Diskrete Schrödingeroperatoren

Sommersemester 2011

Prof. Dr. D. Lenz

Einige Aufgaben

Diskussion Donnerstag 28. 4. 2011

Sei $N \in \mathbb{N}$ gegeben, $X := \{1, ..., N\}$ und $\mathcal{H} := \{f : X \longrightarrow \mathbb{R}\}$ mit dem Skalarprodukt $\langle f, g \rangle = \sum_{x \in X} f(x)g(x)$ und der zugehörigen Norm $||f|| := \langle f, g \rangle^{1/2}$.

(1) Zeigen Sie: Auf dem Raum der linearen Abbildungen von \mathcal{H} nach \mathcal{H} definiert

$$||A|| := \max\{||Af|| : ||f|| \le 1\}$$

eine Norm mit $||AB|| \le ||A|| ||B||$.

- (2) Zeigen Sie:
 - Eine Folge (f_n) in \mathcal{H} konvergiert gegen $f \in \mathcal{H}$ genau dann, wenn gilt $f_n(x) \to f(x)$ für alle $x \in X$.
 - Eine Folge (A_n) von linearen Abbildungen von \mathcal{H} nach \mathcal{H} konvergiert genau dann gegen die lineare Abbildung A bzgl. der in Aufgabe 1 gegebenen Norm, wenn für alle $x, y \in X$ die zugehörigen Matrixelemente $A_n(x, y)$ gegen A(x, y) konvergieren.
- (3) Sei (b,0) ein symmetrischer Graph über X und L der zugehörige selbsadjungierte Operator, d.h. $Lf(x) = \sum_{y \in X} b(x,y)(f(x)-f(y))$. Zeigen Sie, daß die Vielfachheit des Eigenwertes 0 von L gerade die Anzahl der Zusammenhangskomponenten von (b,0) ist.
- (4) Sei Q eine symmetrische Form auf \mathcal{H} . Zeigen Sie: Es ist Q genau dann eine Dirichletform, wenn für alle $f \in \mathcal{H}$ gilt

$$Q(C_I f) \leq Q(f),$$

wobei $C_I : \mathbb{R} \longrightarrow \mathbb{R}$ die (aus der Vorlesung) bekannte Abbildung ist, die x auf den x am nächsten liegenden Punkt aus I = [0, 1] abbildet.

(5) Sei $P_t = e^{-tL}$, $t \ge 0$, eine symmetrische Halbgruppe auf \mathcal{H} . Ein Unterraum \mathcal{U} von \mathcal{H} heißt invariant unter der Halbgruppe, wenn $P_t f \in \mathcal{U}$ gilt für alle $f \in \mathcal{U}$ und $t \ge 0$. Ein Unterraum \mathcal{U} heißt invariant unter Multiplikation mit Funktionen auf X, wenn

für jedes $f \in \mathcal{U}$ und jede reellwertige Funktion $\phi: X \longrightarrow \mathbb{R}$ auch ϕf zu \mathcal{U} gehört. Zeigen Sie: Es ist (P_t) genau dann positivitätsverbessernd, wenn nur die trivialen Unterräume von \mathcal{H} (d.h. $\{0\}$ und \mathcal{H}) unter der Halbgruppe und unter Multiplikation mit Funktionen auf X invariant sind.

Viel Spass!