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Abstract
We consider integer-valued processes with a linear or
nonlinear generalized autoregressive conditional het-
eroscedastic models structure, where the count variables
given the past follow a Poisson distribution. We show
that a contraction condition imposed on the intensity
function yields a contraction property of the Markov ker-
nel of the process. This allows almost effortless proofs
of the existence and uniqueness of a stationary distribu-
tion as well as of absolute regularity of the count process.
As our main result, we construct a coupling of the orig-
inal process and a model-based bootstrap counterpart.
Using a contraction property of the Markov kernel of
the coupled process we obtain bootstrap consistency for
different types of statistics.
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1 INTRODUCTION

Conditionally heteroscedastic processes have become quite popular for modeling the evolution of
stock prices, exchange rates and interest rates. Starting with the seminal papers by Engle (1982)
on autoregressive conditional heteroscedastic models (ARCH) and Bollerslev (1986) on gener-
alized ARCH (GARCH), numerous variants of these models have been proposed for modeling
financial time series; see for example, Francq and Zako𝚤 ̈an (2010) for a detailed overview. More
recently, integer-valued GARCH models (INGARCH) which mirror the structure of GARCH mod-
els have been proposed for modeling time series of counts; see for example, Fokianos (2012) and
the recently edited volume by Davis, Holan, Lund, and Ravishanker (2016).

We consider integer-valued GARCH processes of order p and q (INGARCH(p, q)). Processes of
this type have enjoyed increasing popularity in the recent years. In most cases, it is assumed that
the count process is observable and that, given the past, the count variables have a Poisson dis-
tribution with a random intensity which depends on lagged values of the count and the intensity
process. Mixing properties of such processes have been derived for a first time in Neumann (2011),
for INGARCH(1,1) processes under a contraction condition on the intensity function. This has
been generalized to INGARCH processes of higher order in Aknouche and Francq (2018) as well
as in Doukhan and Neumann (2019), in the latter paper under a weaker semi-contractive con-
dition leading to a subexponential decay of the mixing coefficients only. Doukhan, Leucht, and
Neumann (2020) proved absolute regularity of the count process again in the INGARCH(1,1)
case but allowing a possibly nonstationary (explosive) bahavior of the process. Model-based
bootstrap for INGARCH(1,1) processes has been used in Fokianos and Neumann (2013) and
in Leucht and Neumann (2013, Section 5.3) in order to determine an appropriate critical value
for goodness-of-fit tests. In the latter paper, the authors showed in particular that there exists a
coupling of the original count process and its bootstrap counterpart which leads to bootstrap con-
sistency for statistics of Cramér–von Mises type; see their Lemma 4. In the present contribution,
we generalize these results in several directions. We consider the more general case of INGARCH
processes of arbitrary finite order. More importantly, we derive general properties of the bootstrap
process which can be used to derive consistency for statistics of different types.

In Section 2 we derive basic properties of the bivariate process consisting of the count process
(Xt)t and the accompanying process (𝜆t)t of random intensities. Note that in our context (Zt)t with
Zt = (Xt, … ,Xt−p+1, 𝜆t, … , 𝜆t−q+1) is a time-homogeneous Markov chain. We first show that a
contraction condition for the intensity process leads to a contraction property for the conditional
distribution of Zt given Zt − 1. Being then in a Markovian context we show that this yields by the
Banach fixed point theorem existence and uniqueness of a stationary distribution. Moreover, we
exploit the contraction property once more to show absolute regularity of the count process. In
Section 3 we introduce our model-based bootstrap method. In contrast to the majority of the exist-
ing papers on bootstrap consistency, we do not only justify this method for some particular statistic
of interest. To achieve greater generality, we first show that the bootstrap process (X∗

t )t=1,… ,n mim-
ics the stochastic behavior of the original count process. This is accomplished by a coupling of
both processes on a suitable new probability space. We show, for these coupled processes, prox-
imity of the original and the bootstrap version as well as absolute regularity. In Section 4 we
demonstrate by some examples that the coupling result can be used to derive almost effortlessly
the consistency of the bootstrap approximation for statistics which are of real interest. All proofs
are deferred to a final Section 5.
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2 INGARCH(P, Q) PROCESSES AND THEIR PROPERTIES

2.1 Notation and assumptions

We consider a class of integer-valued processes (Xt)t∈Z defined on a probability space (Ω, ,P),
where, for t ∈ Z,

Xt|t−1 ∼ Pois(𝜆t), (1a)

𝜆t = f𝜃(Xt−1, … ,Xt−p, 𝜆t−1, … , 𝜆t−q), (1b)

and s = 𝜎(Xs, 𝜆s,Xs−1, 𝜆s−1, …) denotes the 𝜎-field generated by the random variables up to
time s. The parameter 𝜃 lies in Θ, the set of possible parameters, and 𝜃0 ∈ Θ denotes the true
parameter. A frequently considered special case is that of a linear model of order p, q, where

f𝜃(x1, … , xp, 𝜆1, … , 𝜆q) = 𝜔 +
p∑

i=1
𝛼ixi +

q∑
j=1

𝛽j𝜆j,

with 𝜃 = (𝜔, 𝛼1, … , 𝛼p, 𝛽1, … , 𝛽q).
The process (Zt)t∈Z with Zt = (Xt, … ,Xt−p+1, 𝜆t, … , 𝜆t−q+1) is a time-homogeneous Markov

chain with state space S = N
p
0 × [0,∞)q. The following condition ensures existence and unique-

ness of a stationary distribution of (Zt)t∈Z as well as absolute regularity of the count process
(Xt)t∈Z. With a view towards a model-based bootstrap, where an estimator of 𝜃 is used instead of
the true value, we require uniformity over some subset Θ0 of Θ.

(A1) There exist nonnegative constants c1, … , cp, d1, … , dq with L ∶=
∑p

i=1 ci +
∑q

j=1 dj < 1
and some 𝛿 > 0 such that

||f𝜃(x1, … , xp, 𝜆1, … , 𝜆q) − f𝜃(x′1, … , x′p, 𝜆′1, … , 𝜆′q)|| ≤
p∑

i=1
ci |xi − x′i | + q∑

j=1
dj |𝜆j − 𝜆′j |

holds for all (x1, … , xp, 𝜆1, … , 𝜆q), (x′1, … , x′p, 𝜆′1, … , 𝜆′q) ∈ S and all 𝜃 ∈ Θ0. Further-
more, we suppose that C(0) ∶= sup𝜃∈Θ0

{f𝜃(0, … , 0)} < ∞.

2.2 Stationarity and finiteness of moments

For contractive INGARCH(1,1) processes, existence and uniqueness of a stationary distribution
and absolute regularity of the count process has been first proved in Neumann (2011). Aknouche
and Francq (2018) generalized these results to contractive INGARCH processes of higher order.
Their proof of the existence and uniqueness of a stationary distribution is based on approxima-
tion techniques. In the present paper, our approach is a different one. We show in Proposition 1
below that (A1) yields a contraction property of the Markov kernel connected with (Zt)t in terms
of a suitable Wasserstein metric. As described in Eberle (2020, Chapter 3), existence and unique-
ness of a stationary distribution follows then by the Banach fixed point theorem. Furthermore,
we exploit the contraction property to derive almost effortlessly absolute regularity of the count
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process in Section 2.3. As our main result, we construct in Section 3 a coupling of the original
and the bootstrap process which shows the desired similarity of these processes. We exploit the
contraction property once more to prove the existence and uniqueness of a stationary version of
this joint process as well as absolute regularity of the joint count processes. To this end, we first
transfer the contraction condition (A1) for the intensity process into a contraction property for
the Markov kernel steering the process (Zt)t.

We consider the following metric on S:

Δ
(
(x1, … , xp, 𝜆1, … , 𝜆q), (x′1, … , x′p, 𝜆′1, … , 𝜆′q)

)
=

p∑
i=1

𝛾i |xi − x′i | + q∑
j=1

𝛿j |𝜆j − 𝜆′j |,
where 𝛾1, … , 𝛾p, 𝛿1, … , 𝛿q are strictly positive constants. Let z = (x1, … , xp, 𝜆1, … , 𝜆q),
z′ = (x′1, … , x′p, 𝜆′1, … , 𝜆′q) ∈ S be arbitrary. With an appropriate choice of 𝛾1, … , 𝛾p,
𝛿1, … , 𝛿q, we can construct random vectors Z = (X , x1, … , xp−1, 𝜆, 𝜆1, … , 𝜆q−1) and
Z′ = (X ′, x′1, … , x′p−1, 𝜆

′, 𝜆′1, … , 𝜆′q−1) on a suitable probability space (Ω̃, ̃ , P̃) such that
Z ∼ P

Zt|Zt−1=z
𝜃

, Z′ ∼ P
Zt|Zt−1=z′
𝜃

, and ẼΔ(Z,Z′) ≤ 𝜅 Δ(z, z′) holds for all 𝜃 ∈ Θ0 and some 𝜅 < 1.
Actually, according to the model Equation (1b), we have to set 𝜆 = f𝜃(x1, … , xp, 𝜆1, … , 𝜆q)
and 𝜆′ = f𝜃(x′1, … , x′p, 𝜆′1, … , 𝜆′q). Let (N(u))u≥ 0 be a Poisson process with unit intensity. We
set X ∼ N(𝜆) and X ′ ∼ N(𝜆′), which implies that Z ∼ P

Zt|Zt−1=z
𝜃

and Z′ ∼ P
Zt|Zt−1=z′
𝜃

, as required.
Furthermore, since Ẽ|X − X ′| = |𝜆 − 𝜆′| we obtain by (1b) that

ẼΔ(Z,Z′) = (𝛾1 + 𝛿1) ||f𝜃(x1, … , xp, 𝜆1, … , 𝜆q) − f𝜃(x′1, … , x′p, 𝜆′1, … , 𝜆′q)||
+

p∑
i=2

𝛾i |xi−1 − x′i−1| + q∑
j=2

𝛿j |𝜆j−1 − 𝜆′j−1|
≤ (𝛾1 + 𝛿1)

( p∑
i=1

ci |xi − x′i | + q∑
j=1

dj |𝜆j − 𝜆′j |
)

+
p∑

i=2
𝛾i |xi−1 − x′i−1| + q∑

j=2
𝛿j |𝜆j−1 − 𝜆′j−1|.

(2)

The desired relation of ẼΔ(Z,Z′) ≤ 𝜅Δ(z, z′) would be guaranteed to hold if we find strictly pos-
itive 𝛾1, … , 𝛾p, 𝛿1, … , 𝛿q such that the right-hand side of (2) is less than or equal to 𝜅Δ(z, z′) =
𝜅
(∑p

i=1 𝛾i|xi − x′i | +∑q
j=1 𝛿j|𝜆j − 𝜆′j |), for all (x1, … , xp, 𝜆1, … , 𝜆q), (x′1, … , x′p, 𝜆′1, … , 𝜆′q) ∈ S.

The following lemma builds a bridge from the contraction property (A1) for the intensity function
to a contraction property for the conditional distribution of Zt given Zt − 1.

Lemma 1. Let c1, … , cp, d1, … , dq be nonnegative constants such that
∑p

i=1 ci +
∑q

j=1 dj < 1.
Then there exist strictly positive constants 𝛾1, … , 𝛾p, 𝛿1, … , 𝛿q and some 𝜅 < 1 such that

(𝛾1 + 𝛿1)

( p∑
i=1

ci yi +
q∑

j=1
dj zj

)
+

p∑
i=2

𝛾i yi−1 +
q∑

j=2
𝛿j zj−1 ≤ 𝜅

( p∑
i=1

𝛾i yi +
q∑

j=1
𝛿j zj

)
, (3)

holds for all y1, … , yp, z1, … , zq ≥ 0.
Let 𝜋Z

𝜃
be the Markov kernel which transfers Zt − 1 to Zt and let 𝜋̃Z

𝜃
be the Markov kernel which

provides the above coupling, that is, for the above random variables Z and Z′ we have that (Z,Z′) ∼
𝜋̃Z
𝜃
((z, z′), ⋅).
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The following proposition provides the contraction property which will be instrumental for
the proof of the existence and uniqueness of a stationary distribution as well as for the derivation
of absolute regularity of the count process.

Proposition 1. Suppose that condition (A1) is fulfilled and that 𝜃 ∈ Θ0. Let 𝛾1, … , 𝛾p, 𝛿1, … , 𝛿p
and 𝜅 < 1 be chosen as in Lemma 1.

(i) Let z, z′ ∈ S be arbitrary. If (Z,Z′) ∼ 𝜋̃Z
𝜃
((z, z′), ⋅), then

Z ∼ P
Zt|Zt−1=z
𝜃

and Z′ ∼ P
Zt|Zt−1=z′
𝜃

and

ẼΔ(Z,Z′) ≤ 𝜅 Δ(z, z′).

(ii) Let ((Z̃t, Z̃′
t))t∈Z be a Markov chain with transition kernel 𝜋̃Z

𝜃
. Then

ẼΔ
(

Z̃t, Z̃′
t
) ≤ 𝜅 ẼΔ

(
Z̃t−1, Z̃′

t−1
)
.

In order to derive stationarity properties of the process (Zt)t∈Z, we further translate the con-
traction result in Proposition 1 into a contraction property of the corresponding distributions. For
two probability measures Q and Q′ on S, we define the Kantorovich distance based on the metric
Δ (also known as Wasserstein L1 distance) by

(Q,Q′) ∶= inf
Z∼Q,Z′∼Q′

ẼΔ(Z,Z′),

where the infimum is taken over all random variables Z and Z′ with respective laws Q and Q′,
defined on a common probability space (Ω̃, ̃ , P̃). Recall that the Markov kernel of the process
(Zt)t∈Z is denoted by 𝜋Z

𝜃
. The following result follows immediately from Proposition 1.

Proposition 2. Suppose that condition (A1) is fulfilled and that 𝜃 ∈ Θ0. Let Q and Q′ be arbitrary
distributions on the state space S. Then, for 𝜅 < 1 given in Proposition 1,

(Q𝜋Z
𝜃 ,Q′𝜋Z

𝜃 ) ≤ 𝜅 (Q,Q′).

Proposition 2 shows that the mapping 𝜋Z
𝜃

is contractive. Therefore, we can conclude by the
Banach fixed point theorem that the Markov process (Zt)t∈Z has a unique stationary distribution.

Corollary 1. Suppose that condition (A1) is fulfilled and that 𝜃 ∈ Θ0. Then the Markov process
(Zt)t∈Z with transition kernel 𝜋Z

𝜃
has a unique stationary distribution.

The next lemma states that condition (A1) implies that the corresponding random variables
have bounded moments of all orders. Still with a view toward our model-based bootstrap method,
we have to accommodate the feature of nonstationarity and we require uniformity of the result
in a neighborhood of the true parameter 𝜃0.

Lemma 2. Suppose that condition (A1) is fulfilled and that 𝜃 ∈ Θ0. Let k ∈ N be arbitrary.

(i) Suppose that the process (Zt)t∈N0
with Markov kernel 𝜋Z

𝜃
is started with pre-sample val-

ues Z0 = (X0, … ,X1−p, 𝜆0, … , 𝜆1−q) such that max{EXk
0 , … ,EXk

1−p,E𝜆
k
0, … ,E𝜆k

1−q} < ∞.
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Then there exist constants Ck, Dk <∞ which only depend on
∑p

i=1 ci +
∑q

j=1 dj and
max{EXk

0 , … ,EXk
1−p,E𝜆

k
0, … ,E𝜆k

1−q} such that

EXk
t ≤ Ck and E𝜆k

t ≤ Dk ∀t ∈ N.

(ii) If the process (Zt)t∈Z with Markov kernel 𝜋Z
𝜃

is in its stationary regime, then there exist constants
C′

k,D′
k < ∞ which only depend on

∑p
i=1 ci +

∑q
j=1 dj such that

EXk
t ≤ C′

k and E𝜆k
t ≤ D′

k ∀t ∈ Z.

2.3 Absolute regularity

Let (Ω,,P) be a probability space and 1, 2 be two sub-𝜎-algebras of . Then the coefficient
of absolute regularity is defined as

𝛽(1,2) = E
[
sup {|P(B|1) − P(B)| ∶ B ∈ 2}

]
.

For a process Y= (Y t)t on (Ω,,P), the coefficients of absolute regularity at the time point k are
defined as

𝛽Y (k,n) = 𝛽 (𝜎(Yk,Yk−1, …), 𝜎(Yk+n,Yk+n+1, …))

and the (global) coefficients of absolute regularity as

𝛽Y (n) = sup
k

{
𝛽Y (k,n)

}
.

For the count process (Xt)t on (Ω, ,P), we obtain the following estimate of the coefficients of
absolute regularity at the point k.

𝛽X (k,n) = 𝛽 (𝜎(Xk,Xk−1, …), 𝜎(Xk+n,Xk+n+1, …))
≤ 𝛽 (𝜎(Zk,Zk−1, …), 𝜎(Xk+n,Xk+n+1, …))
= 𝛽 (𝜎(Zk), 𝜎(Xk+n,Xk+n+1, …))

= E

[
sup

C∈𝜎()
{|P𝜃 ((Xk+n,Xk+n+1, …) ∈ C|Zk) − P𝜃 ((Xk+n,Xk+n+1, …) ∈ C)|}] , (4)

where  = {A × Z × Z × … |A ⊆ N
m
0 ,m ∈ N} is the system of cylinder sets. At this point we

employ a coupling argument. Let ((Z̃t, Z̃′
t))t∈N0

be a Markov chain on a probability space (Ω̃, ̃ , P̃)
with transition kernel 𝜋̃Z

𝜃
and independent variables Z̃k, Z̃′

k ∼ P
Zk
𝜃

. Then

E

[
sup

C∈𝜎()
{|P𝜃 ((Xk+n,Xk+n+1, …) ∈ C|Zk) − P𝜃 ((Xk+n,Xk+n+1, …) ∈ C)|}]

≤ Ẽ
[

sup
C∈𝜎()

{|||P̃ (
(X̃k+n, X̃k+n+1, …) ∈ C|Z̃k

)
− P̃

(
(X̃ ′

k+n, X̃ ′
k+n+1, …) ∈ C|Z̃′

k
)|||}

]
≤ P̃

(
X̃n+k+l ≠ X̃ ′

n+k+l for some l ≥ 0
)

≤
∞∑

l=0
P̃
(

X̃n+k+l ≠ X̃ ′
n+k+l

)
. (5)
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Since X̃n+k+l and X̃ ′
n+k+l are integer-valued we obtain that

P̃
(

X̃n+k+l ≠ X̃ ′
n+k+l

) ≤ 1
𝛾1

ẼΔ(Z̃n+k+l, Z̃′
n+k+l). (6)

Furthermore, by Proposition 1

ẼΔ(Z̃n+k+l, Z̃′
n+k+l) ≤ 𝜅n+l ẼΔ(Z̃k, Z̃′

k), (7)

where supk
{

ẼΔ(Z̃k, Z̃′
k)
}
< ∞. From (4) to (7) we obtain absolute regularity of the count process

(Xt)t∈Z with exponentially decaying coefficients.

Theorem 1. Suppose that condition (A1) is fulfilled and that 𝜃 ∈ Θ0. Suppose either that the
process (Xt)t∈Z is in its stationary regime or that the process (Xt)t∈N0

is started with presample val-
ues Z0 = (X0, … ,X1−p, 𝜆0, … , 𝜆1−q) such that max{EXk

0 , … ,EXk
1−p,E𝜆

k
0, … ,E𝜆k

1−q} < ∞. Then
there exists some 𝜌 < 1 such that

𝛽X (n) = O
(
𝜌n) .

3 BOOTSTRAP

We assume that X1, … , Xn are observed, where (Xt)t∈Z is strictly stationary and satisfies (A1). Let
𝜃n be any consistent estimator of the true parameter 𝜃0. A typical example is the conditional maxi-
mum likelihood estimator investigated, for example, in Fokianos and Tjostheim (2011); Fokianos
and Tjostheim (2012) or, in the special case of an integer-valued ARCH model, a least squares
estimator. The bootstrap process is generated as follows. To initiate the process, we choose pre-
sample values X∗

0 , … ,X∗
1−p, 𝜆

∗
0, … , 𝜆∗1−q. The next value of the intensity process has to obey the

model equation (1b), that is,

𝜆∗1 = f𝜃n
(X∗

0 , … ,X∗
1−p, 𝜆

∗
0, … , 𝜆∗1−q).

Then, conditioned on the past values, X∗
1 has to follow a Poisson(𝜆∗1) distribution. This process

can be repeated arbitrarily often. If X∗
t−1, … ,X∗

1−p and 𝜆∗t−1, … , 𝜆∗1−q are generated, we choose the
next values such that

𝜆∗t = f𝜃n
(X∗

t−1, … ,X∗
t−p, 𝜆

∗
t−1, … , 𝜆∗t−q),

and, again conditioned on the past,

X∗
t ∼ Pois(𝜆∗t ).

3.1 Coupling

Bootstrap methods are typically used for the construction of confidence regions for parame-
ters or for determining critical values of tests. To ensure a versatile applicability it is necessary
that the bootstrap process, conditioned on the original sample, mimics the stochastic behavior
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of the original process as good as possible. This similarity can be shown in a most transpar-
ent way by a coupling of the original sample (X1, 𝜆1), … , (Xn, 𝜆n) and its bootstrap counterpart
(X∗

1 , 𝜆
∗
1), … , (X∗

n , 𝜆
∗
n). Somewhat surprisingly, so far this natural approach was extremely rarely

used in statistics. Using Mallows metric to measure the distance between variables from the orig-
inal and the bootstrap process, it was implicitly employed in the context of independent random
variables by Bickel and Freedman (1981) and Freedman (1981). A more explicit use of coupling
was made, in the context of U- and V-statistics, but again in the independent case, by Dehling
and Mikosch (1994) and Leucht and Neumann (2009). For dependent data, this approach was
adopted by Leucht and Neumann (2013) and Leucht, Neumann, and Kreiss (2015).

To display the required similarity of the original process ((Xt, 𝜆t))t=1,… ,n and its bootstrap coun-
terpart ((X∗

t , 𝜆
∗
t ))t=1,… ,n we employ a coupling of the corresponding Markov processes (Zt)t∈N0

and
(Z∗

t )t∈N0
. That is, we construct on a suitable probability space (Ω̃, ̃ , P̃) copies (Z̃t)t∈N0

and (Z̃∗
t )t∈N0

such that

P̃Z̃t|Z̃t−1=z = P
Zt|Zt−1=z
𝜃0

and P̃Z̃∗
t |Z̃∗

t−1=z = P
Z∗

t |Z∗
t−1=z

𝜃n
.

With this coupling, we have to take care that Z̃t and Z̃∗
t are close to each other. We denote the

corresponding Markov kernel which transfers (Z̃t−1, Z̃∗
t−1) into (Z̃t, Z̃∗

t ) by 𝜋Z,Z∗ . Furthermore, in
order to derive mixing properties of the coupled process ((Z̃t, Z̃∗

t ))t∈N0
, we show that the Markov

kernel is contractive. As in the previous Section 2, this is achieved by a further coupling of two
versions, ((Z̃t, Z̃∗

t ))t∈N0
and ((Z̃′

t , Z̃∗′
t ))t∈N0

of the above process. This Markov kernel will be denoted
𝜋̃Z,Z∗ . Suppose that Z̃t−1 = z ∶= (x1, … , xp, 𝜆1, … , 𝜆q), Z̃′

t−1 = z′ ∶= (x′1, … , x′p, 𝜆′1, … , 𝜆′q),
Z̃∗

t−1 = z∗ ∶= (x∗1 , … , x∗p , 𝜆∗1, … , 𝜆∗q), and Z̃∗′
t−1 = z∗′ ∶= (x∗′1 , … , x∗′p , 𝜆∗′1 , … , 𝜆∗′q ) are given. Let

(Nt(u))u≥ 0 be a Poisson process with unit intensity which is independent of these random vari-
ables. Then we set Z̃t = (X̃ , x1, … , xp−1, 𝜆̃, 𝜆1, … , 𝜆q−1), Z̃′

t = (X̃ ′
, x′1, … , x′p−1, 𝜆̃

′
, 𝜆′1, … , 𝜆′q−1),

Z̃∗
t = (X̃∗

, x∗1 , … , x∗p−1, 𝜆̃
∗
, 𝜆∗1, … , 𝜆∗q−1), and Z̃∗′

t = (X̃∗′
, x∗′1 , … , x∗′p−1, 𝜆̃

∗′
, 𝜆∗′1 , … , 𝜆∗′q−1). Here,

according to the model equation, 𝜆̃ = f𝜃0 (z), 𝜆̃
′ = f𝜃0(z

′), 𝜆̃∗ = f𝜃n
(z∗), and 𝜆̃

∗′ = f𝜃n
(z∗′). We obtain

the desired proximity by generating X̃ , X̃ ′, X̃∗, and X̃∗′ from the same standard Poisson process
(Nt(u))u≥ 0, that is, X̃ = Nt(𝜆̃), X̃ ′ = Nt(𝜆̃

′), X̃∗ = Nt(𝜆̃
∗), and X̃∗′ = Nt(𝜆̃

∗′).
To prove consistency of the bootstrap approximation, we impose the following conditions.

(A2) 𝜃n
P
→ 𝜃0 and there exists some 𝛿 > 0 such that {𝜃 ∈ Θ ∶ ||𝜃 − 𝜃0|| ≤ 𝛿} ⊆ Θ0.

(A3) There exists some M > 0 such that

||f𝜃(x1, … , xp, 𝜆1, … , 𝜆q) − f𝜃0(x1, … , xp, 𝜆1, … , 𝜆q)|| ≤ M ||𝜃 − 𝜃0||( p∑
i=1

xi +
q∑

j=1
𝜆j

)
,

holds for all (x1, … , xp, 𝜆1, … , 𝜆q) ∈ S and all 𝜃 ∈ Θ0.

Remark 1. 𝜃n
P
→ 𝜃0 implies that there exist null sequences (𝛿n)n∈N and (𝜌n)n∈N such that

P𝜃0

(||𝜃n − 𝜃0|| > 𝛿n

) ≤ 𝜌n. (8)

Hence, (A2) implies that

P𝜃0

(
𝜃n ∈ Θ0

)
→

n→∞
1.
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3.2 Stationarity and absolute regularity of the coupled process

Note that the uniform contraction condition (A1) is fulfilled for f𝜃n
if 𝜃n ∈ Θ0. We remind

the reader that we denote the Markov kernel of the process ((Z̃t, Z̃∗
t ))t∈N0

by 𝜋Z,Z∗ and that of
((Z̃t, Z̃∗

t ), (Z̃
′
t , Z̃∗′

t ))t∈N0
by 𝜋̃Z,Z∗ . In case of 𝜃n ∈ Θ0, we obtain by Proposition 1(ii) that

Ẽ
[
Δ(Z̃t, Z̃′

t) + Δ(Z̃∗
t , Z̃∗′

t )
] ≤ 𝜅 Ẽ

[
Δ(Z̃t−1, Z̃′

t−1) + Δ(Z̃∗
t−1, Z̃∗′

t−1)
]
. (9)

This means that the Markov kernel 𝜋̃Z,Z∗ is contractive w.r.t. the Kantorovich distance (2), where

(2)(Q,Q′) = inf
(Z1,Z2)∼Q,(Z′

1,Z
′
2)∼Q′

E
[
Δ(Z1,Z′

1) + Δ(Z2,Z′
2)
]
.

We obtain, analogously to Proposition 2, that

(2)(Q𝜋Z,Z∗
,Q′𝜋Z,Z∗ ) ≤ 𝜅 (2)(Q,Q′), (10)

holds for arbitrary distributions Q and Q′ on the state space S× S. This leads immediately to the
following theorem.

Theorem 2. Suppose that (A1), (A2), and (A3) are fulfilled. Then the following statements hold
true with a probability tending to one, as n→∞.

(i) The process ((Z̃t, Z̃∗
t ))t has a unique stationary distribution.

(ii) Suppose either that the process ((Z̃t, Z̃∗
t ))t∈Z is in its stationary regime or that the process

((Z̃t, Z̃∗
t ))t∈N0

is started with pre-sample values
Z̃0 = (X̃0, … , X̃1−p, 𝜆̃0, … , 𝜆̃1−q) and Z̃∗

0 = (X̃∗
0, … , X̃∗

1−p, 𝜆̃
∗
0, … , 𝜆̃

∗
1−q) such that

max{ẼX̃k
0, … , ẼX̃k

1−p, Ẽ𝜆̃k
0, … , Ẽ𝜆̃k

1−q} ≤ C and
max{Ẽ(X̃∗

0)k, … , (ẼX̃∗
1−p)k, Ẽ(𝜆̃∗0)k, … , Ẽ(𝜆̃∗1−q)k} ≤ C, for some C <∞. Then there exists some

𝜌 < 1 such that

𝛽(X̃ ,X̃∗)(n) = O(𝜌n).

At this point we recall once more that any consistent estimator 𝜃n of 𝜃0 falls into Θ0 with a
probability tending to one. This means that the above regularity properties of the coupled process
are fulfilled asymptotically.

3.3 Proximity of the original and the bootstrap process

Suppose now that (A1), (A2), and (A3) are fulfilled and that the process (Zt)t∈Z is in its stationary
regime. We derive a recursion for the process ((Z̃t, Z̃∗

t ))t∈N0
. We have that

Ẽ |||X̃∗
t − X̃ t

||| = Ẽ
[

Ẽ
(|X̃∗

t − X̃ t|||| 𝜆̃∗t , 𝜆̃t

)]
= Ẽ |||𝜆̃∗t − 𝜆̃t

|||
≤ Ẽ |||f𝜃n

(Z̃∗
t−1) − f𝜃n

(Z̃t−1)
||| + Ẽ |||f𝜃n

(Z̃t−1) − f𝜃0 (Z̃t−1)
|||

≤
p∑

i=1
ci Ẽ |||X̃∗

t−i − X̃ t−i
||| + q∑

j=1
dj Ẽ |||𝜆̃∗t−j − 𝜆̃t−j

||| + M ||𝜃n − 𝜃0|| Ẽ||Z̃t−1||1.
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It follows from Lemma 1 and the previous display that

ẼΔ(Z̃∗
t , Z̃t)

= 𝛾1 Ẽ |||X̃∗
t − X̃ t

||| + p∑
i=2

𝛾i Ẽ |||X̃∗
t−i+1 − X̃ t−i+1

||| + 𝛿1 Ẽ |||𝜆̃∗t − 𝜆̃t
||| + q∑

j=2
𝛾j Ẽ |||𝜆̃∗t−j+1 − 𝜆̃t−j+1

|||
≤ 𝜅 ẼΔ

(
Z̃∗

t−1, Z̃t−1
)
+ (𝛾1 + 𝛿1)M ||𝜃n − 𝜃0|| Ẽ||Z̃t−1||1

≤ 𝜅2 ẼΔ
(

Z̃∗
t−2, Z̃t−2

)
+ 𝜅(𝛾1 + 𝛿1)M ||𝜃n − 𝜃0|| Ẽ||Z̃t−2||1 + (𝛾1 + 𝛿1)M ||𝜃n − 𝜃0|| Ẽ||Z̃t−1||1

≤ … ≤
( t−1∑

s=0
𝜅s

)
M E||Z0||1(𝛾1 + 𝛿1)||𝜃n − 𝜃0|| + 𝜅t ẼΔ

(
Z̃∗

0, Z̃0
)
.

This leads to the following theorem.

Theorem 3. Suppose that (A1), (A2), and (A3) are fulfilled and that (Zt)t∈Z is in its stationary
regime. Then

(i) If (Z∗
t )t∈N0

is started with a pre-sample value Z∗
0 , then

ẼΔ
(

Z̃∗
t , Z̃t

) ≤ M E||Z0||1(𝛾1 + 𝛿1)
1 − 𝜅

||𝜃n − 𝜃0|| + 𝜅t ẼΔ
(

Z̃∗
0, Z̃0

)
.

(ii) If (Z∗
t )t∈N0

is in its stationary regime, then

ẼΔ
(

Z̃∗
t , Z̃t

) ≤ M E||Z0||1(𝛾1 + 𝛿1)
1 − 𝜅

||𝜃n − 𝜃0||.
4 BOOTSTRAP CONSISTENCY FOR STATISTICS
OF DIFFERENT TYPE

In this section we exhibit some examples of important statistics for which consistency of their
bootstrap approximation can be easily shown on the basis of the coupling results given in The-
orems 2 and 3. Let Sn = hn(X1, … ,Xn; 𝜃0) be a statistic of interest, for example, a test statistic
or a statistic used as a starting point for the construction of a confidence interval. Typically, we
can employ standard tools to show that (Sn)n∈N converges in distribution to some random vari-
able, say Y . The distribution of the latter depends often on one or more unknown parameters
which suggests the application of a bootstrap approximation. Let S∗

n = hn(X∗
1 , … ,X∗

n ; 𝜃n) be the
bootstrap counterpart of Sn. We denote by S̃n = hn(X̃1, … , X̃n; 𝜃0) and S̃∗

n = hn(X̃
∗
1, … , X̃∗

n; 𝜃n)
the coupled versions of Sn and S∗

n, respectively, where the coupling of the underlying random
variables is described in the previous section. Below we show for some examples that the approx-
imation result for X̃ t and X̃∗

t given in Theorem 3 immediately implies, in conjunction with the
mixing result in Theorem 2, that

|||S̃n − S̃∗
n
||| P̃
→ 0. (11)

For the purpose of determining critical values of tests or for establishing confidence intervals we
need, however, convergence of the respective cumulative distribution functions. Let FSn be the
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cdf of the statistic Sn and FS∗
n

be that of the conditional distribution of S∗
n given X1, … , Xn. If in

addition Y has a continuous distribution, then (11) implies by lemma 2.11 of van der Vaart (1998)
that

sup
x

|||FSn(x) − FS∗
n
(x)||| P

→ 0. (12)

This ensures that a test based on Sn with a critical value chosen by the corresponding quantile of
FS∗

n
reaches asymptotically the prescribed size.
In what follows we assume that (A1), (A2), and (A3) are fulfilled which means that we have

the results of Theorems 2 and 3 at our disposal. Recall from Remark 1 that it follows from (A2)
that there exist null sequences (𝛿n)n∈N and (𝜌n)n∈N such that

P𝜃0

(||𝜃n − 𝜃0|| > 𝛿n

) ≤ 𝜌n,

which implies in particular that

P𝜃0

(
𝜃n ∈ Θ0

)
→

n→∞
1.

We consider some statistics and argue that our approximation results imply without much
additional effort consistency of the corresponding bootstrap approximations.

Example 1. Sample mean
Suppose we observe X1, … , Xn, where the underlying process (Zt)t∈Z is strictly stationary. We
focus on the mean 𝜇 = E𝜃0 X1, which is estimated by its sample version, Xn = n−1 ∑n

t=1 Xt. It
follows from a central limit theorem for absolutely regular random variables that

Sn ∶=
√

n
(

Xn − 𝜇
) d
→ Y ∼ N(0, 𝜎2

∞), (13)

where 𝜎2
∞ =

∑∞
k=−∞ cov(Xk,X0). In order to construct a confidence interval for 𝜇 with an asymp-

totic coverage probability of 𝛾 ∈ (0, 1), we can either approximate 𝜎2
∞ by a consistent estimator

and rely on the normal approximation or use a bootstrap approximation to the distribution of Sn.
Such an approximation is given by

S∗
n =

√
n
(

X
∗
n − E∗X

∗
n

)
,

where X
∗
n = n−1 ∑n

t=1 X∗
t and E∗X

∗
n = E(X

∗
n|X1, … ,Xn) is the expectation in the “bootstrap

world.” In order to show that this is asymptotically correct, we could employ at this point a
suitable central limit theorem for triangular arrays of dependent random variables and prove that

S∗
n

d
→ Y in probability.

On the other hand, as explained in what follows, we could simply use the results of Theorems 2
and 3 and obtain the desired consistency almost effortlessly.

We assume that (A1), (A2), and (A3) are fulfilled. We suppose that the bootstrap
process is started with pre-sample values Z∗

0 = (X∗
0 , … ,X∗

1−p, 𝜆
∗
0, … , , 𝜆∗1−q) such that

E𝜃0 E∗
[∑p

i=1 X∗
1−i +

∑q
j=1 𝜆

∗
1−j

]
< ∞. We assume from here on that
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||𝜃n − 𝜃0|| ≤ 𝛿n and 𝜃n ∈ Θ0,

which happens with a probability tending to 1 and which implies that the bootstrap process
behaves as desired. Theorem 3 yields, for the coupled versions of the original and bootstrap
random variables,

Ẽ |||X̃ t − X̃∗
t
||| = O

(
𝛿n ∨ 𝜅t) . (14)

Since moments of arbitrary order of these random variables are bounded we obtain, for all k ∈ N,
arbitrary 𝛼 ∈ (0, 1) and 𝛽 = 1∕(1 − 𝛼), that

Ẽ
[|||X̃ t − X̃∗

t
|||k
]
= Ẽ

[|||X̃ t − X̃∗
t
|||𝛼 |||X̃ t − X̃∗

t
|||k−𝛼

]
≤ (

Ẽ |||X̃ t − X̃∗
t
|||)𝛼

(
Ẽ
[|||X̃ t − X̃∗

t
|||(k−𝛼)𝛽

])1∕𝛽

= O
(
𝛿𝛼n ∨ 𝜅𝛼t) . (15)

We obtain in particular

Ẽ
[|||(X̃ t − 𝜇) − (X̃∗

t − E∗X∗
t )
|||2] ≤ Ẽ

[|||X̃ t − X̃∗
t
|||2]

= O
(
𝛿𝛼n ∨ 𝜅𝛼t) .

Since absolute regularity implies strong mixing we can use a covariance inequality for strongly
mixing processes and obtain that

cov
((
(X̃s − 𝜇) − (X̃∗

s − E∗X∗
s )
)
,
(
(X̃ t − 𝜇) − (X̃∗

t − E∗X∗
n )
))

= O
(
𝜌|s−t|∕3

(
Ẽ|||(X̃s − 𝜇) − (X̃∗

s − E∗X∗
s )
|||3)1∕3 (

Ẽ|||(X̃ t − 𝜇) − (X̃∗
t − E∗X∗

t )
|||3)1∕3)

= O
(
𝜌|s−t|∕3

(
𝛿
𝛼∕3
n ∨ 𝜅𝛼s∕3

)(
𝛿
𝛼∕3
n ∨ 𝜅𝛼t∕3

))
.

Therefore, we obtain

Ẽ
[|||S̃n − S̃∗

n
|||2]

= 1
n

n∑
s,t=1

cov
((
(X̃s − 𝜇) − (X̃∗

s − E∗X∗
s )
)
,
(
(X̃ t − 𝜇) − (X̃∗

t − E∗X∗
n )
))

= 1
n

[log(𝛿n)∕ log(𝜅)]∑
s,t=1

O
(
𝜌|s−t|∕3 𝜅𝛼s∕3 𝜅𝛼t∕3)

+ 2
n

[log(𝛿n)∕ log(𝜅)]∑
s=1

n∑
t=[log(𝛿n)∕ log(𝜅)]+1

O
(
𝜌|s−t|∕3 𝜅𝛼s∕3 𝛿

𝛼∕3
n

)
+ 1

n

n∑
s,t=[log(𝛿n)∕ log(𝜅)]+1

O
(
𝜌|s−t|∕3 𝛿

2𝛼∕3
n

)
= o(1). (16)

that is, (11) is fulfilled.
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Example 2. The above results can be extended to so-called generalized means as considered in
Jentsch and Weiss (2019), in the context of integer-valued autoregressive (INAR) processes. These
authors considered statistics Tn of the form

Tn =
√

n

[
f

(
1

n − m + 1

n−m+1∑
t=1

g (Xt, … ,Xt+m−1)

)
− f

(
E𝜃0 g (X1, … ,Xm)

)]
,

for sufficiently regular functions g ∶ Rm → Rd and f ∶ Rd → R. Simple examples of such func-
tions are given by g1(x) = 1(x = k), g2(x) = 1(x ≤ k), k ∈ N0, and f (y)= y. This leads to the
statistics

T(1)
n =

√
n

[
n−1

n∑
t=1

1 (Xt = k) − P𝜃0 (X1 = k)

]

and

T(2)
n =

√
n

[
n−1

n∑
t=1

1 (Xt ≤ k) − P𝜃0 (X1 ≤ k)

]
,

respectively. Since X̃ t and X̃∗
t are integer-valued we have |||gi(X̃ t) − gi(X̃

∗
t )
||| ≤ |X̃ t − X̃∗

t
|||, for i= 1, 2.

Hence, approximation (14) immediately yields that

Ẽ |||gi
(

X̃ t
)
− gi

(
X̃∗

t
)||| = O

(
𝛿n ∨ 𝜅t) ,

and we can use the same arguments as above to show consistency of the corresponding bootstrap
approximations. Some statistics such as, for example,

T(3)
n =

√
n

[∑n−1
t=1 1((Xt+1,Xt) = (i, j))∑n−1

t=1 1(Xt = j)
− P𝜃0 (X2 = j|X1 = i)

]

can probably treated similarly, however, this requires a few additional arguments. In the related
context of INAR processes, Jentsch and Weiß (2019) provided a more general result on bootstrap
consistency, under some sort of high-level assumptions.

Example 3. Autocovariances
Suppose again that (Zt)t∈Z is strictly stationary, 𝜇 = E𝜃0 X1. Let 𝛾 ∶ Z → R with 𝛾(k) =

cov(Xk,X0) be the autocovariance function of the count process. Based on observations
X1, … , Xn, a natural estimator of 𝛾(k) is given by

𝛾̂n(k) =
1
n

n−|k|∑
t=1

(Xt+|k| − Xn)(Xt − Xn).

Since E𝜃0[(Xn − 𝜇)2] = O(n−1) we obtain that

Tn ∶=
√

n
(
𝛾̂n(k) − 𝛾(k)

)
= 1√

n

n−|k|∑
t=1

[
(Xt+|k| − 𝜇)(Xt − 𝜇) − 𝛾(k)

]
+ OP

(
n−1∕2) .
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Using this we obtain by a central limit theorem for dependent random variables that

Tn
d
→ Y2 ∼ N(0, 𝜏2

∞), (17)

where 𝜏2
∞ =

∑∞
l=−∞ cov

(
(X|k|+l − 𝜇)(Xl − 𝜇), (X|k| − 𝜇)(X0 − 𝜇)

)
. A bootstrap version of Tn is given

by

T∗
n =

√
n
(
𝛾̂∗n (k) − E∗𝛾̂∗n (k)

)
,

where

𝛾̂∗n (k) =
1
n

n−|k|∑
t=1

(X∗
t+|k| − X

∗
n)(X∗

t − X
∗
n).

As above, we denote by X̃ t and X̃∗
t the coupled versions of Xt and X∗

t , respectively. We can show
analogously to (15) that, for 𝛼 ∈ (0, 1),

Ẽ
[(

(X̃ t+|k| − ̄̃Xn)(X̃ t − ̄̃Xn) − (X̃∗
t+|k| − ̄̃X

∗
n)(X̃

∗
t − ̄̃X

∗
n)
)k

]
= O

(
𝛿𝛼n ∨ 𝜅𝛼t) . (18)

Indeed, splitting up

(X̃ t+|k| − ̄̃Xn)(X̃ t − ̄̃Xn) − (X̃∗
t+|k| − ̄̃X

∗
n)(X̃

∗
t − ̄̃X

∗
n) =

(
X̃ t+|k|X̃ t − X̃∗

t+|k|X̃∗
t
)
−

(
X̃ t

̄̃Xn − X̃∗
t
̄̃X
∗
n

)
−

(
X̃ t+|k| ̄̃Xn − X̃∗

t+|k| ̄̃X∗
n

)
+

(
̄̃Xn

2
− ̄̃X

∗
n

2)
,

and using, for example, for the first term on the right-hand side the upper estimate

|||X̃ t+|k|X̃ t − X̃∗
t+|k|X̃∗

t
||| ≤ |||X̃ t − X̃∗

t
||| X̃ t+|k| + |||X̃ t+|k| − X̃∗

t+|k|||| X̃∗
t

we obtain from (15) and boundedness of all moments of the involved random variables that (18)
holds true. Now we obtain in analogy to (16) that

Ẽ |||T̃n − T̃∗
n
||| = o(1), (19)

and therefore |||T̃n − T̃∗
n
||| P̃
→ 0.

Example 4. Degenerate von Mises and U-statistics
As another test bed for our approximation results, we consider a bootstrap approximation for
degenerate von Mises (V -)statistics. For random variables X1, … , Xn, a V -statistic has the form

Vn =
n∑

s,t=1
h(Xs,Xt),

where h is the so-called kernel of this statistic. A U-statistic is obtained by dropping the diagonal
terms, that is,
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Un =
∑

1≤s,t≤n, s≠t
h(Xs,Xt).

Test statistics of Cramér–von Mises type can often be approximated by V -statistics, in some special
cases they have even exactly such a structure. Under the null hypothesis, they show typically a
degenerate behavior, that is,

Eh(x,Xt) = 0 ∀x.

Leucht and Neumann (2013) provided a general result on bootstrap consistency for U- and
V -statistics. The asymptotic behavior of these statistics was derived under the following condition.

(B1) (i) (Xt)t∈Z is a strictly stationary and ergodic process with values in Rd.
(ii) h ∶ Rd × Rd → R is a symmetric, continuous and non-negative definite function, that

is, ∀ c1, … , cm ∈ R, x1, … , xm ∈ Rd and m ∈ N,
∑m

i,j=1 ci cj h(xi, xj) ≥ 0.
(iii) Eh(X0, X0)<∞.
(iv) E(h(x, Xt) | X1, … , Xt − 1)= 0 a.s. for all x ∈ supp(PX0 ).

Leucht and Neumann (2013, Theorem 2.1) show, under the assumption (B1), that

Vn
d
→ Y ∶=

∑
k
𝜆k Y 2

k and Un
d
→ Y − Eh(X0,X0),

as n tends to infinity. Here, (Y k)k is a sequence of independent standard normal random variables
and (𝜆k)k denotes the sequence of nonzero eigenvalues of the equation

E[h(x,X0)Φ(X0)] = 𝜆 Φ(x),

enumerated according to their multiplicity.
Bootstrap counterparts of these statistics are most naturally given by

U∗
n = 1

n
∑

1≤s,t≤n, s≠t
h∗(X∗

s ,X∗
t ) and V∗

n = 1
n

n∑
s,t=1

h∗(X∗
s ,X∗

t ).

For the proof of bootstrap consistency, Leucht and Neumann (2013) imposed the following
condition.

(B2) (i) The bootstrap process (X∗
t )t∈Z is strictly stationary with probability tending to one and

takes its values in Rd. Additionally,

P∗

(
sup

𝜔∶||𝜔||2≤K

||||| 1
n

n∑
t=1

ei𝜔T X∗
t − E𝜃0 ei𝜔T Xt

||||| > 𝜖

)
P
→ 0 ∀K < ∞, 𝜖 > 0, (20)

that is, the empirical bootstrap measure converges weakly to PX0 in probability.
(ii) The kernels of the bootstrap statistics h∗ ∶ Rd × Rd → R are symmetric, nonnega-

tive definite, and equicontinuous on compacta in probability, that is, ∀ K < ∞, 𝜀 > 0,
∃ 𝛿 > 0 such that



16 NEUMANN

P

(
sup

x0,y0∶||x0||2,||y0||2≤K
sup

x,y∶||x−x0||2,||y−y0||2≤𝛿|h∗(x, y) − h∗(x0, y0)| > 𝜖

)
→

n→∞
0.

(iii) h∗(x, y)
P
→ h(x, y) ∀ x, y ∈ supp(PX0).

(iv) E∗h∗(X∗
0 ,X∗

0 )
P
→ Eh(X0,X0).

(v) E∗(h∗(x,X∗
t )|X∗

t−1, … ,X∗
1 ) = 0 a.s. ∀ x ∈ supp(P∗X∗

0 ).

While part (ii) to (iv) of (B2) are specific conditions on the kernel h* which have to be checked
in a case by case manner, part (i) follows from (14); see also lemma 4.1 in Leucht and Neu-
mann (2013). Theorem 4.1 in Leucht and Neumann (2013) provides a general consistency result.
Actually, under conditions (B1) and (B2),

V∗
n

d
→ Y and U∗

n
d
→ Y − Eh(X0,X0) in probability.

If additionally P(h(X0,X ′
0) ≠ 0) > 0, for X ′

0 being an independent copy of X0, then

sup
x∈R

|P∗(U∗
n ≤ x) − P(Un ≤ x)| P

→ 0 and sup
x∈R

|P∗(V∗
n ≤ x) − P(Vn ≤ x)| P

→ 0.

5 PROOFS

Proof of Lemma 1. A comparison of coefficients in (3) reveals that it suffices to find strictly positive
constants 𝛾1, … , 𝛾p, 𝛿1, … , 𝛿q and some 𝜅 < 1 such that the following inequalities are satisfied:

(𝛾1 + 𝛿1) c1 + 𝛾2 ≤ 𝜅 𝛾1

⋮

(𝛾1 + 𝛿1) cp−1 + 𝛾p ≤ 𝜅 𝛾p−1

(𝛾1 + 𝛿1) cp ≤ 𝜅 𝛾p

(𝛾1 + 𝛿1) d1 + 𝛿2 ≤ 𝜅 𝛿1

⋮

(𝛾1 + 𝛿1) dq−1 + 𝛿q ≤ 𝜅 𝛿q−1

(𝛾1 + 𝛿1) dq ≤ 𝜅 𝛿q. (21)

We set 𝛾1 + 𝛿1 = 1. Let 𝜖 = (1 − L)∕(p + q), where L =
∑p

i=1 ci +
∑q

j=1 dj. We consider the following
system of equations.

cp + 𝜖 = 𝛾p

cp−1 + 𝛾p + 𝜖 = 𝛾p−1

⋮

c1 + 𝛾2 + 𝜖 = 𝛾1

dq + 𝜖 = 𝛿q

dq−1 + 𝛿q + 𝜖 = 𝛿q−1

⋮

d1 + 𝛿2 + 𝜖 = 𝛿1.
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It is obvious that this system of equations has a unique solution with strictly positive
𝛾1, … , 𝛾p, 𝛿1, … , 𝛿q. Moreover, it follows from

p∑
i=1

ci +
q∑

j=1
dj +

p∑
i=2

𝛾i +
q∑

j=2
𝛿j + (p + q)𝜖 =

p∑
i=1

𝛾i +
q∑

j=1
𝛿j,

and
∑p

i=1 ci +
∑q

j=1 dj = L that 𝛾1 + 𝛿1 = 1, as required. Therefore, we see that, with such a choice
of 𝛾1, … , 𝛾p, 𝛿1, … , 𝛿q, the following strict inequalities are fulfilled.

c1 + 𝛾2 < 𝛾1

⋮

cp−1 + 𝛾p < 𝛾p−1

cp < 𝛾p

d1 + 𝛿2 < 𝛿1

⋮

dq−1 + 𝛿q < 𝛿q−1

dq < 𝛿q.

Choosing 𝜅 = max{(c1 + 𝛾2)∕𝛾1, … , (cp−1 + 𝛾p)∕𝛾p−1, cp∕𝛾p, (d1 + 𝛿2)∕𝛿1, … , (dq−1 + 𝛿q)∕𝛿q−1,

dq∕𝛿q} we obtain that the system of inequalities (21) is satisfied. ▪

Proof of Proposition 2. Let Q and Q′ be arbitrary probability measures supported in S and let 𝜉 be
the optimal coupling of Q and Q′ w.r.t. the Kantorovich distance, that is,

(Q,Q′) = ∫S×S
Δ(z, z′)𝜉(dz, dz′).

Then 𝜉𝜋̃Z
𝜃

is a coupling of Q𝜋Z
𝜃

and Q′𝜋Z
𝜃

and it follows from Proposition 1(i) that

(Q𝜋Z
𝜃 ,Q′𝜋Z

𝜃 ) ≤ ∫ Δ(u,u′)𝜉𝜋̃Z
𝜃 (du, du′)

= ∫
[
∫ Δ(u,u′)𝜋̃Z

𝜃 ((z, z′), (du, du′))
]
𝜉(dz, dz′)

≤ 𝜅 ∫ Δ(z, z′)𝜉(dz, dz′) = 𝜅 (Q,Q′).
▪

Proof of Corollary 1. Let

 =

{
Q ∶ Q is a probability distribution based in S,∫S

p+q∑
i=1

|xi| Q(dx) < ∞

}
.

It is well-known that the space  equipped with the Kantorovich metric  is complete. Since by
Proposition 2 the mapping 𝜋Z

𝜃
is contractive it follows by the Banach fixed point theorem that the

Markov kernel 𝜋Z
𝜃

admits a unique fixed point Q, i.e. Q𝜋Z
𝜃
= Q. In other words, Q is the unique

stationary probability distribution of the process (Zt)t∈Z. ▪



18 NEUMANN

Proof of Lemma 2. (i) We prove this assertion by induction. We begin with k= 1. Recall that it
follows from (A1) that

𝜆t ≤
p∑

i=1
ci Xt−i +

q∑
j=1

dj 𝜆t−j + C(0), (22)

holds for all t ∈ N. Let Mt ∶= max
{
EXt, … ,EXt−p+1,E𝜆t, … ,E𝜆t−q+1

}
. We obtain from (22) that

EXt = E𝜆t ≤ L Mt−1 + C(0),

and therefore Mt ≤ max{Mt−1,LMt−1 + C(0)} ≤ max{Mt−1,C(0)∕(1 − L)}. Hence,

max
{

Mt,C(0)∕(1 − L)
} ≤ max

{
Mt−1,C(0)∕(1 − L)

}
,

again for all t ∈ N. This implies that

EXt = E𝜆t ≤ C1 = D1 ∶= max
{

M0,C(0)∕(1 − L)
}

∀t ∈ N.

Suppose now that, for all t ∈ N and l= 1, … , k− 1,

EXl
t ≤ Cl and E𝜆l

t ≤ Dl

hold true, where C1, D1, … , Ck− 1, Dk− 1 are finite constants which depend only on
c1, … , cp, d1, … , dq and max{EXk−1

0 , … ,EXk−1
1−p ,E𝜆

k−1
0 , … ,E𝜆k−1

1−q}. We obtain from (22) that

E𝜆k
t ≤ E

⎡⎢⎢⎣
( p∑

i=1
ci Xt−i +

q∑
j=1

dj 𝜆t−j + C(0)

)k⎤⎥⎥⎦
=

∑
i1+…+ip+j1+…+jq=k

ci1
1 … cip

p dj1
1 … djq

q E

[
Xi1

t−1 … Xip
t−p 𝜆

j1
t−1 … 𝜆

jq
t−q

]

+
k∑

l=1

(
k
l

)
C(0)l

E

⎡⎢⎢⎣
( p∑

i=1
ci Xt−i +

q∑
j=1

dj Xt−j

)k−l⎤⎥⎥⎦ . (23)

Since, by assumption, all moments up to order k− 1 are bounded we obtain that the second
term on the right-hand side of (23) can be bounded by some constant which only depends on
c1, … , cp, d1, … , dq and max{EXk

0 , … ,EXk
1−p,E𝜆

k
0, … ,E𝜆k

1−q}. To estimate the first term on the
right-hand side of (23), note that, for X ∼ Pois(𝜆),

EXk =
k∑

i=1
𝜆i S(k, i), (24)

where S(k, i) denotes a Stirling number of the second kind; see for example, Riordan (1937,
Equation 3.4). S(k, i) is the number of ways to partition a set of k objects into i nonempty
subsets. In what follows, it is only relevant that S(k, k)= 1 for all k ∈ N. We obtain
that
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E

[
Xi1

t−1 … Xip
t−p 𝜆

j1
t−1 … 𝜆

jq
t−q

] ≤ (
EXk

t−1
)i1∕k …

(
EXk

t−p

)ip∕k(
E𝜆k

t−1
)j1∕k …

(
E𝜆k

t−q

)jq∕k

≤ max
{

E𝜆k
t−1, … ,E𝜆k

t−(p∨q)

}
+ C(k) ∀t > p,

where C(k) depends only on moments of order up to k− 1. Therefore, we obtain from (23) the
recursion

E𝜆k
t ≤ Lk max{E𝜆k

t−1, … ,E𝜆k
t−(p∨q)} + C̃(k) ∀t > p,

where C̃(k)
< ∞depends only on c1, … , cp, d1, … , dq and max{EXk

0 , … ,EXk
1−p,E𝜆

k
0, … ,E𝜆k

1−q}

Let M(k)
t ∶= max

{
E𝜆k

t , … ,E𝜆k
t−(p∨q)+1

}
. Then M(k)

t ≤ max{M(k)
t−1,LkM(k)

t−1 + C̃(k)} ≤
max{M(k)

t−1, C̃(k)∕(1 − Lk)}. Hence,

max
{

M(k)
t , C̃(k)

} ≤ max
{

M(k)
t−1, C̃(k)

}
∀t > p,

which implies that there exists some Dk <∞ such that

E𝜆k
t ≤ Dk ∀t ∈ N.

Using (24) once more we obtain that there exists some Ck <∞ such that

EXk
t ≤ Ck ∀t ∈ N.

(ii) Let (Zt)t∈N0
be a process with pre-sample values Z0 = (X0, … ,X1−p, 𝜆0, … , 𝜆1−q) as above and

let (Z(0)
t )t∈Z be a stationary version of the process. Since the law of Zt converges to its stationary

limit we conclude that 𝜆t
d
→ 𝜆

(0)
t and Xt

d
→ X (0)

t . By theorem III.6.31 in Pollard (1984, p. 58) we can
find a coupling of these random variables such that 𝜆t

a.s.
→ 𝜆

(0)
t and Xt

a.s.
→ X (0)

t . Hence, we conclude
by Fatou’s lemma that

E(𝜆(0)t )k ≤ lim inf
t→∞

E𝜆k
t ,

and

E(X (0)
t )k ≤ lim inf

t→∞
EXk

t ,

which proves the second assertion. ▪

Proof of Theorem 1. It follows from (4) to (7) that

𝛽X (k,n) ≤
∞∑

l=0
P̃
(

X̃n+k+l ≠ X̃ ′
n+k+l

)
≤ 1

𝛾1

∞∑
l=0

ẼΔ(Z̃n+k+l, Z̃′
n+k+l)

≤ 1
𝛾1

𝜅n

1 − 𝜅
ẼΔ(Z̃k, Z̃′

k).
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(i) and (ii) of Lemma 2 show that supk
{

ẼΔ(Z̃k, Z̃′
k)
}

is bounded, which completes the
proof. ▪

Proof of Theorem 2. This proof is analogous to that of Theorem 1 and therefore omitted. ▪

Proof of Theorem 3. The arguments are already given in Section 3.3. ▪
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