Analysis III

Wintersemester 2009/2010

Prof. Dr. D. Lenz

Blatt 8

Abgabe Montag 11.1. 2010

(1) Definiere $(T_a f)(x) := f(a+x)$ und $(M_a f)(x) := e^{ixa} f(x)$ für $a, x \in \mathbb{R}^N$ und $f : \mathbb{R}^N \to \mathbb{C}$. Zeigen Sie für $f \in \mathcal{S}$

$$FT_a f = M_a F f,$$

$$FM_{-a} f = T_a F f.$$

(2) Sei das Semiskalarprodukt $\langle \cdot, \cdot \rangle$ für riemannintegrierbare Funktionen $f, g : [0, 2\pi] \to \mathbb{C}$ durch $\langle f, g \rangle := \frac{1}{2\pi} \int_0^{2\pi} \overline{f(x)} g(x) dx$ definiert. Zeigen Sie, dass die Funktionen $s_k : x \mapsto \sin kx, \ k \in \mathbb{N}, \ c_k : x \mapsto \cos kx, \ k \in \mathbb{N}_0$ bezüglich $\langle \cdot, \cdot \rangle$ orthogonal sind; genauer

$$\langle s_k, c_l \rangle = 0, \quad \langle s_k, s_l \rangle = \begin{cases} \frac{1}{2} & : k = l, \\ 0 & : \text{sonst}, \end{cases} \quad \langle c_k, c_l \rangle = \begin{cases} 1 & : k = l = 0, \\ \frac{1}{2} & : k = l \neq 0, \\ 0 & : \text{sonst}. \end{cases}$$

(3) Sei die 2π -periodische Funkion $f: \mathbb{R} \to [0,1]$ gegeben durch

$$f(2\pi k + x) = \begin{cases} 0 : 0 \le x < \pi, \\ 1 : \pi \le x < 2\pi, \end{cases}$$

wobei $k \in \mathbb{Z}$ und $x \in [0, 2\pi)$.

- a.) Man bestimme die Fourierreihe von f (im Wesentlichen eine reine Sinusreihe).
- b.) Mit Hilfe der Parsevalschen Gleichung zeige man

$$\frac{\pi^2}{8} = \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2}.$$

(4) Zeigen Sie: Für alle $x \in \mathbb{R} \setminus \{2k\pi \mid k \in \mathbb{Z}\}$ gilt

$$\sum_{k=1}^{n} \cos kx = \frac{\sin(n+\frac{1}{2})x}{2\sin\frac{1}{2}x} - \frac{1}{2}.$$

Tipp: Benutzen Sie die Formel $\cos kx = \frac{1}{2}(e^{ikx} + e^{-ikx}).$

Zusatz

(Z1) Zeigen Sie für $0 < x < 2\pi$

$$\frac{\pi - x}{2} = \sum_{k=1}^{\infty} \frac{\sin kx}{k}$$

und dass die Konvergenz für jedes $\delta>0$ auf $[\delta,2\pi-\delta]$ gleichmäßig ist.