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In these notes we collect some rather surprising facts about consecutive
coin tosses and discuss some implications for the real world. The presentation
strives to use only elementary mathematical methods so that the proofs are
accessible with little knowledge of probability theory.

First lessons

1. Waiting for a tie

Suppose that Zoe and Wael consecutively toss a fair coin. Each time there is heads, Wael
pays 1 Euro to Zoe. If the coin shows tails, then Zoe pays 1 Euro to Wael. Note that
the total gain of Zoe after round n is equal to the number of heads minus the number
of tails in the first n tosses. We say that Zoe (Wael) is in the lead if her (his) gain is
positive, and that there is a tie if the gain of both is equal to zero.

Question 1. Suppose that the first coin toss is heads, so that Zoe is in the lead after
the first round. Zoe and Wael decide to toss the coin until there is again a tie between
them. How many more rounds do they have to play in average?

In order to answer the question, let x be the expected number of rounds after the first
toss until there is a tie again. If the second toss shows tails, then there is a tie already
after round 2. In this case Zoe and Wael only need to play one further round until there
is a tie.

Now suppose that the second toss is again heads. In that case Zoe leads by two points
after the first two rounds. Before there is a tie, there must be again a time with a score,
where Zoe leads by one point only. We say that the game’s score is n if Zoe’s gain is
n. Note that the expected number of rounds needed until the game gets from score 2
back to score 1 is equal to x. Back at score 1 it takes in average x to attain score 0.
Hence, conditional to the second toss to be heads, the expected number of rounds until
the next tie is 1 + 2x.
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Since the second round shows heads and tails with probability 1/2, respectively, x
satisfies the equation

x =
1

2
1 +

1

2
(1 + 2x). (1)

Notice that Equation (1) implies x = x+1, which can only be true if x =∞ or x = −∞.
Since x is non-negative, we can exclude the second possibility. This means, in average,
Zoe and Wael have to play an infinite number of rounds until there is again a tie.

Let Mn denote Zoe’s gain after round n. The process M1,M2,M3, . . . is a sequence of
random variables that mathematicians refer to as a simple random walk. The random
walk can be used to describe, in a stylized form, the evolution of many real processes.
Prominent examples are economic factors, prices, population dynamics and random
movements of particles in liquids or gases.

Let’s discuss the implication of x = ∞ in an economic application. Suppose that a
stock share price, say the price of a Siemens stock, evolves according to a random walk.
Suppose that Wael buys on January 1st one hundred shares of Siemens. Assume further
that by February the price per share has declined by one Euro, so that Wael has lost
100 Euro. Wael decides to keep the stock shares until the price per share has increased
back to 100. If the Siemens price is a simple random walk, then in average Wael has to
wait an infinite amount of time until his losses are made up again.

Wael’s situation looks different if the coin is not fair, i.e. if the probability for showing
heads differs from the probability of showing tails. Suppose that the probability p for
showing heads satisfies p < 1

2
. In this case Wael is more likely to win a round than Zoe.

The expected number of rounds x until there is again a tie satisfies

x = (1− p) + p(1 + 2x). (2)

Since p < 1
2
, we obtain x = 1

1−2p . Notice that x is increasing in p with limp↑ 1
2
x =∞ and

limp↓0 x = 1.
The lesson from this chapter is that you should not rely on randomness alone to make

up for losses. Stick to losing investments (or projects) only if you have reasons to believe
that there is a positive trend that will push your gain process back to a tie.

2. The St. Petersburg paradox

Somebody is offering you to play the following game: First you pay x Euro. Then a fair
coin will be tossed. If there is heads, then you get 2 Euro. If there is tails, then you
are allowed to toss again. If the second toss is heads, then you get 4 Euro, else you are
allowed to toss the coin once more. If the third toss shows heads, then you get 8 Euros.
You can toss the coin until it shows heads for the first time. If the first heads shows up
at toss n, then you receive 2n Euros.

Question 2. What is the highest price x that you are willing to pay for playing the
game?
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Let’s denote the game’s payoff by Y . Y is an example of a so-called random variable,
i.e. a function with the set of possible scenarios as domain.

Note that Y is equal to 2 with prob 1
2
, equal to 4 with probability 1

4
, equal to 8 with

probability 1
8
, and so on. Observe that the probability weights 1

2
, 1
4
, 1
8
, . . . sum up to 1.

In particular, the probability that there is never heads is zero. So we can assume that
the payoff Y takes only the finite values 2, 4, 8, . . .. What is the expected payoff? The
expectation of Y is calculated by multiplying each possible outcome with the respective
probability and then by adding up all products. The expected payoff thus satisfies

1

2
∗ 2 +

1

4
∗ 4 +

1

8
∗ 8 + · · · = 1 + 1 + 1 + · · · =∞.

We see that the expected amount of Euros you receive is equal to infinity. Nevertheless
you are certainly not willing to pay a lot for playing the game. Most people’s answers
lie between 5 and 10 Euros.

The example shows that in our economic decisions we do not only strive to maximize
expected income. We also care about risk. Risk aversion entails that we aim at keeping
the variation in our income low.

3. Will there be a tie again?

The random variable describing the reward in the St. Petersburg paradox takes only
finite values (the powers of 2). Its expectation, however, is infinite. This shows that a
random variable can have infinite expectation although it takes only finite values.

Consider again Zoe and Wael playing the game of heads and tails of Section 1. Suppose
that Zoe is in the lead after the first round and that both decide to toss the coin
until there is again a tie. We have seen that the expected time until there is again a
tie is infinite. An infinite expectation does not necessarily mean that with a positive
probability the waiting time until the next tie is equal to infinity. Thus the following
question arises:

Question 3. Can it happen, with a positive probability, that Zoe and Wael have to
play infinitely long?

To answer the question, we use an argument similar to the one we have used for
answering Question 1. Let p denote the probability that there will be a tie again. If the
second toss shows tails, then there is a tie already after round 2. If the second toss is
heads, then Zoe leads by two points after the first two rounds. Before there is a tie, there
must be again a time with a score, where Zoe leads by one point only. The probability
to get from score 2 back to score 1 at some point is equal to p. Back at score 1 the
probability to attain score 0 at some point is p. Therefore, conditional to the second
toss to be heads, the probability that there will be a tie again at some point is p2.

Since the second round shows heads and tails with probability 1/2, respectively, p
satisfies the equation

p =
1

2
+

1

2
p2. (3)
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Notice that p satisfies Equation (3) if and only if p satisfies (p − 1)2 = 0. Therefore,
p = 1. In other words, there will be again a tie with probability one. The answer to
question 3 is consequently no.

The lesson of this section is that there are events happening with probability 1, but
it may take, in expectation, an infinite amount of time until they happen. We obtain
thus a refinement of the message of Section 1: even if randomness will make up losses
with probability one, it may not be reasonable to rely on it. When deciding to proceed
in a project, do impose time constraints, not only probability constraints.

4. Long sequences of heads

Zoe and Wael decide to toss a coin 50 times, each time 1 Euro being at stake. At some
point it happens that 5 heads show up in a row. Wael complains that he has a streak of
bad luck.

Question 4. What is the probability that in a sequence of 50 coin tosses there is a row
of at least 5 subsequent heads?

We take for a while a more general perspective and explain how one can calculate the
probability that in sequence of n coin tosses one can find at most k consecutive heads.
In the following we call a subsequence of consecutive heads a run.

Let An(x) be the number of sequences of length n having no run of heads longer than
x. There is no general formula for An(x). However, one can calculate An(x) recursively.

Any sequence in An(x) starts either with T or with a run of heads with length ≤
x. Note that there are exactly An−1(x) sequences in An(x) starting with T, An−2(x)
sequences starting with HT, An−3(x) sequences starting with HHT, and so on. We
therefore have

An(x) = An−1(x) + An−2(x) + ...+ An−x−1(x) =
x∑
j=0

An−1−j(x). (4)

The probability that in a sequence of length n there are no more than x heads in a row
is given by

w(n, x) =
An(x)

2n
. (5)

We refer to Appendix C for a Python program calculating w(n, x).
Let’s come back to our specific question and use (5) to determine the probability

that in sequence of 50 tosses there is a run of 5 consecutive heads. Using the program
of Appendix C we obtain that w(50, 4) ≈ 0, 45. This means that it happens with a
probability of 0, 55 that at some point during the 50 tosses there is a run of at least 5
heads in a row. It is more likely that there will be a run of 5 heads than not! Hence
Wael’s complaint has no foundation.
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This section shows that in coin tosses the probability for having a streak of bad luck
is surprisingly large. Suppose the success of your efforts is determined via coin tosses.
The lesson is that it is very likely that in some periods the odds are against you and
that you don’t make progress. Sometimes, however, chance is in your favor and you are
crowned with success. Most importantly, don’t despair in a streak of bad luck.

To give an explicit example, consider the performance of a sports team over a whole
championship season. The probability of losing 5 games in a row just by bad luck, but
not because of a drop in the performance potential, is substantial. Trainers should not
be fired just because their team loses several games in a row.

5. What comes first: TTH or THT?

Zoe and Wael play the following game: they consecutively toss a coin until for the first
time either the sequence ”TTH” or ”THT” appears. In the first case Zoe wins, in the
second Wael. For example, if the first five coin tosses are ”HHTHT”, then Wael wins.

Question 5. With which probability does Zoe win the game? In other words, with
which probability does the sequence ”TTH” appear before the sequence ”THT”?

The game has essentially the following 6 possible states: ”0”, ”T”, TT”, ”TH”,
”TTH”, ”THT”. The state ”0” corresponds to the start. If the first coin toss is tails,
then the first element of both sequences ”TTH” and ”THT” has appeared and we are in
the state ”T”. If the first coin toss is heads, then we are at the start of the game again.
The state ”T” is followed either by ”TT” or ”TH”, each with probability 1/2. From
”TT” we arrive with probability 1/2 in ”TTH”; with probability 1/2 we have another
tails, which means that the game is still in the state ”TT”. We illustrate all possible
transitions and the corresponding probabilities in the following graph.

0 T

TT

TH

TTH

THT

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

1

The dynamics of the game is an example of a so-called finite state Markov chain. The
Markov chain here has 6 states, where the two states ”TTH” and ”THT” are absorbing.
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Let h be the probability that Zoe wins the game. Then h is equal to the probability
that the Markov chain ends up in the absorbing state ”TTH”. There are standard
methods for determining the absorbing probability (see e.g. Chapter 4 in [6] or Satz 6.9
in [4]). In the following, we use a direct method for determining h.

The probability for attaining the state ”TT” before the state ”TH” is 1
2
. Note that

it is not possible to get from ”TT” to ”THT”. Therefore, once we are in ”TT”, we are
sure to be absorbed by ”TTH” sooner or later. In particular, with probability 1

2
the

Markov chain attains ”TTH” without ever passing through the state ”TH”.
Now suppose that we attain ”TH” before ”TT”. If the subsequent coin toss is tails,

then we end up in the absorbing state ”THT”. If the subsequent coin toss is heads, then
we arrive back at the start. At the start the probability of ending up in the absorbing
state ”TTH” is again h. Notice that the probability of coming back to the start is
1
2
· 1
2

= 1
4
. Therefore, h satisfies the equation

h =
1

2
+

1

4
h.

This implies h = 2
3
. We have thus shown that Zoe wins with probability 2

3
.

For two finite sequences A and B we write A ≺ B if B appears before A with a
probability strictly larger than 1

2
. It is remarkable that ≺ is not a transitive relation on

the set of 3-term sequences (transitive means that if A ≺ B and B ≺ C, then A ≺ C).
Indeed, one can show that

TTH ≺ HTT ≺ HHT ≺ THH ≺ TTH, (6)

and hence ≺ can not be transitive.
Another surprising fact is that for any 3-term sequence A we can find another 3-term

sequence B with A ≺ B (see Chapter 5 on ”Non-transitive paradoxes” in [3]). Therefore,
it is not a fair game if one player can choose a 3-term sequence after the other player.
This game is sometimes referred to as Penney’s game.

I am not aware of real-world implications of the example presented in this section -
except that it nicely illustrates that probabilities can be counterintuitive.

6. Who goes broke first?

Zoe and Wael play again the simple version of the coin tossing game: each time there
is heads, Wael pays 1 Euro to Zoe. If the coin shows tails, then Zoe pays 1 Euro to
Wael. Suppose that Zoe starts the game with a Euros in her pocket and Wael with b
Euros. They play until one of them goes bankrupt, that is to say until the total fortune
of either Zoe or Wael attains the level 0.

Question 6. What is the probability that Zoe wins? Said otherwise, what is the prob-
ability that, starting with a Euros, Zoe’s fortune attains the level a+ b before reaching
0? Let us write this probability P (a, a+ b).
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Notice that by definition, P (0, b) = 0 and P (a, a) = 1. Assume that the probability
of showing heads is p and the probability of showing tails is q = 1− p.

If the first toss is heads, then Zoe’s fortune becomes a + 1 and the probability that
she wins the game with a + 1 Euros in her pocket is given by P (a + 1, a + b). If the
first toss is tail, then Zoe’s fortune becomes a − 1 and her probability of winning is
P (a− 1, a+ b). Since the first round shows heads and tails with respective probabilities
p and q, P (a, a+ b) satisfies the equation

P (a, a+ b) = pP (a+ 1, a+ b) + qP (a− 1, a+ b).

Let us write P (x) instead of P (x, a+ b) for x ∈ {0, . . . , a+ b} to simplify the notation.
If we replace P (a) in the previous equation by pP (a) + qP (a), we get

P (a+ 1)− P (a) =
q

p
(P (a)− P (a− 1)) .

Hence we have proved that (P (a+ 1)− P (a))a∈N is a geometric sequence with common
ratio q

p
:

P (a+ 1)− P (a) =

(
q

p

)a
(P (1)− P (0)) =

(
q

p

)a
P (1),

since P (0) = P (0, b) = 0. To compute the value P (1), first notice that

a−1∑
j=1

(P (j + 1)− P (j)) = P (a)− P (1),

which yields

P (a) = P (1) + P (1)
a−1∑
j=1

(
q

p

)j

=

{
P (1)

1−( q
p
)a

1− q
p

if p 6= q

P (1)a if p = q = 1
2
.

Recall that P (a) is a notation for P (a, a + b). The right hand side of the previous
equation only depends on b through the term P (1, a + b). Taking b = 0, and using the
fact that P (a, a) = 1, we obtain

1 = P (a, a) =

{
P (1, a)

1−( q
p
)a

1− q
p

if p 6= q

P (1, a)a if p = q = 1
2

and then, ∀a ∈ N∗,

P (1, a) =

{
1− q

p

1−( q
p
)a

if p 6= q
1
a

if p = q = 1
2
.

7



So we have proved that the probability that Zoe wins the game is given by

P (a, a+ b) =


1−( q

p
)a

1−( q
p)

a+b if p 6= q

a
a+b

if p = q = 1
2
.

Now suppose that Zoe and Wael each have 20 Euros before starting the game: a = 20,
b = 20. If p = 1

2
, then the probability that Zoe wins is 1

2
. Assume now that p = 55%,

so that at each coin tossing, Zoe has slightly more chances to win, in that case the
probability that she wins the game is 98%! And it becomes 99, 9699% if p = 60%. As
shown in Figure 1, the probability that Zoe wins increases very fast when p takes values
larger than 1

2
.

Figure 1: The function p 7→ P (20, 20 + 20), p > 1
2
.

Another surprising fact is the following: if b takes arbitrarily big values, and if p > q,

then 1−
(
q
p

)a+b
becomes close to one. This means that the probability that Zoe wins is

approximatively given by 1 − ( q
p
)a, no matter how much money Wael brings with him!

For instance, if Zoe starts the game with 20 Euros, Wael starts with 1 million Euros and
p = 55%, the probability that Wael goes broke before Zoe is 98, 2%!!

This section shows that you should never go play a game in a Casino, where the
chances to win are slightly less than 1

2
(for example in the Roulette game), no matter

how much money you bring with you.
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Lessons with more advanced
probability methods

7. A mathematical model for coin tosses

To formulate some of the next questions, and in particular to prove their answers, a
precise mathematical model for a sequence of coin tosses is helpful. In this section,
therefore, we do not answer a question, but describe such a model.

Let Ωn = {H,T}n be the set of all heads and tails sequences of length n ∈ N. We
denote the ith element of any ω ∈ Ωn by ωi, where i ∈ {1, . . . , n}. Moreover, for every i
we define a mapping Xi : Ωn → {−1, 1} by setting

Xi(ω) =

{
1, if ωi = H,
−1, if ωi = T.

Let M0 = 0 and Mk = X1 + . . .+Xk, k ∈ {1, . . . , n}. Observe that Mk is equal to Zoe’s
total gain up to time k. To illustrate this, let n = 5 and ω = HHTTH. Then M1(ω) = 1,
M2(ω) = 2, M3(ω) = 1, M4(ω) = 0 and M5(ω) = 1, as illustrated in Figure 2. The
sequence (Mk)k∈{0,...,n} is the precise mathematical definition of the simple random walk
(cf. Section 1).

•
•
•
•
•
•

Figure 2: The map k 7→Mk(ω), with ω = HHTTH

Let Pn be the power set (i.e. the collection of all subsets) of Ωn. Let Pn : Pn → [0, 1]
be the mapping defined by

Pn(A) =
1

2n
|A|,

where |A| denotes the number of elements in A. We refer to the elements of Pn as
events and call the map Pn a probability measure. Notice that for each sequence ω in
Ωn we have Pn({ω}) = 1

2n
. Thus, Pn assigns to every head and tail sequence the same

probability, and thus reflects that the coin is fair.

8. The arcsine law

Let’s stay with Zoe and Wael playing the game of heads and tails of Section 1.

Question 7. Let pn be the probability that Zoe’s gain process spends at least 80% of
the first n time units above zero. Where does pn converge to as n→∞?
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First we need to define exactly what we mean by saying that Zoe’s gain process spends
more than 80% of the time above zero.

In order to give a rigorous definition, we introduce the notion of a path. A path
between 0 and n ∈ N is a mapping f : {0, 1, . . . , n} → Z such that |f(k+ 1)− f(k)| = 1,
for all k < n. For x, y ∈ Z we denote by Qn(0, x) the set of paths f between 0 and n
with f(0) = x, and by Q((0, x), (n, y)) the set of paths between 0 and n with f(0) = x
and f(n) = y.

•
•
•
•
•
•
•
•
•
•

Figure 3: An example of path in Q((0, 1), (9, 2))

To any ω ∈ Ωn we assign the path k 7→ Mk(ω), k ∈ {0, . . . , n}. Observe that
the mapping is a one-to-one correspondence between Ωn and Qn(0, 0). Therefore, the
number of elements in an event A ⊂ Ωn is equal to the number of corresponding paths
in Qn(0, 0).

We next collect some combinatorial results on paths.

Lemma 8.1. We have

a) |Qn(0, 0)| = 2n;

b) if m is odd, then |Q((0, 0), (2n,m)| = 0;

c) for −n ≤ k ≤ n we have |Q((0, 0), (2n, 2k)| =
(

2n
n−k

)
.

Proof. Exercise.

There is also an explicit formula for the number of non-negative paths, that means
the paths that never go below zero.

Lemma 8.2. There are
(
2n
n

)
non-negative paths in Q2n(0, 0).

Proof. See Appendix A.

Given a path f , we refer to the straight line between (k, f(k)) and (k+ 1, f(k+ 1)) as
the segment of f between k and k+ 1. We say that it is non-negative if it lies above the
x-axis. Note that the segment is non-negative if and only if min{f(k), f(k + 1)} ≥ 0.

We define the time a path spends above zero as the number of non-negative path
segments. For example, if the first ten tosses are ”THHHTTHHTH”, then Zoe’s gain
process spends 8 out of the first 10 time units above zero, as illustrated in Figure 4.
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•
•
•
•
•
•
•
•
•
•
•

Figure 4: 8 out of the first 10 time units above zero

We first calculate the probability that Zoe’s gain process spends at least 80% of the
first ten time units above zero.

Notice that by Lemma 8.2 there are
(
10
5

)
non-negative paths of length 10. Let dk

denote the number of paths of length 10 where the segments between k and k + 2 are
below and all other segments above the x-axis.

It is straightforward to see that d0 =
(
8
4

)
, d2 =

(
6
3

)
and d4 = 2

(
4
2

)
. In order to calculate

d6 note first that, by formula (23), the number of non-negative paths in Q((0, 0), (6, 0))
is given by 5. Since there are two non-negative paths between 8 and 10 starting in zero,
we have obtain d6 = 5 ∗ 2. Finally, the number of non-negative paths in Q((0, 0), (8, 0))
is given by 14 (see again formula (23)), and hence d8 = 14 ∗ 2. To sum up, the number
of paths in Q10(0, 0) with at least 8 non-negative segments is(

10

5

)
+

(
8

4

)
+

(
6

3

)
+ 2

(
4

2

)
+ 10 + 28 = 392.

Therefore, p10 = 392/210 ≈ 0, 38.
Surprisingly, pn does not converge to zero as n → ∞. Indeed, we have limn pn =

1− 2
π

arcsin(
√

0.8) ≈ 0, 3.
More generally, we have the following result, known as the arcsine law.

Proposition 8.3. Let x ∈ [0, 1] and denote by An(x) the event that, up to time n, at
least a fraction of x time units in Zoe’s gain process is above zero. Then

lim
n
Pn(An(x)) =

∫ 1

x

1

π

1√
y(1− y)

dy. (7)

The integral can be shown to be equal to 1− 2
π

arcsin(
√
x), explaining the name ”arcsine

law”.

Before we prove the proposition, let’s discuss what lesson we can draw from it. Figure
5 shows the graph of the function under the integral in (7). The proposition implies
that, after long sequences of coin tosses, the distribution of the fraction of time spent
above zero it is more likely to attain an extreme value close to 0 and 1 than a value close
to 1

2
. In other words, it is more likely that Zoe or Wael is ahead most of the time than

that both are ahead for approximately the same amount of time.
The proposition shows that in any competition with a random walk like evolution it

is very likely that one competitor is ahead for most of the time. This is even the case
when all competitors are equally strong (likely to score).
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Figure 5: The density of the arcsine law.

Consider ten monkeys, each of them managing an asset fund by choosing randomly an
investment strategy. The arcsine law indicates that it is very likely that one of ten funds
will perform better for most of the time than the other funds. If you didn’t know that a
monkey manages the best performing fund, you could easily believe that it is managed
by an expert and naively purchase some shares.

Now let’s turn to the proof of Proposition 8.3. We first introduce some notation. Let
u2n =

(
2n
n

)
. Recall that u2n is equal to |Q((0, 0), (2n, 0))| (Lemma 8.1) and also equal to

the number of non-negative paths in Q2n(0, 0) (Lemma 8.2). Besides, let

w2n = |{f ∈ Q((0, 0), (2n, 0)) : f(j) > 0 for all j = 1, . . . , 2n− 1}|.

Lemma 8.4. We have

w2n+2 =
1

n+ 1
u2n, (8)

and

w2n+2 =
n∑
k=1

w2kw2n−2k+2. (9)

Proof. Let B be the set of non-negative paths in Q((0, 0), (2n, 0)). Moreover, let C =
{f ∈ Q((0, 0), (2n + 2, 0)) : f(j) > 0 for all j = 1, . . . , 2n + 1}. Note that all f in C
have the same first and last segment. Deleting the first and the last segment provides
a one-to-one correspondance between C and B. With Equation (23) of Lemma 8.2,
applied to k = 0, we obtain |C| = |B| =

(
2n
n

)
−
(

2n
n−1

)
= 1

n+1
u2n, and hence (8).
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In order to prove (9), let

Br = {f ∈ B : f(2r) = 0 and f(k) > 0 for all k < 2r},

r ∈ {1, . . . , n}. We split any path f in Br at 2r. Note that the part up to time 2r is
always stricly above zero between 0 and 2r. The part between 2r and 2n, however, can
take the value zero at any even time. There are w2r paths with lenghts 2r satisfying
f(2r) = 0 and f(k) > 0 for all k ∈ {1, . . . 2r − 1}. Moreover, by the first part of the
proof, there are w2n−2r+2 non-negative paths g of length 2n−2r satisfying g(2n−2r) = 0.
Therefore, |Br| = w2rw2n−2r+2. Since B is the disjoint union of B1, . . . , Bn, we obtain
(9).

Note that f ∈ Q2n(0, 0) can take the value zero only at even time points. A combina-
torial argument shows that

u2n =
n∑
r=1

2w2ru2n−2r, (10)

where we interpret 2r as the first time where the path returns to the level 0. For
0 ≤ k ≤ n let b2k,2n be the number of paths in Q2n(0, 0) with exactly 2k segments above
zero.

Lemma 8.5. We have

b2k,2n = u2ku2n−2k. (11)

Proof. Note that (11) holds true for k = 0, since u0 = 1 and by Lemma 8.2, b2n,2n =(
2n
n

)
= u2n.

Similarly, (11) holds true for k = n, since b0,2n =
(
2n
n

)
= u2n.

To prove the statement for k ∈ {1, . . . , n− 1} we make an induction along n.
n = 1: See first part of the proof.
n− 1→ n: Let 1 ≤ k < n. Every path in Q2n(0, 0) with exactly 2k non-negative
segments returns to zero before 2n. Any possible first return time is an even number.
Suppose the first return time is 2r. There are 2w2r paths between 0 and 2r returning to
zero for the first time at 2r. Half of these paths spend all time units until 2r above zero,
half of the paths stay always below. Summing over all possible return times, we obtain

b2k,2n =
k∑
r=1

w2rb2k−2r,2n−2r +
n−k∑
r=1

w2rb2k,2n−2r.
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By induction hypothesis and Equation (10) this implies

b2k,2n =
k∑
r=1

w2ru2k−2ru2n−2k +
n−k∑
r=1

w2ru2ku2n−2r−2k

=u2n−2k

k∑
r=1

w2ru2k−2r + u2k

n−k∑
r=1

w2ru2n−2r−2k

=
1

2
u2n−2ku2k +

1

2
u2ku2n−2k

=u2ku2n−2k.

We have now everything at hand for proving the arcsine law.

Proof of Proposition 8.3. Let Tn be the number of time units until n that Zoe’s gain
process (Mk) spends above zero. Equation (11) implies that

P2n(T2n = 2k) =
1

22n
b2k,2n =

1

22n
u2ku2n−2k, (12)

for 1 ≤ k ≤ n. Next we use Stirling’s formula (see Lemma B.1 below) 1

n! ∼
√

2πnn+1/2e−n. (13)

In particular, this means that
√
π
√
nU2n

22n
−→ 1, as n→∞. Therefore U2n

22n
∼ 1√

π
√
n
.

Let f(x) = 1

π
√
x(1−x)

, x ∈ (0, 1). Then P (T2n = 2k) = 1
22n
u2ku2n−2k ≈ 1

n
f(k/n).

Finally, using properties of the Riemann integral, we get

lim
n
P2n(A2n(x)) = lim

n

∑
k:k≤n and 2k

2n
≥x

P2n(T2n = 2k)

= lim
n

∑
k:k≤n and k

n
≥x

1

n
f(k/n)

=

∫ 1

x

f(y)dy = 1− 2

π
arcsin(

√
x).

Since the contribution of a single coin toss to the fraction of time units spent above zero
becomes arbitrarily small as n→∞, we have limn(P2n(A2n(x))− P2n+1(A2n+1(x)) = 0,
and hence (7).

1Recall that for two positive real sequences (an) and (bn) we write an ∼ bn if limn
an

bn
= 1.
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9. Double stakes when the gain is negative

Suppose that Zoe and Wael play again the game of heads and tails. In addition to
before, suppose that Zoe can choose in every round whether 1 or 2 Euros are at stake.
If 2 Euros are at stake, then she gets 2 Euros or pays 2 Euros when the coin lands heads
or tails, respectively.

Suppose that Zoe places a stake of 2 whenever she is behind and a stake of 1 whenever
she is in the lead or there is a tie. In other words, she chooses the risky option when she
is behind and the safe option if she is ahead. We can briefly describe her strategy with
the words: ”play safe if ahead and take risk if behind”. In the following we refer to her
strategy as the 1,2-strategy.

Let’s model Zoe’s gain process when she is playing the 1,2-strategy.
Let Y0 = 0 and

Yk+1 =

{
Yk +Xk, if Yk ≥ 0,
Yk + 2Xk, if Yk < 0.

Note that Yk describes Zoe’s gain after round k. We call the process (Yk)k∈{0,...,n} a
1,2-random walk.

Question 8. What is the probability for Zoe to be ahead in the long run, i.e. what is
limn→∞ Pn(Yn ≥ 0)?

It is clear that the simple random walk (Mn), making steps only of size one, satisfies
limn P (Mn ≥ 0) = 1

2
. Rather surprisingly, the limiting probability for the 1,2-random

walk is different.

Proposition 9.1. We have limn→∞ Pn(Yn ≥ 0) = 2
3
.

What’s the lesson? By playing safe when ahead and taking risk when behind one can
indeed increase the probability of being on the winner side at the end of the game.

Suppose that in each round not Euros but points are at stake and that Zoe receives
a prize, say 10 Euros, if she has collected a non-negative amount of points after n
rounds. If always the same amount of points was at stake, then Zoe would win the
prize approximately with probability 1

2
. By choosing the 1,2-strategy she increases her

winning chances to 2
3
, and increase of 33%.

In professional sports games one often observes that teams that are behind take more
risk and teams that are ahead play safe (in particular towards the end of the game).
Proposition 9.1 indicates that this behavior is indeed optimal for maximizing the prob-
ability of winning.

As a further real-world example consider a manager of a firm who can choose between
risky and safe business decisions. Suppose that the manager gets a bonus at the end
of the year if the firm value is greater than or equal to a reference index. Suppose
that the firm value minus the reference index is a process evolving like a random walk,
where risky decisions imply steps of size two and safe decisions steps of size one. The
manager has a strong incentive to choose the 1,2-strategy over the strategy to make
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always safe decisions. Indeed, with the 1,2-strategy the probability of getting the bonus
is considerably larger.

The last example illustrates that bonus schemes can incentivize managers to play safe
if ahead and take risk if behind. We remark that this is usually not in the interest
of the firm’s owner, since taking large risks on the loosing side can entail huge losses.
Indeed, the expectation of the absolute value |Yn|, conditional on the 1,2-random walk
to be below zero, is larger than its expectation conditional to be above zero. This also
explains that although Yn takes negative values with a smaller probability than positive
values, its expectation is zero.

Now let’s turn to the proof of Proposition 9.1. We first derive an explicit formula for
P (Yn ≥ 0). We need to adapt the notion of a path. A 1,2-path of length n is a function
f{0, 1, . . . , n} → Z such that f(0) = 0 and

|f(k + 1)− f(k)| =
{

1, if f(k) ≥ 0,
2, if f(k) < 0,

for all k ∈ {0, . . . , n− 1}. For every scenario ω ∈ Ωn, Zoe’s gain process k 7→ Yk(ω), k ∈
{0, . . . , n} is a 1,2-path of length n. Observe that there is a one-to-one correspondance
between Ωn and the set of all 1,2-paths.

In the following we denote by an the number of 1,2-paths of length n that are non-
negative at time n. Observe that an coincides with |{Mn ≥ 0}|.

Proposition 9.2. We have an = 1
3
(2n+1 + (−1)n).

Note that Proposition 9.2 implies Proposition 9.1, since limn→∞ Pn(Mn ≥ 0) =
limn→∞

an
2n

= 2
3
.

In order to prove Proposition 9.2 we introduce some definitions:

• w2n = the number of paths of length 2n satisfying f(1) > 0, . . . , f(2n − 1) >
0, f(2n) = 0

• uk = the number of paths of length k that stay above the x-axis

• ζk = the number of positive paths of length k that never return to zero

Note that a non-negative 1,2-path is a non-negative path in the sense of Section 8.
Therefore, by Lemma 8.2 we have u2n =

(
2n
n

)
and by Lemma 8.4 we have w2n = 1

n

(
2(n−1)
n−1

)
.

The last number is also referred to as a Catalan number (see [8] for a whole book on
Catalan numbers). More precisely, the Catalan numbers are defined as c0 = 1 and
cn := 1

n+1

(
2n
n

)
for n ≥ 1. Thus we have w2n = cn−1. The Catalan numbers have the

following nice properties.

Lemma 9.3. For all n ≥ 0 we have

cn+1 =
n∑
k=0

ckcn−k, (14)
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and for all n ≥ 1

n−1∑
k=1

ck2
2n−2k = 22n − 2

(
2n

n

)
. (15)

Proof. Equation (14) follows from Equation (9).
We prove Equation (15) via induction:

n = 1: both sides are equal to zero.
n→ n+ 1: Suppose (15) holds true for n. Then

n∑
k=1

ck2
2(n+1)−2k = 4cn + 4

n−1∑
k=1

ck2
2n−2k

I.H.
=

4

n+ 1

(
2n

n

)
+ 4

(
22n − 2

(
2n

n

))
= 22(n+1) + 4

(
1

n+ 1
− 2

)(
2n

n

)
= 22(n+1) − 2

(
2(n+ 1)

n+ 1

)
.

Observe that

u2n+1 = 2u2n − cn = (2− 1

n+ 1
)

(
2n

n

)
=

1

2

(
2(n+ 1)

n+ 1

)
.

Notice that ζk = uk−1, and hence

ζ2n =
1

2

(
2n

n

)
and ζ2n+1 =

(
2n

n

)
.

A combinatorial argument shows

u2n = ζ2n +
n∑
k=1

w2ku2n−2k = ζ2n +
n∑
k=1

ck−1u2n−2k.

Consequently,

n∑
k=1

ck−1u2n−2k = u2n − ζ2n =
1

2

(
2n

n

)
. (16)

Similarly one can show
∑n

k=1 ck−1u2n+1−2k = u2n+1 − ζ2n+1 = ncn.

Proof of Proposition 9.2. We show the proof via induction.
n = 1: X
Induction step: We need to distinguish between even and odd times. Assume first that
the statement holds true for every m < 2n. We now show it for 2n. To this end let
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• q2k = the number of paths below the x-axis until 2k − 1 and jumping to +1 at
time 2k.

• dk = the number of paths starting in one and satisfying xk ≥ 0

• r2k+1 = the number of paths starting in one and hitting the x-axis for the first
time at 2k + 1

Observe that

a2n = ζ2n +
n∑
k=1

w2ka2n−2k +
n∑
k=1

q2kd2n−2k (17)

for n ≥ 1. One can show that q2k = ck−1 and r2k+1 = ck. A combinatorial argument
implies

d2k = u2k +
k−1∑
j=0

r2j+1a2k−2j−1 = u2k +
k−1∑
j=0

cja2k−2j−1.

To sum up, Equation (17) can be simplified to

a2n =
1

2

(
2n

n

)
+

n∑
k=1

ck−1a2n−2k +
n∑
k=1

ck−1u2n−2k +
n∑
k=1

ck−1

n−k−1∑
j=0

cja2(n−k)−2j−1.

Note that Equation (16) implies
∑n−1

k=1 ck−1u2n−2k = 1
2

(
2n
n

)
. With Equation (14) we

obtain

n∑
k=1

ck−1

n−k−1∑
j=0

cja2(n−k)−2j−1 =
n−1∑
m=1

cn−ma2m−1 =
n−1∑
k=1

cka2n−2k−1.

Therefore

a2n =

(
2n

n

)
+

n∑
k=1

ck−1a2n−2k +
n−1∑
k=1

cka2n−2k−1.

With the induction hypothesis we obtain

a2n =

(
2n

n

)
+

n∑
k=1

ck−1
1

3
(22n−2k+1 + 1) +

n−1∑
k=1

ck
1

3
(22n−2k − 1)

=

(
2n

n

)
+

n−1∑
k=0

ck
1

3
(22n−2k−1 + 1) +

n−1∑
k=1

ck
1

3
(22n−2k − 1)

=

(
2n

n

)
+ c0

1

3
(22n−1 + 1) +

n−1∑
k=1

ck
1

3
[(22n−2k−1 + 1) + 22n−2k − 1]

=

(
2n

n

)
+

1

3
(22n−1 + 1) +

n−1∑
k=1

ck2
2n−2k−1.
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Equation (15) implies
∑n−1

k=1 ck2
2n−2k−1 = 22n−1 −

(
2n
n

)
, which further entails that a2n =

1
3
(22n+1 + 1).
We now make the induction step for odd times. Suppose that the statement is true

for every m ≤ 2n. Note that

a2n+1 = ζ2n+1 +
n∑
k=1

w2ka2n+1−2k +
n∑
k=1

q2kd2n+1−2k. (18)

One can show d2k+1 = u2k+1 +
∑k

j=0 cja2k−2j. Therefore

a2n+1 =

(
2n

n

)
+

n∑
k=1

ck−1a2n+1−2k +
n∑
k=1

ck−1u2n−2k+1 +
n∑
k=1

ck−1

n−k∑
k=0

cja2(n−k)−2j.

As above one can show that
∑n

k=1 ck−1
∑n−k

j=0 cja2(n−k)−2j =
∑n

k=1 cka2n−2k. Hence, with
the induction hypothesis,

a2n+1 =

(
2n

n

)
+ ncn +

n∑
k=1

ck−1a2n+1−2k +
n∑
k=1

cka2n−2k

=

(
2n

n

)
+ ncn +

n−1∑
k=0

cka2n−2k−1 +
n∑
k=1

cka2n−2k

=

(
2n

n

)
+ ncn +

1

3
(22n − 1) + cn +

n−1∑
k=1

ck2
2n−2k.

Since
∑n−1

k=1 ck2
2n−2k = 22n − 2

(
2n
n

)
, this shows

a2n+1 =
1

3
(22n − 1) + 22n =

1

3
(22n+2 − 1).

10. Doubling the stake in each round

Zoe and Wael play yet another version of the game of heads and tails. Suppose that Zoe
can choose, at the beginning of each round, how many Euros she wants to bet. Any bet
in Z≥0 is allowed.

Assume that Zoe bets α(x) if the total gain of all the preceding rounds sums up to
x ∈ R. We refer to the function α : R → Z≥0 as Zoe’s betting rule. Note that if
α(x) = 1 + 1(−∞,0)(x), then Zoe is playing the 1,2-strategy of Section 9.

Let Ωn, Pn, Pn and Xi, i ∈ {1, . . . , n}, be defined as in Section 7. Let Gα
0 = 0 and

define recursively

Gα
n+1 = Gα

n + α(Gα
n)Xn+1.

Gα
n, n ≥ 0, is the gain process of the betting rule α.
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Question 9. Is there a betting rule α such that limn Pn(Gα
n ≥ 1) = 1 ?

In the remainder we consider the following rule:

α(x) =

{
0, if x > 0,

1 + |x|, if x ≤ 0
(19)

First observe that as soon as the total gain is > 0 Zoe stops betting. Therefore, under
this stopping rule, once the gain process attains a positive value it remains there for the
rest of the game.

In the first round Zoe bets α(0) = 1 Euro. If heads turns up, then G1 = 1 and hence
also Gn = 1 for all n > 1.

Now suppose that the first toss is tails. Then G1 = −1 and Zoe bets α(−1) = 2
Euros in round 2. If the second toss is heads, then Zoe wins 2 Euros. In this case,
G2 = −1 + 2 = 1 and Zoe stops betting.

If the first two tosses turn up tails, then G2 = −1− 2 = −3 and Zoe bets α(−3) = 4
in round 3. If she wins round three, then G3 = −3 + 4 = 1, and she stops betting. If she
loses round three, then G3 = −3− 4 = −7 and she bets 8 Euros in round 4, and so on.

With the first heads Zoe’s gain process jumps to 1 and Zoe stopps betting thereafter.
Therefore, Zoe’s gain after round n is not equal to 1 if and only if the first n tosses all
show tails. More precisely, {Gn 6= 1} = {(T, . . . , T )}, and hence Pn(Gn = 1) = 1 − 1

2n
.

In particular, limn Pn(Gα
n ≥ 1) = 1.

Notice that the betting rule (19) implies that Zoe doubles the stake in each round as
long as she has not won. Therefore α is also called a doubling strategy.

The gain process of a doubling strategy is not bounded from below. Hence an imple-
mentation requires an infinite amount of capital, and therefore doubling strategies do not
work in practice. However, it happens every now and then that traders are tempted to
follow doubling-like strategies in order to absorb trading losses. By doing so it can easily
happen they accumulate large losses. At the moment where their banks can not provide
them enough money for doubling, they are left with huge losses. Therefore, financial
institutions try to make sure that their traders do not follow doubling strategies.

11. Zoe gets lucky against Wael

Once again, Zoe and Wael play the simple version of the coin tossing game: assume for
instance that Zoe bets on tails and Wael bets on heads. Victory goes to the one that
has the most winning bets after n coin tosses. Let Ωn = {H,T}n, ωi (i ∈ {1, . . . , n}),
Pn and Pn be defined as in Section 9.

For every i we define a mapping Xi : Ωn → {0, 1} by setting

Xi(ω) =

{
0, if ωi = H,
1, if ωi = T,

and

Sn(ω) = X1(ω) + · · ·+Xn(ω).
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The random variable Sn counts the number of tails in the first n tosses, which is also
the number of times that Zoe won the bet.

Assume that the probability of showing heads and the probability of showing tails are
both equal to 1

2
. In that case, we expect intuitively that if n is large, say greater than

1000, the proportions of Zoe’s and Wael’s wins will be close to 1
2
. This result, known

as the law of large numbers, says that, if the game is played during a sufficiently large
period of time, the game will be almost tied, in the sense that winning proportions will
be close to 1

2
, or said otherwise, that the winning margin will be small. However, we

know from the arcsine law presented in Section 8, that either Zoe or Wael will be ahead
most of the time.

Question 10. What is the probability that, after a large number coin tosses, Zoe gets
lucky and wins 70% of the time? Said otherwise, what is the value of

Pn

(
Sn
n
≥ 70%

)
for large values of n?

Let a ∈ (1
2
, 1] be fixed and let us compute

Pn

(
Sn
n
≥ a

)
= Pn (Sn ≥ a n) =

∑
an≤k≤n

(
n

k

)
1

2n
,

which implies that

1

2n
max
an≤k

(
n

k

)
≤ Pn

(
Sn
n
≥ a

)
≤ n+ 1

2n
max
an≤k

(
n

k

)
.

Then, using that
(
n
`

)
≤
(
n
m

)
for 0 ≤ ` ≤ m ≤

⌈
n
2

⌉
, we get

1

2n

(
n

q

)
≤ Pn

(
Sn
n
≥ a

)
≤ n+ 1

2n

(
n

q

)
, (20)

where we denoted q := banc+ 1. Taking the logarithm of the left hand side, dividing by
n, and using Stirling’s formula (Lemma B.1), we arrive at

1

n
log

1

2n

(
n

q

)
∼ − log(2) +

1

n
log

(
n

n− q

)n−q
+

1

n
log

(
n

q

)q
. (21)

Since q
n

= banc+1
n

converges to a as n goes to infinity, the right hand side of (21) converges
to

− log(2)− (1− a) log(1− a)− a log(a).

The right hand side in (20) also converges to this quantity, by the same arguments. Thus
we have proved the following :
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Lemma 11.1. For every a ∈ (1
2
, 1],

lim
n→+∞

1

n
logPn

(
Sn
n
≥ a

)
= −I(a),

with I(a) := a log(a) + (1− a) log(1− a)− log(1
2
).

Notice that, by symmetry, the result above also holds for a ∈ [0, 1
2
). For a 6= 1

2
, the

Lemma says that Pn
(
Sn

n
≥ a
)

converges to 0, and does so exponentially fast, roughly as
exp(−nI(a)). We can now give an approximate answer to Question 10: Pn

(
Sn

n
≥ 70%

)
is approximately equal to

exp(−100 ∗ I(0.7)) ≈ 0.00026, if n = 100,
exp(−1000 ∗ I(0.7)) ≈ 1.84× 10−36 if n = 1000.

A. Proof of the combinatorial results on paths

For the proof of Lemma 8.2 we use the following result.

Lemma A.1 (Reflection principle). Let x ≥ 0. Then the number of paths in Q((0, 0), (n, x))
attaining the level −1 at some point is equal to |Q((0,−2), (n, x))|.

Proof. Let f be a path in Q((0, 0), (n, x)) that attains the level −1, and let σ = min{k :
f(k) = −1} be the first time where f takes the value −1. Now reflect the path up to σ

along the horizontal level −1. More precisely, assign to f the path f̂ ∈ Q((0,−2), (n, x))
satisfying

f̂(j) =

{
−(f(j) + 1))− 1, for j < σ,
f(j), for j ≥ σ.

(22)

Note that if f, g ∈ Q((0, 0), (n, x)) attain −1 and f 6= g, then f̂ 6= ĝ. Moreover, for any

h ∈ Q((0,−2), (n, x)) there exists an f ∈ Q((0, 0), (n, x)) such that f̂ = h. In other

words, the mapping f 7→ f̂ is a one-to-one correspondance between the set of paths in
Q((0, 0), (n, x)) reaching −1 and the set Q((0,−2), (n, x)). Therefore, both sets have
the same number of elements.

Proof of Lemma 8.2. Let B be the set of non-negative paths in Q2n(0, 0), and Bk the
set of non-negative paths in Q((0, 0), (2n, 2k)). Notice that if f ∈ Q2n(0, 0), then f(2n)
is an even number. Therefore, B = ∪nk=0Bk.

The set Bn contains only one path. In order to calculate |Bk| for k ∈ {0, . . . , n− 1},
observe first that the set Bk is Q((0, 0), (2n, 2k)) minus the paths reaching −1 at some
point. Therefore, the reflection principle and Lemma 8.1 yield

|Bk| = |Q((0, 0), (2n, 2k))| − |Q((0,−2), (2n, 2k))| =
(

2n

n− k

)
−
(

2n

n− (k + 1)

)
. (23)
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Summing up all |Bk| we obtain a telescoping sum and hence

|B| =
n∑
k=0

|Bk| = 1 +
n−1∑
k=0

((
2n

n− k

)
−
(

2n

n− (k + 1)

))
=

(
2n

n

)
.

B. Proof of Stirling’s formula

Lemma B.1. For all n ∈ N we have

e
11
12nn+

1
2 e−n ≤ n! ≤ enn+

1
2 e−n. (24)

Moreover,

n! ∼
√

2πnn+
1
2 e−n. (25)

Proof. Let dn = log(n!)− (n+ 1
2
) log(n) + n. Then we have

n! = ednnn+
1
2 e−n. (26)

Observe that

dn − dn+1 = (n+
1

2
) log(1 +

1

n
)− 1.

Recall the expansion log(1 + x) = x − 1
2
x2 + 1

3
x3 − 1

4
x4 + · · · , for x > 0. This entails

log( 1
1−x) = x+ 1

2
x2 + 1

3
x3 + 1

4
x4 + · · · , and hence log(1+x

1−x) = 2x+ 2
3
x3 + 2

5
x5 + · · · . Note

that 1 + 1
n

= 1+1/(2n+1)
1−1/(2n+1)

and hence

dn − dn+1 =
1

3

1

(2n+ 1)2
+

1

5

1

(2n+ 1)4
+ · · · .

This further yields

dn − dn+1 ≤
1

3

∞∑
k=1

1

(2n+ 1)2k
=

1

3

1

(2n− 1)2 − 1
=

1

12n
− 1

12(n+ 1)
. (27)

Note that (27) shows that (dn)n≥1 is decreasing and (dn − 1
12n

)n≥1 is increasing. In
particular, dn ≤ d1 = 1 and dn ≥ d1 − 1

12
= 11

12
. Together with (26) this implies

e
11
12nn+

1
2 e−n ≤ n! ≤ enn+

1
2 e−n.

Finally, one can show that dn converges to log(
√

2π) (see e.g. [5] for details) and hence
we obtain (13).
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C. Implementation of recursion formula (4) in Python

import numpy as np

de f A(n , x ) :
a=np . z e r o s (n+1)
f o r m in range (n+1):

i f m <= x :
a [m]=2∗∗m

e l s e :
f o r j in range (1 , x+2):

a [m] = a [m]+a [m−j ]
r e turn a [ n ]

de f P(n , x ) :
r e turn A(n , x )/(2∗∗n)

Notes

The idea of the proof presented in Section 1 and Section 3 can be found in [6].
The account of the arcsine law in Section 8 is inspired by the book of Feller [2] and

Lesigne [5].
The question of Section 9 is owed to our colleague Ingo Althöfer. See [1] for an article

on the 1,2-random walk.
The recursion formula (4) is drawn from the article [7], which provides a more extensive

analysis of long head runs.
Section 5 is inspired by Chapter 5 in [3].
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