Analysis III

Wintersemester 2011/12

Prof. Dr. D. Lenz

Blatt 10

Abgabe Dienstag 17.01.2012

- (1) Sei \mathcal{R} die Menge der Riemann-integrierbaren Funktionen auf $[-\pi, \pi]$. Zeigen Sie:
 - (a) Ist $f \in \mathcal{R}$ gerade (d.h. f(x) = f(-x)), so ist die Fourierreihe von f eine reine Kosinusreihe, d.h. von der Form $\sum_{k=1}^{\infty} a_k \cos(k \cdot) + \frac{a_0}{2}$.
 - (b) Ist $f \in \mathcal{R}$ ungerade (d.h. f(x) = -f(-x)), so ist die Fourierreihe von f eine reine Sinusreihe, d.h. von der Form $\sum_{k=1}^{\infty} b_k \sin(k \cdot)$.
- (2) Sei \mathbb{T} die Einheitskreislinie in \mathbb{C} . Zeigen Sie:
 - (a) Ist $\gamma : \mathbb{R}^n \to \mathbb{T}$ stetig mit $\gamma(t+s) = \gamma(t)\gamma(s)$ und $\gamma(0) = 1$, so gilt $\gamma(t) = e^{ikt}$ mit einem geeigneten $k \in \mathbb{R}^n$.
 - (b) Ist $\gamma : \mathbb{R}^n \to \mathbb{T}$ stetig und $2\pi \mathbb{Z}^n$ periodisch mit $\gamma(t+s) = \gamma(t)\gamma(s)$ und $\gamma(0) = 1$, so gilt $\gamma(t) = e^{ikt}$ mit einem geeigneten $k \in \mathbb{Z}^n$.

(Hinweis: Betrachten Sie zunächst den eindimensionalen Fall. Beweisen Sie die Differenzierbarkeit von γ durch Integration von $\gamma(t+s)=\gamma(t)\gamma(s)$ über $[0,\delta],\ \delta>0$. Stellen Sie dann eine Differentialgleichung für γ auf.)

(3) (a) Sei V ein Vektorraum mit Norm $\|\cdot\|$. Beweisen Sie die Dreiecksungleichung 'nach unten':

$$||x|| - ||y|| \le ||x - y||.$$

(b) Sei V ein Vektorraum mit Norm $\|\cdot\|$. Zeigen Sie, dass $d:V\times V\to [0,\infty)$ gegeben durch

$$d(x,y) = \|x - y\|$$

eine Metrik ist.

(c) Sei V ein Vektorraum mit Skalarprodukt (\cdot,\cdot) . Zeigen Sie, dass $d:V\times V\to [0,\infty)$ gegeben durch

$$d(x,y) = (x - y, x - y)^{\frac{1}{2}}$$

eine Metrik ist.

(4) (a) Zeigen Sie: Auf C[0,1] definiert

$$\langle f, g \rangle := \int_0^1 \overline{f(t)} g(t) dt$$

ein Skalarprodukt.

(b) Finden Sie eine Folge $(f_n)_{n\in\mathbb{N}}$ in C[0,1] mit $||f_n|| \to 0$ und $f_n(0) = f_n(1) = 1$ für alle $n \in \mathbb{N}$.

Zusatzaufgaben

(Z1) Zeigen Sie, dass für eine abelsche, lokal kompakte Gruppe G mit stetiger Gruppenoperation (d.h. xy = yx für $x, y \in G$, jeder Punkt hat eine kompakte Umgebung und $G \times G \to G$, $(x,y) \mapsto xy$ ist stetig) die Menge

$$\widehat{G} = \{ \gamma : G \to \mathbb{T} \mid \gamma \text{ stetig }, \gamma(xy) = \gamma(x)\gamma(y), \ \gamma(e) = 1 \},$$

eine abelsche, lokal kompakte Gruppe mit stetiger Gruppenoperation ist.

(Z2) Zeigen Sie, dass ein Vektorraum genau dann ein Hilbertraum ist falls er Banachraum ist in dem die Parallelogrammgleichung gilt.