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Introduction

In this chapter we discuss where we are coming from and where we
are heading to. We consciously avoid rigorous terms at first to put
through the big picture. All notions will be introduced rigorously in
the chapters that follow.

1. Applied operator theory - The big picture

While the clarity of linear algebra stems from its restriction to studying
linear maps on finite dimensional vector spaces, the beauty of analysis
is expressed as saying that it is the ’art of taking limits’. Operator
theory combines this clarity and beauty as it is concerned with the
study of linear maps on infinite dimensional space. The fundamental
observations for the development is that differentiation (and integra-
tion) are linear. The idea is to extend ideas from linear algebra to
study functional equations such as the

(a) Schrödinger equation (stationary and time dependent),

(b) Heat equation.

They can be employed to treat real world problems coming from physics.
We discuss these equations shortly. Let Ω ⊆ Rd be open,

∆ =
d∑

i=1

∂2
i

the Laplacian and let V : Ω → R be a potential. (More generally we let
Ω be a Riemannian manifold and ∆ the Laplace-Beltrami operator.)

1.1. The stationary Schrödinger equation. In quantum me-
chanics the state of a quantum mechanical particle (e.g. an electron) is
described by a function f : Ω → C with

∫
Ω
|f |2dx = 1, a so-called wave

function. The probabilty that the particle in state f can be found in
A ⊆ Ω is interpreted as ∫

A

|f |2dx.
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4 INTRODUCTION

Solutions to the stationary Schrödinger equation describe one quantum
mechanical particle in a given medium that does not evolve in time.
More precisely, for E ∈ R a wave function that solves

−∆f + V f = Ef (♡)
describes a particle in state f as follows:

(a) The operator ∆ encodes the kinetic energy of the particle.

(b) The potential V encodes the potential energy of the particle. It
depends on the medium.

(c) E ∈ R is the total energy of the particle in state f . An integration
by parts formula (Green’s formula) shows

E =

∫
Ω

Ef 2dx =

∫
Ω

(−∆f + V f)fdx =

∫
Ω

|∇f |2dx+

∫
Ω

|f |2V dx.

The mapping H : f 7→ −∆f + V f is called Schrödinger operator. It
is obviously linear and so Equation (♡), which reads Hf = Ef , is an
eigenvalue equation. As seen above, the functional

Q : f 7→
∫
Ω

|∇f |2dx+

∫
Ω

|f |2V dx

also describes the energy of a particle. It is a quadratic form. We shall
see below that operators and energy functionals (quadratic forms) are
indeed intimatley linked.

The set of all E ∈ R for which Equation (♡) has a generalized solution
is the set of possible energies that the particle can assume. It is called
the spectrum of H and denoted by σ(H). It is alternatively described
by the closure of the set {Q(f) |

∫
Ω
|f |2dx = 1}.

It is of interest to determine the spectrum σ(H). The quantity λ0(H) =
infσ(H), the smallest possible E for which Equation (♡) has a gener-
alized solution, is the so-called ground-state energy. Properties of the
corresponding generalized solution are important, because they deter-
mine the long-time behaviour of solutions to the heat equation (see
below).

1.2. Time-dependent Schrödinger equation. For a particle in
a given state f0 its time evolution is modeled as follows. Let f : R×Ω →
C (smooth enough) with

∫
Ω
|f(t, x)|2dx = 1 for all t ∈ R such that

i∂tf = Hf, f(0, ·) = f0.

Then f(t, ·) is the state of the particle after time t provided it was
in state f0 at time t = 0. Formally one can solve this Schrödinger
equation by letting

f(t, ·) = eitHf0.
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If f0 is a normalized solution (
∫
Ω
|f0|2dx = 1) to the stationary Schrödinger

equation Hf0 = Ef0, then g(t, ·) = eitEf0 is a solution to the the time-
dependent Schrödinger equation. Since for A ⊆ Ω we have∫

A

|g(t, x)|2dx =

∫
A

|eitE|2|f0|2dx =

∫
A

|f0|2dx,

the particle in such a state does not evolve in time, it is localized. This
is why Equation (♡) is called stationary Schrödinger equation and such
a state is called bound state.

Now assume that E ∈ R is such that Equation (♡) does not have
a solution. Let f0 be normalized (

∫
Ω
|f0|2dx = 1) with energy E =

Q(f0) ∈ R and let f be a corresponding solution to the time-dependent
Schrödinger equation. Then (it is very likely that) for every compact
K ⊆ Ω we have ∫

K

|f(t, x)|2dx → 0 as t → ∞.

Hence, the particle leaves every compact set and so it is delocalized.

Since solutions to both Schrödinger equations govern the behavior
of quantum mechanical Systems, it is very important to investigate
whether or not they are unique. If they are not unique, then further
physical assumptions have to be made in order to determine ’correct
solutions’.

1.3. The heat equation. Heat is measured by a nonnegative
function f : Ω → R, where the total amount of heat in a subset A ⊆ Ω
is described by

∫
A
fdx. A solution g : [0,∞)× Ω → R to the equation

∂tf = Hf, g(0, ·) = f

describes the heat at time t through g(t, ·) provided the heat at time
t = 0 was f .

The Operator −∆ models diffusion, at places x ∈ Ω with V (x) > 0
heat is drained from the system while at places with V (x) < ∞ heat
is inserted to the system. Formally the heat equation can be solved by
letting

g(t, ·) = e−tHf.

In view of the interpretation as heat, it is an important property that
f ≥ 0 implies g(t, ·) ≥ 0.

Spectral theory of H determines the long-time behavior of solutions to
the heat equation. More precisely,

e−tHf = e−tλ0(H)
(
Pf + e−t(λ1(H)−λ0(H))Qtf

)
.

Here P is the projection to the space spanned by the ground state,
λ1(H) = infσ(H) \ {λ0(H)} and Qt is a uniformly bounded operator
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(with uniformly bounded norm in t). The quantity λ1(H) − λ0(H) is
called spectral gap. It determines how quick the heat flow converges
to the ground state.

There are several other relevant quantities. Suppose that f ≥ 0 solves
the heat equation. For some compact K ⊆ Ω the integral∫ ∞

0

∫
K

fdxdt

measures the total amount of heat moved through K over time. It is
an interesting question whether or not this quantity is finite or not as
this has many (spectral) consequences. It is discussed under the name
recurrence v.s. transience.

The total amount of heat at time t is∫
Ω

f(t, x)dx.

It is an important question whether or not this quantity is constant over
time. This is discussed under the name conservativeness or stochastic
completeness.

All the questions discussed in this section depend on the potential V
and the geometry of Ω.

2. Discrete Operators

Studying the previously discussed equations is in some sense hard on a
technical level. Treating partial differential equations requires a lot of
knowledge on distributions, function spaces, local regularity theory etc.
Since they are simplified models for real world problems, there is no
reason why one should not simplify further. Discrete models have the
advantage that on a discrete space all functions are continous and so
(most) of the regularity issues disappear. It turns out that the qualita-
tive behavior of solutions to the discrete Schrödinger equation and the
discrete heat equation is the same as in the continuum. However, be-
sides less accurate physical results, there is another price that one has
to pay. Differential operators have good algebraic properties (product
rule, chain rule etc.), while discrete operators often lack this structure.

Next we discuss how to properly discretize H. The action of V by
multiplication is the same as in the continuum. Hence, we can restrict
the attention to ∆. Suppose now that we cannot access function values
at all points of Ω but only at a grid G := Ω ∩ hZd of scale h > 0. For
small h > 0 and x ∈ G we then have

∂if(x) ≈
f(x+ hei)− f(x)

h
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and
∂if(x) ≈

f(x)− f(x− hei)

h
,

where ei is the i-th unit vector. Plugging this into the formula for the
second partial derivative we arrive at

∂2
i f(x) ≈

∂if(x+ hei)− ∂if(x)

h

≈
f(x+hei)−f(x+hei−hei)

h
− f(x)−f(x−hei)

h

h

=
f(x+ hei) + f(x− hei)− 2f(x)

h2
.

Indeed, it follows directly from Taylor’s theorem that the right-hand
side of the previous equation converges to ∂2

i f(x). Summing up shows

∆f(x) ≈
d∑

i=1

∑
σ∈{−1,1}

f(x+ σhei)− f(x)

h2
.

On G we define the relation ∼ as x ∼ y if and only if |x− y| = h, then ← →
Zeichnungthis formula reads

∆f(x) ≈
∑

y∈G, y∼x

1

h2
(f(y)− f(x)).

We interpret (G,∼) as a graph with edges of weight h−2 between points
x, y with x ∼ y. Below we will study this type of operator for more gen-
eral graphs and more general weights. More precisely, we will study the
following questions raised above for the discrete operators associated
with infinite graphs:
(a) Existence and uniqueness of self-adjoint realizations.
(b) Lower bounds for the bottom of the (essential) spectrum.
(c) Recurrence v.s. transience
(d) Stochastic completeness



CHAPTER 1

Preliminaries - Quadratic forms, associated
operators and spectral theory

In this chapter we intrduce closed quadratic forms and discuss how
they give rise to self-adjoint operators. In what follows we always let
(H, ⟨·, ·⟩) be a real Hilbert space and denote by ∥ · ∥ the corresponding
norm. The Hilbert space that we will mainly consider below is the
following.

Example. Let X be a countable set and let m : X → (0,∞). Then

ℓ2(X,m) := {f : X → R |
∑
x∈X

|f(x)|2m(x)}

equipped with the scalar product

⟨f, g⟩ :=
∑
x∈X

f(x)g(x)m(x)

is a real Hilbert space. Of further interest are for 1 ≤ p < ∞ the
Banach spaces

ℓp(X,m) := {f : X → R |
∑
x∈X

|f(x)|pm(x)}

with norm

∥f∥p :=

(∑
x∈X

|f(x)|pm(x)

)1/p

and the Banach space
ℓ∞(X) := {f : X → R | sup

x∈X
|f(x)| < ∞}

with norm
∥f∥∞ := sup

x∈X
|f(x)|.

Remark. The restriction to real Hilbert spaces does not affect the
generality of our results, but it makes certain arguments and formulas
shorter. The discrete Schrödinger operators that we study below are
so-called real-operators on ℓ2(X,m). Their properties when viewed as
operators on the complex Hilbert space ℓ2C(X,m) = {f + ig | f, g ∈
ℓ2(X,m)} are uniquely determined by their properties as operators on
ℓ2(X,m).

8
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1. Closed forms

Definition (Quadratic form). A quadratic form on H is a functional
q : H → (−∞,∞]

with the following properties:

(a) q(λf) = |λ|2q(f) for all f ∈ H, λ ∈ R. (Homogeneity)

(b) q(f + g) + q(f − g) = 2q(f) + 2q(g) for all f, g ∈ H.
(Parallelorgramm Identity)

In this case, the set D(q) := {f ∈ H | q(f) < ∞} is called the domain
of q and ker(q) := {f ∈ H | q(f) = 0} is called the kernel of q. The
form q is called densely defined if D(q) is dense in H.

Remark. Here we use the convention 0 · ∞ = 0 and a + ∞ = ∞
whenever a ∈ (−∞,∞].

Exercise 1. If q is a quadratic form, then D(q) is a vector space.

Every quadratic form q on H induces a symmetric bilinear form q̃ on
D(q) via polarization. More precisely, the functional

q̃ : D(q)×D(q) → R, q̃(f, g) =
1

4
(q(f + g)− q(f − g))

is symmetric and bilinear, i.e. q̃(f, g) = q̃(g, f) and q̃(λf + µg, h) =

λ̃q(f, h) + µq(g, h) for λ, µ ∈ R and f, g, h ∈ H, see [1].

Exercise 2. A bilinear form s definied on a linear subspace D(s) ⊆ H
induces a quadratic form

qs : H → (−∞,∞], qs(f) =

{
s(f, f) if f ∈ D(s)

∞ else
.

It satisfies D(qs) = D(s) and q̃s(f, g) = s(f, g) for f, g ∈ D(s).

The previous exercise shows that quadratic forms on H and bilinar
forms with domain are in a 1 : 1 relationship. Hence, for a quadratic
form q on H we abuse notation and just write q for the induced bilinear
form q̃. In this sense, we have q(f) = q(f, f) whenever f ∈ D(q).

Exercise 3. (a) The functional ∥ · ∥2 : H → [0,∞) is a quadratic form
on H with D(∥·∥2) = H and ker(∥·∥2) = {0}. The induced bilinear
form is given by ⟨·, ·⟩.

(b) If V : X → R with V− = max{−V, 0} ∈ ℓ∞(X), then

qV : ℓ2(X,m) → (−∞,∞], qV (f) =
∑
x∈V

|f(x)|2V (x)m(x)
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is a quadratic form. Its domain is given by D(qV ) = ℓ2(X,m) ∩
ℓ2(X, |V |m) and the induced bilinear form is given by

qV (f, g) =
∑
x∈V

f(x)g(x)V (x)m(x).

Definition (Lower semibounded form). A quadratic form q on H is
called lower semibounded with lower bound b ∈ R if

q(f) ≥ b∥f∥2

for all f ∈ H. The largest possible lower bound for q is denoted by
λ0(q). If 0 is a lower bound for q, i.e. q(f) ≥ 0 for all f ∈ H, then q is
called nonnegative.

It follows from the definition of λ0(q) that
λ0(q) = sup{b ∈ R | q(f) ≥ b∥f∥2 for all f ∈ H}

= sup{b ∈ R | q(f) ≥ b∥f∥2 for all f ∈ D(q)}

= inf
{
q(f)

∥f∥2

∣∣∣∣ f ∈ H \ {0}
}
.

To α ∈ R we associate the quadratic form
qα : H → (−∞,∞], qα(f) = q(f) + α∥f∥2.

Its domain satisfies D(qα) = D(q) and the associated bilinear form is
given by

qα(f, g) = q(f, g) + α⟨f, g⟩.

Lemma (Properties of qα). Let q be a lower semibounded quadratic
form on H. If α ≥ −λ0(q), then qα is nonnegative. If α > −λ0(q),
then ker(qα) = {0} so that qα is a scalar product on D(q). In this case,
the embedding

(D(q), qα) → (H, ⟨·, ·⟩), f 7→ f

is continuous.

Proof. All these statements follow from the inequality
qα(f) ≥ (α + λ0(q))∥f∥2, f ∈ D(q).

□
Exercise 4. Show that for any α, β > −λ0(q) the norms on D(q)
induced by the scalar products qα and qβ are equivalent.

Exercise 5. Let α > −λ0(q). Show that if D ⊆ D(q) is dense with
respect to qα, then

λ0(q) = inf
{
q(f)

∥f∥2

∣∣∣∣ f ∈ D \ {0}
}
.
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Exercise 6. Show that if q is nonnegative, then ker(q) is a vector space.
Give an example that this need not be true for general quadratic forms.

Hint: Cauchy-Schwarz.

We recall the following compactness result in Hilbert spaces.

Theorem (Banach-Alaouglu-Bourbaki and Banach-Saks). Let (fn) be
a bounded sequence in H.

(a) It has a subsequence that convergences weakly in H.

(b) It has a subsequence (fnk
) whose sequence of Césaro means(
1

N

N∑
k=1

fnk

)
N≥1

converges in H.

Proof. (a): Without loss of generality we can assume that H is
seprarable (else split H = Lin {fn | n ∈ N} ⊕ Lin {fn | n ∈ N}⊥ and
use that ⟨fn, g⟩ = 0 for all g ∈ Lin {fn | n ∈ N}⊥). Let {gn | n ∈ N
be a dense subset of H. By a diagonal sequence argument we choose
a subsequence (fnk

) of (fn) such that for each m ∈ N the sequence
⟨gm, fnk

⟩ converges, as k → ∞. It follows that ⟨g, fnk
⟩ converges for all

g ∈ H. We define the linear functional
φ : H → R, φ(g) = lim

k→∞
⟨g, fnk

⟩.

The boundedness of (fn) implies that φ is bounded. By the Riesz
representation theorem there exists an f ∈ H such that φ(g) = ⟨g, f⟩.
This proves fnk

→ f weakly in H.

(b): Using (a) without loss of generality we can assume that (fn) con-
verges weakly to 0. We inductively choose a subsequence (fnk

) such
that for each N ≥ 0 we have

|⟨fn1 , fnN+1
⟩| ≤ 1

N
, . . . , |⟨fnN

, fnN+1
⟩| ≤ 1

N
.

We denote by M a bound for ∥fn∥. The Césaro mean gN of (fnk
)

satisfies

∥gN∥2 =
1

N2

N∑
k=1

∥fnk
∥2 + 2

N2

∑
1≤i<k≤N

⟨fni
, fnk

⟩

≤ M2

N
+

2

N2

N∑
k=1

k − 1

k
≤ M2 + 2

N
.

Letting N → ∞ shows gN → 0 and the claim is proven. □
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Exercise 7. Prove that a sequence (fn) in H that is weakly convergent
to f ∈ H has a subsequence whose sequence of Césaro means converges
in H to f .

Hint: Uniform boundedness principle.

The following proposition is very important for further considerations.

Proposition (Characterization of closed forms). Let q be a lower semi-
bounded quadratic form on H. The following assertions are equivalent.

(i) For one/any α > −λ0(q) the space (D(q), qα) is a Hilbert space.

(ii) q is lower semicontinuous, i.e. for any sequence (fn) and f in H
with fn → f in H we have

q(f) ≤ lim inf
n→∞

q(fn).

Proof. (ii) ⇒ (i): Let α > −λ0(q) and let (fn) be a Cauchy
sequence in (D(q), qα). With β := α + λ0(q) we have

qα(fn − fm) ≥ (α + λ0(q))∥fn − fm∥2 = β∥fn − fm∥2.

Since β > 0, this implies that (fn) is Cauchy with respect to ∥ · ∥.
Hence, it has a limit f ∈ H. The lower semicontinuity of q shows

q(f − fn) ≤ lim inf
m→∞

q(fn − fm) < ∞,

where the finiteness of the right hand side follows from the fact that
(fn) is qα-Cauchy and ∥ · ∥-Cauchy. Since fn ∈ D(q) and D(q) is a
vector space, we obtain f ∈ D(q). Moreover, the above inequality
yields

qα(f − fn) ≤ lim inf
m→∞

qα(fn − fm) → 0, n → ∞,

since (fn) is qα-Cauchy.

(i) ⇒ (ii): After passing to a suitable subsequence we can assume
lim
n→∞

q(fn) = lim inf
n→∞

q(fn) < ∞,

for otherwise there is nothing to show. It follows from this q-boundedness
of (fn) and the boundedness of (fn) in H that (fn) is bounded in the
Hilbert space (D(q), qα). By the Banach-Saks theorem it has a subse-
quence (fnk

) whose sequence of Césaro means

gN =
1

N

N∑
k=1

fnk

converges in (D(q), qα) to some g ∈ D(q). Since convergence with
respect to qα implies convergence in H, we obtain gN → g in H. More-
over, fn → f in H implies gN → f in H. Since limits are unique, we
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arrive at f = g ∈ D(q). Using this observation and that the square
root of qα is a norm, we infer

qα(f)
1/2 = lim

N→∞
qα(gN)

1/2 ≤ lim
N→∞

1

N

N∑
k=1

qα(fnk
)1/2 = lim

n→∞
qα(fn)

1/2.

From this inequality and the convergence ∥fn∥2 → ∥f∥2 the claim
follows. □

Definition. A lower semibounded quadratic form q on H is called
closed, if it satisfies one of the conditions of the previous lemma.

Example. Let V : X → R wit V− ∈ ℓ∞(X) and let qV be the quadratic
form on ℓ2(X,m) discussed above. Then qV is lower semibounded with
λ0(qV ) = infx∈X V (x) = − supx∈X V−(x) and closed.

Proof. ... □

Definition (Extension and restriction). We say that a quadratic form
q′ is an extension of q if D(q′) ⊇ D(q) and q(f) = q′(f) for f ∈ D(q).
For a subspace V ⊆ D(q) we define the restriction q|V of q to V by

q|V : H → (−∞,∞], qV (f) =

{
q(f) if f ∈ V

∞ else
.

Exercise 8. Show that if q′ is an extension of q, then λ0(q
′) ≤ λ0(q).

Often forms are not closed but have one (or many) closed extensions.
This can be characterized as follows.

Proposition (Characterization of closable forms). Let q be a lower
semibounded quadratic form on H. The following assertions are equiv-
alent.

(i) q has a closed extension.

(ii) For every sequence (fn) and f in D(q) the convergence fn → f
in H implies

q(f) ≤ lim inf
n→∞

q(fn).

In this case, q has a smallest closed extension q̄, i.e. every other
extension of q is also an extension of q̄. Let α > −λ0(q). Then q̄ is
given by

q̄(f) =

{
lim
n→∞

q(fn) if (fn) is qα-Cauchy with fn → f in H

∞ else
.

It satisfies λ0(q̄) = λ0(q).
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Remark. The characterization of closedness (ii) and closability (ii)
look very similar. The only difference is that in the characterization
of closability the function f is assumed to be in D(q), while in the
characterization of closedness f ∈ D(q) has to be implied by the q-
boundedness of (fn).

Proof. (i) ⇒ (ii): This follows from the characterization of closed
forms.
(ii) ⇒ (i): Exercise.
If q′ is a closed extension of q, then so is the restriction of q′ to the
closure of D(q) with respect to q′α for some α > −λ0(q

′). It is readily
verified that this closure is exactly given by the claimed formula. The
formula for λ0 follows from Exercise 5. □
Exercise∗ 9. Proof the implication (ii) ⇒ (i) of the previous proposi-
tion.
Hint: It suffices to prove that the form q′ defined by

q′(f) =

{
lim
n→∞

q(fn) if (fn) is qα-Cauchy with fn → f in H

∞ else
is well-defined and closed.
Example. Consider the Hilbert space L2((−1, 1)) with respect to the
Lebesgue measure. We define the quadratic form

q(f) =

{
|f(0)|2 if f ∈ C((−1, 1))

∞ else
.

It is not closable.

Proof. Consider a sequence of continuous functions (fn) with
fn → 1 in L2((−1, 1)) but with fn(0) = 0. One example for such a
sequence is given by

fn(x) =

{
1 if n−1 ≤ |x| < 1

n|x| if |x| ≤ n−1
.

Then we have
q(1) = 1 > 0 = lim

n→∞
|fn(0)|2 = lim

n→∞
q(fn),

which together with the previous characterization of closability shows
that q is not closable. □
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