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a b s t r a c t

We provide general results on the consistency of certain bootstrap methods applied to
degree-2 degenerate statistics of U-type and V -type. While it follows from well known
results that the original statistic converges in distribution to a weighted sum of centred
chi-squared random variables, we use a coupling idea of Dehling andMikosch to show that
the bootstrap counterpart converges to the same distribution. The result is applied to a
goodness-of-fit test based on the empirical characteristic function.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The bootstrap is awell established universal tool for approximating the distribution of any statistic of interest. Sometimes
its asymptotic validity for a particular purpose can be inferred from a general result; however, quite often its consistency
is checked in a case-by-case manner. Available results of general type include those of Bickel and Freedman [1] for Efron’s
bootstrap applied to linear and related statistics, Arcones and Giné [2] for Efron’s bootstrap in connection with U- and
V -statistics, and Stute, GonzálezManteiga and PresedoQuindimil [3]who showed that the bootstrap version of the empirical
process with estimated parameters converges to the same limit as the original empirical process.
In this paper we derive quite general results on the asymptotic validity for bootstrap methods applied to statistics of

degenerate U-type and V -type. Statistics of this type often emerge from goodness-of-fit tests; see for example [4, Sect. 2].
Under usual assumptions, the limit distribution of such a U-statistic will be that of a weighted sum of independent and
centred χ2 random variables with one degree of freedom. In a few cases this distribution is actually known; see for
example [5, Sect. 7] and [6]. In an overwhelming number of cases, however, the weights in the limit random variable
depend on an unknown parameter in a complicated way. Then the bootstrap offers a convenient and perhaps unrivalled
way of determining critical values for tests. We adapt a method of proof originally proposed by Bickel and Freedman [1], for
proving consistency of Efron’s bootstrap for statistics as the samplemean or related quantities, andmodified by Dehling and
Mikosch [7], for Efron’s bootstrap in connectionwith degenerateU-statistics of i.i.d. real-valued randomvariables. Bickel and
Freedman employed the fact that Mallows’ distance between the distribution of the sample mean and the distribution of its
bootstrap counterpart can be estimated fromabove byMallows’ distance between the sample and the bootstrap distribution.
Therefore, it was not necessary to re-derive the asymptotic distribution of the statistic of interest on the bootstrap side;
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rather, it sufficed to check convergence of the respective distributions at the level of individual random variables. In the
case of U- or V -statistics, one cannot simply copy this scheme of proof since the summands in the statistic of interest are not
independent in general. Dehling and Mikosch [7] have shown, however, that a simple coupling of the underlying random
variables can be used for showing that a degenerate U-statistic and its bootstrap counterpart converge to the same limit.
We extend this idea to more general bootstrap schemes and to the case of degenerate U- and V -statistics with kernels
which may depend on some parameter that has to be estimated. We note that alternative ways of proving consistency for
bootstrap statistics of degenerate U-type have been explored by Fan [8] and Jiménez-Gamero, Muñoz-García and Pino-
Mejías [9]. In both cases the limit distribution of the original statistic was derived via a spectral decomposition of the
kernel. Jiménez-Gamero et al. [9] mimicked this proof also on the bootstrap side while Fan [8] dismissed this possibility and
employed empirical process arguments. While Jiménez-Gamero et al. [9] and Fan [8] imposed some regularity conditions
on the parametric family of random variables involved, we try to avoid such conditions since they can hardly be checked
in cases where these densities do not have a closed form; see for example our application in Section 3 below. We also note
that in cases where the U- or V -statistic emerges from a Cramér–von Mises test one can alternatively use the stochastic
process approach in conjunction with the continuous mapping theorem for showing consistency of the bootstrap; see for
example [3]. Sometimes, however, this way turns out to be rather cumbersome and our approach then offers a simple and
easily applicable alternative.
Our paper is organized as follows. In Section 2wederive general results for the validity ofmodel-based bootstrap schemes

applied to U- and V -statistics. These results are used in Section 3 for devising a goodness-of-fit test based on the empirical
characteristic function and its model-based estimate. In this particular case, there do not exist closed-form expressions for
the densities of the observations and our approach seems to be actually easier than competing ones. All proofs are deferred
to a final Section 4.

2. Consistency of general bootstrap methods for U- and V -statistics

Throughout this section we make the following assumption:

(A1)(i) (Xn)n∈N is a sequence of independent, identically distributed Rd-valued random variables, defined on a probability
space (Ω,A, P), with common distribution function Fθ , where θ ∈ Θ ⊆ Rp.

(ii) The kernel h(·, ·; θ) is measurable, symmetric in the first two arguments and degenerate under Fθ , that is,∫
h(x, y; θ)dFθ (x) = 0 ∀y ∈ Rd.

(iii) 0 <
∫
h2(x, y; θ)dFθ (x)dFθ (y) <∞.

Remark 1. Assumption (A1) is formulated in such a way that the important case of testing composite hypotheses is
accommodated; see Section 3 for an application. It suffices then that (A1) and the other assumptions below are fulfilled
for the true parameter under the null hypothesis which we always denote by θ .

It is well known (see, for example, [10, p. 194] or [11, Theorem 3.2.2.1, p. 90]) that under (A1) the following result holds
true (‘

d
−→’ denotes convergence in distribution):

Un =
1
n

n∑
j=1

∑
k6=j

h(Xj, Xk; θ)
d
−→ Z :=

∞∑
ν=1

λν(Z2ν − 1), (2.1)

where Z1, Z2, . . . are independent standard normal random variables and the λν are the eigenvalues of the integral equation∫
h(x, y; θ)g(y)dFθ (y) = λg(x).

Furthermore, since
∑
∞

ν=1 λ
2
ν = Eh

2(X1, X2; θ) <∞ (see [10, p. 197]) the infinite sum on the right-hand side of (2.1) actually
converges in L2.
We intend to derive simple criteria for the consistency of general bootstrap versions of Un. When doing so, we have

to take into account that the distribution of the bootstrap random variables X∗1 , . . . , X
∗
n is random, typically converging to

that of the original random variables X1, . . . , Xn. To give a clear description of our basic idea, we consider first the simpler
situation where the distribution of Un = Un(X1, . . . , Xn; θ) has to be compared with that of

Unn =
1
n

n∑
j=1

∑
k6=j

h(Xnj, Xnk; θn).

These random variables should imitate what usually happens with the bootstrap in probability, that is, we will consider the
case where Xn1, . . . , Xnn are independent with a distribution converging to that of X1. We make the following assumption:

(A2)(i) (Xnj)j=1,...,n, n ∈ N, is a triangular scheme of random variables defined on respective probability spaces (Ωn,An, Pn),
where Xn1, . . . , Xnn are independent with common distribution function Fn. Furthermore, it holds that Fn H⇒ Fθ
and θn −→

n→∞
θ . (‘H⇒’ denotes weak convergence.)
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(ii) h : Rd×Rd×Rp −→ R is ameasurable function, symmetric in the first two arguments, the set δh of its discontinuity
points fulfils

∫
I((x, y, θ) ∈ δh)dFθ (x)dFθ (y) = 0, and

∫
h(x, y; θn)dFn(x) = 0 ∀y ∈ Rd, that is, the kernel h(·, ·; θn)

is degenerate under Fn.
(iii) Eh2(Xn1, Xn2; θn)−→

n→∞
Eh2(X1, X2; θ).

Remark 2. Under (A2)(i) and (A2)(ii), assumption (A2)(iii) is equivalent to uniform integrability of (h2(Xn1, Xn2; θn))n∈N,
whichwill be required to prove the following result.Moreover, note that this condition can be verified by boundingmoments
of higher order.

Lemma 2.1. Suppose that (A1) and (A2) are fulfilled. Then, as n→∞,

Unn
d
−→ Z,

where the random variable Z is defined in Eq. (2.1) above. Moreover,

sup
−∞<x<∞

|Pn(Unn ≤ x)− P(Un ≤ x)| −→
n→∞

0.

Now we are in a position to establish consistency for certain bootstrap methods. Suppose that bootstrap observations
X∗1 , . . . , X

∗
n are independently drawn (conditionally on X1, . . . , Xn) from some estimate F̂n of the unknown distribution

function Fθ . A minimal property that one usually expects for such a resampling scheme is that F̂n H⇒ Fθ , in probability
or almost surely. Furthermore, we also assume that θ̂n is a consistent estimator of θ . (In the case of a model-based bootstrap
method theX∗j will be typically drawn from F̂θn ; however,we donot require this here.) The hope is thatUn is nowconsistently
mimicked by

U∗n =
1
n

n∑
j=1

∑
k6=j

h(X∗j , X
∗

k ; θ̂n).

We derive consistency of the bootstrap under the following assumption:
(A2∗)(i) The random variables X∗1 , . . . , X

∗
n are independent (conditionally on X1, . . . , Xn) and identically distributed with

X∗1
d
−→ X1 in probability. Moreover, θ̂n

P
−→ θ . (‘

P
−→’ denotes convergence in probability.)

(ii) h : Rd×Rd×Rp −→ R is ameasurable function, symmetric in the first two arguments, the set δh of its discontinuity
points fulfils

∫
I((x, y, θ) ∈ δh)dFθ (x)dFθ (y) = 0, and E(h(X∗1 , y; θ̂n) | X1, . . . , Xn) = 0 ∀y ∈ Rd, that is, the kernel

h(·, ·; θ̂n) is degenerate for X∗1 .

(iii) E
(
h2(X∗1 , X

∗

2 ; θ̂n) | X1, . . . , Xn
) P
−→ Eh2(X1, X2, θ).

Theorem 2.1. Suppose that (A1) and (A2∗) are fulfilled. Then, as n→∞,

U∗n
d
−→ Z in probability,

where Z is defined in (2.1) above. Moreover,

sup
−∞<x<∞

∣∣P(U∗n ≤ x | X1, . . . , Xn)− P(Un ≤ x)∣∣ P
−→ 0.

This theorem is actually an immediate consequence of Lemma 2.1. To see this, note that (A2∗) is just an ‘‘in probability
version’’ of assumption (A2). Consequently, the convergence results from Lemma 2.1 appear in Theorem 2.1 as convergence
results in probability.

Remark 3. Jiménez-Gamero et al. [9] derived a similar result by a different method of proof. They studied the special case
where the kernel has the form h(x, y; θ) =

∫
q(x, t; θ)q(y, t; θ)dGθ (t), for some function q and some finite measure Gθ .

Under smoothness conditions on q, Gθ and the densities of the random variables involved, they showed that the eigenvalues
of some operators connected with h(X∗j , X

∗

k ; θ̂n) converge to those of h(Xj, Xk; θ), which leads to the desired bootstrap
consistency.

Although U-statistics seem to dominate in the probability literature over V -statistics, they rarely occur in statistical
applications. Gregory [12, p. 115] mentioned a few cases where it might be preferable to use U-statistics rather than V -
statistics for testing certain hypotheses. In most cases, however, the statistic of interest is of V -type or can be approximated
by a V -statistic. We consider

Vn =
1
n

n∑
j,k=1

h(Xj, Xk; θ).

To derive the limit distribution of Vn, we will assume (A1) and, additionally, that
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(A3) E|h(X1, X1; θ)| <∞.

Now we obtain from the strong law of large numbers that

1
n

n∑
j=1

h(Xj, Xj; θ) −→ Eh(X1, X1; θ) P-a.s.,

which implies by (2.1) that

Vn
d
−→ Z + Eh(X1, X1; θ). (2.2)

To study consistency of the bootstrap counterpart to Vn, we establish first a V -statistic version of Lemma 2.1. We set

Vnn =
1
n

n∑
j,k=1

h(Xnj, Xnk; θn).

Besides (A1)–(A3), we will also make the following assumption:

(A4) The set δh of discontinuity points of h fulfils
∫
I((x, x, θ) ∈ δh)dFθ (x) = 0 and it holds that Eh(Xn1, Xn1; θn)−→

n→∞
Eh(X1, X1; θ).

Lemma 2.2. Suppose that (A1)–(A4) are fulfilled. Then, as n→∞,

Vnn
d
−→ Z + Eh(X1, X1; θ)

and

sup
−∞<x<∞

|Pn(Vnn ≤ x)− P(Vn ≤ x)| −→
n→∞

0.

Now we can easily identify sufficient conditions for V ∗n converging to the same limit as Vn. We will assume that:

(A4∗) The set δh of discontinuity points of h fulfils
∫
I((x, x, θ) ∈ δh)dFθ (x) = 0 and it holds that E(h(X∗1 , X

∗

1 , θ̂n) | X1,

. . . , Xn)
P
−→ Eh(X1, X1; θ).

Now we obtain the desired general consistency theorem for bootstrap versions of a V -statistic.

Theorem 2.2. Suppose that (A1), (A2∗), (A3) and (A4∗) are fulfilled. Then, as n→∞,

V ∗n
d
−→ Z + Eh(X1, X1; θ) in probability,

where Z is defined in (2.1) above. Moreover,

sup
−∞<x<∞

∣∣P(V ∗n ≤ x | X1, . . . , Xn)− P(Vn ≤ x)∣∣ P
−→ 0.

As Theorem 2.1 follows from Lemma 2.1, this theorem follows immediately from Lemma 2.2 since the assumptions here
are again an ‘‘in probability version’’ of the assumptions of the corresponding previous lemma.

3. A goodness-of-fit test for the NIG model

3.1. Theoretical results

The famous Black–Scholes option pricing model in financial mathematics is based on the assumption of log-normal
asset returns. Empirical studies have provided evidence, however, that the distribution of logarithmic returns are negative
skewed and heavy tailed. In addition, jumps are possible which cannot be described by a stochastic process with continuous
sample paths. Therefore, the assumption of normal distributed logarithmic returns has to be seen as very critical. Barndorff-
Nielsen [13] proposed modelling the process of logarithmic asset prices (Y (t))t≥0 by a normal inverse Gaussian (NIG
hereafter) process of Lévy type. An NIG process with parameters α, β , µ and δ is a particular Lévy process where Y (t)
has a normal inverse Gaussian density fNIG(·;α, β, µt, δt),

fNIG(x;α, β, µt, δt) =
αδt
π
exp

(
δt
√
α2 − β2 + β(x− µt)

) K1(α√(δt)2 + (x− µt)2)√
(δt)2 + (x− µt)2

.

Here α, δ > 0, β ∈ (−α, α), µ ∈ R, and K1 denotes the modified Bessel function of third order and index 1, that is,
K1(z) = (1/2)

∫
∞

0 exp(−z(u+ (1/u))/2)du.
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We assume that we observe the asset prices at equidistant time points 0,∆, 2∆, . . . , n∆ and we intend to test the
composite hypothesis that the underlying process is of NIG type. Due to the scaling property of Lévy processes we can
assume, without loss of generality, that ∆ = 1. Under the null hypothesis, the increments Xj = Y (j) − Y (j − 1)
(j = 1, . . . , n) are independent and have a NIG distribution with parameters α, β , µ and δ. While their common density is
rather complicated their characteristic function has the following simple closed form (see equation (3.7) in [13]):

c(t;α, β, µ, δ) = exp
{
iµt + δ

(√
α2 − β2 −

√
α2 − (β + it)2

)}
. (3.1)

Cont and Tankov [14] describe a NIG process as a subordinated Brownianmotionwith drift ϑ ∈ R, volatility σ > 0 andwith
an inverse Gaussian process with variance κ at time 1 as subordinator. Allowing an additional drift termµ ∈ Rwe have the
following alternative, and in some sense more convenient, parametrization of the characteristic function:

c(t; κ, µ, σ , ϑ) = exp
{
iµt +

(
1−

√
1+ σ 2κt − 2iϑκt

)/
κ

}
, (3.2)

where µ has the same value as before, and

κ =
1

δ(α2 − β2)1/2
, ϑ =

δβ

(α2 − β2)1/2
and σ 2 =

δ

(α2 − β2)1/2
. (3.3)

The test problem can be formulated in terms of the characteristic function c of the increments Xj as

H0 : c = c(·; θ) for some θ ∈ Θ vs. H1 : c 6= c(·; θ) for all θ ∈ Θ,

whereΘ =
{
θ = (κ, µ, σ , ϑ)′ | µ, ϑ ∈ R, κ, σ > 0

}
. We consider the following test statistic:

Tn = n
∫

R

∣∣ ĉn(t)− c(t; θ̂n)∣∣2w(t)dt, (3.4)

where ĉn(t) = n−1
∑n
j=1 exp(itXj) is the empirical characteristic function of the increments, θ̂n is some estimator of θ and

w : R −→ [0,∞) someweight function. For the latter, which is employed to ensure convergence of the integral, we assume
that

(A5) The functionw is measurable, satisfies
∫

R(1+ |t|)
4w(t)dt <∞ and vanishes only on a set of Lebesgue measure zero.

Note that the integral in (3.4) and all other integrals below have to be interpreted in the Lebesgue sense. According to
Lemma 1 in [15], the test statistic can also be written in the following form which is particularly suitable for computations:

Tn =
1
n

n∑
j=1

n∑
k=1

H(Xj, Xk; θ̂n),

where H(x, y, θ) = u(x− y)−
∫
u(x− y)dFθ (x)−

∫
u(x− y)dFθ (y)+

∫
u(x− y)dFθ (x)dFθ (y) and u(x) =

∫
cos(xt)w(t)dt .

Remark 4. (i) The integrability condition on w ensures the negligibility of a remainder term in a representation of Tn;
see (3.7). The fact that w vanishes only on a set of measure zero is primarily needed for the consistency of the test; see
Proposition 3.3. It also yields that Eh2(X1, X2; θ) > 0which is required for the nondegeneracy of the limiting distribution
of Tn.

(ii) There are other aspects which may motivate some particular choice of the weight function. Most importantly, it is well
known that the choice of w directs the power of the test; see, for example, [8, Sections 2 and 4] and the simulations
reported in [16, Section 4]. In the particular case of testing for normality, Henze and Wagner [16] showed that the
choice ofw equal to a normal density leads to an easily computable alternative representation of the test statistic.

For definiteness, and since computation of a maximum likelihood estimator is difficult in this context, we restrict our
attention to a method-of-moments estimator θ̂n of θ . Under the null hypothesis, the distribution of the increments Xj has
the following characteristics (see [14]):

• mean: µ+ ϑ ,
• variance: σ 2 + ϑ2κ ,
• third cumulant: 3σ 2ϑκ + 3ϑ3κ2,
• fourth cumulant: 3σ 4κ + 15ϑ4κ3 + 18σ 2ϑ2κ2.

Accordingly, we obtain θ̂n = (̂κn, µ̂n, σ̂n, ϑ̂n)
′ by equating the first four theoretical moments with their empirical

counterparts. It may happen that θ̂n falls outside the parameter space Θ . If κ̂n or σ̂ 2n attain negative values we simply set
them to zero. To accommodate these distributions, we enlarge the parameter space to the closure of Θ , that is, we take
Θ̄ = {(κ, µ, σ , ϑ)′ : µ, ϑ ∈ R, κ, σ ≥ 0} and define the distribution on the boundary of Θ̄ as corresponding limits, that is
with characteristic functions

c(t; 0, µ, σ , ϑ) = exp
{
i(µ+ ϑ)t − σ 2t2/2

}
, for κ = 0, σ ≥ 0,
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and

c(t; κ, µ, 0, ϑ) = exp
{
iµt + (1−

√
1− 2iϑκt)/κ

}
, for κ > 0, σ = 0.

(The latter characteristic function is that of a random variable µ+ ϑZ , where Z ∼ IG(1, 1/κ); see [17, p. 263].)
It can be shown that θ is a twice-differentiable function of the first four theoretical moments and vice versa that these

moments are continuous functions of θ . Similar results are obtained for θ̂n applying the empirical moments instead. Thus,
by Taylor expansion, there exists some function g : R4 × R −→ R4 such that, under the null hypothesis,

θ̂n − θ =
1
n

n∑
j=1

g(θ; Xj)+ oP(n−1/2) (3.5)

and Eg(θ; Xj) = 0, E‖g(θ; Xj)‖2l2 <∞, where ‖x‖l2 =
√∑

i x
2
i . This implies in particular that

θ̂n − θ = OP(n−1/2). (3.6)

Since c is twice differentiable with respect to θ a Taylor series expansion leads to

Tn = n
∫

R

∣∣∣∣̂cn(t)− c(t; θ)− Dc(t; θ)(̂θn − θ)− 12 (̂θn − θ)′D2c(t; θ̄ (t))(̂θn − θ)
∣∣∣∣2w(t)dt,

for some θ̄ (t) between θ̂n and θ , whereDc andD2c denote the gradient (row) vector and the Hessianmatrix of c with respect
to θ , respectively. Since assumption (A5) ensures w-integrability of ‖D2c(t; θ̄ (t))‖2 (‖A‖2 = λmax(A′A)) we obtain by (3.6)
that

Tn = In + oP(1), (3.7)

where In = n
∫

R

∣∣̂cn(t)− c(t; θ)− Dc(t; θ)(̂θn − θ)∣∣2w(t)dt . Furthermore, (3.5) allows us to approximate further:
Tn = I0n + oP(1),

where I0n =
∫

R

∣∣n−1/2∑n
j=1

{
exp(itXj)− c(t; θ)− Dc(t; θ)g(θ; Xj)

}∣∣2w(t)dt . The statistic I0n is a degenerateV -statisticwith
a symmetric kernel

h(x, y; θ) =
∫

R
{exp(itx)− c(t; θ)− Dc(t; θ)g(θ; x)} {exp(−ity)− c(−t; θ)− Dc(−t; θ)g(θ; y)}w(t)dt.

We have obviously that Eh2(X1, X2; θ) <∞ and E|h(X1, X1; θ)| <∞. Moreover, since the weight functionw vanishes only
on a set of Lebesgue measure zero it follows that Eh2(X1, X2; θ) > 0. Hence, assumptions (A1) and (A3) from Section 2 are
fulfilled and we obtain from (2.2) the following proposition.

Proposition 3.1. Suppose that X1, . . . , Xn are the increments of a NIG process with parameter θ , that is, they are independent
with a common characteristic function c(·; θ). Furthermore, the weight function w is chosen such that (A5) is fulfilled. Then

Tn
d
−→

∞∑
ν=1

λν(Z2ν − 1)+ Eh(X1, X1; θ),

where Z1, Z2, . . . are independent standard normal random variables and the λν are the eigenvalues of the equation

E [h(x, X1; θ)g(X1)] = λg(x).

To implement a testwhich has asymptotically a prescribed size γ , we still have to determine an appropriate critical value.
This can hardly be done on the basis of the asymptotic result in Proposition 3.1 alone since the limit distribution depends on
the eigenvalues λν which in turn depend on the true parameter θ in a complicatedway. Therefore, we propose the following
bootstrap procedure:
(1) Given X1, . . . , Xn, estimate θ by θ̂n and generate a sample X∗1 , . . . , X

∗
n with a characteristic function c(·; θ̂n). According

to [14, p. 184], a random variable X with characteristic function c(·; κ, µ, σ , ϑ) can be generated by drawing first a
random variable Z with an inverse Gaussian distribution with parameters 1/κ and 1, and then, conditioned on Z = z,
drawing X ∼ N (µ + ϑz, σ 2z). An algorithm for simulating an inverse Gaussian distributed random variable is stated
there as well. The bootstrap sample conditioned on X1, . . . , Xn satisfies H0 with θ̂n instead of θ .

(2) Define a bootstrap counterpart θ̂∗n to θ̂n which is based on the bootstrap sample by the method of moments and set
ĉ∗n (t) = n

−1∑n
j=1 exp(itX

∗

j ). Then

T ∗n = n
∫

R

∣∣̂c∗n (t)− c(t; θ̂∗n )∣∣2w(t)dt
is the bootstrap version of our test statistic Tn.
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(3) Define the critical value t∗γ as the (1− γ )-quantile of the (conditional) distribution of T
∗
n . (In practice, steps (1) and (2)

will be repeated B times, for some large B. The critical value will then be approximated by the (1 − γ )-quantile of the
empirical distribution associated with T ∗n1, . . . , T

∗

nB.)

To justify this approach, we will briefly argue that the conditional distribution of T ∗n given X1, . . . , Xn converges under
the null hypothesis (this time even P-almost surely) to the same limit as that of Tn. First, it follows from the strong law of
large numbers that

θ̂n
P-a.s.
−→ θ. (3.8)

Analogously to (3.5), we obtain that

θ̂∗n − θ̂n =
1
n

n∑
j=1

g (̂θn; X∗j )+ R
∗

n, (3.9)

where

P
(
|R∗n| > εn−1/2 | X1, . . . , Xn

) P-a.s.
−→ 0 ∀ε > 0.

(3.8) and (3.9) yield that

P
(
|T ∗n − I

0∗
n | > ε | X1, . . . , Xn

) P-a.s.
−→ 0 ∀ε > 0,

where I0∗n = n
−1∑n

j,k=1 h(X
∗

j , X
∗

k ; θ̂n). It follows from the construction that

E
(
h(X∗1 , y; θ̂n) | X1, . . . , Xn

)
= 0 ∀y ∈ R.

And finally, we obtain from (3.8) that E(h2(X∗1 , X
∗

2 ; θ̂n) | X1, . . . , Xn)
P-a.s.
−→ Eh2(X1, X2; θ) and E(h(X∗1 , X

∗

1 ; θ̂n) | X1, . . . , Xn)
P-a.s.
−→ Eh(X1, X1; θ). To summarize we have verified that the assumptions (A1), (A2∗), (A3) and (A4∗) are fulfilled, even P-
almost surely rather than in probability. Hence, we obtain from Theorem 2.2 the following assertion.

Proposition 3.2. Suppose that the assumptions of Proposition 3.1 are fulfilled. Then

sup
−∞<x<∞

∣∣P(T ∗n ≤ x | X1, . . . , Xn)− P(Tn ≤ x)∣∣ P-a.s.−→ 0.

For t∗γ = inf{t : P(T
∗
n ≤ t | X1, . . . , Xn) ≥ 1− γ }, we obtain that

P
(
Tn > t∗γ

)
−→
n→∞

γ ,

that is, the test has asymptotically the correct size.

It remains to investigate the behaviour of the test under the alternative. For this, we assume that (Xn)n∈N is a sequence of
independent and identically distributed random variables with characteristic function c 6∈ {c(·; θ) : θ ∈ Θ̄} and EX41 <∞.
We consider first the asymptotic behaviour of the test statistic Tn. It follows from the strong law of large numbers that

1
n

n∑
j=1

Xkj
P-a.s.
−→ EXk1 , for k = 1, . . . , 4,

which implies that

θ̂n
P-a.s.
−→ θ̄0, (3.10)

where θ̄0 = (κ0 ∨ 0, µ0,
√
σ 20 ∨ 0, ϑ0)

′ and (κ0, µ0, σ 20 , ϑ0)
′ solves the equations for the first four moments. Since

c 6∈ {c(·; θ) : θ ∈ Θ̄}we obtain that∫
R
|c(t)− c(t; θ̄0)|2w(t)dt =: K > 0.

Moreover, it follows from the Glivenko–Cantelli theorem that P (̂cn(t)−→
n→∞

c(t) for all t ∈ R) = 1, which implies by
majorized convergence that∫

R
|̂cn(t)− c(t)|2w(t)dt

P-a.s.
−→ 0.
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Table 3.1
Estimated NIG parameters.

α β µ δ

Dresdner Bank 68.28 1.81 0 0.01
NYSE 136.29 −8.95 0.00079 0.0059

And finally, it follows from (3.10) and again by majorized convergence that∫
R
|c(t; θ̄0)− c(t; θ̂n)|2w(t)dt

P-a.s.
−→ 0. (3.11)

Hence, we obtain that

Tn/n
P-a.s.
−→ K > 0. (3.12)

For the consistency of the test, it remains to show that T ∗n /n tends to zero in some appropriate sense. If the almost sure
limit of θ̂n, θ̄0, lies in the open setΘ , then the bootstrap imitates one of the cases belonging toH0. In this case, we could simply
employ Proposition 3.2 to show that T ∗n is bounded in probability, P-almost surely. However, if θ̄0 lies on the boundary of
Θ , then it is no longer guaranteed that θ̂∗n has an asymptotic behaviour as described by (3.9). In this case, T

∗
n does not have

an asymptotic behaviour as in one of the cases belonging to the null hypothesis. Therefore, we have to prove asymptotic
smallness in a differentway; see the proof of the following proposition. This proposition states consistency of the test against
essentially all alternatives.

Proposition 3.3. Assume that (Xn)n∈N is a sequence of independent and identically distributed random variables with
characteristic function c 6∈ {c(·; θ) : θ ∈ Θ̄} and EX41 <∞. Then

P
(
Tn > t∗γ

)
−→
n→∞

1.

Remark 5. There is already a large body of literature on goodness-of-fit tests of the type (3.4). Epps and Pulley [18] proposed
a test of normality of this formwhere the weight functionwwas chosen in such a way that the test statistic was invariant to
changes in the location and variance. This allowed one to determine a critical value via Monte Carlo simulations. Baringhaus
and Henze [19] generalized this idea to themultivariate case and derived the limiting null distribution of the test statistic on
the basis of a result of deWet and Randles [20]. Note, however, that this does not automatically provide appropriate critical
values since the limiting distribution still involves parameters which are only implicitly given as eigenvalues of a certain
integral operator. Csörgő [21] showed for a slightlymodified version of these tests that they are consistent to all alternatives.
Using empirical process theory Henze and Wagner [16] derived an alternative representation of the limiting distribution
which allowed one to study the power under local alternatives; see also [22] for a continuation of this investigation. Epps [23]
proposed again a generalization to general location–scale families and worked out simple expressions for the test statistic
in several cases. Jiménez-Gamero, Muñoz-García and Pino-Mejías [24] derived an analogous test for the distribution of the
errors in a linear model.
Fan [8] derived asymptotic theory for such goodness-of-fit tests in a very general framework, not restricted to particular

families of distributions or location–scale families. Since the null distribution of the test statistic depends then on the
particular parameter under the null hypothesis, he proposed determining a critical value by a bootstrapmethod and proved
consistency of this approximation. Bootstrap theory for tests of this type was also provided by Jiménez-Gamero et al. [9].
Note that we cannot apply their results to the particular problem studied here since these authors imposed some regularity
conditions on the densities of the parametric families of random variables involved. In the case of the NIG model we do not
have closed-form expressions of these densities and it seems to be difficult if not impossible to verify these conditions.

3.2. Numerical results

To investigate the behaviour of the proposed test in a practically relevant situationwe tested our procedure on simulated
data sets corresponding to log returns data of theNYSE Composite Index and the stock of Dresdner Bank. Rydberg [25, p. 906]
provided an estimate of the NIG parametrization for the Dresdner Bank stock, based on 1562 observations while Albrecher
and Predota [26] estimated these parameters for the NYSE Composite Index; see Table 3.1.
A translation of the values provided in Table 3.1 to the parametrization given by Cont and Tankov [14] is given in Table 3.2.
In order to get an idea of the actual size of our test we simulated data from NIG processes with parameters equal to the

empirical values found for the Dresdner Bank stock and the NYSE Composite Index. In both cases, we took samples of size
n = 500 and n = 1500, respectively. We replicated the simulation procedure N = 500 times, each time with B = 1000
bootstrap resamplings. The weight functionwwas chosen asw(t) = e−t

2/2000000 which puts sufficient weight on the region
where the absolute value of the characteristic function of the underlying sample is significantly greater than zero. Of course,
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Table 3.2
Reparametrization.

κ µ σ ϑ

Dresdner Bank 1.46507 0 0.01210 0.00027
NYSE 1.24630 0.00079 0.00659 −0.00039

Table 3.3
Rejection frequencies.

γ = 0.05 γ = 0.10
n = 500 n = 1500 n = 500 n = 1500

Dresdner Bank 0.070 0.052 0.106 0.112
NYSE 0.064 0.066 0.118 0.118

Fig. 1. Simulated density of Tn and 5 bootstrap replications (Dresdner Bank).

Table 3.4
Estimated parameters for the hyperbolic distribution.

α β δ µ

BASF 108.82 1.3550 0.0014 −0.0005
Dresdner Bank 110.94 −0.1123 0.0016 0.0002

instead of using a normal (quasi-)density other alternatives are possible. As stated in Remark 4 above, the choice of the
weight function influences the power of the test.
The implementation was done on the basis of the statistical software package R; see [27]. The results for the rejection

frequencies of our test for nominal significance levels γ = 0.05 and γ = 0.1 are shown in Table 3.3. Note that two-sided
confidence intervals with coverage probability (1− β) = 0.95 are given by γ̂ ± 0.0191 and γ̂ ± 0.0263, for γ = 0.05 and
γ = 0.1, respectively.
Finally in Fig. 1 we plot the density of the test statistic (thick line) and five bootstrap replications (dot–dashed lines) for

the Dresdner Bank setting with sample size n = 1500. This indicates that the bootstrap distributions are fairly similar to the
distribution of Tn under the null hypothesis.
To get an impression of the power of our test we set out to simulate a situation corresponding to a reasonable alternative

in the above context. Eberlein and Keller [28] proposed the hyperbolic Lévy process in order to model the logarithmic stock
prices, meaning that the log returns Xj (j = 1, . . . , n) are i.i.d. with density

fhyp(x;α, β, δ, µ) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp
(
−α

√
δ2 + (x− µ)2 + β(x− µ)

)
,

where α < 0, 0 ≤ |β| < α and δ, µ ∈ R. These authors provided parameter estimates for ten German stocks based on 745
observations. Accordingly, we simulated hyperbolically distributed samples of size n = 500 and n = 1500, respectively,
using the parameter estimations for BASF and Dresdner Bank of [28]; see Table 3.4.
As in the case of H0, the simulation procedure was replicated N = 500 times, each time with B = 1000 bootstrap

resamplings. The resulting empirical powers of our test are given in Table 3.5.
As the Tables 3.3 and 3.5 report, the proposed bootstrap test seems to be reasonable for applications with large sample

sizes. Naturally, financial markets supply the designated samples, for instance in terms of daily stock prices.
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Table 3.5
Empirical power.

γ = 0.05 γ = 0.10
n = 500 n = 1500 n = 500 n = 1500

BASF 0.374 0.718 0.492 0.814
Dresdner Bank 0.328 0.692 0.460 0.778

4. Proofs

The main idea of the proof of Lemma 2.1 is similar to that of Theorem 2.1 in [7] where a quantile coupling for
the underlying real-valued random variables was used, there for Efron’s bootstrap. Here we additionally allow for
other bootstrap schemes and for kernels which depend on the unknown parameter θ . Hence, the proof requires some
modifications. For the reader’s convenience we decided to give a complete proof of this lemma here.

Proof of Lemma 2.1. According to the Skorohod representation theorem (Theorem 6.7 in [29, p. 70]), there exists a
sufficiently rich probability space (Ω̃, Ã, P̃) with Ω̃ = {(ω1, ω2, . . .) : ωi ∈ Ω0} and independent random elements
ω1, ω2, . . . such that there are functions g : Ω0 −→ Rd and gn : Ω0 −→ Rd with X̃j := g(ωj) ∼ Fθ , X̃nj := gn(ωj) ∼ Fn and

X̃nj − X̃j
P̃-a.s.
−→ 0, (4.1)

as n→∞. (In the special case of real-valued random variables we could simply use a quantile transform to construct such
a coupling.)
It is clear from the construction that X̃1, . . . , X̃n are independent and have the same distribution as the Xj under P;

analogously, X̃n1, . . . , X̃nn are independent and have the same distribution as the Xnj under Pn. Therefore,

Ũn =
1
n

n∑
j=1

∑
k6=j

h(̃Xj, X̃k; θ)

has under P̃ the same distribution as Un under P , and

Ũnn =
1
n

n∑
j=1

∑
k6=j

h(̃Xnj, X̃nk; θn)

has under P̃ the same distribution as Unn under Pn.
It follows from (4.1), by θn −→

n→∞
θ and the assumed continuity property of h, that, for 1 ≤ j, k ≤ n,

h(̃Xnj, X̃nk; θn)− h(̃Xj, X̃k; θ)
P̃-a.s.
−→ 0. (4.2)

Moreover, we obtain from Eh2(̃Xn1, X̃n2; θn)−→
n→∞

Eh2(̃X1, X̃2; θ) in conjunction with (4.2) that (h2(̃Xn1, X̃n2; θn))n∈N is a

uniformly integrable family of random variables. Therefore, the sequence ((h(̃Xn1, X̃n2; θn) − h(̃X1, X̃2; θ))2)n∈N is also
uniformly integrable and we obtain, using once more (4.2), that

EP̃
(
h(̃Xn1, X̃n2; θn)− h(̃X1, X̃2; θ)

)2
−→
n→∞

0. (4.3)

Observe now that

Ũn − Ũnn =
1
n

n∑
j=1

∑
k6=j

kn((̃Xj, X̃nj), (̃Xk, X̃nk))

is a degenerateU-statistic of the independent randomvariables (̃X1, X̃n1), . . . , (̃Xn, X̃nn) andwith kernel kn((x, x′), (y, y′)) =
h(x, y; θ)− h(x′, y′; θn). We can easily compute that

EP̃
(
Ũn − Ũnn

)2
=
2(n− 1)
n

EP̃
(
kn((̃X1, X̃n1), (̃X2, X̃n2))

)2
−→
n→∞

0,

which immediately implies the first assertion of this lemma. Furthermore, the second assertion follows since the limit
distribution of Un is continuous. �

Proof of Lemma 2.2. Here we employ exactly the same coupling as in the proof of Lemma 2.1. We denote by Ṽn and Ṽnn the
copies of Vn and Vnn on the probability space (Ω̃, Ã, P̃), respectively.
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We have that

Ṽnn = Ũnn +
1
n

n∑
j=1

h(̃Xnj, X̃nj; θn).

We obtain from Eh(̃Xn1, X̃n1; θn)−→
n→∞

Eh(̃X1, X̃1; θ) and (4.2) that (h(̃Xn1, X̃n1; θn))n∈N is a uniformly integrable family of
random variables. Hence, it follows from (4.2) that

EP̃
∣∣h(̃Xn1, X̃n1; θn)− h(̃X1, X̃1; θ)∣∣−→

n→∞
0.

This, however, implies, in conjunction with the strong law of large numbers, that

EP̃

∣∣∣∣∣1n
n∑
j=1

h(̃Xnj, X̃nj; θn)− EPh(X1, X1; θ)

∣∣∣∣∣
≤ EP̃

∣∣h(̃Xn1, X̃n1; θn)− h(̃X1, X̃1; θ)∣∣+ EP̃
∣∣∣∣∣1n

n∑
j=1

h(̃Xj, X̃j; θ)− EPh(X1, X1; θ)

∣∣∣∣∣
−→
n→∞

0.

Therefore, we obtain that

Ṽnn = Ũnn + Eh(X1, X1; θ)+ oP̃(1),

which yields, in conjunction with Lemma 2.1, the assertions of the lemma. �

Proof of Proposition 3.3. It remains to investigate the asymptotic behaviour of T ∗n . It follows from (3.10) that X
∗

1
d
−→ X ∼

Pθ̄0 P-a.s. and E((X
∗

1 )
k
| X1, . . . , Xn)

P-a.s.
−→ Eθ̄0X

k
1 , for k = 1, . . . , 4. Hence, we can construct, eventually after enlarging the

underlying probability space, a coupling of the X∗j with independent and identically distributed random variables X
0
j ∼ Pθ̄0

such that E(|(X∗j )
k
− (X0j )

k
| | X1, . . . , Xn)

P-a.s.
−→ 0. This implies that

E

(∣∣∣∣∣1n
n∑
j=1

(X∗j )
k
− E(X01 )

k

∣∣∣∣∣
∣∣∣∣∣ X1, . . . , Xn

)
≤ E

(
|(X∗1 )

k
− (X01 )

k
|
∣∣ X1, . . . , Xn)+ E

∣∣∣∣∣1n
n∑
j=1

(X0j )
k
− E(X0j )

k

∣∣∣∣∣
P-a.s.
−→ 0, for k = 1, . . . , 4.

Therefore, we obtain that

E
(
‖̂θ∗n − θ̄0‖ ∧ 1

∣∣ X1, . . . , Xn) P-a.s.−→ 0,

which implies by dominated convergence that

E
(∫

R
|c(t; θ̄0)− c(t; θ̂∗n )|

2w(t)dt
∣∣∣∣ X1, . . . , Xn) P-a.s.

−→ 0.

Note that we have, for any characteristic function c̃ and its empirical counterpart c̃n based on a sample of size n, that
E |̃cn(t)− c̃(t)|2 = n−1(1− |̃c(t)|2). This implies that

E
(∫

R
|̂c∗n (t)− c(t; θ̂n)|

2w(t)dt
∣∣∣∣ X1, . . . , Xn) ≤ n−1 ∫

R
w(t)dt.

Hence, we obtain in conjunction with (3.11) that

E
(
T ∗n /n | X1, . . . , Xn

)
≤ 3E

(∫
R
|̂c∗n (t)− c(t; θ̂n)|

2w(t)dt
∣∣∣∣ X1, . . . , Xn)

+ 3
∫

R
|c(t; θ̂n)− c(t; θ̄0)|2w(t)dt + 3E

(∫
R
|c(t; θ̄0)− c(t; θ̂∗n )|

2w(t)dt
∣∣∣∣ X1, . . . , Xn)

P-a.s.
−→ 0. (4.4)

(3.12) and (4.4) yield the assertion. �
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