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In this paper, we propose a model-free bootstrap method for the empirical process under absolute regularity. More precisely,
consistency of an adapted version of the so-called dependent wild bootstrap, which was introduced by Shao (2010) and is very
easy to implement, is proved under minimal conditions on the tuning parameter of the procedure. We show how our results can
be applied to construct confidence intervals for unknown parameters and to approximate critical values for statistical tests. In
a simulation study, we investigate the size properties of a bootstrap-aided Kolmogorov-Smirnov test and show that our method
is competitive to standard block bootstrap methods in finite samples.

Received 9 January 2014; Revised 15 August 2014; Accepted 3 October 2014

Keywords: Absolute regularity; bootstrap; empirical process; time series; V -statistics; quantiles; Kolmogorov-Smirnov test.
JEL. 62G09; 62G20; 62G05; 62G10; 62G15; 62G30.

1. INTRODUCTION

Given real-valued observationsX1; : : : ; Xn with a common cumulative distribution function (cdf) F , many impor-
tant statistics Tn can be rewritten as or approximated by functionals of the empirical process Gn D .Gn.x//x2R,
where Gn.x/ D

p
n.Fn.x/ � F.x// and Fn.x/ D n�1

Pn

tD1 1.Xt � x/. A typical example is given by the
Kolmogorov-Smirnov test statistic. When knowledge of the distribution of Tn is required, for example, for the
construction of confidence sets or the determination of critical values for tests, knowledge of the distributional
properties of Gn would help. In the case of independent and identically distributed (i.i.d.) random variables and
a continuous cdf F , it is well known that the distribution of .Gn.F�1.u///u2.0;1/ does not depend on the par-
ticular F . As a consequence, the distribution of the Kolmogorov-Smirnov test statistic Tn D supx2R jGn.x/j is
invariant under F , which makes the choice of critical values quite easy. In the case of dependent random vari-
ables, however, this situation changes dramatically. It is well known (see also Theorem 2.1 in the succeeding
text) that the distribution of Gn and also its weak limit as n tends to infinity depend on the particular depen-
dence properties of the underlying process. Because these properties are usually not known in advance, it is
important to have a method of estimating the distribution of Gn at hand. It is known that, under certain condi-
tions, blockwise bootstrap methods provide a consistent approximation; see, for example, Bühlmann (1994,1995)
and Naik-Nimbalkar and Rajarshi (1994). In this paper, we derive results of this type for an alternative boot-
strap method, the so-called dependent wild bootstrap. This approach was first proposed by Shao (2010) for
functionals of the sample mean and is very easy to implement. This property is preserved in the case of miss-
ing data, where, in contrast, the algorithms for ordinary block-bootstrap methods have to be adjusted properly.
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Dependent wild bootstrap methods have already been successfully applied in the field of hypothesis testing; see
Shao (2011), Leucht and Neumann (2013) and Smeekes and Urbain (2014). Here, we show that an obvious
adaptation of this approach to the empirical process is consistent under rather weak conditions on the original
process .Xt /t2N and on a wide range for the tuning parameter of the bootstrap process. The tuning parame-
ter of the dependent wild bootstrap plays a similar role as the block length for classical block-based methods.
In the present case, the blocky structure refers to the covariances of the bootstrap variables rather than the
data itself, which ensures that the dependence structure between two consecutive observations is captured by
this resampling method.

In Section 4, we present applications of our general consistency results to statistics of different types, including
the Kolmogorov-Smirnov statistic as well as degenerate and non-degenerate von Mises statistics. A small simula-
tion study reported in Section 5 sheds some light on the finite sample behaviour of the bootstrap approximation,
and it seems that the performance of the dependent wild bootstrap is comparable to that of the classical moving
block bootstrap (MBB) introduced by Künsch (1989) and Liu and Singh (1992) and the tapered block bootstrap
(TBB) of Paparoditis and Politis (2001).

2. ASSUMPTIONS, THE EMPIRICAL PROCESS

Suppose that we observeX1; : : : ; Xn from a (strictly) stationary and real-valued process .Xt /t2Z. We denote by F
the common cdf of the Xts and by Fn the empirical distribution function, that is, Fn.x/ D n�1

Pn

tD1 1.Xt � x/.
For simplicity, we assume that F is continuous, although we think that our results can be generalized to
discontinuous cdf’s. The empirical process Gn D .Gn.x//x2R is given by

Gn.x/ D
p
n.Fn.x/ � F.x//:

We assume

(A1) .Xt /t2Z is strictly stationary and absolutely regular (ˇ-mixing) with mixing coefficients satisfyingP1
rD1 ˇX .r/ <1. The cdf F of X0 is continuous.

The following result is a special case of Theorem 1 in Rio (1998).

Theorem 2.1. Suppose that (A1) is fulfilled. Then,

Gn
d
�! G;

whereG D .G.x//x2R is a Gaussian process with continuous sample paths,EG.x/ D 0, and cov.G.x/;G.y// DP1
rD�1 cov.1.X0 � x/; 1.Xr � y//. Here, convergence holds with respect to the supremum metric, that

is, supf2FL jEf .Gn/ � Ef .G/j �! 0 holds with FL D ¹f W F WD ¹h W R ! R is càdlàgº ! R j
f bounded; jf .h1/ � f .h0/j � kh1 � h0k1º.

Remark 1.
(i) The aforementioned characterization of weak convergence can be found in van der Vaart and Wellner (2000,

Section 1.12).
(ii) Doukhan, Massart and Rio (1995, Section 1) discussed several notions of mixing and concluded that absolute

regularity (ˇ-mixing) is an appropriate condition in the context of the study of empirical processes due to
Berbee’s maximal coupling. Later, Rio (2000, Theorem 7.2) derived a uniform CLT for stationary and strong
mixing (˛-mixing) processes under the condition ˛.r/ D O.r��/, for some � > 1. We think that our results
in the succeeding text may also be proved under alternative dependence conditions, such as strong mixing
or weak dependence conditions from Doukhan and Louhichi (1999). For sake of definiteness, we restrict
ourselves to the notion of absolute regularity here.
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3. DEPENDENT WILD BOOTSTRAP FOR THE EMPIRICAL PROCESS

3.1. Methodology and basic assumptions

The so-called dependent wild bootstrap was introduced by Shao (2010) for smooth functions of the sample mean.
In the case of weakly dependent and real-valued random variables X1; : : : ; Xn, the idea of the dependent wild
bootstrap is to construct the pseudo-observations as follows:

X�t D
NXn C .Xt � NXn/"

�
t;n; t D 1; : : : ; n:

Here, NXn D n�1
Pn

tD1Xt and
�
"�t;n

�n
tD1

is a triangular scheme of weakly dependent random variables that is
independent of X1; : : : ; Xn. Shao (2010) verified that under certain regularity conditions,

sup
x2R

ˇ̌
P
�p
n
�
H. NXn/ �H.EX1/

�
� x

�
� P �

�p
n
�
H
�
NX�n
�
�H. NXn/

�
� x

�ˇ̌ P
�! 0;

where H is a smooth function and NX�n D n
�1
Pn

tD1X
�
t .

In our case of the empirical process, the role of the Xts earlier is taken by the processes .1.Xt � x//x2R.
Following the idea of Shao (2010), we define bootstrap counterparts of Yt D 1.Xt � x/ and of Fn as

Y �t D
NYn C .Yt � NYn/"

�
t;n

D Fn.x/C .1.Xt � x/ � Fn.x//"
�
t;n

and

F �n .x/ D Fn.x/C
1

n

nX
tD1

.1.Xt � x/ � Fn.x//"
�
t;n (3.1)

respectively. This leads to the following bootstrap version of the empirical process:

G�n.x/ D
1
p
n

nX
tD1

�
Y �t �

NYn
�

D
1
p
n

nX
tD1

.1.Xt � x/ � Fn.x//"
�
t;n:

Note that the result of Shao (2010) remains valid if the Xts are Rd -valued random vectors. Therefore, it is clear
that, under appropriate conditions, the distribution of .G�n.x1/; : : : ; G

�
n.xd //

0 consistently approximates that of
.Gn.x1/; : : : ; Gn.xd //

0 for any x1; : : : ; xd 2 R, d 2 N. In fact, we show under a condition slightly stronger
than (A1) and under simple conditions for the "�t;ns that this is indeed the case. Moreover, we prove stochastic
equicontinuity on the bootstrap side, which yields convergence of .G�n/n2N to the desired limit. To this end, we
impose the following condition:

(A2) For all n;
�
"�t;n

�
tD1;:::;n

is a centered stationary Gaussian process with

nX
rD1

ˇ̌
cov

�
"�1;n; "

�
r;n

�ˇ̌
D O.ln/ and An.s; t/ WD cov

�
"�s;n; "

�
t;n

�
!n!1 1:
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The sequence .ln/n2N has to be chosen such that

ln �!
n!1

1 and ln=n �!
n!1

0: (3.2)

Similarly to Shao’s work, the assumption of Gaussianity of the wild bootstrap variables
�
"�t;n

�
can be dropped.

However, if one wants to go beyond ln-dependence of these variables, this typically goes along with technical
assumptions on moments and dependence structure of these bootstrap variables; see, for example, assumption (B2)
in Leucht and Neumann (2013). Since the process .G�n.x//x2R is intended to mimic the stochastic behaviour of
.Gn.x//x2R, which is asymptotically Gaussian, and to simplify the mathematical part in the succeeding text, we
stick to the assumption of normality here.

The role of the parameter ln is similar to that of the block length in blockwise bootstrap methods. For a long
time, these blockwise methods have been known to be consistent if the block length tends to infinity within a
certain ‘corridor’, that is, ln ! 1 but ln D o.nı/, for ı 2 .0; 1=2/; see, for example, Bühlmann (1994,1995)
and Naik-Nimbalkar and Rajarshi (1994). However, a recent result of Wieczorek (2014) shows that the weaker
conditions of ln ! 1 and ln D o.n/ are still sufficient for consistency. In our context, it is clear that the
aforementioned assumptions on .ln/n2N are some sort of minimal condition for the dependent wild bootstrap
to work: the condition ln ! 1 takes care that the dependence structure of the original process X1; : : : ; Xn is
asymptotically captured. On the other hand, ln=n ! 0 implies that the conditional distribution of G�n is non-
degenerate. The question of the optimal choice of the tuning parameter ln is addressed in Shao (2010) for the
mean. It turns out that the optimal rates ln D O.n1=3/ and ln D O.n1=5/ known for the block lengths of the
MBB and the TBB respectively are also optimal for the tuning parameter of the dependent wild bootstrap for
suitable choices of the covariance functionAn of the bootstrap variables; compare the comments in the succeeding
text Remark 2.1 and Corollary 4.1 in Shao (2010). These findings can be carried over to our results on the finite
dimensional distributions of the empirical process. However, the question of uniform optimal rates for the whole
process seems to be much more delicate and is left outside the scope of the paper.

Remark 2.
(i) A simple special case of a process satisfying the aforementioned conditions is given by defining "�t;n D Ut=ln

where .Ut /t�0 is an Ornstein-Uhlenbeck process, that is, a Gaussian process with continuous sample paths,
EUt D 0 and cov.Us; Ut / D exp.�js� t j/ 8s; t � 0. In this case, the practical implementation is rather easy
since a discrete sample of an Ornstein-Uhlenbeck process forms an AR(1) process, that is,

"�t;n D e
�1=ln"�t�1;n C

p
1 � e�2=ln "�t ;

where "�
0;n
; "�
1
; : : : ; "�n are independent standard normal variables. Other choices of the covariance structure

of "�
1;n
; : : : ; "�n;n are considered in Section 5, too.

(ii) There are also other variants of the dependent wild bootstrap in the literature. Shao (2011) proposed a block-
wise wild bootstrap procedure, where variables from blocks of length ln are multiplied with one and the same
auxiliary random variable. To deal with heteroskedasticity in the context of unit root testing, Smeekes and
Urbain (2014) proposed, besides the dependent wild bootstrap and the blockwise wild bootstrap as in Shao
(2010, 2011), an autoregressive wild bootstrap. Of course, in view of (i), the latter is a special case of our
variant of the dependent wild bootstrap.

Finally, we have to replace assumption (A1) by the following slightly stronger assumption:

(A3) .Xt /t2Z is strictly stationary and absolutely regular (ˇ-mixing) with coefficients satisfyingP1
rD1 r

2ˇX .r/ <1.

wileyonlinelibrary.com/journal/jtsa Copyright © 2015 Wiley Publishing Ltd J. Time. Ser. Anal. (2015)
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3.2. Asymptotics for the bootstrapped empirical process

It turns out that the following representation of the bootstrapped empirical process simplifies the investigation of
its asymptotics. We write

G�n.x/ D G
�;0
n .x/ �R�n.x/;

where

G�;0n .x/ D
1
p
n

nX
tD1

.1.Xt � x/ � F.x//"
�
t;n

and R�n.x/ D .Fn.x/ � F.x// n
�1=2

Pn

tD1 "
�
t;n.

Remark 3. Since supx2R jFn.x/ � F.x/j D OP .n
�1=2/, we obtain that

sup
x2R

ˇ̌
R�n.x/

ˇ̌
D sup
x2R
jFn.x/ � F.x/j

ˇ̌̌̌
ˇn�1=2

nX
tD1

"�t;n

ˇ̌̌̌
ˇ D OP�.pln=n/

under mild assumptions stated in the succeeding text. (We write Y �n D OP�.rn/ if 8� > 0 9K.�/ <1 such that
P
�
P �

�
jY �n =rnj > K.�/

�
> �

�
�!
n!1

0.) Hence, we can analyze G�;0n instead of G�n in the sequel.

As usual, we have to prove convergence of the finite-dimensional distributions to the correct limits and stochastic
equicontinuity of the processes

�
G�;0n

�
n2N

. The first task is rather easy since the finite-dimensional distributions
are by construction centered Gaussian.

Lemma 3.1. Suppose that (A2) and (A3) are fulfilled. Then, for arbitrary x; y 2 R,

cov�
�
G�;0n .x/;G�;0n .y/

� P
�! cov.G.x/;G.y//:

This and Remark 3 yields convergence of the finite-dimensional distributions:

Corollary 3.1. Suppose that (A2) and (A3) are fulfilled. Then, for arbitrary x1; : : : ; xk 2 R, k 2 N,

�
G�n.x1/; : : : ; G

�
n.xk/

�0 d
�! .G.x1/; : : : ; G.xk//

0 in probability:

It turns out that the proof of stochastic equicontinuity of
�
G�;0n

�
n2N

is more delicate than that of Lemma 3.1.
We have to prove that for each � > 0 and � > 0, there exists a grid �1 D x0 < x1 < : : : < xM�1 < xM D 1
such that

P

 
P �

 
max

1�i�M
sup

x2.xi�1;xi �

ˇ̌
G�;0n .x/ �G�;0n .xi /

ˇ̌
> �

!
� �

!
�!
n!1

1: (3.3)
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(As usual, we set G�;0n .�1/ D G�;0n .1/ D 0.) To this end, we prove that

E

"
P �

 
max

1�i�M
sup

x2.xi�1;xi �

ˇ̌
G�;0n .x/ �G�;0n .xi /

ˇ̌
> �

!#

D E E�

"
1

 
max

1�i�M
sup

x2.xi�1;xi �

ˇ̌
G�;0n .x/ �G�;0n .xi /

ˇ̌
> �

!#
� �2

(3.4)

for all n � n0.�; �/, which implies by Markov’s inequality that

P

 
P �

 
max

1�i�M
sup

x2.xi�1;xi �

ˇ̌
G�;0n .x/ �G�;0n .xi /

ˇ̌
> �

!
> �

!
� � 8n � n0.�; �/

and, therefore, (3.3).

Remark 4.
(i) Although we have to show (3.3), which is a result on the conditional distribution of G�;0n given X1; : : : ; Xn,

we prove first the unconditional result (3.4) for the increments ofG�;0n . Taking the expectation with respect to
(w.r.t.) the original sample allows us to take advantage of the fixed dependence structure of X1; : : : ; Xn, withP1
rD1 r

2ˇX .r/ < 1. In contrast, if the process .Ut /t�0 is absolutely regular with coefficients satisfyingR1
0
ˇU .r/ dr < 1 and if "�t;n D Ut=ln , then the "�t;n are also absolutely regular, however, with mixing

coefficients satisfying only
P1
rD1 ˇ"�.r/ D O.ln/. Thus, working with conditional expectations alone would

be more difficult and probably go along with additional assumptions on the tuning parameter ln.
(ii) Some preliminary calculations suggest that we could employ Rio’s (1998) approach to prove stochas-

tic equicontinuity of the bootstrap process. Suppose that the variables "�
1;n
; : : : ; "�n;n are obtained from

a Gaussian process .Ut /t�0 via "�t;n D Ut=ln . If the process .Ut /t�0 is absolutely regular with coeffi-
cients ˇU .r/; r > 0, then it follows from independence of the Xts and the "�t;ns that the bivariate process��
Xt ; "

�
t;n

��
tD1;:::;n

is absolutely regular with coefficients ˇX;"�.r/ � ˇX .r/ C ˇU .r=ln/. Unfortunately,

although the ˇX .r/s are summable we only obtain that
Pn�1

rD0 ˇX;"�.r/ D O.ln/, which would require
for the proof of stochastic equicontinuity of

�
G�;0n

�
n2N

an additional restriction on the sequence .ln/n2N
beyond the obviously necessary conditions ln !1 and ln=n! 0. In view of this, we have decided to use a
different approach tailor-made for our problem at hand.

As a first step, the following lemma provides upper estimates for the fourth moment of increments of G�;0n
over certain intervals Ij;k D .xj;k�1; xj;k�. To find appropriate grid points xj;k , we adapt an idea from Viennet
(1997) for strictly stationary and absolutely regular processes .�t /t2Z on .�;A; P / with summable coefficients of
absolute regularity. Using the representation ˇ.�.�0/; �.�k// D 1

2
EkP �k j�0 �P �kkVar , where kQkVar denotes

the total variation norm of a signed measureQ, she shows that there exists a nonnegative function b 2 L1.P / such
that var

�
n�1=2

P1
tD1  .�t /

�
� 4

R
b.x/ 2.x/ dP.x/ holds for all  2 L2.P /. This implies, for any choice of

�1 < x0 < x1 � � � < xM <1;M 2 N, that

MX
kD1

var

 
n�1=2

nX
tD1

1.xk�1;xk�.�t /

!
� 4

Z 1
�1

b.x/ dP.x/ < 1;
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that is, we obtain an upper bound not depending on the fineness of the decomposition of R. In view of this, it
becomes apparent that Viennet’s idea is tailor-made for proving a result such as Lemma 3.2 in the succeeding text.
Since we estimate fourth moments of the increments, we have to carry over this approach to higher moments; see
the proof of the following lemma for details.

Lemma 3.2. Suppose that (A2) and (A3) are fulfilled. Then, there exists a dyadic sequence of grid points �1 D
xj;0 < xj;1 < : : : < xj;2j D1, j 2 N, with xj;k D xjC1;2k such that, for all j 2 N; k 2 ¹1; : : : ; 2j º,

EE�
h�
G�;0n .xj;k�1/ �G

�;0
n .xj;k/

�4i
� K0 .2

�2j C n�1 2�j /;

for some K0 <1.

With the grid points chosen in the proof of Lemma 3.2, we can prove similarly to Theorem 15.6 in Billingsley
(1968) that we have the desired stochastic equicontinuity (in probability) for the bootstrap processes:

Corollary 3.2. Suppose that (A2) and (A3) are fulfilled. Then, for each � > 0 and � > 0, there exists a grid
�1 D x0 < x1 < : : : < xM�1 < xM D1 such that

P

 
P �

 
max

1�i�M
sup

x2.xi�1;xi �

ˇ̌
G�;0n .x/ �G�;0n .xi /

ˇ̌
> �

!
� �

!
�!
n!1

1:

As a consequence of the Corollaries 3.1 and 3.2, we obtain the convergence of the bootstrap processes G�n to
the same limit as for the original processes Gn.

Theorem 3.1. Suppose that (A2) and (A3) are fulfilled. Then,

G�n
d
�! G in probability:

Here, the convergence holds with respect to the supremum metric with the additional qualification ‘in probability’,

that is, supf2FL
ˇ̌
E�f

�
G�n
�
�Ef .G/

ˇ̌ P
�! 0 holds.

4. APPLICATIONS

We discuss some specific applications of our results earlier in this section. Theorems 2.1 and 3.1 act as master
theorems that imply bootstrap consistency in some particular cases of interest.

4.1. Quantile estimation

Quantile estimation plays an important role in financial risk management since several risk measures like the
value-at-visk or the expected shortfall can be represented as functions of quantiles.

For q 2 .0; 1/, the q-quantile of F is defined as tq D F�1.q/ D inf¹x W F.x/ � qº. This can be conveniently
estimated by its empirical counterpart,

tn;q D F
�1
n .q/:

J. Time. Ser. Anal. (2015) Copyright © 2015 Wiley Publishing Ltd wileyonlinelibrary.com/journal/jtsa
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We impose the following additional condition:

(A4) F is continuously differentiable at tq and F 0.tq/ > 0.

For
p
n.tn;q � tq/, Sun and Lahiri (2006) and Sharipov and Wendler (2013) proved consistency of the block

bootstrap in the case of strong mixing processes. The next theorem follows immediately as a special case of the
Theorems 1 and 2 in Sharipov and Wendler (2013).

Theorem 4.1 (Sharipov and Wendler (2013)). Suppose that (A1) and (A4) are fulfilled. Then,

(i) tn;q � tq D
q�Fn.tq/

F 0.tq/
C oP .n

�1=2/,

(ii)
p
n.tn;q � tq/

d
�! Zq � N .0; var.G.tq//=.F 0.tq//2/.

On the bootstrap side, we define

t�n;q D F
�
n

�1
.q/;

where F �n is defined as in (3.1). Note that a non-standard feature in this context is that F �n is not monotonously
non-decreasing. Therefore,

p
n
�
t�n;q � tn;q

�
� x is not equivalent to F �n .tn;q C x=

p
n/ � q but to inf¹F �n .s/ W

s � tn;q C x=
p
nº � q. In view of this, we cannot obtain the asymptotic distribution of

p
n
�
t�n;q � tn;q

�
directly

from the asymptotics of P �
�
F �n .tn;q C x=

p
n/ � q

�
. The following theorem states first the validity of a Bahadur

representation for t�n;q which eventually leads to the limit distribution for
p
n
�
t�n;q � tn;q

�
.

Theorem 4.2. Suppose that (A2), (A3) and (A4) are fulfilled. Then,

(i) t�n;q � tn;q D
Fn.tq/�F

�
n .tq/

F 0.tq/
C oP�.n

�1=2/,

where we write R�n D oP�.an/ if P �
�
jR�nj=janj > "

� P
�! 0; 8 " > 0.

(ii)
p
n
�
t�n;q � tn;q

� d
�! Zq � N .0; var.G.tq//=.F 0.tq//2/ in probability.

Corollary 4.1. Suppose that (A2), (A3) and (A4) are fulfilled. If additionally var.G.tq// > 0, then

(i) supx2R
ˇ̌
P �

�
t�n;q � tn;q � x

�
� P .tn;q � tq � x/

ˇ̌ P
�! 0

(ii) With c�� WD inf
®
c W P �

�ˇ̌
t�n;q � tn;q

ˇ̌
� c

�
� 	

¯
; 0 < 	 < 1,

P
�
tq 2

�
tn;q � c

�
� ; tn;q C c

�
�

��
�!
n!1

1 � 	:

4.2. Kolmogorov-Smirnov test

A classical test problem in mathematical statistics is given by

H0 W F D F0 vs. H1 W F ¤ F0:

Based on observations X1; : : : ; Xn � F , we give a decision rule with nominal size 	 2 .0; 1/ based on the
Kolmogorov-Smirnov test statistic,

Tn D sup
x2R

p
njFn.x/ � F0.x/j:
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The null hypothesis is rejected if the value of the test statistic is larger than the .1 � 	/-quantile of the dis-
tribution of Tn, which in turn depends on the dependence structure of the data. Even in case the latter is not
completely specified our bootstrap procedure can be successfully applied to approximate these quantiles. To this
end, we define a bootstrap version of the test statistic T �n D supx2R

p
n jF �n .x/ � Fn.x/j and the corresponding

bootstrap quantile

t�� D inf
®
x W P �

�
T �n > x

�
� 	

¯
:

Theorem 4.3. Assume that (A2) and (A3) are fulfilled and that there exists some x 2 R with var.G.x// > 0.
Then, if F D F0,

P0
�
Tn > t

�
�

�
�!
n!1

	:

Remark 5. Our master theorems, Theorems 2.1 and 3.1, can also be invoked to set up a two-sample test. Based
on observations X1; : : : ; Xn and Y1; : : : ; Yn of two independent absolutely regular and strictly stationary pro-
cesses .Xn/n and .Yn/n, one aims to decide whether the marginal distribution of these processes PX and P Y are
identical, that is

H0 W PX D P Y versus H1 W PX ¤ P Y :

The Kolmogorov-Smirnov type test statistic is then given by

bT n D sup
x2R

p
n
ˇ̌̌
F .X/n .x/ � F .Y /n .x/

ˇ̌̌
;

where F .X/n and F .Y /n denote the empirical distribution functions based on X1; : : : ; Xn and Y1; : : : ; Yn respec-
tively. Denoting the corresponding empirical processes by G.X/n and G.Y /n and their independent limits by G.X/

and G.Y /, we get

bT n D sup
x2R

ˇ̌̌
G.X/n �G.Y /n

ˇ̌̌
d
�! sup

x2R
jG.X/ �G.Y /j;

and the dependent wild bootstrap method can again be applied to derive critical values of the test statistic.

4.3. von Mises statistics

A von Mises (V -) statistic based on X1; : : : ; Xn is defined as

Vn D
1

n2

nX
s;tD1

h.Xs; Xt /: (4.1)

It is well known that many important statistics are of the form (4.1). Simple examples are the usual variance
estimator (with h.x; y/ D .x � y/2=2), Gini’s mean difference (h.x; y/ D jx � yj) and, more importantly, test
statistics of L2-type such as the Cramér-von Mises test statistic. We assume that the kernel h W R2 ! R satisfies
the following condition.
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(A5) h is continuous, bounded and symmetric w.r.t. permutation of its arguments, that is, h.x; y/ D h.y; x/.
Moreover, let h, hF .�/ WD

R
h.�; y/dF.y/, and h.x; �/ have bounded variation (uniformly in x).

Beutner and Zähle (2014) proposed a partial integration approach to derive limit distributions of V -statistics
based on results on convergence of empirical processes in (weighted) sup-norms. Under (A5) the statistic Vn can
be represented as a Stieltjes integral

Vn D

“
h.x; y/ dFn.x/ dFn.y/:

Note that, with V D
’
h.x; y/ dF.x/ dF.y/,

Vn � V D

“
h.x; y/ d.Fn � F /.x/ d.Fn � F /.y/

C 2

Z
hF .x/ d.Fn � F /.x/:

It follows from Lemmas 3.4 and 3.6 in Beutner and Zähle (2014) that we can apply integration by parts and obtain

Vn � V D

“
.Fn � F /.x�/.Fn � F /.y�/ dh.x; y/

� 2

Z
.Fn � F /.x�/ dhF .x/;

(4.2)

where g.´�/ denotes the limit from the left of a function g at point ´. This representation allows to infer from
a convergence result for the empirical process the asymptotic behaviour of the V -statistic, both in the degenerate
(with hF � 0) and the non-degenerate case. The following result is an immediate consequence of Theorem 3.15
in Beutner and Zähle (2014) and our Theorem 2.1.

Theorem 4.4. Suppose that (A1) and (A5) hold. Then,

(i)
p
n .Vn � V /

d
�! �2

R
G.x/ dhF .x/.

(ii) If Vn is degenerate, that is, if hF � 0, then

nVn
d
�!

“
G.x/G.y/ dh.x; y/:

Both limit distributions depend on the covariance structure of the process G, which might be unknown in
applications. Thus, quantiles of the (asymptotic) distributions (e.g., to derive critical values of the Cramér-von
Mises statistic for data with unspecified dependence structure) cannot be determined analytically. This difficulty
can be circumvented by the application of the bootstrap method of Section 3.
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In the non-degenerate case, we mimic Vn � V by V �n � Vn, where, because of F �n .x/ D n�1
Pn

tD1 1
.Xt � x/.1C "

�
t;n � N"

�
n/,

V �n D

“
h.x; y/ dF �n .x/ dF

�
n .y/

D
1

n2

nX
s;tD1

h.Xs; Xt /
�
1C "�s;n � N"

�
n

� �
1C "�t;n � N"

�
n

�
:

We obtain that

V �n � Vn D
1

n2

nX
s;tD1

h.Xs; Xt /
�
"�s;n � N"

�
n

� �
"�t;n � N"

�
n

�
C
2

n

nX
sD1

hFn.Xs/
�
"�s;n � N"

�
n

�
D

“ �
F �n � Fn

�
.x�/

�
F �n � Fn

�
.y�/ dh.x; y/ � 2

Z �
F �n � Fn

�
.x�/dhF .x/C r

�
n ;

where r�n D �2n
�1
Pn

sD1.hFn.Xs/ � hF .Xs//
�
"�s;n � N"

�
n

�
and hFn.�/ D

R
h.x; �/dFn.x/. It turns out that r�n

is asymptotically negligible and Theorem 3.1 eventually yields consistency of the bootstrap approximation in the
non-degenerate case.

In the degenerate case, where the right normalizing factor is n rather than
p
n, we have to proceed

in a different way. It can be conjectured from recent results from Leucht and Neumann (2013) (under
some variant of Doukhan and Louhichi’s (1999) weak dependence instead of ˇ-mixing) that the term
n�1

Pn

s;tD1 h.Xs; Xt /
�
"�s;n � N"

�
n

� �
"�t;n � N"

�
n

�
converges to the correct limit. On the other hand, the additional

term 2
Pn

sD1 hFn.Xs/
�
"�s;n � N"

�
n

�
is of the same order and disturbs the intended convergence. In fact, we have to

take into account that hF � 0, which also implies V D 0. Therefore, (4.2) simplifies to

Vn D

“
.Fn � F /.x�/ .Fn � F /.y�/ dh.x; y/;

which suggests the bootstrap approximation

V ��n D

“ �
F �n � Fn

�
.x�/

�
F �n � Fn

�
.y�/ dh.x; y/

D
1

n2

nX
s;tD1

h.Xs; Xt /
�
"�s;n � N"

�
n

� �
"�t;n � N"

�
n

�
:

Asymptotic validity of this approximation has been shown in Leucht and Neumann (2013) under conditions dif-
ferent from those imposed here while consistency of a block bootstrap method for non-degenerate U -statistics
was proved in Dehling and Wendler (2010). In our context, consistency follows again from Theorem 3.1. All
consistency results are summarized in the following theorem.

Theorem 4.5. Suppose that (A2), (A3) and (A5) hold. Then,

(i)
p
n
�
V �n � Vn

� d
�! �2

R
G.x/ dhF .x/ in probability.

(ii) If Vn is degenerate, that is, if hF � 0, then

nV ��n
d
�!

“
G.x/G.y/ dh.x; y/ in probability:
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5. SIMULATIONS

To provide some idea of the finite sample properties of the different bootstrap methods, we report the results of a
small simulation study.

We investigated the size of the Kolmogorov-Smirnov test, with a nominal size chosen as 	 D 0:05; 0:1. Data
were generated from a stationary AR(1)-process,

Xt D 
 Xt�1 C �t ; t 2 N;

where 
 D 0; 0:5; 0:7 and �t � N .0; 1 � 
2/ are independent. With this choice, the Xts have a standard
normal distribution.

Our primary intention was to compare the performance of the dependent wild bootstrap with that of well-
established block bootstrap methods. We have chosen two variants of the block bootstrap methodology, the MBB
of Künsch (1989) and Liu and Singh (1992), which consists of independently drawing blocks of observations and
then patching them together to a bootstrap time series, and the TBB by Paparoditis and Politis (2001). The latter
method has superior bias properties than the classical block bootstrap; see Section 2 in Paparoditis and Politis
(2001) for details. These methods are compared with three versions of the dependent wild bootstrap (DWB1–3).
Although all of them are clearly in the spirit of the original proposal by Shao (2010), the first one is the special
case of an autoregressive wild bootstrap also employed in Leucht and Neumann (2013) and Smeekes and Urbain
(2014). The autocovariance function of the wild bootstrap variables "�t;n obeys Assumption 2.2 in Shao (2010)
with q D 1 in the first two cases and with q D 2 in the third case. According to Remark 2.1 in that paper,
the third variant shares the superior asymptotic bias properties with the tapered block bootstrap, whereas the first
two variants have inferior bias properties comparable to those of the MBB. Finally, to show the necessity of not
neglecting the dependence of the data, we also included Wu’s (1986) (independent) wild bootstrap. Here is a
summary of the technical details:

� WB: Wu’s (1986) (independent) wild bootstrap

"�t;n � N .0; 1/ i.i.d.

� DWB1: Discretely sampled Ornstein-Uhlenbeck process (autoregressive wild bootstrap)

"�t;n D e
�1=ln"�t�1;n C �t ; t 2 N;

where �t � N .0; 1 � e�2=ln/ are i.i.d.
� DWB2: MA-process, rectangular weight function

"�t;n D �t C � � � C �t�lnC1;

where �t � N .0; 1=ln/ are i.i.d.
� DWB3: MA-process, triangular weight function

"�t;n D cn;1�t C � � � C cn;ln�t�lnC1;

where cn;k D 0:5 � j.k � 0:5/=ln � 0:5j, �t � N .0; 1=cn/ are i.i.d. with cn D c2n;1 C � � � C c
2
n;ln

.
� MBB

The original time series Y1; : : : ; Yn (Yt D 1.Xt � x/, here) is split in nonoverlapping blocks of length ln.
From these blocks, bootstrap blocks are generated by drawing with replacement; then, these blocks are
patched together to a bootstrap series Y �

1
; : : : ; Y �n .
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� TBB
To reduce bias problems, Paparoditis and Politis (2001) proposed to split Y1; : : : ; Yn in blocks of length ln,

apply a taper to these blocks, that is,

Z.i�1/lnCk D cn;kY.i�1/lnCk=
p
cn;

where cn;k and cn are chosen as mentioned earlier. From these new blocks, a bootstrap version is generated
by drawing with replacement.

In the latter five cases, the tuning parameter ln plays a similar role. For simplicity, we have used the same
values ln D 8; 10; 12; 15; 20; 30 for all methods. To avoid having an incomplete block with the blockwise meth-
ods, we have chosen sample sizes n D 240; 480; 960 that are multiples of the ln. We repeated the simulations
N D 1000 times, each with B D 1000 bootstrap resamplings. The implementation was carried out with the aid of
the statistical software package R; see R Core Team (2012). The results are reported in Tables I to IX below.

In the case of independent observations (
 D 0), the classical (independent) wild bootstrap has quite a sim-
ilar performance as the five time series bootstraps; however, it fails drastically in the two cases of dependence
(
 D 0:5; 0:7). The three versions of the dependent wild bootstrap showed a similar performance as the block
bootstrap methods, whereas, as expected in view if the asymptotic results for the bias, DBW3 and TBB are
slightly better than the other competitors. It is quite apparent that the empirical size is in almost all cases higher
than the nominal one. This is due to the fact that, for all five bootstrap schemes, covariances are systematically
underestimated. In our case of an AR(1)-process with all covariances positive, this effect explains the oversizing
of the test.

Although we do not give any theoretical results on the behaviour of the test under the alternative, we illustrate the
finite sample power properties under two alternative scenarios. To this end, we consider samples of size n D 480

of AR(1) processes with 
 D 0:5 and Gaussian observations such that the marginals are N .0:25; 1/ and N .0; 1:5/
respectively; see Tables X and XI. Again, we observe a comparable behaviour of the dependent wild and the block
bootstrap. As usual, we see that more oversized tests have better power properties.

6. PROOFS

Proof of Lemma 3.1
We define

Tn;1 D cov�
�
G�;0n .x/;G�;0n .y/

�
D
1

n

nX
s;tD1

.1.Xs � x/ � F.x//.1.Xt � y/ � F.y//An.s; t/

Table I. Empirical size (n D 240; 
 D 0)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.064 0.113 0.079 0.133 0.068 0.130 0.069 0.128 0.069 0.126 0.064 0.119
ln D 10 0.082 0.154 0.068 0.140 0.069 0.128 0.068 0.137 0.065 0.127
ln D 12 0.086 0.158 0.071 0.134 0.070 0.135 0.079 0.137 0.063 0.126
ln D 15 0.085 0.169 0.077 0.129 0.071 0.125 0.077 0.131 0.068 0.110
ln D 20 0.092 0.173 0.059 0.129 0.060 0.123 0.067 0.133 0.054 0.112
ln D 30 0.131 0.225 0.087 0.148 0.076 0.138 0.095 0.149 0.073 0.122

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.
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Table II. Empirical size (n D 240; 
 D 0:5)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.257 0.334 0.086 0.174 0.085 0.163 0.087 0.161 0.080 0.163 0.081 0.160
ln D 10 0.087 0.171 0.084 0.157 0.086 0.157 0.086 0.158 0.079 0.143
ln D 12 0.092 0.176 0.077 0.157 0.076 0.151 0.084 0.154 0.071 0.140
ln D 15 0.098 0.187 0.073 0.155 0.076 0.139 0.079 0.152 0.067 0.132
ln D 20 0.101 0.177 0.078 0.140 0.073 0.125 0.076 0.138 0.059 0.112
ln D 30 0.141 0.240 0.083 0.166 0.073 0.143 0.094 0.169 0.070 0.130

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.

Table III. Empirical size (n D 240; 
 D 0:7)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.397 0.487 0.122 0.204 0.127 0.211 0.147 0.224 0.133 0.207 0.141 0.215
ln D 10 0.117 0.195 0.116 0.191 0.124 0.208 0.112 0.190 0.115 0.200
ln D 12 0.115 0.192 0.108 0.186 0.112 0.186 0.108 0.183 0.105 0.177
ln D 15 0.119 0.202 0.101 0.179 0.094 0.179 0.101 0.177 0.086 0.166
ln D 20 0.119 0.190 0.090 0.159 0.081 0.145 0.091 0.156 0.077 0.131
ln D 30 0.151 0.254 0.098 0.186 0.083 0.164 0.108 0.196 0.073 0.142

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.

Table IV. Empirical size (n D 480; 
 D 0)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.054 0.116 0.057 0.122 0.054 0.122 0.053 0.119 0.058 0.124 0.056 0.114
ln D 10 0.061 0.112 0.051 0.102 0.052 0.103 0.056 0.103 0.051 0.099
ln D 12 0.084 0.152 0.077 0.139 0.073 0.136 0.084 0.139 0.076 0.132
ln D 15 0.065 0.149 0.057 0.131 0.057 0.128 0.062 0.134 0.052 0.127
ln D 20 0.101 0.161 0.083 0.152 0.081 0.147 0.083 0.149 0.075 0.136
ln D 30 0.091 0.157 0.061 0.127 0.063 0.123 0.068 0.133 0.058 0.117

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.

Table V. Empirical size (n D 480; 
 D 0:5)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.238 0.325 0.095 0.143 0.094 0.147 0.099 0.150 0.094 0.149 0.094 0.146
ln D 10 0.094 0.151 0.094 0.150 0.092 0.147 0.096 0.148 0.086 0.140
ln D 12 0.084 0.159 0.077 0.146 0.068 0.141 0.077 0.145 0.069 0.144
ln D 15 0.084 0.159 0.072 0.138 0.068 0.131 0.077 0.140 0.064 0.127
ln D 20 0.088 0.167 0.074 0.142 0.063 0.133 0.076 0.144 0.063 0.129
ln D 30 0.101 0.159 0.091 0.129 0.087 0.129 0.092 0.132 0.076 0.122

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.
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Table VI. Empirical size (n D 480; 
 D 0:7)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.420 0.504 0.120 0.177 0.133 0.191 0.146 0.199 0.132 0.188 0.142 0.197
ln D 10 0.101 0.173 0.099 0.177 0.109 0.189 0.101 0.178 0.106 0.187
ln D 12 0.102 0.165 0.099 0.164 0.102 0.171 0.098 0.159 0.100 0.163
ln D 15 0.105 0.169 0.097 0.154 0.095 0.150 0.093 0.150 0.091 0.141
ln D 20 0.106 0.160 0.090 0.146 0.085 0.146 0.088 0.151 0.083 0.139
ln D 30 0.113 0.179 0.098 0.150 0.095 0.144 0.099 0.154 0.081 0.131

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.

Table VII. Empirical size (n D 960; 
 D 0)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.064 0.129 0.063 0.131 0.062 0.126 0.064 0.126 0.062 0.129 0.063 0.124
ln D 10 0.071 0.129 0.064 0.126 0.067 0.124 0.071 0.128 0.065 0.125
ln D 12 0.057 0.109 0.053 0.109 0.053 0.101 0.054 0.107 0.053 0.105
ln D 15 0.069 0.123 0.061 0.118 0.063 0.111 0.062 0.114 0.064 0.111
ln D 20 0.061 0.120 0.053 0.110 0.050 0.108 0.051 0.117 0.047 0.104
ln D 30 0.086 0.140 0.074 0.126 0.068 0.124 0.074 0.125 0.064 0.115

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.

Table VIII. Empirical size (n D 960; 
 D 0:5)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.254 0.361 0.081 0.141 0.079 0.140 0.083 0.140 0.080 0.143 0.079 0.142
ln D 10 0.082 0.150 0.086 0.145 0.089 0.148 0.084 0.146 0.083 0.141
ln D 12 0.080 0.133 0.071 0.132 0.075 0.128 0.077 0.134 0.075 0.128
ln D 15 0.059 0.136 0.051 0.121 0.046 0.120 0.055 0.126 0.054 0.116
ln D 20 0.071 0.119 0.065 0.116 0.059 0.114 0.065 0.116 0.058 0.111
ln D 30 0.085 0.147 0.064 0.138 0.056 0.126 0.067 0.140 0.061 0.122

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.

Table IX. Empirical size (n D 960; 
 D 0:7)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.445 0.524 0.107 0.177 0.122 0.197 0.136 0.220 0.116 0.199 0.134 0.217
ln D 10 0.097 0.172 0.097 0.174 0.112 0.189 0.102 0.173 0.110 0.190
ln D 12 0.089 0.162 0.091 0.166 0.092 0.168 0.086 0.164 0.090 0.168
ln D 15 0.075 0.154 0.074 0.147 0.078 0.147 0.074 0.151 0.076 0.153
ln D 20 0.076 0.127 0.073 0.122 0.067 0.119 0.068 0.126 0.067 0.120
ln D 30 0.084 0.160 0.066 0.129 0.061 0.121 0.067 0.136 0.062 0.118

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.
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Table X. Empirical power (N .0:25; 1/)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.969 0.976 0.896 0.939 0.901 0.942 0.904 0.943 0.902 0.940 0.908 0.940
ln D 10 0.889 0.925 0.880 0.938 0.883 0.936 0.883 0.939 0.879 0.935
ln D 12 0.896 0.942 0.892 0.938 0.888 0.937 0.890 0.935 0.884 0.924
ln D 15 0.876 0.940 0.871 0.933 0.874 0.935 0.878 0.935 0.866 0.929
ln D 20 0.894 0.941 0.879 0.937 0.874 0.933 0.882 0.936 0.867 0.928
ln D 30 0.890 0.937 0.871 0.929 0.865 0.929 0.873 0.929 0.858 0.920

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.

Table XI. Empirical power (N .0; 1:5/)

WB DWB1 DWB2 DWB3 MBB TBB

˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1 ˛ D 0:05 ˛ D 0:1

ln D 8 0.831 0.915 0.480 0.678 0.484 0.672 0.492 0.684 0.479 0.680 0.480 0.681
ln D 10 0.480 0.675 0.457 0.661 0.464 0.663 0.462 0.670 0.448 0.650
ln D 12 0.499 0.712 0.471 0.692 0.462 0.683 0.478 0.694 0.459 0.674
ln D 15 0.462 0.666 0.437 0.645 0.416 0.637 0.434 0.644 0.397 0.611
ln D 20 0.505 0.714 0.457 0.674 0.438 0.655 0.461 0.679 0.429 0.642
ln D 30 0.502 0.685 0.440 0.629 0.413 0.609 0.449 0.639 0.397 0.591

WB, wild bootstrap; DWB, dependent WB; MBB, moving block bootstrap; TBB, tapered block bootstrap.

and

Tn;2 D cov.G.x/;G.y// D
1X

rD�1

EŒ.1.X0 � x/ � F.x//.1.Xr � y/ � F.y//�:

Then, ˇ̌
cov�

�
G�;0n .x/;G�;0n .y/

�
� cov.G.x/;G.y//

ˇ̌
� jTn;1 �EŒTn;1�j C jTn;2 �EŒTn;1�j:

Proposition 1 in Section 1.1 and Lemma 3 in Section 1.2 of Doukhan (1994) yield jcov.1.X0 � x/; 1.Xr �
y//j � 2ˇX .r/, which in turn implies

P1
rD1 jcov.1.X0 � x/; 1.Xr � y//j � 2

P1
rD1 ˇX .r/ < 1. Now, we

obtain by majorized convergence that

jTn;2 �ETn;1j �

1X
rD�1

jcov.1.X0 � x/; 1.Xr � y//j .1 � .1 � jr j=n/CAn.0; r// �!
n!1

0:

Denote Zs;x D 1.Xs � x/ � F.x/ and Zt;y D 1.Xt � y/ � F.y/. We have that

EŒ.Tn;1 �ETn;1/
2� D

1

n2

nX
s;t;u;vD1

An.s; t/An.u; v/ ¹EŒZs;xZt;yZu;xZv;y � �EŒZs;xZt;y �EŒZu;xZv;y �º

D
1

n2

nX
s;t;u;vD1

An.s; t/An.u; v/ cum.Zs;x; Zt;y ; Zu;x; Zv;y/

C
1

n2

nX
s;t;u;vD1

An.s; t/An.u; v/ ¹EŒZs;xZu;x�EŒZt;yZv;y �

CEŒZs;xZv;y �EŒZt;yZu;x�º DW Tn;11 C Tn;12;
(6.1)
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where cum.Z1; Z2; Z3; Z4/ D EŒZ1Z2Z3Z4��EŒZ1Z2�EŒZ3Z4��EŒZ1Z3�EŒZ2Z4��EŒZ1Z4�EŒZ2Z3�
denotes the joint cumulant of real-valued and centered random variablesZ1; : : : ; Z4. Let 1 � s � t � u � v � n,
r D max¹t � s; u � t; v � uº. As a prerequisite to estimate Tn;11, we prove that

jcum.Zs; Zt ; Zu; Zv/j � 8 ˇX .r/; (6.2)

where Zs denotes either Zs;x or Zs;y . To see this, we distinguish between three cases, r D t � s; r D u � t and
r D v � u.

(i) r D t � s

Note that jZsj; jZt j; jZuj; jZvj � 1. We obtain again from Proposition 1 in Section 1.1 and Lemma 3 in Section 1.2
of Doukhan (1994) that jEŒZsZtZuZv�j D jcov.Zs; ZtZuZv/j � 2ˇX .r/ and max¹jEŒZsZt �j; jEŒZsZu�j;
jEŒZsZv�jº � 2ˇX .r/, which implies

jcum.Zs; Zt ; Zu; Zv/j � 8 ˇX .r/:

(ii) r D u � t

Here, we have jcov.ZsZt ; ZuZv/j � 2ˇX .r/ and max¹jEŒZsZu�j; jEŒZsZv�j; jEŒZtZu�j; jEŒZtZv�jº �
2ˇX .r/, which yields

jcum.Zs; Zt ; Zu; Zv/j � jcov.ZsZt ; ZuZv/j C jEŒZsZu�EŒZtZv�j C jEŒZsZv�EŒZtZu�j

� 2ˇX .r/C 4 ˇ
2
X .r/:

(iii) r D v � u

This case is analogous to (i).
Since jAn.s; t/j � 1, we obtain from (6.2) that

jTn;11j �
4Š

n2

X
1�s�t�u�v�n

jcum.Zs; Zt ; Zu; Zv/j D O.n
�1/: (6.3)

Moreover, we obtain again by a covariance inequality and since
Pn�1

rD0 An.0; r/ D O.ln/ that

jTn;12j D O.ln n
�1/; (6.4)

which completes the proof.
Proof of Lemma 3.2
To find an appropriate grid, we have to take into account the impact of the dependence structure on sums of mixed
fourth moments of the increments of the processes G�;0n . Since the dependence between the bootstrap random
variables "�

1;n
; : : : ; "�n;n gets stronger as n ! 1, we do not lose much by estimating the fourth moments of the
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increment of G�;0n over the interval .x; y� as

E E�
h�
G�;0n .x/ �G�;0n .y/

�4i
D

1

n2

nX
s;t;u;vD1

E
�
QZs QZt QZu QZv

�
E�

�
"�s;n"

�
t;n"
�
u;n"
�
v;n

�
�

3

n2

nX
s;t;u;vD1

ˇ̌
E
�
QZs QZt QZu QZv

�ˇ̌
;

where QZw D 1.Xw 2 .x; y�/ � P.Xw 2 .x; y�/.
For arbitrary s1 � : : : � su � t1 � : : : � tv; u; v 2 N, let PXt1 ;:::;Xtv jXs1Dx1;:::;XsuDxu.B/, defined for

x1; : : : ; xu 2 R and B 2 Bv , denote a regular conditional distribution of .Xt1 ; : : : ; Xtv /
0 given Xs1 ; : : : ; Xsu . For

1 � s1 � s2 � s3 � s4 � n, we use the estimatesˇ̌
cov

�
QZs1 ; QZs2 QZs3 QZs4

�ˇ̌
D
ˇ̌
E
�
1.Xs1 2 .x; y�/

�
QZs2 QZs3 QZs4 �E

�
QZs2 QZs3 QZs4

���ˇ̌
� 4

Z
.x;y�

sup
B2B3

ˇ̌̌
PXs2;Xs3 ;Xs4 jXs1D´.B/ � PXs2;Xs3 ;Xs4 .B/

ˇ̌̌
PXs1 .d´/

(6.5)

and, for u D 2; 3,ˇ̌
cov

�
QZs1 � � � QZsu ; QZsuC1 � � � QZs4

�ˇ̌
�

ˇ̌̌̌
ˇE
"
u�1Y
wD1

QZsw 1.Xsu 2 .x; y�/
�
QZsuC1 � � � QZs4 �EŒ QZsuC1 � � � QZs4 �

�#ˇ̌̌̌ˇ
C P .Xsu 2 .x; y�/

ˇ̌̌̌
ˇE
"
u�1Y
wD1

QZsw
�
QZsuC1 � � � QZs4 �EŒ QZsuC1 � � � QZs4 �

�#ˇ̌̌̌ˇ
� 4

Z
Ru�1�.x;y�

sup
B2B4�u

ˇ̌̌
PXsuC1 ;:::;Xs4 j.Xs1 ;:::;Xsu/

0D.´1;:::;´u/
0

.B/ � PXsuC1 ;:::;Xs4 .B/
ˇ̌̌

PXs1;:::;Xsu .d´1; : : : ; d´u/

C PX0..x; y�/ 2 ˇX .suC1 � su�1/:

(6.6)

On the other hand, according to Equation (2) on page 3 in Doukhan (1994), we haveZ
Ru

sup
B2Bv

ˇ̌̌
PXt1 ;:::;Xtv j.Xs1 ;:::;Xsu/

0D.´1;:::;´u/
0

.B/ � PXt1 ;:::;Xtv .B/
ˇ̌̌
PXs1;:::;Xsu .d´1; : : : ; d´u/

D ˇ.�.Xs1 ; : : : ; Xsu/; �.Xt1 ; : : : ; Xtv // � ˇX .t1 � su/:

(6.7)

Inspired by (6.5), (6.6) and (6.7), we define

�r.x/ D ˇX .r/ F.x/

C sup
m;n2N

Z
Ru�1�.�1;x�

sup
B2Bv

ˇ̌̌
PXr;:::;XrCn�1j.X�mC1;:::;X0/

0D.´m;:::;´1/
0

.B/ � PXr;:::;XrCn�1.B/
ˇ̌̌

PX�mC1;:::;X0.d´m; : : : ; d´1/

and

�.x/ D

1X
rD0

�r.x/:
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It is clear that � is monotonously non-decreasing and that D WD limx!1�.x/ � 2
P1
rD0 ˇX .r/ < 1. More-

over, it follows from j�.x/��.y/j � 2KjF.x/�F.y/jC 2
P1
rDK ˇX .r/ for all x; y 2 R andK 2 N that� is

a continuous function. According to the previous considerations, to prove the assertion of the lemma, we construct
a dyadic system of intervals related to � as follows.

For j 2 N0, 0 � k � 2j , we define

xj;k D

8<:
��1.D k 2�j /; for 1 � k < 2j ;
�1; for k D 0;
1; for k D 2j

Let j 2 N0 and 1 � k � n be arbitrary. Let, for the time being, QZs D 1.Xs 2 .xj;k�1; xj;k�/ � P.Xs 2
.xj;k�1; xj;k�/. We have

EE�
h�
G�;0n .xj;k�1/ �G

�;0
n .xj;k/

�4i
�

3

n2

nX
s;t;u;vD1

ˇ̌
E
�
QZs QZt QZu QZv

�ˇ̌
�
3 4Š

n2

X
1�s�t�u�v�n

ˇ̌
cum. QZs; QZt ; QZu; QZv/

ˇ̌
C

3

n2

nX
s;t;u;vD1

ˇ̌
E
�
QZs QZt

�
E
�
QZu QZv

�
CE

�
QZs QZu

�
E
�
QZt QZv

�
CE

�
QZs QZv

�
E
�
QZt QZu

�ˇ̌
:

According to (6.5) and (6.6), the first term on the right-hand side is of order O.n�12�j /. The second one is of
order O.2�2j /, which yields the assertion.
Proof of Corollary 3.2
We prove (3.4), which implies the assertion of the corollary. According to our dyadic grid points xj;k , we define
projections …j as

…jg.x/ D g.xj;k/ if x 2 Ij;k D .xj;k�1; xj;k�:

Let Jn be such that 2Jn � n < 2JnC1. We have, for 0 � J0 < Jn,

max
1�k�2J0

sup
x2.xJ0;k�1;xJ0;k�

ˇ̌
G�;0n .x/ �G�;0n .xJ0;k/

ˇ̌
�

JnX
jDJ0C1

��…jG�;0n �…j�1G
�;0
n

��
1

C
��G�;0n �…JnG

�;0
n

��
1
:

(6.8)

We choose any ˛ 2 .0; 1=4/ and define thresholds j D 2�j˛ . We obtain by Lemma 3.2 and Markov’s
inequality that

E
�
P �

���…jG�;0n �…j�1G
�;0
n

��
1
> j

��
�

2j�1X
kD1

E
�
P �

�ˇ̌
G�;0n .xj;2k�1/ �G

�;0
n .xj;2k/

ˇ̌
> j

��
� 2j�1

K0 .2
�2j C n�12�j /

4
j

D K0 2
j.4˛�1/;
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which implies that

E
�
P �

���…jG�;0n �…j�1G
�;0
n

��
1
> j for some j 2 ¹J0 C 1; : : : ; Jnº

��
� K0

1X
jDJ0C1

2j.4˛�1/ �
�2

2
;

(6.9)

if J0 is sufficiently large. Moreover,
1X

jDJ0C1

j �
�

2
; (6.10)

again for sufficiently large J0.
Furthermore, we use the rough estimate

��G�;0n �…JnG
�;0
n

��
1
� max
1�t�n

®ˇ̌
"�t;n

ˇ̌¯
max

1�k�2Jn

´
1
p
n

nX
tD1

j1.Xt 2 IJn;k/ � P.Xt 2 IJn;k/j

μ
� max
1�t�n

®ˇ̌
"�t;n

ˇ̌¯
max

1�k�2Jn

®
jGn.xJn;k/ �Gn.xJn;k�1/j C 2

p
nP.X0 2 IJn;k/

¯
and obtain that

E
h
P �

���G�;0n �…JnG
�;0
n

��
1
>
�

2

�i
�
�2

2
; (6.11)

which completes, in conjunction with (6.8), (6.9) and (6.10), the proof.

Proof of Theorem 4.2

(i) According to Theorem 2.1, .Gn/n2N converges (w.r.t. the supremum metric) to the process G, which
posesses continuous sample paths. Therefore,

Fn.tn;q/ D q C oP .n
�1=2/ (6.12)

and, since F 0.tq/ > 0,

tn;q
P
�! tq : (6.13)

Furthermore, by Theorem 3.1, .G�n/n2N converges in probability to the same limit G. Therefore, the largest
jump of F �n is of order oP�.n�1=2/ and we obtain

F �n
�
t�n;q

�
D q C oP�.n

�1=2/: (6.14)

Since F 0 is continuously differentiable and F 0.tq/ > 0, we also obtain

t�n;q
P�

�! tq : (6.15)

Armed with these prerequisites, we can now derive the Bahadur representation for t�n;q . Stochastic equicon-
tinuity of

�
G�;0n

�
n2N

stated in Corollary 3.2 and supx2R
ˇ̌
G�n.x/ �G

�;0
n .x/

ˇ̌
D OP�.

p
ln=n/ imply in

conjunction with (6.15) that

F �n
�
t�n;q

�
� Fn

�
t�n;q

�
D F �n .tq/ � Fn.tq/C oP�.n

�1=2/: (6.16)
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On the other hand, it follows from (6.12) and (6.14) that

F �n
�
t�n;q

�
� Fn

�
t�n;q

�
D Fn.tn;q/ � Fn

�
t�n;q

�
C oP�.n

�1=2/:

Furthermore, we obtain from stochastic equicontinuity of .Gn/n2N , (6.13) and (6.15) that�
Fn.tn;q/ � Fn

�
t�n;q

��
�
�
F.tn;q/ � F

�
t�n;q

��
D n�1=2

�
Gn.tn;q/ �Gn

�
t�n;q

��
D oP�.n

�1=2/:

These two approximations lead to

F �n
�
t�n;q

�
� Fn.t

�
n;q/ D F.tn;q/ � F

�
t�n;q

�
C oP�.n

�1=2/

D
�
tn;q � t

�
n;q

� �
F 0.tq/C oP�.1/

�
C oP�.n

�1=2/:
(6.17)

Rearranging terms, we obtain from (6.16) and (6.17) that

t�n;q � tn;q D
Fn.tq/ � F

�
n .tq/

F 0.tq/
C oP�.n

�1=2/:

(ii) This is an immediate consequence of (i) and Theorem 3.1.
Proof of Theorem 4.3
We obtain from the Theorems 2.1 and 3.1 and the continuous mapping theorem that

Tn
d
�! T WD sup

x2R
jG.x/j (6.18)

and

T �n
d
�! T in probability: (6.19)

Absolute continuity of the distribution of T will be derived from a result from Lifshits (1984). First, we
compactify the domain of the limit process. Define

QG.y/ D

8<:
0; if y D 0;

G
�
F�1
0
.y/
�
; if 0 < y < 1;

0; if y D 1

It is obvious that supx2R jG.x/j D supy2Œ0;1� j QG.y/j. The process .. QG.y//y2Œ0;1� is a centered Gaussian process
defined on a compact set and with continuous sample paths. Hence, Proposition 3 of Lifshits (1984) can be applied
and it follows that supy2Œ0;1� QG.y/ is absolutely continuous w.r.t. Lebesgue measure on .0;1/. For the same
reason, the distribution of supy2Œ0;1�.� QG.y// is also absolutely continuous on .0;1/. Hence, the distribution of
supy2Œ0;1� j QG.y/j, and therefore also that of T has not an atom unequal to 0. However, since P.T ¤ 0/ D 1, we
obtain that the distribution of T is absolutely continuous. Therefore, we obtain from (6.18)

sup
x2R
jP.Tn � x/ � P.T � x/j �!

n!1
0; (6.20)

and from (6.19)

sup
x2R

ˇ̌
P �

�
T �n � x

�
� P.T � x/

ˇ̌ P
�! 0; (6.21)
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by Polya’s theorem. This impliesˇ̌
P
�
Tn > t

�
˛

�
� ˛

ˇ̌
�
ˇ̌
P
�
Tn > t

�
˛

�
� P �

�
T �n > t

�
˛

�ˇ̌
C
ˇ̌
P �

�
T �n > t

�
˛

�
� ˛

ˇ̌
� sup

x

ˇ̌
P .Tn > x/ � P

�
�
T �n > x

�ˇ̌
C oP .1/:

Therefore, we obtain that P.Tn > t�˛ /�!n!1 ˛, as required.
Proof of Theorem 4.4
The assertions follow from Theorem 3.15 in Beutner and Zähle (2014) and it remains to validate its prerequisites
(a) to (c) with an D n.

(a) We have to check the assumptions of their Lemmas 3.4 and 3.6. Condition (a) of Lemma 3.4 is satisfied
due to the comments after their Assumption 3.2. Moreover, hF is continuous and has bounded variation
under (A5), which yields (b) and (c). The last assumption of Lemma 3.4 follows from boundedness of h.
Condition (a) of Lemma 3.6 is contained in condition (a) of Lemma 3.4. Assumptions (b) to (d) follow
immediately from (A5).

(b) This assertion follows from their Remark 3.16.
(c) Convergence of the empirical process to a Gaussian process with continuous paths follows from our

Theorem 2.1.
Proof of Theorem 4.5

(i) We first show that r�n , defined after Theorem 4.4, is of order oP�.n�1=2/. We have

�
1

2
r�n D

1

n2

nX
sD1

Ws;n
�
"�s;n � N"

�
n

�
;

where Ws;n D
Pn

tD1Œh.Xs; Xt / �
R
h.Xs; x/ dF.x/�. Note that

EŒW 2
s;n� D

nX
t1;t2D1

EWs;t1;t2 ;

where Ws;t1;t2 D .h.Xs; Xt1/ �
R
h.Xs; x/ dF.x//.h.Xs; Xt2/ �

R
h.Xs; x/ dF.x//. Let, w.l.o.g., t1 �

t1 C r D t2. If t1 � s � t2, then max¹jt1 � sj; jt2 � sjº � r=2. In the case of t2 � s � r=2, Berbee’s lemma

allows us to choose QXt2 independent of Xt1 ; Xs such that QXt2
d
D Xt2 and P

�
QXt2 ¤ Xt2

�
� ˇX .Œr=2�/. This

implies

jEWs;t1;t2 j D

ˇ̌̌̌
E.h.Xs; Xt1/ �

Z
h.Xs; x/ dF.x//.h.Xs; Xt2/ � h.Xs; QXt2/

ˇ̌̌̌
� 4 khk21 ˇX .Œr=2�/:

Analogously, we obtain in the case of s � t1 � r=2 that

jEWs;t1;t2 j � 4 khk21 ˇX .Œr=2�/:

If s � t1 � t2 or t1 � t2 � s, we can proceed similarly. If, for example, s � t1 � t1 C r D t2, then we can

choose QXt2 independent of Xt1 ; Xs such that QXt2
d
D Xt2 and P

�
QXt2 ¤ Xt2

�
� ˇX .r/. This leads to

jEWs;t1;t2 j D

ˇ̌̌̌
E.h.Xs; Xt1/ �

Z
h.Xs; x/ F.dx// .h .Xs; Xt2/ � h

�
Xs; QXt2

�ˇ̌̌̌
� 4 khk21 ˇX .r/:
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Since
P1
rD1 r

2ˇX .r/ <1, we obtain from the aforementioned estimates that

max
1�s�n

E
�
W 2
s;n

�
D O.n/: (6.22)

Since

nX
s1;s2D1

ˇ̌
E�

��
"�s1;n � N"

�
n

� �
"�s2;n � N"

�
n

��ˇ̌
D O.n ln/; (6.23)

we obtain that

EE�

24 nX
sD1

Ws;n
�
"�s1;n � N"

�
n

�!235 D O.n2ln/;
which implies that

r�n D oP�.n
�1=2/: (6.24)

Recall that

V �n � Vn D

“
h.x; y/ d

�
F �n � Fn

�
.x/ d

�
F �n � Fn

�
.y/C 2

Z
hF .x/ d

�
F �n � Fn

�
.x/C r�n :

If we could validate the corresponding formulae of partial integration, we would end up with

V �n � Vn D

“ �
F �n � Fn

�
.x�/

�
F �n � Fn

�
.y�/ dh.x; y/

� 2

Z �
F �n � Fn

�
.x�/ dhF .x/C oP�.n

�1=2/:

(6.25)

It then follows from the proof of Theorem 4.4 that the functionˆ W .¹g 2 D. NR/ W kgk1 <1º; k �k1/! R
given by ˆ.f / D �2

R
f .x�/dhF .x/ C

’
f .y�/dh.x; y/ is continuous (this is equivalent to checking

assumption (b) of Theorem 3.15 in Beutner and Zähle (2014)). Hence, the assertion follows from Theorem 3.1
and the continuous mapping theorem provided that (6.25) holds. Since F �n � Fn and hF are bounded càdlàg
functions of bounded variation by assumption (A5) and since limx!˙1

�
F �n � Fn

�
.x/ D 0,Z

hF .x/ d
�
F �n � Fn

�
.x/ D �

Z �
F �n � Fn

�
.x�/ dhF .x/

can be deduced from Lemma B.1 in Beutner and Zähle (2013). Finally,“
h.x; y/ d

�
F �n � Fn

�
.x/ d

�
F �n � Fn

�
.y/

D �

“ �
F �n � Fn

�
.x�/

�
F �n � Fn

�
.y�/ dh.x; y/

(6.26)

can be verified in a similar manner as Lemma 3.6 in Beutner and Zähle (2014). Since
�
F �n � Fn

� �
F �n � Fn

�
and h are of bounded variation and continuous respectively we first get from Gill et al. (1995, Lemma 2.2)
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thatZ a2

a1

Z b2

b1

h.x; y/ d
�
F �n � Fn

�
.x/ d

�
F �n � Fn

�
.y/

D

Z a2

a1

Z b2

b1

�
F �n � Fn

�
.x�/

�
F �n � Fn

�
.y�/ dh.x; y/

�

Z a2

a1

�
F �n � Fn

�
.x�/

�
F �n � Fn

�
.b2/ dh.x; b2/ �

Z b2

b1

�
F �n � Fn

�
.y�/

�
F �n � Fn

�
.a2/ dh.y; a2/

C

Z a2

a1

�
F �n � Fn

�
.x�/

�
F �n � Fn

�
.b1/ dh.x; b1/C

Z b2

b1

�
F �n � Fn

�
.y�/

�
F �n � Fn

�
.a1/ dh.y; a1/

C
�
F �n � Fn

�
.a2/

�
F �n � Fn

�
.b2/h.a2; b2/ �

�
F �n � Fn

�
.a2/

�
F �n � Fn

�
.b1/h.a2; b1/

�
�
F �n � Fn

�
.a1/

�
F �n � Fn

�
.b2/h.a1; b2/C

�
F �n � Fn

�
.a1/

�
F �n � Fn

�
.b1/h.a1; b1/

for finite intervals .a1; a2� and .b1; b2�. Obviously, the last four summands tend to zero as
�a1;�a2; b1; b2 !1. The same holds true for the summands two to five since h.�; x/ is of bounded varia-
tion uniformly in x under (A5). Noting that h generates a finite signed measure on R2, we can deduce (6.26)
from continuity from below of finite measures as in the proof of Lemma B.1 in Beutner and Zähle (2013).

(ii) This result follows from (6.26) and Theorem 3.1.
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