, € D(s) with ||v,]| =1, n € N, and

sip (5= N, w)| >0, n— o0,
weD(s),s(w)+[lw|2<1

and (s — A)(u,v) = s(u,v) — XN u,v).
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Lemma 11. Let A € R. If for some C > 0 all
Il < CIT = NIl for all f € D(T)

then X\ is in the resolvent set.

Proof. By the assumption it follows that A is not an eigenvalue. Then, Ker(7T —\) =
Ran(T — \) = {0}, since Ran(A)+ = Ker(A) for selfadjoint densely defined A. We
show that T'— A is bijective, i.e., Ran(T'— A\) = H. Then, the assumption implies
(T — A)7!| < C and thus A\ & o(T).

Let g € H and f,, € D(T) such that g, = (T'— ) f, — 0 (which exists as Ran(T" —
At = {0} and thus Ran(T — \) dense in H). By the assumption, both (f,) and
(T f,,) are Cauchy and since

(£, ThY = lim (£, Th) = lim (Tf,, ) = (/. )
we have f € D(T) and g = (T — \)f. O

Proof. The statement is clear if A is an eigenvalue, so assume A is no eigenvalue.

(i)=-(ii): By the previous lemma there is a sequence (g,) in D(T") such that

[fall 2 2ll(T = M) ful

Letting u,, := m fn we get the statement.

(ii)=(iii): Let v, € D(s) such that ||u, — v,||s < 1/n. Let w € D(s), |lglls = 1.
Then,

(s = A)(0n, w)| < [(s = A)(un, w)| + (s = 1) (vn = tn, w)| + (Al + D) {on = tn, w)]

< T = Nunllwll + lun = vallsllwlls + (AT + Dllun = valJw] = 0.
(iii)=(i): Assume A ¢ o(7T) and (v,,) as in (iii). Then,

c:=sup |[[(T — \) 'w,|ls < 00
n>1

This gives
1= anHQ = (s = N)(v,, (T — A)_lvn) <ec sup (s = A)(vn,w) = 0,

weD(s),lwlls=1

a contradiction. O

4.5 Compact operators and essential spectrum

A subset of a topological space is called relatively compact if its closure is compact.
In particular, if we are in a complete metric space then a set is relatively compact
iff every sequence in this set has a Cauchy subsequence. (Exercise 26.)

The following theorem characterizes the compact operators on a separable Hilbert
space. The proofs can be found Weidmann ’Lineare Operatoren in Hilbertraumen I’
Kapitel 3.
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Theorem 13. (Compact operators) Let K be a bounded selfadjoint operator on a
separable Hilbert space H. Then, the following are equivalent:

(i) K maps bounded sets to relatively compact sets.

(i1) o(K) = { A }n>0 where (\,) converges to zero. In particular, if m, € N is the

multiplicity of \,, € o(L) and w@, e ,w,(fz are orthonormal eigenfunctions to
A, then
K=Y MPu Po=Y @0 0.
A€o (K) j=1

in the sense such that || K — 3 ,_ \ePyl| = 0, n — oo.
(111) K is the norm limit of finite dimensional operators.

(i) If (fn) € D(K) converges weakly to zero, then (K f,) converges in the norm, (
i€, if (fn, ) = 0 for allp € H, then |K f,|| = 0).

Let us turn to the definition of the essential spectrum. This can be considered as a
very stable under small perturbations. The proofs can be found Weidmann ’Lineare
Operatoren in Hilbertraumen I' Kapitel 8 and 9

Theorem 14. (Essential spectrum) Let T' be a selfadjoint operator on a separable
Hilbert space H and A\ € R. Then, the following are equivalent:

(i) A € o(T) and X is no isolated eigenvalue of finite multiplicity.

(1) There is a weak null-sequence (f,) of normalized vectors in D(T) such that
(T = A) full = 0.

(i1i) Exie—Ex_c has infinite dimensional range for alle > 0 (where E, = 1(_ 2)(T) ).

(iv) A € o(T+K) for all compact self adjoint operators K (where the sum is defined
via the quadratic forms).

Proof. The equivalences (1)< (ii)<(iii) are found in Weidmann, Satz 8.24 and (i),(ii), (iil)=(iv)
Satz 9.14. Thus it remains to show to one direction.

(iv)=-(ii): As compact operators are bounded we have D(T") = D(T+K) for compact
K. By Weyl’s criterion there are sequences ( fT(LK)) in D(T) with ||f,|| = 1 and
(T + K — N9 < 1/n for compact K. Let {e,} be a basis of H included in
D(T) . Let P, be the orthogonal projection on span{ey,...,e,_1}. Hence, I — P,
is finite dimensional and thus —7'P, is compact. Let f, = (I — P,) ﬁ(fTP"). Clearly
| fnll = 1. Moreover,

ITfull = I T(1 = ) £

n

=T —TP,fi7")| <

S|

For ¢ € H we get by Cauchy Schwarz

[, fdl = o (1 = P) [T = (T = P, ST < U = Pl = o0,

as n — 00. Thus. we finished the proof. m
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We denote the set of all A which satisfy the assumptions above by e (7") and call
it the essential spectrum of 7. Moreover, denote

M(T) =info(T), MNP(T) = inf 0ess(T)
Since, 0(T") C 0ess(T)
Mo(T) < AG(T).
Proposition 3. Let s be a closed positive quadratic form on a separable Hilbert space

H and let T be the corresponding selfadjoint operator. Assume there is a normalized
sequence (f,) in D(s) that converges weakly to zero. Then,

AP (T) < liminf s(f,,)
n—oo

Proof. The statement is clear for Agess(7') = 0. Let A < A§®. We show s(f,) > A
for large n. Let Ay be such that A < A\ < A§*® and let ¢ > 0 be arbitrary. Since,
D(T) is dense in D(s) with respect to || - ||s there is a g, for all n > 0 such that,
I fo — gull?> = s(fo — gn) + ||.fn — gul|* < € and (g,,) converges weakly to zero as well.
As A\ < A§®, the spectral projection Ey, = 1(_x,(T) is a finite rank operator.
Therefore, as (g,) converges weakly to zero, there is N > 0 such that || E\, g.]|*> < &
for n > N. For the spectral measure p,, = p,, of T with respect to g,, we estimate
forn > N

h(ga) > / tdpn(t) > A / Qi (t) = M (lgal? = [ Exgal®) > M1 — ),
)\1 /\1

where we used A\; > 0 as s > 0. Since s(f,,) > s(gn) — ¢ by the choice of g,, we
conclude the asserted inequality by the choosing e = (A; — A)/(1+ A1) > 0. O

—
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Hilbert space H and let T, be the corresponding selfadjoint operators. Assume
e D(sn41) S D(sn),
e the operators K, arising from sq — s, are compact,
e all sequences (f,) with f, € D(s,) are weak null-sequences.
Then,
Ao (To) = lim Ao(T)

n—oo
Proof. By assumption and Theorem (14| (iv) we have A\§*(Tp) = AN®(Th + K,) =
A (T,) for all n € N. As A\o(T,) < A&®(T,,) we have
lim sup )\O(Tn) S )‘SSS(Tn)'

n—oo

On the other hand, let f,, € D(s,) such that s(f,) < A\o(7},) + 1/n. By assumption
(fn) is a weak null-sequence the proposition above, we have

A (T,) < liminf s(f,) < liminf A\o(T5,).
n—oo n—oo
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4.5.1 Application to graphs

Let (b, ¢) be a graph over (X, m). Let U C X and Qu be the closure of the restriction
of @ to C.(U) C C.(X) (by continuation by zero). Then, D(Qy) C D(Q). Let Ly be
the corresponding selfadjoint operator and Ly the corresponding formal Laplacian
with domain Fy. Then, the following holds, Exercise 27

o If by :=b-1yxy and ¢y given as cy(x) = c(x) + Zyex\U b(x,y) for x € U and
¢ = 0 otherwise, then @y is the form which arises from (by, cy) on (X, m)

o FC Fy.

o Ly =L for f € F with supp f C U, in particular, if f is also in D(Ly) N D(L)
then Ly = L.

If the graph is locally finite and K C X is a finite subset of X, then the operator
L — Lx\k is finite dimensional and, thus ,compact. Therefore,

Ao (L) = A5 (Lx\k)-

If (K,) is an exhausting sequence (that is K,, C K,4; and X = (J, K,,) of finite
sets, then Proposition {4 above gives for locally finite graphs

)\gss(L) = JLIEO )\O(LX\Kn)-

For general exhausting sequences (K,) and general graphs we still have by Proposi-
tion

)\SSS (L) S lim inf )\0 (LX\Kn ) .
n—00

Exercise 28: The local finiteness assumption can be replaced by the assumption

LC.(X) C (X, m).

Exercise 29*: Show that if (b,¢) is locally finite then D(Ly) = {f € D(L) |
supp f € U}? What happens in the general case?
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Chapter 5

Positive solutions and spectrum

In the following we study the relation of properties of solutions and the spectrum.
In this chapter and later in Chapter [7] will prove the following two results

e An Allegretto-Piepenbrink type theorem which characterizes the regime below
bottom of spectrum by the existence of positive solutions

e A Shnol’ type theorem which characterizes the spectrum by the existence of
slowly growing solutions.

Such results can be shown in various continuum models such as Schrodinger op-
erators on R? Riemannian manifolds, strongly local Dirichlet forms etc. and we
will prove them in the context of graphs here. In this chapter we treat the case of
positive solutions.

Let us recall the setting from the first chapter.

Let (b, ¢) be a graph satisfying (b1), (b2) and (b3) (i.e., b(z,z) =0, b(x,y) = b(y, x)
and ) b(z,2) < 00, x,y,2 € X) over a discrete measure space (X, m),

Q) = 5 S bl ) () = S+ 3 el (o)

rzeX reX

a form with D(Q) = C'C(X)”'HQ C (*(X,m) and L be the corresponding selfadjoint
operator which is a restriction of £ on F = {f € C(X) | X xb(z,y)|f(y)| <
oo,z € X} acting as

LH@) = —— S b, ) (f() — f()) +

m(z) :

Let
Ao = info(L).

Let A€ Rand U C X. We call u : X — R a solution (respectively a super-solution)
toAon U if u € F and

Lu(z) = du(z), (respectively Lu(z) > Au(x)), z € U.
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If U = X, then we call u a solution (resp. super-solution) to A.

In the context of graph w positive means u(z) > 0 for all z € X and u # 0 (since m
has full support) and u strictly positive, u > 0, means u(z) > 0 for all z € X.

We aim for the following result.

Theorem 15. If (b, c) is infinite, connected and locally finite (i.e., #{y ~ x} < o0
for all x), then the following are equivalent:

(i) A< o

(i1) There exists a positive super-solution to A, (i.e., there is u : X — [0,00) with

0#ueF and to Lu > Au).

(113) There exists a strictly positive solution to X, (i.e., there isu : X — (0, 00) with
u e F and to Lu = \u).

For general (b, c) we still have the equivalence (i)< (ii).
What about (i)=-(iii) in general?

For finite graphs this is clearly wrong since the only solutions are the eigenvectors
of L. For non locally finite graph we give the following counterexample:

Example Let X = Ny, m =0 and (b, ¢) a star graph: b(k,n) > 0 iff k£ or n are zero
and ¢ = 0. Let u be a positive solution to A # 0. Then, for & > 0

Lu(k) = b(k,0)(u(k) — u(0)) = Mu(k)

and

Lu(k) =" b(0, k)(u(0) — u(k)) = Mu(0).

k=1

[e.9]

Summing the first equation over £ and adding both equations yields

Au(0) + ) " u(k)) = 0.

Let us sketch the idea of the proof:

(i)=-(ii)/(iii): Resolvents are positive super-solutions: g = (L — N\)714, satisfies
(L — )\)gg({\) > 0. Let x — oo to get a solution to A and let A — A\ to get a solution
to )\0

(ii)=(i): Ground state transform
For a solution u > 0 to A < Ag there is a positive form @), such that

Qu(f) = Q) = Allfll,  f e Ce(X)

45
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5.1 A Harnack inequality

The Harnack inequality gives bounds for the growth of super-solutions.+

Theorem 16. (Harnack inequality) Let K C X be finite and connected. Then, for
every positive X € R and every super-solution u to A on K there is Cx(\) such that

< .
Igleal,?(u(a:) < Ck(A) min u(z)

Moreover, the function A — Ck(\) continuous and monotone decreasing.
Remark. As we shall see later there are no super-solutions to A > \g. So, we will
only apply the statement for A < ).

Proof. Let u > 0 be a positive super-solution to A on K. Clearly u is also a super-
solution to all X < X (as Lu > Au > Nu by u > 0). Let I C R be the maximal
interval such that there exists a positive super-solution on K to all values in I.

Let K C X finite, A € I and u a super-solution to A on K. Let Zax, Tmin € K be
the vertices where u takes its maximum/minimum in K. Let (zo,...,x,) be a path
from Zyax t0 Tmin. Employing (£ — Xu(z;) > 0

—ul) + (L5 3 )uy)

) & m(z;)

;

:Deg(m]-)

since - ., b(x;,y)u(y) = 0 follows from u > 0. Hence,

m(z;)

(Deg(xj) - /\)> u(x;).

(@) < b(wj, 2j41)

and

(Deg(wj) A))u(xmm)

xmax S H
o xw

Thus, the statement follows with

x]+1

n—1

Ck(A) := max min H 5

zyeK o=go~..~any o (25, Tj41)

m(z;)

(Deg(as) = 1).

Clearly C is continuous and monotone decreasing on I and we can extend it in this
way to R. O

Remark. The proof already shows that for a connected graph there are no positive
super-solutions to A > inf, Deg(z).
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The Harnack inequality immediately gives a pointwise bound for positive super-
solutions.

Corollary 5. Let (b, c) be connected, I C R bounded and xo € X. Then, there is a
Junction C = Cyy(I) : X — (0,00) such that for every positive super-solution u > 0
to A € I we have

CHx)u(zo) < ulz) < O(x)u(z).
In particular, every positive super-solution is strictly positive.

Proof. For z € X fix a path (xg,...,z,) from zy to z. Let K = {zo,...,z,} and
C(x) = Cyp(I)(z) = supye; Ck(A) (which exists as C is monotone decreasing).
Then, by the Harnack inequality we obtain

1=0,...n =0,...n

u(z) < max u(z;) < C’(x)imin u(z;) < C(x)u(xo)
<

u(zg) < lrz%axnu(ajl) ;I(l)mnu(xl) < C(x)u(x).

]

Remark. The corollary shows that the space of super-solutions to A in an bounded
interval is compact with respect to the topology of pointwise convergence.

5.2 Convergence of (super-)solutions

Lemma 12. Let g € X and A < Ay,
e (\y) be a sequence of real numbers in (—oo, \g| converging to .

e X, CX,x0€ X, C X1, X =,y Xn connected.

neN

o u, with u,(xo) =1 be positive super-solutions to \, on X,,, n € N,

Then, there is (ny) and a strictly positive super-solution uw € F such that
u(z) = klim Up, (x), forallx € X.
—00

Moreover, if the graph is locally finite and u,, are solutions to A, on X,,, then u is a
solution to A on X.

Proof. We enumerate the vertices of X, i.e., X = {x; | | € Ny} such that z; € X.

We define u inductively (with respect to ) via defining subsequences (n,(f)): Let

n,(co) =k, k € N. Suppose we found subsequences (n,(f)) c...C (ng)) such that the
sequences (u o (1)), ..., (u o (1)), (u ©(20)) converge. For large k (i.e. such that
k k k

n,(f) > [ the function u_q is a solution to A o on X . By Corollary [5 that
k k k

Clzyy1) ' < ung)(:r;lﬂ) < C(x141), for k large.
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Thus, there is a subsequence (n,(fﬂ)) - (n,(cl)) such that (u a+1)(z141)) converges.
k

As (n, HHy c ... C (n,(gl)) we also have that (u_w) (2141)), ..., (u, w(71)), (v w (z0))
k k k

converge. Hence, (u ) (y)) converges for every y € X. Define
k

u(y) = lim u_w (y).

k—oo Tk
Clearly u is positive (as u, > 0 and u(zg) = ug(xg) = 1).

Assume without loss of generality (uy,,) = (u,). Now, for any z € X we have for n
large enough, (i.e., z € X,,) that (£ — \,)u,(x) > 0. Hence,

y) < <mzx Zb (z,y) ) n(x) = Apun ().

Since u,(xr) — wu(x) and A, — A\ the right hand side converges and, thus, the
left side stays bounded. (However, it is not clear that in the limit it is equal to
e >, b(x,y)u(x).) Nevertheless, by Fatou’s lemma

% > bz, y)uly) < liminf mzx) > b, y)un(y)

) yze;( b(x,y) + c(m))un(x) — )\nun(a:))

< lim inf <<

n—oo

1
- (m(:c)

Z b(x,y) + c(x))u(a:) — Au(z).

Hence, v € F and

0 < liminf(L£ — \,)un(z) < (£ — Nu(x).

n—oo

Thus, u is a positive super-solution and by Harnack inequality it is strictly positive.
If the graph is locally finite and u,, are solutions to A, on X,,, then the inequality
is an equality above and since the sum on the right hand side is finite the limit and
the sum interchange. Thus, the second statement follows. O]

—
Ende 14.
Vorlesung

5.3 A ground state transform

Let u > 0. Define the form @, on C.(X) by

bey )(Lj})—@>2

2 2 (1) uly)
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Letting b,(z,y) = b(z,y)u(z)u(y), we see that Q, = Qp, 00 u~* on C.(X). Since
utC(X) = C.(X), we get that Q,(f) < oo by Lemma {4} Moreover, it is obvious
that for all f € C.(X)

Qu(f) > 0.

This form stands in a close relation to @ if u > 0 is a (super)-solution as the next
lemma shows.

Lemma 13. Let u > 0 be a solution to A\. Then,

QUf) = Qu(f) + Al v e Ce(X).
If u> 0 is a super-solution then Q(f) > Qu(f) + || fll-

Remark In the continuum analogue the formal calculation is as follows

/\/fzz/()\u)f; :/(—Au)%2 :/Vf;Vu:/%@usf—ﬁVu)Vu

_ / 29 19u-L(vup - (9172 + (957

- / () /(W - —/u2<V§>2 + /<Vf>2

Proof. Let f € C.(X) and let u be a strictly positive solution to A. We employ
Lu = Au and Green’s formula, Lemma [0 (since u € F and f/u € C.(X))

f? f?
MIFIE = 3" huom = S (o) lom = O, 12,
X X

Moreover,
(u(e) ~uw) (L@ - L)

= o)+ P =20 0) — uautn) L 0) — w0t L) + 2uteyatn LI
= (@)~ 1) — ulwyuty) (L) - L)

Multiplying both terms on the right hand side by b(z, y) and summing over x,y € X
we get by the calculations above the statement.

If w is only a super-solution, then we get an inequality instead of the first equality.
The rest of the proof works analogously. O]

Remark. Note that ¢(x) > 0 is not essential for validity of the lemma.

We can close the form @, in the space £*(X,u?m) to obtain an operator L, which
is unitarily equivalent to L via the unitary operator

U : (X, u?m) — 2(X,m), f=uf
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5.4 Proof of the theorem

Proof of Theorem [15. Assume the graph is connected.
(iii)=-(ii) This is clear.

(ii)=-(i): Let u be a positive super-solution to A € R. By Harnack inequality it is
strictly positive. By the ground state transform, there a form @, > 0 such that

Q(f) = Qu(f) + AILFI* = AlFIP
for all f € C.(X). By Corollary 3| we get

A = inf > ).
0 fecc(X),nfn:lQ(f) =

Assume the graph is infinite and locally finite.

(i)=(iii) Let A < Ag. Choose A, < Ag such that A\, = A\, n € N, (i.e,, if A < A, then
choose A\, = \), enumerate the vertices X = {x;};>0 and set X,, = {zo,..., 201},
n > 0. Let g, = (L—\,)'0,,. The resolvent is positivity preserving by Theorem
Thus, the function g, is positive since 9, is positive. By Harnack inequality g, is
even strictly positive and, in particular, g,(x¢) > 0. Let

1 1
Up = ——F—~Gn =
gn(x0) ™~ (L= An) 10y, (w0)

Then, u,(z9) = 1 and

(L= \) "5,

(L — \)uy, = (L —X\)(L—\,) 16,

gn(o)

Since L = £ on D(L), we have u, € F and, moreover, u, is a solution to A, on
X\ {z,} 2 X,, = {x0,...,2,_1}. By Proposition [12| there is a strictly positive
solution u to A.

If the graph is finite or not locally finite let X,, = X \ {zo}, n € N and A\, — A,
n — oo. Again by Proposition [12| the function w, = g,/gn(x¢) yields a positive
super-solution u. Hence, (i)=-(ii). O

The ’original’ Allegretto Piepenbrink theorem dealt with the essential spectrum of
differential operators. Here, is a corresponding analogue.
Corollary 6. Let (b, c) be infinite, connected and locally finite.

(a) If there is a finite K C X and a positive super-solution to A\ € R on X \ K
then, A < \g%.

(b) For all X < A\ there is a finite subset K C X and a positive solution to \ on
X\ K.
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Proof. (a) Assume there is a finite set K and a positive super-solution to A € R.
Let Qk be the closure of the restriction of @ to C.(X \ K) C C.(X) and Lg
the corresponding operator. By the Allegretto-Piepenbrink theorem A\g(Lg) > A.
Moreover, L — Ly is a finite dimensional operator and, therefore, compact. Hence,

NS (L) = N (L) 2 MolLic) 2 .

(b) Let K,, € X be finite, K,, C K41 and X = |J,, K,,. Then the operators arising
from @ — Qk, are finite dimensional and thus compact. Moreover, as functions in
D(Qk,) are supported on X \ K, every sequence (f,) with f, € D(Qg,) is a weak
null-sequence. Hence, A\o(Lk,) — A®(L), n — oo by Proposition Therefore,
if A < A§®(L) then there is n > 0 such that \g(Lg,) > A. By the Allegretto-
Piepenbrink theorem there is a positive solution to A on every connected component

of X\ K. m

—
Ende 15.
Vorlesung

—
weggelassen
aufler

5.5 Application to weakly spherically symmetric siu.

und An-
tibdume

graphs
We want to consider now graphs with a particular symmetry.

Let (b, c) be a connected graph over a discrete measure space (X, m). Fix a vertex
xo € X and call it the root. We call such a graph a rooted graph.

Define the spheres S, and the balls B, with respect to xg
S, ={r e X |dxo,z)=r} and B, = USj’ r # 0.
§=0

Picture.

Note that a graph is locally finite iff all S, are finite (Exercise 30). Define the
functions by,b_ : X — [0,00) for z € S,

bi(ac):% S b y).

yesril

We call a function f : X — R spherically symmetric if f|s. = const for all > 0. In
this case we write f(r) = f(x), x € S,.. A graph (b,0) over (X, m) is called weakly
spherically symmetric if by and b_ are spherically symmetric functions.

Before we give examples we state the following lemma.

Lemma 14. For allr >0

b_(r)m(S,) = by (r — 1)m(S,_1)
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and if f is a spherically symmetric function, then Lf is spherically symmetric and
Lf(r) =by(r)(f(r) = f(r+1)) +b-(r)(f(r) = f(r —1))

Proof. Exercise 31. O]

Example 1. Rooted regular trees. A connected graph is called a tree if it does
not contain a closed path (Picture.). If b takes values in {0, 1} then a rooted graph
with root xq is a tree iff b =1 on X \ {29} (Exercise 32). In this case, a rooted
tree is called k-regular if by = k for some k € N.

Let ¢ = 0 Taking u to be the spherical symmetric function u(r) = k~%. Then,
(L—=XNu>0for A < k+1 — 2k and, thus,

Ao > k+1—2Vk.

If we let ¢ = 1y, then u is even solution to A. In this case, we can consider c as a
Dirichlet boundary condition at x( since the backward edge is 'missing’.

2. Antitrees. A connected rooted graph is called an antitree if every vertex
of a sphere is connected to all in the previous and next sphere (or equivalently
bi(x) = #S,4, for all x € S, - Exercise 33). (Picture.)

3. Spherically symmetric graphs. The measure space (X, m) is called spheri-
cally symmetric if m is spherically symmetric and a graph (b, 0) is called spherically
symmetric if for any n > 0 and x,y € S, there is a graph automorphism v (that
is a bijection X — X such that b(u,w) = b(vy(u),y(w)) for all u,w € X) with
v(xog) = o and y(x) = y. Exercise 34: A spherically symmetric graph over a
spherically symmetric measure space is weakly spherically symmetric.

4. Picture.

Define the volume the boundary 0K of a finite set K C X

0K =2 blx,y).
zeK y¢K
Note that for a weakly spherically symmetric graph we have

9B, = 3 ba(@)m(x) = b (r)m(S,)

Q?EST

We will prove the following theorem.

Theorem 17. If (b,0) is a weakly spherically symmetric graph over (X,m). If
(Zf’;o ”‘g(gﬁ)) < 00, then

<§:T\n8(§:|)>190 and - oess(L) = 0.

r=0
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From now on let ¢ = 0 and b be a locally finite weakly spherically symmetric graph.

The strategy is to construct a positive solution for 1/a with a =" %.

Lemma 15. (Recursion formula for solutions) Let (b,0) be a weakly spherically
symmetric graph over (X, m) and A € R. A spherically symmetric function u is a
solution to X\ if and only if

u(r—i—l)—u(r):a_B)\ Zu(j)m(Sj): _L;\ ZZuxmx

" j=0 " j=0 z€S;
In particular, u is uniquely determined by the choice of u(0).
Proof. The proof is by induction. For r = 0 the equation (£ — A)u(0) = 0 reads
b+(0)(u(0) — u(1)) = Au(0),

which gives the statement. Assume the recursion formula holds for » — 1, r > 1.
Then, (£ — X)u(r) = 0 reads

bo(r)(u(r) —u(r+1)) +b_(r)(u(r) —u(r —1)) — Au(r) = 0.

Therefore,
u(r+1) —u(r) = Z;E:; (u(r) —u(r —1)) — b+/2r)u(r)
= 2 ) S u(y)m (=) u(r)m
T b (r) by (r — Dm(S,_1) ;0 (7)m(S;) + b Im(S) (rym(S,)
)\ r
by (r)m(S;) ;umm(sﬁ
as b+(7’ — l)m(S,,_l) = b_(r)m(Sr)_ -

oo m(By

Lemma 16. (Existence of positive solutions) Suppose that a = Y, 8BT) < 00.

Then, there is a solution u to % which satisfies

In particular, u is strictly positive.

Proof. Let u(0) = 1 and let u be given by Lemma for A = % We show by
induction

o u(r) <u(r—1)

()>1—1Z;(1)7%B ie., u(r) > 0.
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For r = 0 we get from the recursion formula

u(1)  u(0) = — alBOm(O)U(O) <o

which gives u(1) < u(0). Furthermore,

u(l) = (1 — TZ;@?)MO)

which gives the second statement. Now suppose the two statements for 1,...,r > 0.
By the recursion formula

J— _A -
OB,

Jj=0

u(r+1) —u(r)

u(y)m(S;) >0

since u(j) > 0 by assumption. Moreover,

r

u(r+1) =u(r) — af)lBr Zu(g)m(Sj) > u(r) — n;g};:)u(())
Lem(B) m(B) | 1~m(B)
31_5; OB,  adB, _1_5; OB

O

Proof of Theorem[I7. The statement about A\ follows from the lemma above and
Theorem [15] Let us turn the second statement. Let Xp = X \ Br N {zo} and
mpg such that mg|x, = m|x, and m(zo) = m(Sg). Moreover let b agree with
b on Xp x Xg, br(xo,z) = br(z,z9) = b_(z) for x € S,;1 and zero otherwise.
Then the operator Lg associated to br over (Xg, mg) is differs from L only by a
finite dimensional operator. Thus, 0ess(L) = 0ess(Lgr). On the other hand since

m,(z0)/|0{xo}| = m(B,)/|0B,|, we have by Theorem

Mo(Lr) > (iﬂg(—g:)>_l — 00, T — 0

r=

as the sum converges. This shows that A§*(L) = 00, i.e., gess(L) = 0

Let us apply this theorem to the Laplacian A on £*(X)

y~z

i.e., the b(z,y) = 1 iff x ~ y. In this case, by (x)/b_(x) are the number of for-
ward /backward neighbors. (Picture)
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5.5.1 Spherically symmetric trees

A weakly spherically symmetric tree is determined by a sequence of natural numbers
(k) via k. = by (r). Since #5S,,1 = b, (r)#5, we have #5S, = H;;é b.(j) and

m(B,)  #B, 1+ Il b (h)

0B,  bi(n#S, Il b-())
_ ﬁ(l P )7 (Bl = 1) b (0) )
By the limit comparison test »_ _, ”;)(5:) < oo iff
=1
2 <

Hence, the threshold for the applicability of the criterion is
by(r) ~r.

Indeed, if b, (r) < r then the sum diverges and if b, (r) < r!'™¢ for ¢ > 0 the sum
converges. For the volume growth we get by the Stirling formula

.,
|B,| = ij ~ 1l ~ \27rerlosr/e,
=0

(Exercise 35.) In the case, where b, (r) > r!'™ we can conclude \o(A) > 0 and
Oess(A) = (0. (Although we know by the above that already for k-regular trees \g > 0
if k> 2.)

5.5.2 Antitrees

A weakly spherically symmetric tree is determined by a sequence (s,) via so = 1
and s, = by (r—1), r > 1. Since #5,+1 = by (r)#S, we have #5, = H;;é b.(j) and

m(B,) 1+ 225b:(4)
OB,  by(r)by(r—1)

Hence, the threshold for the applicability of the criterion is

Sy ~ 12

2+€

27 the sum converges. For the volume

Indeed, if s, < 72 the sum diverges and if s
this threshold is then
|B,| ~ 7.

(Exercise 36.) In the case where s, > 72*¢ we conclude \g(A) > 0 and e (A) = 0.
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For s,_1 = 1%, 7 > 1 we check that u : x — 1/(d(x¢,x) + 1) is a solution to A\ = 2,
ie.,

(£ = 2)u(0) = 3 ulw) = uly) — 2u(z) = 4(1 - 5) =2 =0,
YyEST

and for x € S,

11 11 2 r4l1 r—1 2
(L= 2, G-+ 2 Grmg) i =~ = =0
YESr+1 YESr—1

Thus A\g > 2.
Hence, if s, = 7 with 3 > 2, then \o(A) > 0.

Next we prove a result relating subsexponentially growing solutions to the spectrum,
in the spirit that if u is a solution to A with e~y € £2 for all @ > 0 then \ € o(L).
In particular, if the graph is polynomially growing, then for v = 1 we have Lu =0
and wu is subexponentially bounded. This would imply 0 € o(L).

However, the example above shows that there are polynomially growing graphs with
positive bottom of the spectrum. This shows that the natural graph metric is not
suitable to show such a result. Therefore, we explore some other metrics on graphs.
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Chapter 6

Metrics on graphs

We first introduce a metric different to the natural graph metric which is more
suitable for our purposes. In the following we will isolate crucial properties of this
metric.

Let Deg, = Deg — ¢/m, i.e.,

Degy(z) = : > b(,y).

m(@) 1
We define the map
n—1
plz,y)=  inf > " min{Degy(z;) 2, Degy(wir1) 2}
T=xo~...~Tp=Y P

which is a pseudo-metric, i.e., p : X x X — [0,00] is symmetric and satisfies the
triangle inequality (Exercise 37). Moreover let

pr=pAL

Example Let m = deg be the vertex degree (i.e, deg(z) = #{y ~ x}) and b :
X x X — {0,1} which is associated to A. In this case Deg = 1 and therefore p
equals the natural graph distance d.

In general the topology induced by p does not agree with the discrete topology.

Example of a non discrete space. Let X = Ny and m = 1. Let b be symmetric
and b(0,2n) = 1/22" b(2n—1,2n) = 2" and b(n, m) = 0 otherwise. Then, p(0,2n) =
27", Hence, in the topology induced by p every neighborhood of 0 is infinite. In
particular, {0} is no open set and thus this topology is not the discrete topology.

Moreover, p is not necessarily a metric which implies that that (X, p) is not neces-
sarily a Hausdorff space. Moreover, (X, p) is not necessarily locally compact.

Example of a non-Hausdorff space. Let X = NyU {oo}, m =1, c=0and b
symmetric such that b(0,2n) = b(oo,2n) = 27", b(2n,2n — 1) = 2" and b(n,m) = 0
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otherwise. Then b satisfies (b1), (b2), (b3). Moreover, Deg(0) = Deg(co) = 1 and
Deg(2n) > 22", Thus, d(0,00) = inf, Deg(2n)~2 > 27" and hence, 0. Thus, (X, p)
is not a Hausdorff space.

Example of a non-locally compact space. Let X = N2, m =1, ¢ = 0 and let
b be symmetric and b((0,0), (m,0)) = 27™ and b((m,n), (m,n + 1)) = 220m+n) /3,
m,n > 0 and b = 0 otherwise. Then, b satisfies (b1), (b2) and (b3). One can think
of the graph as a star graph, where the rays are copies of N. Then, Deg(0,0) = 1 and
Deg(m,n) = 22"+ Hence, §((m,n), (m,n + 1)) = 2=+ and §((0,0), (m,n)) =
27m S 27F e, 277 < 6((0,0), (myn)) < 27™. Let B.(0,0) be a ball about
(0,0). Choose {U./2(0,0)} U {Uy-m-n-v(m,n) | m,n > 0} as an open covering.
However, it is impossible to choose an finite subcovering: Let M be the smallest
number such that Xy, := {(M,n) | n > 0} C B.(0,0). Then, X, N B.(0,0) \
B./2(0,0) is infinite and since Uy-r—n-1)(M,n) are disjoint for n > 0 we cannot
choose a finite subcovering from it.

However, the pathological behavior mentioned above does not occur in the locally
finite case.

Furthermore, p has various nice properties which we will study separately. In par-
ticular, p is an intrinsic path (pseudo)-metric with finite jump size.

6.1 Path metrics and a Hopf-Rinow theorem

Let X be a countable set. For a function o : X x X — [0,00) we let a path of
length n be a sequence (zy,...,,) of pairwise distinct elements in X such that
O'(J?i,xlqu) > 0.

If (b,c) is a graph over X then we assume b(x,y) > 0 iff o(z,y) > 0. However, we
do not need a graph for the considerations in this section.

We define the path (pseudo)-metric 6 = d, : X — X — [0, 00) with respect to o by

n—1

oz, y) = inf Z o(x;, Tig1).

T=To~...~En=Y ~
1=0

We call § a path (pseudo-)metric and (X, ) a path metric space.

We call a sequence (z,,) convergent if there is an x € X such that §(z, z,) — 0. Note
that since (X, 0) is not necessarily a Hausdorff space limits need not to be unique
(compare example in the previous section.) Moreover, we say a sequence (z,) is a
Cauchy sequence if for all € > 0 we have 6(x,,, x,,) < ¢ for large m,n. We call (X, 0)
locally finite if #{y € X | o(x,y) > 0} < oo for all z € X.

Example 1. The natural graph metric d.
2. For a graph (b, c) over X let o(z,y) = b(z,y) ' if v ~ y and o(z, y) = 0 otherwise.
3. The (pseudo)-metrics p and p; defined in the previous section.
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Lemma 17. Let (X,0) be locally finite.
(a) 0 is a metric, i.e., (X, ) is Hausdorff.
(b) (X,9) is locally compact.
(c) A set is compact in (X, 98) if and only if it is finite.
(d) If a sequence of vertices converges in the metric space (X,0), then it is even-

tually constant.

Proof. By the local finiteness for each € X there is r = r, > 0 such that §(z,y) > r
for all y # x and in particular for all y with o(z,y) > 0. Hence, for every vertex x
the set {z} is open (as {} = B,/s(x)). Thus, (a) follows immediately. For (b), as
{x} is open and compact, every vertex has a compact neighborhood and the space is
locally compact. For (c), it is clear that finite sets are compact. On the other hand,
let K C X be compact. Choose an open covering by the open sets {z}, = € K.
Thus, K must be finite. For (d), let (x,) be a sequence converging to x and let N
be such that 6(z,,z) <e:=r, forn > N. Then, (z,),>n is constant. O

The length I(z) € [0, 00] of a path = (z,,) (finite or infinite) is defined as
I(x) = ZU(%‘, Tit1)-
i>1

A path (z,) is called a geodesic if §(xg,xy) = l(xo,...,z,) for all & > 0. A path
metric space (X, ) is said to be geodesically complete if all infinite geodesics have
infinite length.

Theorem 18. (Hopf-Rinow type theorem) Let (X,0) be a locally finite path metric
space. Then, following are equivalent:

(i) (X,0) is metrically complete.
(1) (X,9) is geodesically complete.
(11i) Every distance ball is finite.
(iv) Every bounded and closed set is compact.

In particular, for all x,y € X there is a path xg,...,x, connecting x and y such
that §(z,y) = l(zg, ..., Zn).

In the case where a path metric space (X, 0) satisfies one of the (equivalent) prop-
erties above we call the path metric space (X,0) complete.

Remark (a) The path metric space (X, ) is complete iff (X, A s) is complete for
all s > 0. (Exercise 38)

(b) The direction ((iii)=-)(iv)=>(i) is true for general metric spaces.

The critical direction is (iii)=-(ii) which is proven by the following lemma.

59

—
Ende 16.
Vorlesung



Lemma 18. Let (X,0) be a locally finite path metric space. If there is an infinite
distance ball, then there exists an infinite geodesic of bounded length.

Proof. Let o € X be the center of the infinite ball B of radius r and let d be the
natural graph distance. Let P,, n > 0, be the set of finite paths (z,...,zy) such
that zo = o0, d(xy,0) = n and d(xg,0) <n for k=0,...,n.
Claim: T, = {y € P, | v geodesic, I(y) <r} #( for all n > 0.
Proof of the claim: The set P, is finite by local finiteness of the graph and thus
contains a minimal element v = (x, ..., xy) with respect to the length [, i.e. for all
v € P, we have [(7') > l(vy). Indeed, 7 is a geodesic: For every path (xy,...,2,)
with 2, = 0 and zpp = xy, we let m € {n,..., M} be such that (x(,...,2],) € P,.
By the minimality of v we infer

Uxhy -y 2hy) = Uy, .. xh) > 1(y).

rYm

It follows that v is a geodesic. Clearly, [() < r, as otherwise B C {y € X | d(y,0) <
n— 1} which would imply finiteness of B by local finiteness of the path space. Thus,
v € I', which proves the claim.

We inductively construct an infinite geodesic (x;) with bounded length: We set
9 = o. Since I',, # (), there is a geodesic in T, for every n > 0 such that zg is

a subgeodesic. Suppose we have constructed a geodesic (z1,...,2x) such that for
all n > k there is a geodesic in I',, that has (x1,...,x;) as subgeodesic. By local
finiteness x; has finitely many neighbors. Thus, there must be a neighbor x4, of z;
such that for infinitely many n the path (zo, ..., xy, 2x11) is a subpath of a geodesic
in I',,. However, a subpath of geodesic is a geodesic. Thus, there is an infinite
geodesic v = (x,)n>0 With I(y) = limy, 00 l(20, ..., z,) < 7 as (zo,...,x,) € [, for
all n > 0. ]

Proof of Theorem[18. (i)=-(ii): If there is a bounded geodesic, then it is a Cauchy
sequence. Since a geodesic is a path it is not eventually constant, so it does not
converge by Lemma (17| (d). Hence, (X, d) is not metrically complete.

(ii)=-(iii): Suppose that there is a distance ball that is infinite. By Lemma [1§| there
is a bounded infinite geodesic. Thus, (X, 0) is not geodesically complete.

(iii)=(iv) follows from Lemma [17] (¢). (iv)=(i): If every bounded and closed set is
compact, then every closed distance ball is compact. Then, by Lemma [17] (¢) every
distance ball is finite and it follows that (X, 0) is metrically complete (since Cauchy
sequences are bounded). ]

6.2 Intrinsic metrics

Let (b, c) be a graph over a discrete measure space (X, m).

For f € C(X), we define |d,f|* : X — [0, o]
[dof (@) = |dof - duf ()] = Y bl y)(f(x) = F(y))*.

yeX
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and the functions for which the gradient is finite by
D;. = {f € C(X) | |dpf|*(z) < oofor all z € X}.

Lemma 19. (a) D(Q) C D

loc*
(b)) FND;,=Fc={fe€C(X)| f*eF}. Inparticular, if f € F then fg € Fy

for g € .

Proof. (a) For f € D(Q) we have for all z € X

o f | (2 <Z\dbf12—2cz< ) <

(b) Let f € Fy. Then, f € F (as }_, b(z,y) < 00). In this case

| fI* (2 2 Y b(w,y) =2f(2) > bla,y) f(y)+ D bla,y) f(y)* < oo
yeX yeX yeX
——— N ~ /N —~ .
<co, (b3) <oo, fEF <o, fEF>

so f € Dj .. On the other hand, let f € F NDj,.. Then,

bey = |dpf*(z) +2f (z bey bey < 00,
yeX <oo, fED? yeX yeX
loc N——
<oo, fEF <o, (b3)

and, thus, f € Fy. Clearly, > b(z,y)f(y)29(v)* < |lgll% D yex b(z,y)f(y)* < oo
for g € ((X). O

Let ¢ be a pseudo metric on X. For A C X, we define

da(x) = inf o(x,y), x€X.

yeA
Moreover, § A a = min{d,a}, a > 0 is a pseudo metric and one has

(5/\CL)A:(5A/\CL

and for all AC X and a > 0
0a(x) Na—0a(y) Nal <o(z,y), x,yeX. (6.1)
Lemma 20. Let 0 be a pseudo metric. Then the following are equivalent
(i) |dp(6a AN a)|> <m for all AC X and a > 0.
(i) 3 yex b2, y)d(2,y)* < m(x).

In particular, in this case o € Dj . for all finite K C X.

loc
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Proof. Suppose (i). Let z € X and A = {z}. We obtain

> bz, y)(0(z,y) Aa)* =) b(a,y)(8(x, ) —d(x,y))°

yeX yeX

By Lebesgue’s Theorem
|dpdal? = (}ggo |dy (54 A a)?| <m
which is (ii). On the other hand, if (ii) we have by
|dy(04 A a)|? me Y)(da(z) Na—daly )/\a)2§Zb(m,y)5(x,y)2§m(x).
yeX yeX

]

A pseudo metric p : X x X — [0, 00] that satisfies (i) or (ii) is called an intrinsic
metric.

Exercise 39If § is an intrinsic metric, so is d A s for all s > 0.

Example The pseudo metric p from the previous section is an intrinsic metric. In
particular,

< < <
bey (x,y) meymm{Deg()Deg( } < Deg(z bey m(x)

yeX yeX yeX

Suppose L associated to (b,c) is a bounded operator which implies Deg = C' by
Theorem [8| Then, d/C < p, where d the natural graph metric. Thus, §/C is an
intrinsic metric. In particular, if Deg = 1 (as in the case of &), then d = p is an
intrinsic metric.

Let the Lipshitz continuous functions be given as
Lip = {f € C(X) | there exists C such that f(z) — f(y) < Cé(x,y) for all z,y € X}.

For a function f € Lip the constant C' is called the Lipshitz constant.
Lemma 21. Let § be an intrinsic metric.
(a) \dbn|2 < C?m for all n € Lip with Lipshitz constant C. In particular, Lip C

(b) UD(Q) g D(Q) and nDloc g D;,

loc

for all n € Lip N £>°(X).
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Proof. (a) Let n € Lip. Then,

P (@) =) bla,y)(n(z) = n(y))* < C* Y blz,y)8(x,y)* < C*m(z),

yeX yeX

since ¢ is intrinsic. It directly follows that n € D
(b) For n,g € C(X) we have

(ng)(x) — (ng)(y) = g(x)(n(z) —n(y)) —ny)(g(x) — g(y))

and for n € Lip N ¢>°(X) we have

[(ng)(x) — (ng) W) I* = 2lg(v) PIn(x) — nw)* + 2n(z)Plg(z) — g(y)I?
< 2lg()1?0(z,y)* + 2lInll2]g(x) — g(y)I*.

loc*

For g € Dj,, notice that

|dyngl*(x) < 29(x)* ) b(a,y)d(x,y)* + 2|2 > bz, y)(g(x) — g(y))”

yeX yeX

< 29(x)*m(x) + 2|Inl%|dvgl* ()
which implies ng € Dj,..

We are left to show that ng € D(Q) for g € D(Q) and n € Lip N ¢>~(X). Let first
g € C.(X) which implies ng € C.(X) and thus ng € D(Q). Summing the inequality
above over x and multiplying by %, we obtain

Qng) < llgl” + lInl%.Q(9)

Moreover, we have that ||ng|| < ||n]leollgll- This implies that if (f,) isa || - |o =
VQ() + | - ||? Cauchy sequence in C.(X), then so is (nf,) (let g = f, — fi in the
estimates above). Now, as D(Q) is the closure of C,.(X) with respect to | - || we
have that nf € D(Q) for f € D(Q) (since nf, converge to nf in £*(X,m)). This
finishes the proof of (b). O

—
Ende 16.
Vorlesung

The following functions will play an important role. For U C X and r > 0 let
0,
r

(Picture)

Lemma 22. For any U C X and r > 0 we have ny, € Lip with Lipshitz constant
1/a®. In particular, nu, € Dj,. and |dynu,|* < 5m. Moreover, if the ball B,(U) =
{y € X | du(y) <} is finite, then ny, € Ce(X) C D(Q).
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Proof. Let n = ny,. We estimate using (/6.1)

i) () = (1= L) vo) @)~ (1= ) vo) )
< (5u(:v) _ 5U(y))2

o r r

1
< T—25($, y)2

This implies € Lip with Lipshitz constant 1/72. The ’in particular’ follows from
Lemma 21} The last statement is obvious as suppn = B, (U). O

We call

s:=inf{t > 0| d(z,y) <t forx~y}
the jump size of the pseudo metric ¢. In particular, if § is an intrinsic metric for a
graph (b, c¢) over (X, m) we call s also the jump size of Q.

Remark Given an intrinsic metric 4 and s > 0. Then d A s is an intrinsic metric
and has jump size s. In particular, p; = p A 1 is an intrinsic metric with jump size.

Lemma 23. Let s be the jump size of Q, let U C X andr > 0. Then, for A, s(U) =
Brs(U) N B1s(X \ U)

1
|db77U,r |2 < ﬁlArJrs(U)m'

Proof. Let n = nu,. Forx € X\B,14(U), we have b(z,y)(n(z)—n(y)) = b(z, y)n(y) =
0 since n(y) =0 for y € X \ B.(U) and b(z,y) =0 for y € B.(U) (as d(x,y) > s in
this case). On the other hand if x € X \ B, 4(X \ U) we have b(z,y)(n(x) —n(y)) =
b(z,y)(1 —n(y)) = 0 since n(y) = 1 for y € U and b(x,y) = 0 for y € X \ U (as
d(z,y) > s+ r in this case). Thus b(x,y)(n(x) —n(y)) = 0 for = ¢ Ay,. Hence, by
Lemma 22] we have

1
|dyn|* = 1a,.,. )| don|* < ﬁlAr+s(U)m~
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Chapter 7

Subexponentially bounded
solutions

Let (b, c) be a graph over (X, m). Morever, let @) be the corresponding form and L
the corresponding operator.

Let 0 be an intrinsic metric, i.e.,
> b, y)é(z,y)* < m(z).
yeX
Let s be the jump size, (i.e., b(x,y) = 0 for 6(z,y) > s) and assume s < o0.

We call a function f € C(X) subexponentially bounded if for some xy and all o > 0

e~ @) f e (2(X m).

Example and Exercise 40 (a) Let X =Z", m=1and b: X x X — {0,1}. Then,
d, = d/2n is an intrinsic metric where d is the natural graph metric. A function f
is subexponentially bounded iff

1
limsup sup —log|f(k)| <0.
k—oo zeBy(0) K

(b)Let X =Ty, m=1land b: X x X — {0,1}. Then, d,, = d/(k+1) is an intrinsic
metric. A function f is subexponentially bounded iff

1
limsup sup ﬁlog\f(n)lg—logkﬂ

n—00  xE€By(xo)

The next theorem says that if there is a subexponentially bounded solution to some
A, then X € o(L).

Theorem 19. (Shnol” theorem) Let the graph be locally finite, 6 be an intrinsic
metric such that the jump size is finite and such that all distance balls are finite. If
there is a subexponentially bounded solution u € C'(X) to A € R then X € o(L).
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Remark The assumptions finite jump size and finiteness of distance balls implies
locally finiteness of the graph. (Indeed, if s is the jump size and z is a vertex with
infinite degree, then the s-ball about x is infinite.)

The following corollary for the intrinsic path metric p induced by
. _1 _1
p(z,y) = min{Deg(z)"2,Deg(y) 2} A1, z~y
The following theorem follows directly from the Hopf-Rinow theorem.

Corollary 7. Let (b, c) be locally finite and (X, p) be complete with finite jump size.
If there is a subexponentially bounded solution v € D}, NF to X € R, then A € o(L).

7.1 A Caccioppoli inequality

Note that we do not need the assumptions that imply local finiteness for the following
inequality.
Theorem 20. (Caccioppoli inequality) Let u € D;,. N F be a solution to X € R.

Then, there is C' > 0 such that for all v € C.(X)

> odsul* < C(Jluvl? + Y w?ldsof?)
X

X

loc

Proof. Assume w.l.o.g. ¢ = 0. Since u is a solution to A\, Green’s formula and the
Leibniz rule yields

Muvl|]? = Z(ﬁu)uvz = Q(u, uv? Zv2|dbu]2 + Z (dyu - dyv?)
X

Note that the left hand side is finite since v € F and uv? € Cc( ) and the first term
on the right hand side is in finite since u € D;., and v € C.(X). Moreover, for the
second term

> ulds - di®)| <37 b plu@) (o) + o)) (@) - uly) (@) - o))

x yEX

loc

<- ZuQIdva +de Y b, y)(v(e) + v(y)*(ulz) - uly))?

z,yeX
- Z u?|dyv]* + 8¢ Zv2|dbu|2,
°X X
where we used 2ab < a?/e + 4eb? for £ > 0. Thus,

> Pyl = Nuw|® = uldyu - dyv?)
X X

1
< Muo? + = Z u?|dyv]? + 4e Z 02| dyul®

_ ﬁ(AHusz - D el ).

| /\
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7.2 A Shnol’ inequality

Let 0 be a pseudo metric. Recall the definitions
v ;2£5<$v )

O
AT(U) = B,.(U) OBT(X\U),
where U C X and r > 0.

Lemma 24. (Shnol’ type inequality) Let an intrinsic metric 6 be given and let s > 0
be the jump size. Let v € C.(X) and u € D}, .NF be a solution to A € R. Then, for
U C X andr > 0 such that B,ys(U) is finite there is C > 0 such that

(Q — N (ungi,., v)] < Cllvllgllula, ..l

Proof. Let n = ny,. By assumption n € C.(X). Using (Q — \)(u,w) = > ((L£ —
AMu)wm = 0 for all w € C.(X) we get by Leibniz rule

(Q = M(un*,v) = (Q = N)(un®,v) = (Q = N)(u,n*v)

—Z db’f] db’U +Z77 dbu db’U Z’f] dbu dbU ZU db’f] dbu
X

<o by CSI <oo by CSI
=2 Z un(dyn - dyv) — 2 Z on(dyn - dyula,,,)
X X

since

Y onldon - dyu) = D bla,y)(n(x) —n(y)) n(@)o(@)(u(@) - u(y))

X z,yeX

=0 for z or yEX\Ar+é(U)
= Z on(dpn - dyulay, ).
X

Using the Cauchy-Schwarz inequality, we get
1 3 i 1
. <2Q(v)? < > u2772|db77|2> 42 ( > Pldyula, @) |2> : ( > U2\db77|2> 2
X X X

By Lemma [21] we have >, v*|dyn*> < > v*m/r? = |v||*/r%. By Caccioppoli
inequality and [|n]|e < 1

< zcz@ﬁ(zuﬂdmﬁf 20 (w2 + 3 wldnl?) o]
X

< CQW)? + [[vl)llula, .l
where we used |dyn|* < 14,,,@ym/r? by Lemma [23| which finishes the proof. O
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7.3 A general Shnol’ theorem

Theorem 21. Let § be an intrinsic metric and let s be the jump size. Suppose there
is a sequence (Uy,) of subsets such that B,.s(U,) are finite for some r > 0 and

HU]‘AT+S(Un) H

—0
[ulp, |

for some solution u € Df,,NF to A € R. Then, A € o(L).

loc

Proof. Let u be a solution. Since ny, , € Co(X) we have u, = ung, , € Co(X) C
D(Q). As ||u,|| > ||uly, || we get for all v € C.(X) with |jv[jg =1

Q=N o)l _ sl . plutacll
fal =7 el = Tuly,

for n — oo, by the Shnol’ inequality, Lemma 24 Thus, (u,/||u,||) is a form Weyl
sequence and the statement follows from Theorem [12] O

Lemma 25. Let J : [0,00) — [0,00) be such that for all o > 0 there is C, > 0
such that J(r) < Cne® for all r > 0. Then for allm > 0 and 6 > 0 there exist an
unbounded sequence of numbers ry, > 0 such that J(ry +m) < e J(ry).

Proof. Assume the contrary. Then there exists an ry > 0 such that J(ry) # 0 and
J(r+m) > e°J(r) for all r > ry. By induction we get J(ro + nm) > e".J(rq) for
n > 1. For a < §/m we get by J(r) < C,e®”

J(ro) < J(ro +mn)e " < Chetmoelem=2on _ (),
as n — oo. This is a contradiction to J(ry) # 0. O

Proof of Shnol’s theorem. Let u € D}, be a subexponentially bounded solution to
A and u, = 1p, (z,)- Then for all & > 0

||un||2 _ Z |6ad(xo,x)6—ad($o,x)u(x)|2m(m) < 621;m||e—o¢d(;z:07‘)u||27

zeB,

which implies that n ~ ||u,||* satisfies the assumption of the lemma above. Hence,

: (n) 2 1 2
for all n > 1 there is a sequence (r,"”) such that ”u";(c”)ﬂ"H“ <e /"||url<€n) 1%,

—r—1
where s is the jump size. Letting j, = " we get
2 2 2 2
||U]‘Ar+5(gn)|| — Hujn‘H”+3H — H;’L]‘jn*T*SH S (el/n o 1) Hujn*T*;H N 0
[[un [[n [
Thus, A € (L) follows from Theorem [21] since all distance balls are finite. ]
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7.4 Applications

Moreover, we get the following special case of Brook’s theorem.

Corollary 8. (Baby Brooks) Let § be an intrinsic metric such that the jump size
is finite and such that all distance balls are finite. If the graph is of subexponential
growth, i.e. limsup * logm(B,(zo)) < 0 for some (all) o € X, then 0 € o(L).

Proof. The constant functions are solutions to A = 0. Moreover, they are clearly

contained in D; . N F and under the assumption of subexponential growth the con-

stant functions are subexponentially bounded. O

Let b: X x X — {0,1}, ¢c =0 and m = 1. Then L is the operator A with

7.4.1 The Euclidian lattice

The Euclidian lattice is the graph with vertex set Z™ and b(n,m) = 1 if and only if
|n —ml| = 1.

The constant function u = 1 is harmonic, i.e., for A = 0 we have (L+ A\)u = Lu = 0.
Moreover, since Z"™ has polynomial growth, the function u = 1 is subexponentially
bounded. Thus, 0 € o(A) and since A is positive \g = 0.

In general, for every graph with bounded the vertex degree and subexpontial growth,
we have 0 € g(A).

7.4.2 Trees

Let the graph be an unrooted k-regular tree, £ > 2 and ¢ = 1,,. In the section
about positive solutions we found that u : x : 1/d(x, 20)*/? satisfies (£ — \)u =0
for A =k +1 — 2vk. Since

1

—logu(n) = —logk/2,

n
we have A € o(L). As A < )\ by positivity of u we have

Mo =k+1-2VEk.

7.4.3 Antitrees

An antitree is determined by a sequence of natural numbers (s,,) such that |S,| = s,
and every vertex in a sphere is connected to all vertices in the previous and next
sphere.
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In the section about positive solutions we learned that if s, > 727, for ¢ > 0 we
have

M(A) =0 and oes(A) =0.
We are interested in the borderline, where A\g > 0.
Recall the path metric p given by

ple,y) = inf Y min{Degy(z;) "2, Degy(xi1) 7%}

T=TQ~...~Tp=Y 4

i=1
for x,y € X and Deg,(2') = @ > yex b Y).
Assume the graph is an antitrees with monotone increasing (s,). Then, for z € S,

n

plro,a) = ——

= (s 8107

Let s, = [n”], where 0 < 8 < 2 and [r] is the smallest integer which is larger than
r. Then, for z € S, and g € (0,2)

n

1 "o _
p(l‘o’ l‘) —= Z ~ / j 2d] ~U nl ,
1

G-+ (G+ 122

where a,, ~ b, means there is C' > 0 such that C~'a,, < b, < Ca,. Let B,, r >0
the ball with respect to p. Let 5 € (0,2). For n € N and r = ni=5

[N]gey

m(Br):yBT,NZSj:ZjBN/I PBj o P = 28
j=1 j=1

Thus, there is C' > 0 such that

B+1 B+1
C ¥ < m(B,) < Cr*>5.

Thus p = 0 and by the corollary 'Baby Brooks’, we have that 0 € o(A).

Hence, we conclude for s, = r? that

M(A)=0, for0<f<2
Mo(A) >0, for 8> 2

Exercise 41: Check that for s, = r? the volume grows exponentially.
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Chapter 8

Volume growth and upper bounds

8.1 Motivation

For Riemannian manifolds we have the following theorem which goes back to Brooks:
Let M be a Riemannian manifold and B, = B,.(z) the ball of radius r about =y € M
in the Riemannian metric

1
p = lim sup — log vol(B,)
r

=00

i.e., vol(B,) ~ e"". For the Laplace Beltrami operator A, we have
2
() <

In particular, this implies that if M has polynomial growth then Ay = A§* = 0.

The idea of the proof is as follows: Let a > p/2 and g,|p, = n and g¢,(x) =
e(2r=d(z02) for ¢ ¢ B,.. Then,

/ Vol = a? / ]2 < @2l IP.
M M\ B

By showing that g, are in the form domain for o > p/2 and g,/||g.|| = 0 weakly we
get the statement. As we have seen in Section [5.5] there are graphs of polynomial
growth (with respect to the natural graph metric) which satisfy Ay > 0 and thus
AG® > 0. However, for intrinsics metrics we can proof a graph analogue of Brooks
theorem.

Let (b,0) be a connected graph over a discrete measure space (X, m). Let @ be the
corresponding quadratic form and L the associated operator. Let § be an intrinsic
metric.

Moreover, let B, be the distance balls about a fixed vertex xzy € X. Define

1
p = limsup — log m(B,).

r—oo I
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Lemma 26. If |JB,.(z) = X for (some) all x € X then the function p : X —
[0, 00], x +— p(x) is constant.

Proof. Exercise 42: For € X and n > 1 let p,(z) = tlogm(By,(z)). Let ny
be such that limsup, p(x) = limg gy, (). Then for all » > 0 we have p(x) =
limy, fipyqr () since g, < g, Suppose there is y € X such that u(y) < p(x).

Let r = d(x,y). Then, we get for all £ > 1
m( B, () < m(Bnyir(y)) < m(Bryior(r)).

Then, p(x) = limy py, (y) < p(y) which is a contradiction. O

Theorem 22. (Brooks theorem) Let | B.(x) = X and let 6 be an intrinsic metric
such that all distance balls are finite, m(X) = oo and ¢ = 0. Then,

2
17
)\GSSL <_.
O

In general, it is hard to determine the assumption whether the distance balls are finite
with respect to a certain metric. The following corollary replaces the assumption by
an assumption on the measure space.

Corollary 9. Let ¢ be an intrinsic metric and assume that m gives infinite connected
sets infinite measure. Then, A& (L) < p?/4.

Proof. In the case that there is an distance ball B, with infinitely many vertices.
By assumption m(B,) = oo and thus u = oco. Hence, the inequality is trivial. The
other case follows from the theorem above. O

In the case where Deg = C' we have that p equals the regular graph metric. In
particular, b(z,y) > 0 if and only if p(z,y) = C~z. In this case we have even an
better estimate.

Theorem 23. (Brooks theorem - bounded version) Assume the graph (b,c) is con-
nected, Deg < C, m(X) = oo and ¢ = 0. Then, for p with respect to the natural
graph metric d we have

A& (L) < (1(1 - m)

8.2 The minimizing function

We introduce the sequence of test function which we use to apply Proposition[3] Fix
2o € X. Let a > 0 and n > 1 define

Gra: X =R, z—explarA(2r—06(z,x))))
Picture.

Clearly, g, is constant on B,, and decreases exponentially outside of B,. We show
the following facts about g, 4.
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Lemma 27. For a > u/2 and r >0
(a) gra € (X, m),
(0) Gr.a/llgkall = 0 weakly as k — oo if m(X) = oo and X =, B,
() gra(®) = graly) < a(gZa(@) + 620 (y))26(2,y) for v,y € X

Proof. 1If ;1 = oo, then there is nothing to prove. (Note that this includes the case
m(B,) = oo for some r > 0.)

(a) Let @ > pu/2 and r > 0. Then, since g, are spherically symmetric we get for
reN

lgrall* < *m(By + €7 Y " e (m(Bysr) — m(By))
k=r
< 62arm(BT) + 64a7’(1 o 6—204) Ze—2akm(3k) < 00
k=r

since o > /2 (i.e., there is B € (u,2a) such that m(By) < ¥ for large k). For
arbitrary r > 0 the statement follows from g, o < gio for r < k.

(b) Let a > p/2, ¢ € £*(X,m) with ||¢|| = 1 and € > 0. Moreover, let r > 0 be
such that

lelx\s, |l < &/2
and R > r such that m(B,) < §m(Bg), where this choice is possible since m(X) =
00. Let fr = gra/llgrall. Note that since fr < e*®/(e"m(Bg)z) = m(Bg)"2 we
have
m(B,) <
m(BR) -2
and by definition ||fr|| = 1. We estimate by the Cauchy-Schwarz inequality and

(0, fr) = (P1B,, fr) + {e1x\s,, fr) < @l frls, | + [elx\p, | frll < e

Hence, (fx) converges weakly to zero.
(c) We estimate

| ™

Ifr1B, || <

|€20¢r—o¢6(1‘,x0) _ e?oar—oaé(y,:co)|

10(, 20) — 6(y, o)
Since |(e®®) — ealstV)) /t| < a(e® + e¥+1)) /2 for a > 0

‘gr,CY(x) - gr,a(y)| < ’(5(1‘, $0) - 6(% 330)‘

. < %(0497“,01<33') + Odgr,a<y)) < Oé(gr,a<x>2 + gr,a(y>2)%6(x7y)’

where we used |§(x, z0) — 6(y, zo)| < 0(z,y) and (s + 1) < 252 + 22 O

Lemma 28. If § is the natural graph metric d, then for all a,v > 0 and x,y € X
with b(x,y) >0
(@) = 9ray) < I (g2 () 4 g2, (1) F0(e ).

Proof. Exercise 43. O]
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8.3 The key estimate
Lemma 29. For a > 1/2 and r > 0 we have

% 37 (@ ) (Gral@) = graly)? < a2llgral

z,yeX

Proof. By Lemma [27] (¢) we get using that § is an intrinsic metric

% Z b(aj’ y)(gna(.ilﬁ) — gr,a<y))2

z,yeX

<5 D W@ y) (g al) + ga )i, y)

= % ( D g2a@)D bl y)d(zy)? + > gl ) > bla,y)d(x, y)Q)
<o’ gl (x)m(z).
0

8.4 Proof of Brooks’s Theorem

Lemma 30. Let f € Dj,.. For all A C X and ¢ € Lip supported on A, bounded by
one and with Lipshitz constant one

1
D) D ldnfel> <2 ldf[? + 21| f1a%.
X A

Proof. For h € D} = with supph C A we have

loc

5 Sl
:1< > by (h(z) @)+ D bla,y)(h(z) — h(y))?

2 (z,y)EX\Ax A (z,y)EAX X\ A

Y by - hy)?)

(z,y)EAXA
= Y b)) @)+ Y b)) — b))
(z.y)EAXX\A (z,y)€AXA

< ||’
A
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*
loc

(folz) = foy)? < 20% (W) (f(x) — f(y)? + 2/7(x)(o(z) — @(y))?
<2(f(x) — f(y)* + 2f(x)%0(z, y)*.

Hence, by the above with h = ¢f (which is in D}, by Lemma [21f (b)) and since 0 is
intrinsic

Since supp ¢ C A, ||¢]leo < 1 and ¢ € Lip, we have for all f € D

1
3 D ldufel” < ldufel* <2 |dof? + 2| f1a]%
X A A

]

Lemma 31. Assume X = J, B, all distance balls are finite. Then, g, € D(Q) for
all > p/2 andr >0

Proof. In order to show g, , € D(Q)) we have to show that g, , can be approximated
with respect to the form norm || - ||o by finitely supported functions. For R > 0 let
Nr = M,B, = (1 —infyep, d(y,-)) V 0 as introduced earlier, where B = Bg(xo) is
a ball about a fixed vertex zy. Clearly, suppng = Bgry1 and ng € C.(X) since we
assumed that distance balls are finite. Moreover, by Lemma [22] we have nr € Lip
with Lipshitz constant one and therefore (1 — ng) € Lip which is bounded by one
and has Lipshitz constant one. We show that we can approximate ¢, by ¢, =
Gratn € Co(X). By Lemma [30[ we get with A = X \ B, since supp (1 —n,) = A

1
5 2 (gm0 = 9a) P =D ldigra(l = m)* <2 ) ldsgral® +2llgnalxs,|I*
e X X\Bn,

By Lemma [27] (a) the functions g,, are in (*(X,m) and by Lemma 29, we have
S ldbgral> < 0o. Hence, the right hand side converges to zero as X = |J, By.
Clearly, ||gra — ¢nll < lgralx\s,|| — 0 and, thus, ¢, converges with respect to

I lle = VQC)+ 1[I - [I*- 0
Proof of Brooks’s theorem. By the lemma above g, € D(Q) for @ > u/2 and r > 0.
By Lemma 29 we have for fi = gr.a/||gk.ll

Qf) <’

We assumed m(X) = oo, so by Lemma [22f (b) the functions f; converge weakly to
zero. By Proposition [3| we have for all v > /2

N (L) < liminf Q() < o
—00
Hence, the statement follows. O

Proof of Brooks’s theorem - the bounded case. If Deg < C, then () is bounded by
Theorem . Let bc = b/C. Then, the natural graph metric d is an intrinsic metric

for Qc = %Q, ie.,
s 1

S bele,y)de,y)* = % 3 blay) = Zm(r)Deg(x) < m(x).

yeX yeX
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Let g, defined with respect to d. Then, g, € (*(X, m) for a > 1/2 by Lemmal[27](a).
Moreover, since @, Q¢ are bounded we have g,, € *(X,m) = D(Q) = D(Q¢).

Hence, by Lemma with = (i;liz =1—2¢*/(1+e€*) =1—1/cosh(a/2)
1 B

GQ(gr,a) = QC(gr,a> =75

> bo(@y)(gha(@) + 6o ))d(x,9)” < Bllgrall®

z,yeX

since d is an intrinsic metric for ). Thus, by Proposition

A& (L) < c<1 - Wluﬂ))

8.5 Applications

Let b: X x X — {0,1}, ¢ =0 and m = 1. Thus, we are concerned with the operator

y~zx

Theorem 24. Let G be a graph such that Deg < k+1. Then, u < logk with respect
to the natural graph metric and

ASS(A) < k+1—2VE.

Proof. Let T be a spanning tree of G which leaves the distance relation to a fixed
vertex invariant. (A spanning tree is a connected subgraph with the same vertex set
that is a tree.) This can easily be achieved as follows: One removes all edges which
connect vertices within a sphere. Further one removes inductively all edges which
connect a vertex in a sphere to vertices in the previous sphere except for one edge.
Moreover, we can embed T in a k-regular tree T. We obtain,

1 1. &
w(G) = w(T) < p(Ty) = limsup — log m(B,,) = limsup — longj = logk.
n

n—oo N n—o00 -
Jj=1

Since cosh is monotone increasing the statement follows from the bounded version
of Brooks theorem by direct calculation. O
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Chapter 9

Isoperimetric constants and lower
bounds

For non-compact Riemannian manifolds M without boundary the Cheeger constant
is defined as

Area(0U)

— inf 2P/
h= it =7y

where the infimum is taken over all compact submanifolds U with smooth boundary
OU. Then,

h2
MAw) = -

We prove a similar estimate for graphs. Let (b, ¢) be a graph over (X, m). Let @ be
the corresponding form and L the associated operator. We first treat the case ¢ =0
and discuss later how to incorporate the case ¢ # 0.

For a finite subset W C X we define
OW=WxX\W)UX\WxW)CXxX

and

owl=5 3 by

(z,y)€OW

Of particular importance will be the measure n given by

n(z) =Y blz,y) = |0fz}].

yeX

Define the Cheeger constant as of a subset U C X

ay = inf oW
v 0#£W CU finite TL(W)
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We have ay <1 by OW C J,oy 0{z}. For U = X denote o = arx.

Example Let b: X x X — {0,1}. Then |[0W| = #0W that is the number of edges
leaving W. Since n = deg, we have that n(WW) = > ;- deg is twice the number of
edges in W plus once the number of edges leaving W.

Let

D;; = inf Deg(x).

zelU

Note that since we assumed ¢ = 0 we have Deg = m%x) > yex b(@,y). For U =X
denote D = D .

Our goal is the following theorem.

Theorem 25. (Cheeger inequality)

M(L) > (1 - V1—a?)D

Note that (1 — v1—a?) > %2 by the Taylor series expansion we get /1 —s =
1—s/2—5%/8....

9.1 Co-area formula

Let ¢ = 0.
Theorem 26. (Co-Area formulae) Let f: X — R be given and for t € R define

G ={reX|f(x) >t}

Then,
- > tewlfe) - S = | tosuar
and
S 1 (@)m(x) = / ¥ (@)t

Proof. For z,y € X with = € y we define the interval I, by

Loy = [f(@) A f(y), f(x) V f(y))

and let |1, ,| = [ f(z)—f(y)| be the length of I, ,,. Let 1., := 1y, . Then, (z,y) € 0%
if and only ¢ € I,,. Thus,

00| :% S b, )Ly (1),

z,yeX
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We calculate

o0 1 o
[ o= [ 3 s,

“ryeX

5 3 M) [ L

z,yeX

_ % 3" b,y f(2) — f)l.

z,yeX

Similarly we have = € Q if and only if 1(; )(f(2)) = 1. Thus, we can calculate

/: () dt = /Z S m(a)dt

TP reX

_ / S me) L (F())dt

TP reX

=Y ) [ tasoflaar

zeX

=) |f@)m(z).

rzeX
This finishes the proof. O

Remark. If f: X — [0, 00), then it suffices to take the integral from zero to infinity.

9.2 An isoperimetric inequality

Let v: X — (0,00) be the measure as above and for ¢ € C.(X) let

1
el = (D ¢)".
X
Proposition 5. Let U C X. Then for all ¢ € C.(U)
Q()* = 2[lell2Q(e) + af llelln <0

Proof. Denote A by
1 1
A= > bz, y)le*(x) — () = 5 > bz, y)le(x) — e(y)lle(x) + o (y)]-
T, yeX z,yeX
By Cauchy-Schwarz inequality

A=) (5 X lel) + o))

z,yeX

= Q) (% > b, v)20% (@) + 20%(y) — |olx) — w(y)|2>

z,yeX

= Q()2llll* - Qp))-
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On the other hand, we can use the first and the second co-area formula (with f = ©?)
to estimate

A= [Ttz o [T @i = a3 elafate) = allol

0 zeX

Combining the two estimates on A, we obtain

Qo) (2lell2 = Qe)) = el

This yields the desired result. O

9.3 Lower bounds

Let (b,0) be a graph over (X,m). For U C X let Qu be the closure of @) on

. =l
C.(U) C Cu(X), ie., D(Qu) = Co(U) "°. Then, Q(¢) = Qu(y) for all p € D(Qu).
Let Ly be the operator associated to Q.

Moreover, we write
a<Qu<b

for a,b € R, whenever
all fII* < Qu(f) < bl fI1%,
where || - || = || - ||m. Recall that D, = inf,cy Deg(z) and define

Dy = sup Deg(z).

zelU

Theorem [25] follows from the following theorem.
Theorem 27. For U C X

Dy(1—4/1—0a?) <Qu < Dy(1+4/1—a?)

In particular, o(Ly) C [Dy(1 — /1 —a}),Dy(1 + /1 —a})]. Moreover,

QU<1 — 1/ 1-— CY2U) S )\O(LU) S EUOéU.

Proof. Let ¢ € C.(U) with ||¢||,, = 1. Then, the isoperimetric inequality gives

Q(p)? —2Q(¢) +af <0

and, therefore,
I—/1—0a4 <Q(p) <1+4/1—a3.
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As for all p € C.(U) we get using Deg = n/m

lelln = ¢™n = ¢’mDeg

U U

that

Dy el < llelln < Dullell:

The inclusion of spectrum as a set follows from Corollary [3] Finally, note that for
finite W C U

QUw) =D Y blx,y) =[oW].

zeW ygW
Hence,
Quilw) _ oW _ |oW]| S Degm _ o oW |
wl mW)  aW) mW) = "nW)
Therefore,
1
MIo)=  mf @)ooy Quilw)
peC(U) 0 ||| 0AWCU finite || Ty ||
= . ow| —
<D f =D .
= v @#WIQI%J finite n(W) vy
Thus the final statement follows from the spectral inclusion. n

Examples(a) For the operator A on £*(X) we get

(1-+vV1-a?) in)f( deg(x) < Ao(A) < asup deg(x)
Te

zeX

(b) For A on £2(X,deg) we get since Deg = 1 that
o(A) C[1—VI—a21+V1-a?
and

(1-vV1—a2) < \(A) <a

Thus we have \g(A) if and only if a = 0.
Corollary 10. If L is bounded, then A\g = 0 if and only if ax = 0.
Proof. If L is bounded, then Deg is bounded and D < oo. If A\g = 0, then 0 <

Dy (1—+/1—a%) < A= 0 which implies & = 0. On the other hand, if & = 0 then,
OS)\()SDX&XZO. O
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9.4 Non vanishing potentials

We will use a trick that allows us to prove the statement for non-vanishing potentials.
Let (b, c) be a graph over (X, m).

Let X = X x {0,1}. We can consider X as a subset of X by the embedding
X < X, 2z~ (2,0).

So, we think of the elements xy = (z,0) being a vertex in X and of r; = (z,1) as a
virtual vertex related to zg at infinity. In this sense C.(X) C C.(X).

Define a symmetric b with zero diagonal on X x X be such that for r,ye X, x#vy,

b(xo, yo)

b(l’g, Il)

(y()v ZL’o) = b(l‘, y),

=b
= 6(:(:1, x9) = c(x),

and zero otherwise. Moreover, let ¢ = 0 and let 7 be m on X and arbitrary (e.g.
zero) otherwise. By the embedding X < X we have (2(X,m) C (2(X, ).

Then, the corresponding form () satisfies

for ¢ € Co(X) C C.(X). Furthermore, restricting @ to C,(X) and taking the closure
we find that

D(Qx) = D(Q) and Qx(¢) = Q(p).
The vertex degrees Deg and Deg agree on X, i.e.,

(Ciwa+ 3 b)) = s (3 bla) + (o)) = Deso)

yeX\X yeX

Deg(x) =

1
()

Hence, Dy = Dy. The Cheeger constant ax of X C X satisfies

ax = inf ‘GW‘
T pewexcex, tmite n(W)
where
owl= > b =3 (D b)) = [OW]+ (W)

zeWgeX\W zeW  yeX\W

and n =n on X.

Hence, Theorem [27] holds for Qx with dx and Dy = Dy. We get the following
theorem for a graph (b, c) over (X, m) with non-vanishing potential.
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Theorem 28. For U C X o(Ly) C [Dy(1 — /1 —6%),Dy(1+ /1 —é&%)] and

Dy (1 —4/1—=a2) < M\(Ly) < Dyay.

In order to determine whether &y > 0 we can consider the following constant:

Lemma 32. &y > 0 if and only if

0£WCU, finite (W)

Proof. Exercise 44. O

From now on we denote the Cheeger constant ¢y introduced in the previous section
with slight abuse of notation by ay, U C X.

9.5 Lower bounds on the essential spectrum

Let (b, c) be a graph over (X, m).

Let I be the set of finite subsets of X. For a function F' : £ — R we say that F
converges to r € R if for all € > 0 there is a set K € K such that for all L € K with
K C L we have |F(L) — r| < e. In this case we write limyex F(K) = 7.

Note that 0 < ax\x < ax\y < 1for all K C L. Thus, the limit
=N
Ooo Klglc AX\K

exist and is in [0,1]. Clearly, ae > a. Similarly, 0 < Dy, < Dy, for all K C L
and we find that

exists in [0, oo].

Theorem 29. Let (b,c) be locally finite. Then,

UeSS(L> C [Qoo(l -V - Oégo)ﬂboo(l + V - a%o)]?

where the lower bound is zero if ase =0 and D = oo. Moreover,

D (1-y/1-aZ) < A(L) < Do,

where the upper bound is 0o if ase = 0 and D = co.
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Proof. Let K € K and be the operator arising from () x\x. Since the graph is locally
finite the operators L and Lx\ i differ only in finitely many matrix elements and the
operator L — Ly\k is a finite dimensional operator. By Theorem (14| the operators
L and Lx\ g have the same essential spectrum. Thus, then inclusion statement for
the spectrum follows from Theorem [27] We now turn to the upper bound on A§¥.
Let K, € K such that K,, € K,41, n € N, and X = {J,~, K,, choose normalized

functions f,, € C.(X\ K,,) such that [(Q —Xo(Lx\k,))(fn; fn)| < 1/n (this is possible
by Corollary [3). As f, is supported on X \ K,, the sequence (f,) is a weak null-
sequence. Hence, by Proposition |3| we get

A®(L) < liminf Q(f,) = liminf A\g(Lx\x,) < liminf Dx\ gax\x = DooQoo-

n—0o0

[]

Exercise 45: Prove the statement by replacing the local finiteness assumption by
LC.(X) C (X, m).

Corollary 11. Assume the graph is locally finite. If Dy := D, = Do. Then,
Oess(L) = {Ds} if and only if aso = 1.

Proof. Assume 0ess(L) = {Doo}, then A\§® = Do. By Doo(1 — V1 — o) < AFF <

Dootoe We get 1 — ane < (1 — ais)?. Since ay, < 1 we obtain a,, = 1. On the other
hand if ao, = 1, then the spectral inclusion implies A$® = { D }. O

Example. For A on (2(X, deg) we have that gew(A) = {1} iff ag = 1.

Corollary 12. Assume the graph is locally finite and oo, > 0. Then, 0ess(L) = 00
if and only if D = oo.

Proof. The statement follows from D_ (1 — /1 —a2)) < A& < Dy to. O

Example. For A on (2(X) with as > 0 we have that oe(A) = 0 iff deg(z,) — oo
for all (z,) with z,, ~ 41, n > 1.

9.6 Lower bounds for Cheegers constant

Let (b, c) be a graph over (X, m) and recall that n was defined as

n(x) = Z b(x,y).

yeX

Fix a vertex ¢y € X. Denote by S,, r > 0 the distance spheres about xy with respect
to the natural graph metric. As in Section [5.5]let

bi: X = [0,00), bi(x)= > blx,y), v€S,

YyESr+1
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and define
b_(z) — by ()

K:X —[0,00), x> ()

The function K is referred to as mean curvature of the graph.
Theorem 30. a > —sup,.y K(z)

Proof. Let r: X — [0,00), x +— d(x,x0). Let £ be the formal operator with respect
o (b,0) over (X,n). Then, for x € S,, y € S,41, we have r(x) — r(y) = F1 and,
therefore,

bey bey —r(x))

yESr 1 yESr+1

B b_< )=be) _ )

n(z)
Thus, r € F. Let C := —sup,cy K(z) and W C X finite. Then, using Green’s
formula
Cn(W) < Z Z Ly (Lr)n
=3 Z bz, y)(r(z) — 7(y)) (Lw(2) — L (y))
xyeX
1
<35 2 b y)lr() = ()l (@) — Lw(y)|
z,yeX
<3 3 b)) ~ 1w )P
waX
= |OW|.
Thus, a > c. -

Example Let b: X x X — {0,1}, ¢ =0 and m = 1 be a tree, i.e., for some xy we
have b_(z¢) = 0 and b_(x) = 1 for = # . Hence, K = =2 If b, > k

Tby

by (2) — 1 2
(){>1Ilf—: e

which shows that the estimate is sharp for k-regular trees

Mo(A) 2 (k+1)(1- 1—(2—:)2) —k+1-2Vk

Thus, Moreover, if D = oo, then oes(A) = ().

85



Chapter 10

Tessellations

Let X be countable, m =1 and b: X x X — {0,1}. A graph is called planar if X
can be embedded into a surface S homeomorphic to R? or S? such that all z,y € X,
x ~ y can be joined by continuous curves without intersection. We identify the
graph with its embedding and call the connecting curves edges. We denote this
set by E. Moreover, we call the closures of the connected components of S\ |J F
the faces of the graph and denote them by F. We call a face a polygon if it is
homeomorphic to the unit disc D = {z € R? | |z| < 1}.

In the following we denote a planar graph by the triple G = (X, E, F'). We say that
G is locally finite if for every point in S there exists an open neighborhood of this
point that intersects with only finitely many edges.

A graph is called a tessellation if

(T1) Every edge is included in two faces.

(T2) Every two faces are either disjoint or intersect in one edge or one vertex.
(T3) Every face is a polygon.

For the rest of this chapter we are concerned with locally finite tessellations.

10.1 Curvature

Let G = (X, E, F') be a planar graph that is a tessellation. An important geometric
quantity is the curvature of a graph. For a face f we denote by deg(f) the number
of vertices contained in f, i.e., we have

deg(f)=#{z € X |z e f}=#{e€E|eC f}

Let

. deg(x) 1
piX SR, we - =2 >
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This can be motivated as follows: In Euclidian geometry a regular polygon is a
cyclic, equiangular polygon, i.e., its corners lie on a circle and its corner angles are
all equal. Let a regular polygon with n corners be given. Then, the corner angle
a(n) can be calculated as follows: Walking around the polygon once yields an angle
of 2m. To do so one passes n corners each with an angle 7 — a(n), i.e.,

21 = n(m — a(n))

Thus,
an) = 2m(n —2)
2n
On the other hand, we have
deg(x) 1
2rk(x) =27 (1 —
< 2 Pl deg(f)>
27 (deg(f) — 2
=21 — Z
e, 2deg(f)
=21~ Y afdeg(f))
fEFxEf

A subset W C X induces a subgraph by letting the edges Ey be the ones whose
starting and end vertices are in W. The faces are the ones obtained from the
embedding and are denote by Fy,. Note that the face set of Fy, can strongly differ
from F. We denote the curvature function of the graph Gy = (W, Ey, Fw) by k.

Lemma 33. (Euler’s formula) For a finite and connected graph W we have
(W[ —[Ew|+ [Fw| =2
Proof. By induction over |[W|. O

Theorem 31. (Gauf-Bonnet) Let W C X be connected and finite. Then,

rw (W) =Y kw(z) = [W| = |Ew| + [F| =2
zeW

Proof. Exercise 46. O]
Corollary 13. If kK <0, then X 1is infinite.

Proof. Assume X is a finite tessellation. Then, x(X) = 2 which is a contradiction
to k < 0. O

For a set W C X let

OpW ={feF|fAW 40, fNX\W =0}
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and

degy (f) = #(f N X\ W)

A set W C X is called simply connected if W and X \ W are connected.
Proposition 6. Let W finite and simply connected. Then,

k(W) =1- —|8W| + > degW
fedpWw

Proof. We start with two important formulas

S deg(w) = 2|Ew] + [oW]

reX
Resorting the sum gives
de
~1Fwl -1+ 3 )
TEW feFa:ef fedpW 8
Hence,
deg
(W) = [W] =) —==
zeW zeW fGFfo
ow de
= Wi 1B - 2 ‘+|FW| - Z Sl
fEIRrW g
and the statement follows from Euler’s formula. O

Proposition 7. (Absence of cut locus) If the tessellation is p,q regular then there
every vertex in S, is adjacent to a vertex in S,iq1, n > 0.

Proof. Exercise 47* ]

10.2 Volume growth of regular tessellations

For this section we restrict ourselves to regular tessellations, i.e., there are p,q > 3
such that deg(z) = p for x € X and deg(f) = ¢ for f € F.

We further restrict ourselves to the case of negative curvature k < 0, i.e., = — 3 —I— <
0. Moreover, as for odd q there are more case to distinguish we restrict ourselves to
even q.

We compute the volume growth of a tessellation with respect to the natural graph
metric.
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LetN:¥andP:vaq:C%Cbegivenby

N
P,,(2)= AN (p—2) 241
k=1

We will see that the largest root of the polynomial encodes the volume growth of
the tessellation.

We will prove the following auxiliary statement.

Proposition 8. Let p,q > 3 be such that % — % + % < 0 and q s even. Then, if
z € C is a root, so is 1/z. Moreover, N — 1 roots of P,, lie on the complex unit
circle and two roots are real and the larger one lies in (1,p — 1).

Proof. Clearly z = 0 is no root of P. For z # 0 we have P(z) = z2N*1P(1/z). Thus
P(z) = 0 implies P(1/z) = 0. Let S' be the complex unit circle. Denote

Q(z) = (2 =1)P(2) = 2" — (p—1)2"" + (p— 1)z~ 1
and z € S! is a root of @ if and only if

SN —(p—l)z—l—l.
z—(p-1)

Let ¢1, ¢y : [0,27] — S* be the closed curves given by

—(p—De"+1 _ 4(p—1)—e™
et—(p-1)  (p-1)—et’

o (t) — ei(NJrl)t’ Cg(t)

which start and end in z = 1. (They are closed curves a [0,27] — C, t — e is
a closed curve.) The of winding numbers of ¢; and ¢y are ind., (0) = N + 1 and
ind,,(0) = 1. (Exercise 48.) Therefore the two curves intersect in at least N — 1
different values t; < to < ... < ty_; of the open interval (0,27) which corresponds
to N — 1 different zeros of () and thus of P. Note also that

Qlp—1) = <pil)<(p—1)2—1> >0

Ple=1= (pil)

and

P(l)zQ—N(p—Q):pq(%—%—i-%) <0,

Thus P must have a root in (1,p — 1). Since P(z) = zNT1P(1/2) there must be
another root in (0, 1). O

Proposition 9. If g =4,6

p 2 D 2 \?
)\max ) = 53 T4 <__—> _1
(pa) =3 q_2+\/2 p—




Proof. In the case ¢ = 4 we have N =1 and
Ppa(z) =2 = (p—2) +1
and for ¢ = 6 we have N = 2
Ppo(z) =2 =(p=2)2" = (p—2)z+1=(+1)(z" = (p— Dz + 1):
which gives the second statement. 0

Theorem 32. Let p,q > 3 and q even and G, a p, q reqular tessellation of negative
curvature, i.e., kK(x) = p(% — % + é) < 0, x € X. Denote by Amax(p, q) the largest
real root of P,,. Then,

n = 10g(>‘maX(pa q))
The proof consists of several lemmas. For the rest of the section we consider a
negatively curved p, g-regular tessellation with even q.
Let ¢y € X be fixed and let B,, be the balls about x.
Forl=1,...,q— 1 define

¢, = #{f € OrB, | deg,(f) := ¢ —degg, (f) = #{z € X\ B, N [} =1},

Lemma 34. For alln >0

(i) ¢ =cF2 for1<1<q—3

(ii) ci2=c2 | =0

(iii) &' = cl + spy1 — S5, where sp = |Sk|.

(iv) ¢, =0 for even 1 <1< q—1.
Proof. (i) If f is such that deg,(f) =1, 1 <1< q— 3, then deg,,_,(f) =1+ 2.
(i) deg,(f) = g — 2, then f N B,_; = (). However, f induces a ’horizontal’ edge
which gives rise to a unique g € F with ¢ N B,,_1 # 0 and deg,(g) = 2.

(iii) A moments thought gives that sj,; coincides with the number of faces in the
boundary of By, that have more than one vertex outside of By. Hence, by (i) and

(i)

q—1 q—1 q—3 q—1
! 2 ! -2 Z ! 1 ! ~1
Sn+1 = Ch—1 = Cp1 + Cp—1 = ng + Cn = Cp + Cpn — Cfr]z
1=2 l:3 =1 1=2
1 -1 1
=C,+ Sppo—C =) |+ Sppo —
The last statement follows by induction over n. O

Lemma 35. For alln >0 and 8 = q2;2

N-1
K(B,) =1— B(Sps1 — Sn) + Z 21 +1)8 — 1)+,
I=1
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Proof. We have [0B,| = > /- 11 . Thus by Prop051t10n|§|and (iii) from the lemma
above.

|0B,| degp (f)
B,)=1- —oBn\JJ
#(Bn) 2 +feaZW deg(f)

—1—2 ., Zlc

q—2 q—2l
2q S+1 S ;2 Cn

By (iv) from the lemma above we have ¢!, = 0 for even [. Thus, since N = q;22
q—2 q—3 N—-1 N-1
q—2l, q—2l, q—2020+1) 54y 20+1
— o st = D@+ )8 - el
1=2 1=3 1=1 =1
O
Lemma 36. We have
N-1
SneN41 = (p - 2) Z SntN—k — Sn
k=0

Proof. By (iv) for even [ we have ¢!, = 0. Applying (i) repeatedly we obtain with
for [ even

q—1
n—l

l
1 = Cpy — Sn—l+1 T Sn—1 = C_ Ny — Sn—i+1 T Sp—i

since N = q;22. Thus by the lemma above

N-1

K(Bn) — 1+ B(spi1 — sn) = Z((Zl +1)8 — 1)t
I=1

N-1

= (2 +1)B =D = $nt41 + 5n1)

=1
N-1

=K(By-n) — 1+ B(Sn—n+1 — Sn—N) Z (2014 1)8 = D) (Sn—t+1 — Sn—1)
=1
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i

K(Sn-1) = = B(Sn+1+ 8n-n) + (B — (38 — 1))sn

N
Il
o

N-2

F (B QN =1+ 1B — (N = D)sungr = (28— D)suy

=1

= — B(Sn41 + Sn—n) + (1 — 28) Sn—1

Since the graph is p, g regular we have x(x) = p(
follows. —~

Proof of Theorem [33. Let M the (N + 1) x (N + 1) matrix be given as

p—2) ... (p—2) —1
1

and r,(Sp, ..., Sp—n), n > 1. Then,
Mr, =71,

The eigenvalues of M are given by the roots of the characteristic polynomial, which
we calculate by expanding with respect to the first column, i.e., let a = p — 2

det(M — z)
-z a a —1
1 T —Z
= (a— z)det — det .
1 —z L ==
= Ppq(2).
Thus the eigenvalues A, ..., Ay41 are given by the roots of B, ,. By Proposition
there are N — 1 roots A1,..., Ay_1 which lie on the complex unit circle except for
Ang1 = A > 1 and Ay = 1/A08%. Let v1 = 0y,...,un 2 = Un_1, VN, Uny1 be the
corresponding eigenvectors. Thus, for all n > 0
N+1
oy = My = (v, m8) A0,
j=1

Since by Lemma [36] the sequence (s,,) is strictly increasing for large n, we have that
rn+1 = (Sn,...,50) /vy and, therefore,

Snin ~ (AT,

It remains to check that lim sup%log S, = lim sup%log # B, which is left as an
exercise. []
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10.3 Cheeger constants of regular tessellations

Literature: Haggstrom, Jonasson and Lyons

Theorem 33. Let p,q > 3 and G,4 be a p,q-regular tessellation of non-positive

curvature, 1.e., % — % + % < 0. Then,

_p—2 ) 4

T (p—2)(q—2)

For the proof define two auxiliary constants for a tessellation GG

K
g :=p(G) := lim inf{u | K C X connected N < |K| < oo},

d:=6(G) := lim sup{ [X]

— = | K C X ted N < |K| <
Aim |EK|+|8K|| C X connecte < |K| < oo}

Lemma 37.

K
a = lim inf{ 19K]

B il U C < .
Jim. NEx |+ 0K | K C X connected N < |K| < oo}

Proof. Benjamini,Lyons,Peres,Schramm 99 n

Lemma 38. For all graphs with deg(x) = p with p € X we have

pb 11—« andp 1+«
In particular,
8= inf{ﬂ | K C X finite}, 0= Sup{$ | K C X finite}.
|Ek| |Ex| + |0K]|

Proof. For K finite we have p|K| = 2|Ex| + |0K|. Therefore,

2 2|Ex| + |0K]| K|
TP o
and
2 2|EK’+|5K| |K|
1+% x|+ |0K] :p|EK| ¥ 0K
Thus, the statements follow from Lemma . .
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For a tessellation G = (X, E, F') we define the dual tessellation G* = (X*, E*, F™¥)
by letting X* = F, F* = X and z*,y* € X are joined by an edge in £* if they share
an edge as faces. We have (G*)* = G and if G, is a p, g-regular tessellation then
G, 1s a g, p-regular tessellation.

Theorem |33| follows from the following proposition.
Proposition 10. Let G be a regular tessellation. Then, B(G) + 0(G*) =1

Proof. In the definition of « it suffices to consider simply connected sets since by
filling the "holes’ the boundary becomes smaller and the volume becomes larger. By
Lemma |38 this also holds for . Next we pursue a similar strategy for §(G*). Let
K* € X* which corresponds to a set of faces in G. Let K be the set of vertices
contained in these faces. Let K™ be the set of faces in enclosed by E% in G which

corresponds to a set of vertices in G* which we also denote by K*. Note that
|K*| > |K*| and [0K*| < |0K*|. Moreover, |0K*| + |Ew+| = |Ex].

We show 5(G) + 6(G*) < 1: Let € > 0 and let K* € V*

1
|OK™| 4+ |Eg+| > -

K] .
- 0> —
R+ B = 06 e

|Exc-| + |0K"| = | Ex|

which is possible by what we discussed above. For the number of faces in G =
(K, Ey, F) we have |F| > |K*|+1 (inequality as not necessarily simply connected
and 1 for the unbounded face outside). Thus, Euler’s formula with respect to G
gives

K| K K[+ PR -1

+ < <l+¢
|Er|  [OK*| + |Ex |OK*| 4 | Ec

- |OK*| 4+ | B

: . K| .
Since we chose K* such that r=rm—ry > I(G*) — ¢,
K
K] +0(G*) <1+ 2e.
| Ex]
As Gz is connected and |K| — oo when ¢ — 0, it follows 8(G) + 6(G*) < 1.
We next show 5(G)+§(G*) > 1: Let € > 0 and K C X simply connected such that

Let K* be the vertices in G* corresponding to the faces in G. Since |0K*|+|Ek-| <
| Ex| (why inequality?) and the number of faces |Fi| of Gk is equal to |K*|+1 (the
one is for the unbounded face outside)

| K| n | K| o K[+ |Fr[ -1 1
|Ex|  |OK*| + |Eg-| — |Ek| |Ex| —
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by Euler’s formula applied to Gx. By Lemma the supremum in § can also be
taken over all finite sets and by our choice of K, i.e., % < B(G) + ¢,

|K| |K*|
B(G)+6(G")+¢e > + > 1.

Since € > 0 is arbitrary the statement follows. O]

Proof of Theorem[33 By the proposition above we have 5(G) + 0(G*) = 1 and
B(G*) + 6(G) =1 and by Lemma [3§]

B o 2 2 5 4+ qa(G") +p —pa(G)
L= = @) T i a6~ 2pall — alG)(1 T o(GY)
e B 2 2 _ ,p+pa(G) +q— qa(G7)
L= =@ T T al@) ~ Ppall — alG)) (1 + al0)
and
pq(1 + a(G¥) — a(G) — a(G)a(G")) = 2(p — pa(G) + q + qa(G"))
pq(1 — a(G7) + a(G) — a(G)a(GY)) = 2(p + pa(G) + ¢ — qa(GY))
and
L 2pta) _ a(G)a(GY)
pq
q(p —2)a(G") = p(q — 2)a(G)
Thus,

10.4 Absence of essential spectrum of rapidly grow-
ing tessellations

In this section we show that if a tessellation has uniformly unbounded curvature
then the corresponding Laplacian has purely discrete spectrum.

Let

Koo := lim sup k(z) = —o0.

Theorem 34. 0..(A) =0 if and only if Kso-
Recall that a set W C X is called simply connected if W and X \ W are connected.
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Lemma 39. Let ay,...,a,, >0 and by,...,b,, > 0. Then,

The other inequality is proven analogously. O

Lemma 40. For any finite set W C X there is a finite simply connected set U C X
such that

|OW| S 10U |

n(W) ~ n(U)

In particular, it suffices to consider simply connected sets in the infimum of the
Cheeger constant.

Proof. If W is not connected we choose the component U with the smallest ratio
|0U|/n(U) and the statement follows from the lemma above. Suppose X \ U is
not connected. Since the graph is locally finite there are at most finitely many
components and by Jordan’s curve theorem there is at most one infinite component.
Let W1y, ..., W, be the finite components of X \ U. Now X \ U with V. =UUW; U
... UW, is connected and since 0V C 9U and n(U) < n(V) (as U C V) we have
0U|/n(U) = [V]/n(V). O

Theorem 35. Let U C X. Then,

k()

oy > —2sup ———
v= 1’65 deg(w)

In particular, if deg > 6 then ay > 0.

Proof. 1f k(x) = 0 for some = € U, there is nothing to prove. So, assume x(z) > 0 for
all z € U. By Proposition [6] we have for all finite and simply connected W C U C X

W] 5~ deselr) [0V

r(W)=1- >
1oy dea(f) 2

Since k(z) < 0, we get by the inequality above and Lemma ,

low] _  2x(W) C Dsew26(@) - 1
W) = " a(W) 2 Sy deg@) © ok deg(2)

k().
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Proof of Theorem . Note that

[ den(e) 0 den(e),
2 6
Thus, for (z,) in X, k(x,) — —oo if and only if deg(z,) — oo. By Lemma
the assumption k., = —oco implies a, > 0. Now, the statement follows from
Corollary [12] ]
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