Analysis on graphs

Course given at TU Graz March 2013

Prof. Dr. D. Lenz

Exercise Sheet I

Due to a later point of time

(1) Let N be a positive integer. Equip \mathbb{R}^N with Euclidean norm $\|\cdot\|$ and the space of real $N \times N$ matrices with the norm

$$||A|| := \max\{||Af|| : ||f|| \le 1\}.$$

Below convergence will always be understood with respect to these norms.

- (a) Show that in this way indeed a norm is defined on the space of real $N \times N$ matrices. Show that this norm is submultiplicative i.e. that $||AB|| \leq ||A|| ||B||$ holds for any real $N \times N$ matrices A, B.
- (b) Let A be a real $N \times N$ matrix. Show that the series $e^A := \sum_{n=0}^{\infty} \frac{1}{n!} A^n$ converges absolutely.
- (c) Let A be a real $N \times N$ matrix and define $P_t := e^{tA}$ for any $t \in \mathbb{R}$. Show that P is differentiable (i.e. that

$$\frac{d}{dt}P_{t} = \lim_{t \to t_{0}} \frac{1}{t - t_{0}} (P_{t} - P_{t_{0}})$$

exists for any $t_0 \in \mathbb{R}$) and that

$$\frac{d}{dt}P_t = AP_t = P_t A$$

holds.

- (d) Let A and B be real $N \times N$ matrices with AB = BA. Show that $e^{A+B} = e^A e^B = e^B e^A$ holds.
- (e) Let A and B be real $N \times N$ matrices. Prove the Trotter-Lie-product formula

$$e^{A+B} = \lim_{n \to \infty} \left(e^{\frac{1}{n}A} e^{\frac{1}{n}B} \right)^n.$$

(Hint: Set $S_n := e^{\frac{1}{n}(A+B)}$, $T_n := e^{\frac{1}{n}A}e^{\frac{1}{n}B}$.

- * Show $||S_n T_n|| \le C_{n^2}$ (with a suitable constant C) by explicit consideration of the involved power series.
- * Show $S_{n}^{n} T_{n}^{n} = \sum_{m=0}^{n-1} S_{n}^{m} (S_{n} T_{n}) T_{n}^{n-1-m}$ and conclude $||S_{n}^{n} T_{n}^{n}|| \le C' n ||S_{n} T_{n}||$ with a suitable constant C'.

Use the preceding steps to derive the desired formula.)

- (f) What has to be changed if complex valued $N \times N$ matrices are considered?
- (2) Let L be a real $N \times N$ matrix such that the semigroup $P_t := e^{-tL}$, $t \ge 0$, is positivity preserving. Show that the following two statements are equivalent:
 - (i) The semigroup P_t , $t \ge 0$, is positivity improving.
 - (ii) Only the trivial subspaces of \mathbb{R}^N = Functions on $\{1, \ldots, N\}$ are invariant unter both the semigroup and multiplication by functions.
- (3) Let (b,c) be a graph over $X = \{1,\ldots,N\}$ with $c \equiv 0$. Let L be the associated operator, λ_1 its smallest eigenvalue and Q the associated form. Show the following:
 - $-Q(f) \geq 0$ for all f and all eigenvalues of L are non-negative.
 - $-\lambda_1=0.$
 - The eigenspace corresponding to λ_1 consists exactly of the functions which are constant on each connected component. In particular, if the graph is connected, then the eigenspace corresponding to λ_1 consists exactly of the constant functions.

(Hint: Show that for an eigenfunction f to the eigenvalue $\lambda_1 = 0$ one must have $0 = Q(f) = \sum_{x,y} b(x,y)(f(x) - f(y))^2$.)