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Abstract

We devise a new method of estimating a distribution in a deconvolution model with panel data and
an unknown distribution of the additive errors. We prove strong consistency under a minimal condition
concerning the zero sets of the involved characteristic functions.
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1. Introduction

Nonparametric deconvolution is one of the standard problems in statistics. It appears when
a variable of interest can only be observed with some contamination which is modelled as an
independent additive error.

There already exists a considerable amount of literature for the case that the distribution of
the unobserved errors is known. The most frequently used approach to estimate the density of
interest is the kernel method, which amounts to a damped or truncated division of the empirical
characteristic function of the observations by the characteristic function of the errors. Consistency
and rates of convergence together with their optimality are proved in Carroll and Hall [4], Devroye
[7], Stefanski and Carroll [29,30], Liu and Taylor [22], Fan [12—-14] and Ruymgaart [28]. Some
examples for deconvolution problems are given in Carroll and Hall [4], a real practical application
is described in Mendelsohn and Rice [26]. An amusing example of a problem with a perfectly
known convolution operator is described in Fuller [16, p. 201].
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On the other hand, apart from being quite convenient for mathematical tractability, the as-
sumption that the distribution of the errors is perfectly known seems to be unrealistic in most
practical applications. Sometimes one can draw some approximate information about it due to
some additional source which allows to estimate it. In the case that information about the error
distribution can be drawn from an additional experiment, Diggle and Hall [8] proposed to use the
standard kernel deconvolution technique with the empirical characteristic function of the errors
inserted for their unknown characteristic function. The effect of estimating the error density on
rates of convergence and a modified regularization scheme has been studied by Neumann [27];
see also Efromovich [10] and Meister [23] for more work in this area. The case of a general
unknown operator which can be estimated on the basis of training data has been considered by
Efromovich and Koltchinskii [11] and Cavalier and Hengartner [5]. Some special cases where
the error density and the distribution of interest have different characteristics and can therefore
be both identified are considered by Butucea and Matias [3] and Meister [24,25]. Butucea and
Matias [3] and Meister [25] considered the case with an ordinary smooth density and a super-
smooth error density while Meister [24] investigated the case with an ordinary smooth density
and two possible error densities, an ordinary smooth and a supersmooth one. In all of these cases
the true error distribution can be identified from the tail behavior of the characteristic function of
the observations.

Another important instance, where consistent deconvolution without prior knowledge of the
error distribution and even without a training set for estimating the error distribution is possible,
is the case of panel data. In this case, data from the distribution of interest are repeatedly ob-
served, each time with an independent error. Horowitz and Markatou [18] studied the case with
observations essentially of the type

YijZX,‘—l-S,'j, i=1,...,n, j=1,...,N, (1.1)

where all random variables involved are independent and X; ~ Py, ¢;; ~ P.. They proposed to
estimate first the characteristic function ¢, of P, and to divide then the empirical characteristic
function of the ¥;;’s by that estimate and regularize this by a kernel function. Consistent estimation
of ¢, is obviously possible if N >2 and the distribution P, is symmetric about 0 since then ¢,
is just the square root of the characteristic function of Y;; — Y;». In the general case of a not
necessarily symmetric error distribution, they outlined a possibly consistent method of estimating
@, in the case of N >3, however, a rigorous asymptotic theory is lacking. Under the assumption
that the characteristic functions ¢y and ¢, do not vanish, Li and Vuong [21] proved that they
can actually be identified up to a location shift from the characteristic function of (¥jy, ..., Y;y)’
and proposed an estimator of the densities of X; and ¢;;. Moreover, in the special case that the
modulii of the characteristic functions have a regular (polynomial or exponential) decay, they gave
rates for an appropriate choice of a spectral cut-off parameter and derived rates of convergence
of the density estimators. Assuming that the cumulative distribution functions of Px and P, are
continuous and that moments of sufficiently high order are finite Hall and Yao [17] also proposed
consistent estimators of the characteristic functions and the densities of the involved random
variables.

In the present paper, we study again the case of panel data obeying (1.1). We assume that N >2
and try to avoid as far as possible any assumption on the distribution of interest Py and the error
distribution P,. Since a rigorous asymptotic theory for explicit estimators of ¢, seems to be rather
cumbersome in our quite general setting we devise a completely different approach. It is clear that
the characteristic function ¢, of Z; = (Y;1, ..., Y;n) canbe consistently estimated by its empiri-
cal Versionfﬁz,n. Inview of the factthat oz (w1, ..., on)=@x(wi+ - +oONn) @ (1) - - - P (ON)
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holds for all i, ..., wy, we will fit a pair of characteristic functions, x , and @, ,,to ¢, by
a minimum distance method and take the corresponding distributions ﬁx,n and i’; » as estimators
of Py and P, respectively. These estimators are actually consistent since we can show that ¢,
uniquely determines Py and P, under side conditions such as median(Ps) =0 or Ep,e = 0. An
interesting aspect of our approach is that we need not explicitly invert the convolution mapping.
We think that such an approach is of potential interest also in other cases of ill-posed statistical
inverse problems where an analytic inversion of the operator is difficult. Moreover, since we in-
tend to estimate the distributions Py and P but not their densities (if they exist at all) our method
does not involve any smoothing parameter.

2. Assumptions and main results

We assume that we observe Y;; (j =1,..., N;i =1, ..., n) obeying the equation
Yij = X; + &ij, 2.1

where all random variables appearing on the right-hand side of (2.1) are independent. We intend
to estimate the common distribution Py of the X;’s. We do not assume that any prior knowledge
about the common distribution P of the &;;’s is available, eventually apart from an obviously
necessary identifiability condition. Denote by ¢y and ¢, the characteristic functions of Px and
P, respectively. It is clear that there were no chance of a consistent estimator in the case of no
replications, N = 1. In the case of replications, however, consistent estimation of Py and P; is
possible under certain circumstances. Horowitz and Markatou [18] described a consistent method
under the additional assumption that P, is symmetric around 0 and N >2 and sketched an idea
of a possibly consistent procedure in the general case if N >3. Their method amounts to first
estimating ¢, and then plugging this estimator into a standard deconvoluting kernel estimator.
A more thorough study of this problem was undertaken by Li and Vuong [21] who showed that
¢x and ¢, are actually identifiable if these characteristic functions do not vanish and proved
consistency for corresponding density estimators under the stronger condition of a regular decay
of the modulii of the characteristic functions.

We will devise consistent estimators of Py and P, in the case that at least two replications
(N >2) are available and try to do this under minimal conditions on the null sets of the char-
acteristic functions involved. As a starting point, we estimate the characteristic function ¢, of
Zi =Y, ..., Yin) by

IR | ;

-~ 2 : w1Yij +FonNY;

(szn((l)],...,a)N) = ; m el( 1Xij N z/N). (2.2)
i=1 1< 1o jN SN #jy for k£l

It follows from the multivariate Glivenko-Cantelli theorem that

P <fﬁz’n(w1, ...,wN)njooqoz(wl,...,wN) Va)l,...,a)N) =1, (2.3)

see also Theorem 3.2.1 in Ushakov [31, p. 165].

The basic reason why consistent estimation of Py and P, will be possible is that ¢, completely
determines Py and P, under certain circumstances. Before we formulate such a result, we have
to exclude some cases where identifiability of Py and P, cannot be guaranteed. First, since the
observations (Y;1,...,Yiy),i = 1,..., N, retain their common distribution if Px and P, are
replaced by the shifted distributions Px (- — ¢) and P.(- 4 ¢), for any ¢ € R, itis clear that we can
at best identify them up to a location shift unless an additional condition regarding the location
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of P (or of Py) is stipulated. For reasons of clarity of presentation, we consider first the case
without such a condition and seek conditions under which Py and P, can be identified from ¢,
up to a location parameter.

As an instructive example, we consider the distribution P, with characteristic function @ () =
(1—|wl)+. Now we can choose two different distributions Px,l and PX72 whose respective charac-
teristic functions satisfy @y ;| (w) = @y »(®) V|w| < N; see for example Feller [15, p. 479]. Then it
follows that px (@14 -+ oN)P(01) -+ P (ON) = Px 2(01++ -+ ON)P (1) - - P (WN)
Ywi,...,oy € R, that is, we cannot consistently distinguish between the cases of X; ~ 15X,1,
gij ~ P, and X; ~ 13x,2, gij ~ P.. We learn from this example that we have to exclude cases
where ¢, vanishes on a too large domain. Since any closed set A with 0 ¢ A and —A = A can
be the zero set of a characteristic function (see [19, Corollary 1]) we will impose exactly those
properties of the zero sets of ¢, and ¢y that we use in the proof of Lemma 2.1.

(A1) (i) If N = 2, then the set {® : ¢, (027%) # 0 and @y (@27%) #0 Vk =0,1,...}is
assumed to be dense in R.
(i1) If N >3, then the set {® : ¢ (w(N — D% £0 Vk=0,1,...}is assumed to be
dense in R.

We think that this assumption is not very restrictive. It excludes characteristic functions that
vanish on nonempty open subsets of R. Most textbook distributions, however, have a characteristic
function with at most countably many zeros, hence, satisfying also (A1).

The following lemma states that knowledge of ¢, actually suffices to identify Py and P, up
to a location shift. It extends Lemma 1 in Kotlarski [20] in that we do not require that the involved
characteristic functions do not vanish.

Lemma 2.1. Suppose that Px and P; are distributions with characteristic functions ¢y and ¢,
satisfying (Al). Let Px and P be further distributions with respective characteristic functions
¢x and ¢@,. If now
¢px (01 + -+ oN)p (1) @ (ON)
=ox(1+ -+ 0N (1) - @ (wn) You,...,on €R, (24
then there exists a constant ¢ € R such that
FX = Pxyc and Fs:Ps—m

that is, Px and ng as well as P, and Igg are equal up to a location shift.

Estimators ﬁx,n and 13\5,,, of Px and P, will be defined via a minimum distance fit in the
frequency domain. Recall that (w1, ..., 0on) = @x(w1 + -+ on) @ (w1) - - - @ (wn). Let
K : RY — (0, 00) be any continuous and everywhere positive probability density. We define a
distance p as

P(?ﬁx,azﬁ ®z)
B /RN [Py (@14 +oN) P (1) - Pe(ON) =Pz (01, ..., oN)|K (01, ..., on)do.
2.5)

Now we intend to define I/’\X,n and ﬁgn such that their characteristic functions ¢y, and @, ,
minimize p(-, -; ¢z ,). Since we cannot guarantee that the infimum will actually be attained we
choose first a vanishing sequence (J,),<n and then probability distributions Py , and P, such
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that the corresponding characteristic functions @y, and @, , fulfill
P (aX,n» aa,n; aZ,n) < ~ H),f p (Z[)X7 as; aZ,n) + 511’ (26)
Px> %GCD

where ® = {¢ : ¢ is a characteristic function of a probability distribution}. Note that we do not
require that ¢y , and @, , satisfy (A1). This approach bears similarities with a method proposed
by Hall and Yao [17]. They also considered a minimum distance fit and used histograms to generate
estimators of Py and P,. The method investigated here is slightly different and is shown to be
consistent under weaker conditions on the involved distributions.

Denote by P(x+e¢,,... x+ey) the distribution with characteristic function ’@X’n(wl + -+ wy)
Zﬁsgn(a)l) - ~fﬁsyn (wy). Before we state consistency properties for the sequences (i;X,n)neN and
(I/i,,,),,EN, we introduce a metric which metrizes weak convergence. For probability measures
P, with respective cumulative distribution functions F},, define the Lévy distance as

d(P;, Py) =infle : Fi(x — &) —e<Fh(x)<Fi(x+&)+e& VxeR}
It is known that P, = Py if and only if d(F;, Fo) —> 0; see for example Chung [6, p. 94].
n— o0
Now we define, for probability measures Px and P,

A(Px, P; Px, P) = inf [d(Px, Pxyo) +d(Ps, Pe_p))
C

The following theorem states some sort of consistency property of the estimator sequences, of
course, up to a location shift.

Theorem 2.1. Suppose that observations according to (2.1) are given. Then, as n — 00,

1) F(XJrsl ,,,,, X+ey) = Pz almost surely.
(i) If additionally assumption (A1) is fulfilled, then

A(ﬁX,nv i)::,n; PX: Pe) 2)0

As already indicated, to make the distributions Px and P identifiable we have to impose some
additional condition. Since the & ;S are interpreted as errors it is natural to assume that they are
centered in some sense. In what follows we will stipulate the following conditions:

(A2) P, obeys one of the following conditions:
(i) median(P,) = 0 and P, ((—o0, —0]) < % < P.((—00,0)) Vé > 0,
(11) ES,']' =0.

If (A2)(i) is stipulated, then we obtain consistent estimators of Py and P, by a minimum distance
fit under a corresponding side condition on the median. Denote ®) = {¢ : ¢ is a characteristic
function of a probability distribution P with median 0}. Note that ®) includes distributions
whose median is not uniquely defined; uniqueness of the median is actually only required for

the true error distribution Pg, under (A2)(1) Now we choose P x.n and P, ¢.n such that their char-
acteristic functions fulfill ¢y , € @, ¢, , € @ and

P (aX,n’ as,n; aZ,n) N inf ,0 (QDXf Pes QDZ n) + 5"' (27)
Px€D, 0, cp?

Again, we do not require that the characteristic functions 5 X.no as’ ,, satisfy (Al).
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In the second case, we have to be more careful. The side condition E; & = 0 does not
&,n

suffice to guarantee that any eventually existing weak limit of (Ps,n),,eN has also expectation 0.
This, however, would be the case if we could additionally ensure uniform integrability of the

random variables €, ~ P, ,. This, in turn, would follow if we had, besides weak convergence,
that E? le] S E p.lel. Since Ep, |¢| is not identifiable from the observations in our setting we
&,n

enforce instead of that uniform integrability of the random variables ?n 1 — ?,1 2, where ?n 1 and

en pare independent with distribution P, ¢.n- It will be shown that this implies uniform integrability
of (A €n.1)neN and, therefore, the desired centering of the limit distribution.

Denote p1; = E|e;1 — €j2|. A consistent estimator of y; is given by
_ RGN
#1,n=;ZT Z [Yij, — Yij,l.
i=1 (2) 1< ji<ja<N

Let (I)(”) = {¢ : ¢ is a characteristic function of a probabihty measure P,Epey =0and Eple|—
&< Uy, for 1ndependent £1, &y ~ P}. Now we choose P x.n and P ¢.n such that their charac-
teristic functions fulfill ¢ q) xn €00 goa’n (I)il”)

P @x Peni Pza) < inf  p(Gx. PeiDrp) + On (2.8)

Loosely speaking, the side condition EA |81 —e2| <y, is used to “squeeze out” any asymptoti-

d
cally superfluous part of the distributions (P,s 2)neN- If we can show that &, sn 1 —s,, 2 —>E&11—E€12,
then we can conclude that E = IAn 1— 8,1’2| —> Ep,|e11 — e12], which implies uniform integra-
n—oQ i}

bility of (?,17 1 —?n,z)neN- The followmg theorem states that we obtain strong consistency under
either one of the identifiability conditions in (A2).

Theorem 2.2. Suppose that observations according to (2.1) are given and that assumptions (A1)
and (A2) are fulfilled. Then, as n — 00,

d(Pxn, Px) =50 and d(P,,, Ps)=>0.

Remark 1. (i) Practical computation: When implementing the procedure we face the problem
that there is no way of computing Py , directly. For example, we cannot define fﬁX’n and Zp\g’n
as pointwise minimizer of [@x , (w1 + - 4+ ON) P, (1) - P, (ON) — Pz (01, ..., ON)|
since we have to regard the side condition that ¢y , and @, ,, must be characteristic functions. To
replace the infinite-dimensional minimization problem (2.6) (as well as (2.7) and (2.8)) by a finite-
dimensional one, we can make use of the fact that any distribution can be represented as the weak
limit of discrete distributions with a finite number of atoms. (For example, by Glivenko-Cantelli,
the empirical distributions converge to the underlying distribution as the sample size tends to
infinity.) So we may choose nyn and ID\” from a family of distributions {P = Z,Ai | %0y
o; =0, Zf‘il o; = 1,x; € R}, where J, denotes the Dirac measure at x. Consistency is then
possible if M = M(n) — oo, as n — oo. We think that a feasible algorithm can be derived
along the lines of the simulating annealing approach which was employed by Hall and Yao [17]
in a similar context. If it is conjectured that the cumulative distribution functions of Py and P,
are smooth, it makes also sense to use a sieve of smooth distributions.
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(ii) Rates of convergence: An interesting approach different to ours has been investigated by
Li and Vuong [21]. Under the assumption of nowhere vanishing characteristic functions ¢y and
@,, they first showed that these functions can be obtained from the characteristic function v of
(Y1, Yi2) as

@ o0, up)/ou

V0, 12)
_ 0.0

Starting with the empirical characteristic function of (Y;1, Y;2)’ they used these formulas to con-
struct estimates of @y and ¢, and finally obtained estimates of the densities of the X; and the ¢;;
by a windowed inverse Fourier transform. In the special case that the modulii of ¢y and ¢, have
a regular (that is, polynomial or exponential) decay, they gave rates for an appropriate choice of
the spectral cut-off parameter and derived rates of convergence for their density estimators.

Our intention here is to devise consistent estimators of Py and P, under minimal conditions.
The assumption of a regular decay of the modulus of the characteristic function is met only by a
few textbook distributions; the normal, Cauchy, gamma and double exponential distributions are
usually mentioned examples. Moreover, even Li and Vuong’s [21] basic assumption of nowhere
vanishing characteristic functions is not fulfilled by several textbook distributions. Examples can
be found in Ushakov [31, Appendix B]; the arcsine, discrete and continuous uniform and triangular
distributions are among them. Without explicit expressions characterizing the dependency of ¢y
and ¢, on ¢, as above, however, it seems to be rather difficult to characterize the degree of
ill-posedness of the deconvolution problem which would be a first step in deriving sharp rates of
convergence. In view of this, we think that reasonable results for rates of convergence are beyond
reach in our general context.

(iii) Limitations: If the cumulative distribution functions of Px and P, are continuous, then it
follows from the weak convergence results in Theorem 2.2 that

sup [Pt (00, x1) = Pr((=o0. x| +30

and

sup | P, ((—00, x]) — Pe((=00, xD)| 23 0.
xeR
This is, however, in general not true if one of the cumulative distribution functions is not con-

tinuous. Consider, for example, the case where N = 2, P, = N(0,1) and Px € {P)((”;, P(”;}

P)((")l = (01 +_-1)/2, P}(("; = (81+4¢, +9—1-¢,)/2- The random vector Z = (X1 +e&11, X1 +¢12)
has respective distributions P("1 and P(n2 which are both mixtures of four bivariate normal dis-
tributions. Moreover, it follows for the Hellinger distance that

H(PY). Py = 0™ "),

if ¢, = O(m~Y?%). Hence, it follows from standard arguments (see, for example, [9]) that one
cannot consistently distinguish between the two cases X; ~ P)(("% and X; ~ P)(('g, asn — 0o,
which in turn means that there does not exist any uniformly consistent (w.r.t the Kolmogorov
distance) estimator of Py.
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3. Proofs

Proof of Lemma 2.1. The first part of the proof is analogous to the proof of Lemma 1 in Kotlarski
[20]; we include it for the sake of self-consistency of our proof.

Since ¢y and ¢, are characteristic functions there exists an wp > 0 such that ¢, (®) # 0 and
@x2w) # 0 if |w] <wp. Define, for |w] < 2wy,

px (@) = ¢x(®)/px ().
px is a continuous complex function which is equal to 1 at 0.
It follows from (2.4), for w1, wy € [—wg, wg], that
Px (01 + w2) Px (@1 + ) (1)@, (02)

Px (@) ox (@)  @x(wi +0)p, (1) (0) oy (w2 + 0)p, (), (0)
_ Px (@1 + )P, (1), ()
Px (@1 +0)P, (@) P, (0) Dy (2 + 0) P, (2) P, (0)

- w, 3.1
ox(w)Qy(m2)
which implies
px (w1 + w2) = px(w1) px(w2) Vor, wy € [—wp, wol. (3.2)

This is a so-called Cauchy equation. We obtain from Theorem 2.1.4.1 in Aczél [1, p. 46] that the
only continuous solution of (3.2) satisfying the side condition px(0) = 1 is given by

px(w) =",
where b is any complex number. Since py (—w) = px(w) we see that b = ic, for some real c.

Therefore, we conclude that

Py(0) =e“Ppy(w) Yo e [—2wg, 2m0]. (3.3)

Furthermore, (2.4) yields immediately that
i

Q. (@) =e "o (w) Yo € [—2m0, 2m0]. (3.4)

Now it remains to extend Egs. (3.3) and (3.4) to the whole real line. From here on we have to
distinguish between the two cases N = 2 and N >3.
AON=2Letwe A:={0: ¢ (0275 # Oand py(@27¥) #0 Vk =0,1,...} be
arbitrary. We obtain, analogously to (3.1), that
px(@)  px(o)
(px(@/2))*  (Px(w/2)*

Iterating this scheme we get

Px (@) _ Px(w)

(px(@27K)N2K Gy (@2-K))2"

Using this equation with a K large enough such that |02~ | <2w( we conclude from (3.3) that

Px(@27K)

2
m) = ox() et

Px () = px(w) (
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icw

Since A is dense in R and {w : @y () = '“®py(w)} is a closed set we conclude that

Py (w) = eicw(px(co) Yo € R,

that is, IBX = Px .. This implies, again by (2.4), that

P () = e_iC(”(pe(w) Yo € R,

which yields P, = P,_..
(i) N=3:Letnoww € B := {w : ¢ (w(N — D7) #0Vk =0, 1, ...} be arbitrary. Choosing
in24)w; =wand wy =--- = ooy = —w/(N — 1) we obtain

)N—l

0.(@) (9. (—/(N — 1)) = G,(0) (,(—o/(N — 1))V

Iterating this scheme we obtain that

e () _ Pe()
(9 () (=N — 1K) VDT (G () (—(N = 1)K))

(=(N=1pk~

Using this equation with a K large enough such that |w/(N — DK | <2wo we obtain from (3.4)
that

B, (0 (—(N — 1)Ky VD" o
) =@ (w)e .

(,08(60) = (Ps(w) ((PS(CU/(—(N — 1))[()

Since B is dense in R and {w : ¢, () = e~i¢?

¢, (w)} is a closed set we conclude that
Pe(@) = e, (0) Yo eR,

that is, ﬁg = P._.. Using once more (2.4) this implies
Py (@) =€ py(®) Yo eR,

hence, ng = Pxyc. O

Proof of Theorem 2.1. (i) From the pointwise convergence of ’(52’,, to ¢, stated in (2.3), we
obtain by the dominated convergence theorem that

P(Pxs P Pzp) ~> 0. (3.5)

By (2.6) we have

P (aX,n’ aa,n; az,n) <p (QDX» Pes aZ,n) + .
which implies that

P (aX,n’ ae,n; (PZ) P (@X,n! @s,n; aZ,n) + P ((va Pes aZ,n)
2

<
<20 (0xs P Prp) + 00 —> 0. (3.6)



1964 M.H. Neumann / Journal of Multivariate Analysis 98 (2007) 1955— 1968

The rest of the proof follows a typical pattern in the context of weak convergence. We fix an
arbitrary elementary event of the underlying probability space such that the convergence in (3.6)
takes place. Then it follows that

1 N
/ / Px (01 + -+ oN), ,(01) -+ P, ,(0N) do
S1 SN

151 IN
— / px(w1+ -+ oN)Q (1) @ (oy) do (3.7
k—o00 s1 SN

holds for all —oo < 5; < t; < 00. On the left-hand side of (3.7), we have integrated characteristic
functions of probability measures E X+e1,...X+ey),n While we have on the right-hand side the
integrated characteristic function of the probability measure Pz. Since vague convergence implies
pointwise convergence of the corresponding integrated characteristic functions and since these
integrated characteristic functions are measure determining we can conclude that any sequence
of subprobability distributions converges vaguely to some subprobability distribution if and only
if the corresponding integrated characteristic functions converge pointwise; see also Theorem
6.3.3 in Chung [6] for such a result in the univariate case. Therefore, we obtain from (3.7)
that

Pxiey,.. . X+ex)n —>v Pz.

Here ‘—,’ denotes vague convergence to a possibly defective (that is, with a mass less than
1) measure on . Since this vague limit is a probability measure it follows that the mode of
convergence is actually that of weak convergence, that is,

ﬁ(X+8],...,X+£N),n = Pz (3.8)
(i) Now assume that additionally (A1) is fulfilled. It remains to prove that (3.8) implies

A (Px.n, Pey; Px, P;) —> 0. (3.9)

n—o00

To see this, assume that there exists a constant 6 > 0 and a subsequence (ny)ren Of N such that
A(Pxn, Peny: Px, P) =0 Vk € N. (3.10)

By Helly’s selection theorem (see for example [2, p. 227]), there exist a further subsequence
(n;{)keN of (nx)ren and subprobability distributions Py« and P o such that, as k — oo,

Py, —v Px.oo (3.11)
and
ﬁg,n;{ —v Pe oo (3.12)

Moreover, it follows from (3.8) that (ID\X’ n ¥ I”\.8 n)neN 1S a tight sequence of probability measures
which implies that the measures Px o and P. o have mass 1. Therefore, the modes of convergence
in (3.11) and (3.12) are those of weak convergence, that is,

Py, = Px oo, (3.13)

o~

Pen, = Peoo (3.14)
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and Px oo and P o are probability measures on 5. Denote by ¢x ., and ¢, o, the characteristic

functions of Py o and P o, respectively. Since weak convergence implies pointwise convergence
of the corresponding characteristic functions we obtain by Fatou’s lemma that

p(¢xxwwaw;¢z)élhnmfp(axw,aaw;¢z)==0
k—00 k k

Now we obtain by Lemma 2.1 that

Px 0o = Px4c and Peoo =P ¢

hold for some ¢ € R, which means in conjunction with (3.13) and (3.14) that

A (ﬁX,n;(’ ﬁg’nl/(; Py, PS) — 0.

k— 00

Hence, our hypothesis (3.10) must be wrong, which completes the proof of the theorem. [

Before we turn to the proof of Theorem 2.2, we prove an auxiliary result which implies that
uniform integrability of ?n,l follows from uniform integrability of ?n,l — ’8\,,2

Lemma 3.1. Let €1 and &> be independent and identically distributed random variables with
mean zero. Then, for any ¢ > 0,

c
Eler = eall (ler =2 > 5 )]

1
> 2§E[|81|1(|81| > 0)].

Proof. Without loss of generality, we will show that

1
E [(81 —entI <(81 —e)t > %)] > §E [8?_1 (8?_ > c)] (3.15)
(The corresponding inequality with (¢ — &2)™ and &, follows analogously.) To prove (3.15), we
distinguish between two cases.
If P(e; > ¢/2) < %, then

Ee —ent1 (o1 — e > 5

2)] > E [(81 — 82)+I <81 >, 6 < c>]

<=

If P(e1 >c/2)> %, then we obtain by E[e; | = E[e] ] = E[sf‘]}E[sf[(eT > ¢)] that
et e s N s Eler ¢
E [(81 &)1 ((81 &) > 2)] > F [82 1 (81 > 2)]
= Eley ] P(e1 > ¢/2)

> %E [sfrl ((9;r > c)] U
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Proof of Theorem 2.2. This proof follows the same pattern as that of Theorem 2.1.
(1) Suppose that, besides (A1), (A2)(i) is fulfilled. Since ¢, € @ we have
P (@x,n’ as,n; ?:BZ,n) gp (@X’ Des aZ,n) + 57!’
which yields, in conjunction with (3.5), that
P (aX,nv aa,n; (/)Z) < p (aX,m aa,n; aZ,n) + p (QDX’ Des aZ,n)
<20 (0x2 03 92,0) + 00 >0, (3.16)

We fix an arbitrary elementary event of the underlying probability space such that the convergence
in (3.16) takes place.

Analogously to the proof of Theorem 2.1, we can conclude from (3.16) that any subsequence
(ni)ken of N contains a further subsequence (1) )xen such that, as k — oo,

for some ¢ € R. The latter convergence implies in particular that Pe_.((—o0, 0]) > lim sup;_,

ﬁw; ((—00,01) =L and P._ ([0, 00)) > lim sup,_ o ﬁmi ([0, 00)) > 1, that s, 0 is a median of

P._.. Since, by assumption, O is the unique median of P, we conclude that ¢ = 0. Since the above
properties hold for a suitable subsequence (1) )xecny Of any arbitrary sequence (nx)ken, they hold
also for the full sequence. Hence, we have that

ﬁX,n = Px and ﬁa,n = P,

for all elementary events such that the convergence in (3.16) takes place, hence, with probability 1.
(ii) Now we suppose that instead of (A2)(i) the alternative condition (A2)(ii) is fulfilled. First,
it follows from the strong law of large numbers that

o~

Rin —> - (3.17)

Therefore, there exists a sequence (¢, ,),en such that ¢, , € @ vn e N and

P ((pX7 5s,n; 902) 2) O’

which implies, in conjunction with (3.5), that

a.s.

1Y (@X! 53,,1; aZ,n) <,0 ((pX! as,n; qu) + P (@Xﬂ Pes aZ,n) — 0.
Taking into account that

p (ﬁX,m ;\q;e,n; 5Z,n) gp (@X? ’(\/;e,n; aZ,n) + 571
we obtain

p (aX,n’ﬁs,n; aZ,n) + P (QDX, Des 25271)
p (QDX’ 58,}1; aZ,n) + P ((pX9 D5 aZ,n) + 6’1 ﬂ) 0. (318)

P (@X,n’ ?g,n; QDZ) <
<

We fix an arbitrary elementary event of the underlying probability space such that the convergence
in (3.17) and (3.18) takes place.



M.H. Neumann / Journal of Multivariate Analysis 98 (2007) 1955—1968 1967

As in the proof of Theorem 2.1, we can conclude from (3.18) that any subsequence (ny)recn of
N contains a further subsequence (n;c) reN such that, as k — oo,

-~
=

ﬁX,n;‘, = Px4c and Ps,n;( = Pe—¢, (3.19)

for some ¢ € R. Let ’S\n,’(, 1 and '5,1;(,2 be independent random variables with common distribution

-~
=X

Ps,,,;{. Since
= = d
Sn;(,l - 8n§(,2 > €11 — €12 (3.20)
and
Ex [y 1 — €y ol Sy, — 1y = Elen — 12
s,n}( k—o00

— &y 2l — Elen —e12l.
% k—o00

This implies, again in conjunction with (3.20), that the sequence (Z?n;(’l _é’tn’k,z)keN is uniformly

integrable; see e.g. Chung [6, Theorem 4.5.4]. By Lemma 3.1, this implies that (?n]’(,l)kEN is also
uniformly integrable. Therefore, we conclude from (3.19) that

0=E3 %1 — Epe—c,
s.n;c k— 00

which means that ¢ must be zero. Hence, we have that

=

Py, = Px and P,, = P.

This also holds for the full sequence, with probability 1. This completes the proof. [
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