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1. Introduction
The purpose of this paper is, generally speaking, to develop some good estimator

of the autoregression function. One possible criterion for the optimality of estima-
tors is their maximum risk in certain classes of functions, leading to minimax or,
more often, asymptotically minimax estimators.

Since nonparametric curve estimation based on a finite number of observations
always contains some aspect of interpolation, it is most natural to impose some
smoothness constraint on the class of functions in order to get a uniformly con-
sistent method. Typical smoothness classes in which asymptotic minimax results
have been derived for various statistical models (nonparametric regression, den-
sity estimation, spectral density estimation) are Hölder, Sobolev or Besov classes.
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Numerous asymptotic minimax results concerning the rate of convergence can be
found in the literature. It turns out that many of the commonly used estimators
(kernel, spline, orthonormal series, and wavelet estimators) can be tuned to achieve
such an optimal rate of convergence. However, even within these classes, there is
a wide variety of asymptotically optimal methods. This suggests that the focus on
rates of convergence is often too weak to find a method which deserves the term
“best”.

A new line of research by focussing both on the optimal rate of convergence
and the optimal constant in the asymptotic minimax risk has been inspired by the
seminal work of Pinsker (1980) who already solved all essential problems in the
particular context of signal estimation in Gaussian white noise. Later, these results
were carried over to spectral density estimation (Efromovich and Pinsker, 1981),
density estimation (Efromovich and Pinsker, 1982), nonparametric regression with
Gaussian errors (Nussbaum, 1985), which was extended to non-normal error distri-
butions (Golubev and Nussbaum, 1990). Recently, results of this type were derived
in the context of density estimation from discretely observed diffusion processes by
Butucea and Neumann (2005). It has been shown that the asymptotic minimax risk
can be obtained by optimally tuned Fourier series, kernel or spline estimators. If
kernel estimators are concerned, for example, in the case of density estimation, the
desired risk bound can be obtained by a unique kernel function which is connected
with the smoothness class under consideration. Therefore, at a practical level, an
objective criterion for the choice of a kernel function is given.

In this paper we intend to derive asymptotic minimax estimators of the autore-
gression function in Sobolev classes. We will show that the efficiency bound has
the same structure as in the already studied models. In contrast to the related case
of nonparametric regression, the actual difficulty of the problem depends on the
distribution of the explanatory (lagged) variables, which in turn depends on the
autoregression function m. In order to get a tight efficiency bound, we take this
particular difficulty of the problem into account by the choice of the loss function
which contains a term with the stationary density. We show that asymptotic effi-
ciency can be obtained by kernel estimators with kernel functions converging (as
n → ∞) to that which is known to be optimal in the density case. While we give
a complete proof of the lower asymptotic risk bound, our sequence of estimators
attaining this bound is not fully adaptive since an optimal choice of the tuning
parameter (bandwidth) is required; see equation (4.2). We believe, however, that
standard techniques such as a plug-in method or leave-ln-out cross-validation could
be employed to achieve a fully data-driven method.

2. Main Assumptions and a Modified Priestley–Chao Estimator
Suppose we observe X0, . . . , Xn which stem from a stationary and ergodic au-

toregressive process (Xt)t∈Z obeying the equation

(2.1) Xt = m(Xt−1) + σ(Xt−1)εt, t ∈ Z,

where (εt)t∈Z are independent and identically distributed random variables with
Eεt = 0, Eε2

t = 1, and Eε4+κ < ∞, for some κ > 0.
We intend to estimate the autoregression function m. Since the performance of

any estimator necessarily deteriorates in regions with a low stationary density, we
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restrict our attention to a fixed interval, without loss of generality [0, 1], and ensure
by appropriate conditions that the stationary density is bounded away from zero
on this region.

We need two types of assumptions. Some of them ensure basic properties such
as ergodicity of the process, while the other ones concern smoothness properties of
the target function m and make certain rates of convergence of estimators possible.
The following set of assumptions is mainly imposed to get ergodicity:
(A1)

(i) lim sup|x|→∞ |m(x)|/|x| < 1,
(ii) εt has an everywhere positive and Lipschitz continuous density pε,
(iii) σ is a continuous function and there exist constants 0 < C1 ≤ C2 < ∞ such

that C1 ≤ σ(x) ≤ C2 for all x.
It is well known (see, for example, Doukhan, 1994, pp. 106–107) that a process

satisfying assumption (A1) is geometrically ergodic. Moreover, for given (εt)t∈Z,
there exists a unique stationary solution to (2.1) and the corresponding process
is absolutely regular (β-mixing) with geometrically decaying coefficients. The sta-
tionary density πm is everywhere positive and Lipschitz continuous.

In Section 4 below, where minimax results in certain classes of functions are
concerned, we will require uniformity (in m) of these properties, which will be
ensured by appropriate conditions on m. Regarding smoothness properties of m,
we assume that
(A2) There exists some δ > 0 such that m has β generalized derivatives on

[−δ, 1 + δ] with
∫ 1+δ

−δ
(m(β)(z))2 dz < ∞.

The ultimate goal in this paper is to devise a sequence of estimators which is
asymptotically minimax in Sobolev classes of functions. In the related problem
of nonparametric regression, the standard estimator is still the one proposed by
Nadaraya (1964) and Watson (1964). It is undoubtedly a good choice in the often
studied cases of equidistant nonrandom design or random design with a sufficiently
regular density. To diminish unfavorable bias effects in the case of nonrandom
and nonequidistant design, an alternative weighting scheme has been proposed by
Gasser and Müller (1979).

In the case of random design, local polynomial estimators first studied by Stone
(1977, 1980), Cleveland (1979) and Katkovnik (1979) are considered to be the
adequate tool; for a comparison of these approaches see, for example, Fan and
Gijbels (1996).

In the context of nonparametric autoregression, local polynomial estimators seem
to be the natural choice since they automatically adapt to irregularities in the
pattern of explanatory (lagged) variables caused by their randomness. A pth order
local polynomial estimator m̃n,LP (x) is given as â0 = â0(x; X0, . . . , Xn), where
â = (â0, . . . , âp−1)′ minimizes

n∑
t=1

w

(
x−Xt−1

hn

)(
Xt −

p−1∑

j=0

aj(x−Xt−1)j

)2

.

It is in fact a local least squares estimator, with window function w and a sequence
of bandwidths (hn)n∈N. The sequence of bandwidths here and below is usually
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assumed to satisfy hn → 0 and nhn →∞, as n →∞. The estimator m̃n,LP (x) can
also be written in the form of a linear estimator as

m̃n,LP (x) =
n∑

t=1

K̃hn

(
x,Xt−1, {X0, . . . , Xn−1}

)
Xt,

which can then be approximated by an estimator with weights depending each on
a single observation only,

˜̃mn,LP (x) =
n∑

t=1

˜̃
Khn(x,Xt−1)Xt;

see Neumann and Kreiss (1998). The latter approximation simplifies technical
difficulties a lot and makes a mathematically rigorous asymptotic analysis of local
polynomial estimators possible. However, for our ultimate goal of achieving the
sharp asymptotic efficiency bound, it turns out that the “effective kernel function”

(here ˜̃
Khn(x, ·)) has to be sufficiently close to some particular kernel which is known

to be optimal in the related problems of filtering of a smooth signal from Gaussian
white noise (Golubev, 1987) and nonparametric density estimation (Butucea and
Neumann, 2005). Since we were not able to establish the connection between the

effective kernel ˜̃
Khn(x, ·) and the underlying window function w we could not find

an asymptotically optimal local polynomial estimator explicitly.
To overcome this problem, we propose a modification of the kernel estimator

of Priestley and Chao (1972). Their proposal, which was made in the context of
nonparametric regression with equispaced design, amounts to estimating m by

m̃n,PC(x) =
1

nhn

n∑
t=1

K

(
x−Xt−1

hn

)
Xt.

It is well known that the bias of standard kernel regression estimators behaves
favorably in correspondence with the smoothness of the target function if the design
points show a regular pattern. In our case with random design points X0, . . . , Xn−1,
however, such a regularity cannot be guaranteed. To obtain nevertheless a favorable
bias behavior, we will modify the kernel function in such a way that the empirical
moments behave as the theoretical moments of a kernel of order β (see equation
(2.4) below), which implies that enough terms in a Taylor series expansion of the
bias cancel.

Now we define a modified version of the Priestley–Chao estimator as

(2.2) m̂n(x) =
n∑

t=1

Kn(x,Xt−1)Xt,

where

(2.3) Kn(x, z) =
1

nhn
K

(
x− z

hn

)[
ĉ0(x) +

β−1∑

j=1

ĉj(x)gj

(
x− z

hn

)]

and (hn)n∈N is a sequence of nonrandom bandwidths. In order to derive asymptotic
results, we will assume that this sequence of bandwidths satisfies
(A3) hn −→

n→∞
0 and nhn/ log n −→

n→∞
∞ .
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We assume that the kernel function K has compact support [−CK , CK ], is Lip-
schitz continuous and is of order β, that is,

∫
K(u)ul du = δl,0, for l = 0, . . . , β − 1,

and
∫ |K(u)||u|β du < ∞. The functions g1, . . . , gβ−1 are chosen so that K(·)gj(·)

are Lipschitz continuous and that the matrix

M =




∫
K(u) du

∫
K(u) g1(u) du . . .

∫
K(u) gβ−1(u) du∫

K(u) u du
∫

K(u)u g1(u) du . . .
∫

K(u)u gβ−1(u) du
...

...
. . .

...∫
K(u)uβ−1 du

∫
K(u) uβ−1 g1(u) du . . .

∫
K(u)uβ−1 gβ−1(u) du




is nonsingular. And finally, the functions ĉ0, . . . , ĉβ−1 will be chosen so that, in spite
of irregularities in the design, certain empirical moments behave as the theoretical
ones of a βth order kernel, that is,

(2.4)
n∑

t=1

Kn(x,Xt−1)
(

x−Xt−1

hn

)l

= δl,0, for l = 0, . . . , β − 1.

The following lemma shows that, with a probability tending to one, the system of
equations (2.4) has a unique solution. Before we proceed, we fix some notation.
Denote by Xn = (X0, . . . , Xn−1)′ the vector of explanatory (lagged) variables in
the model (2.1). Furthermore, we denote by λ in terms of the form O(n−λ) a
constant which can be arbitrarily large, in some cases under the condition that
a corresponding constant Cλ is appropriately chosen. These constants may be
different at different places. We denote by πm the stationary density of the process
with autoregression function m.

Lemma 2.1. Suppose that stationary observations obeying (2.1) are given, and
that assumptions (A1) and (A3) are fulfilled. Then there exist sets Xn ⊆ Rn with
P (Xn 6∈ Xn) = O(n−λ) such that, for Xn ∈ Xn, (2.4) possesses a unique solution
(ĉ0(x), . . . , ĉβ−1(x))′ for all x ∈ [0, 1]. Furthermore, there exists a sequence (δn)n∈N
with δn = O(hn +

√
log n/(nhn)) such that, with c0(x) = 1/πm(x) and cj(x) = 0

(j = 1, . . . , β − 1),
sup

x∈[0,1]

|ĉj(x) − cj(x)| ≤ δn,

for l = 0, . . . , β − 1 and Xn ∈ Xn.

It will be shown in Theorem 3.1 below that the estimator m̂n has the usual
asymptotic behavior on the favorable sets Xn. Moreover, if we additionally take care
that the correction factors ĉj(x) are bounded, then we can establish the asymptotic
result for the usual L2-loss; see Theorem 3.2 below.

Remark 2.1. So far, it is only required that the functions g1, . . . , gβ−1 make
the matrix M nonsingular; an appropriate choice of them is still left open. Since K
is by assumption a kernel of order β, the first column of the matrix M is always
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equal to (1, 0, . . . , 0)′. Hence, it suffices to choose g1, . . . , gβ−1 in such a way that
the submatrix

M̃ =




∫
K(u)u g1(u) du . . .

∫
K(u) u gβ−1(u) du

...
. . .

...∫
K(u)uβ−1 g1(u) du . . .

∫
K(u)uβ−1 gβ−1(u) du




is nonsingular. This would suggest, for example, the choice gi(u) = K(u)ui. Actu-
ally, we then had

c′M̃c =
∫

(K(u))2
(β−1∑

i=1

ciu
i

)2

du.

Since {u : K(u) 6= 0} contains some interval, c′M̃c = 0 if and only if c = (0, . . . , 0)′,
which means that M̃ , and hence M too, are nonsingular.

3. Asymptotic Properties of the Estimator
In contrast to the often studied case of nonparametric regression with regular

nonrandom design, we face here the situation that the “random design” (that is,
X0, . . . , Xn−1) can become, with a probability tending to zero as n →∞, extremely
unfavorable. This is, for example, reflected by the fact that the correction factors
ĉj(x) have a favorable behavior only up to a probability of O(n−λ); see Lemma 2.1.
These unfavorable events, where the design gets out of control, can possibly affect
the asymptotic risk of the estimator. Therefore, we prove first the following result
for a truncated loss function.

Theorem 3.1. Suppose that stationary observations obeying (2.1) are given,
and that assumptions (A1) to (A3) are fulfilled. Then, as n →∞,

Em

[ ∫ 1

0

(
m̂n(x)−m(x)

)2
dx ∧ 1

]
=

1
nhn

∫
K2(u) du

∫ 1

0

σ2(x)
πm(x)

dx

+
∫ 1

0

( ∫
1
hn

K

(
x− y

hn

)
m(y) dy −m(x)

)2

dx + o

(
1

nhn
+ h2β

n

)
.

If m is β times continuously differentiable on [−δ, 1 + δ], for some δ > 0, then
the second term on the right-hand side is equal to

h2β
n

(∫
K(u)uβ du

β!

)2 ∫ 1

0

(
m(β)(x)

)2
dx + o(h2β

n ).

In order to get rid of the truncation in the loss function, we have to avoid
a too strong insistence on (2.4) which can possibly make the correction factors
ĉ0(x), . . . , ĉβ−1(x) arbitrarily large. A simple remedy is to replace the ĉj ’s defined
there by

̂̂cj(x) =
{

ĉj(x), if |ĉj(x)| ≤ C,

0, if |ĉj(x)| > C,

where the truncation point satisfies C > supx∈[0,1]{1/πm(x)}. Let ̂̂mn be the

estimator derived from m̂n, with ̂̂c0(x), . . . , ̂̂cβ−1(x) instead of ĉ0(x), . . . , ĉβ−1(x).
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Theorem 3.2. Suppose that stationary observations obeying (2.1) are given,
and that assumptions (A1) to (A3) are fulfilled. Then, as n →∞,

Em

[ ∫ 1

0

( ̂̂mn(x)−m(x)
)2

dx

]
=

1
nhn

∫
K2(u) du

∫ 1

0

σ2(x)
πm(x)

dx

+
∫ 1

0

( ∫
1
hn

K

(
x− y

hn

)
m(y) dy −m(x)

)2

dx + o

(
1

nhn
+ h2β

n

)
.

4. Asymptotic minimax theory in Sobolev classes
In this section, we derive asymptotic minimax bounds in Sobolev classes

and show that our modified Priestley–Chao estimators can get arbitrarily close
to achieving these efficiency bounds. First, we have to impose uniform (in m) ver-
sions of the previously used assumptions (A1) and (A2). For reasons explained
below, we restrict our consideration to the case that the εt’s are standard normal
distributed. Furthermore, σ is assumed to be a Lipschitz continuous function not
depending on m with C1 ≤ σ(x) ≤ C2 ∀x ∈ R and 0 < C1 ≤ C2 < ∞. To guarantee
uniformity in the mixing properties, we assume that m is a member of the class of
functions

M =
{
m : R → R | |m(x)| ≤ C3|x| for all |x| > C4

}
,

where C3 < 1 and C4 < ∞ are fixed constants. To define an appropriate smoothness
class, we fix L, δ0 ∈ (0,∞), and a nonnegative function M on [0,∞) with M(δ)−→

δ→0
0

and define

W β
2 (L) =

{
m : m has β generalized derivatives on (−δ0, 1 + δ0)

and
∫ 1+δ

−δ

(m(β)(x))2 dx ≤ L + M(δ) ∀δ ∈ [0, δ0)
}

.

In the related case of nonparametric regression with homoscedastic errors and reg-
ular nonrandom design with density π, it is known from Theorem 1 in Golubev and
Nussbaum (1990) that the minimax risk (with the usual L2-loss) is proportional to( ∫ 1

0
π−1(x) dx

)2β/(2β+1). Therefore, in order to avoid a too conservative efficiency
bound, we build the difficulty of estimation into our loss function and focus on the
minimax risk

Rn = inf
m̃n

sup
m∈W β

2 (L)∩M

{( ∫ 1

0

σ2(x)
πm(x)

dx

)− 2β
2β+1

Em‖m̃n − m‖2L2([0,1])

}
,

where the infimum is taken over all estimators of m based on X0, . . . , Xn. The
idea of such a “self-normalizing” loss is not totally new. A similar idea appeared
in Lepski, Mammen and Spokoiny (1997) and Lepski and Spokoiny (1997), in a
different context.

To set a benchmark for our modified Priestley–Chao estimators, we state first an
asymptotic lower bound to the minimax risk, which resembles the classical Pinsker
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bound (see, for example, Pinsker (1980), Efromovich and Pinsker (1981, 1982),
Nussbaum (1985), Golubev and Nussbaum (1990), Belitser and Levit (1996), Bu-
tucea and Neumann (2005), for such results in different settings). It follows from
Corollary 4.1 below that this efficiency bound is sharp.

Theorem 4.1. Suppose that stationary observations obeying (2.1) are given,
and that assumption (A3) and the assumptions made in this section are fulfilled.
Then

lim inf
n→∞

inf
m̃n

sup
m∈W β

2 (L)∩M

{
n

2β
2β+1

(∫ 1

0

σ2(x)
πm(x)

dx

)− 2β
2β+1

Em‖m̃n −m‖2L2([0,1])

}

≥ γ(β)L
1

2β+1 ,

where γ(β) = (2β + 1)1/(2β+1) [β/(π(β + 1))]2β/(2β+1) is Pinsker’s constant.

The next theorem shows an upper bound for the uniform risk of our modified
Priestley–Chao estimators ̂̂mn from Section 2.

Theorem 4.2. Suppose that stationary observations obeying (2.1) are given,
and that assumption (A3) and the assumptions made in this section are fulfilled.
Then, uniformly in m ∈ W β

2 (L) ∩M,

(4.1) Em‖ ̂̂mn −m‖2L2([0,1]) ≤
1

nhn

∫
K2(u) du

∫ 1

0

σ2(x)
πm(x)

dx

+ h2β
n sup

ω

{
(K̂(ω)− 1)2ω−2β

}
L + o

( 1
nhn

+ h2β
n

)
.

Furthermore, if the sequence of bandwidths (hn)n∈N is chosen in an asymptotically
optimal way, that is,

(4.2) hn = n−
1

2β+1

(∫ 1

0
σ2(x)/πm(x) dx

∫
K2(u) du

2β supω{(K̂(ω)− 1)2ω−2β}L

) 1
2β+1

(1 + o(1)),

then

(4.3) lim sup
n→∞

sup
m∈W β

2 (L)∩M

{
n

2β
2β+1

(∫ 1

0

σ2(x)
πm(x)

dx

)− 2β
2β+1

Em‖ ̂̂mn −m‖2L2([0,1])

}

≤ (2β + 1)
(

sup
ω

{
(K̂(ω)− 1)2ω−2β

}
L

) 1
2β+1

(∫
K2(u) du

2β

) 2β
2β+1

.

Remark 4.1. So far, the asymptotically efficient estimator is not feasible since
it still requires an appropriate choice of the bandwidths hn. For known L and σ2(·),
one could simply use any consistent preliminary estimator of the stationary den-
sity πm; for closely related results see Dalalyan and Kutoyants (2002) and Dalalyan
(2005).
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A more realistic approach should, however, not require prior knowledge of any
quantity which is usually not known in advance. In this sense, a fully data-
driven procedure for the choice of the bandwidth is clearly preferable. Some cross-
validation technique may be employed for this purpose; a thorough study of this is,
however, beyond the scope of this paper.

Remark 4.2. Formally, the right-hand side of (4.3) is minimized by the choice
K̂β(ω) = (1− |ω|β)+ , which is the Fourier transform of

Kβ(x) = −β!
π

β∑

j=1

sin(j)(x)
(β − j)!xj+1

.

If we plug Kβ into (4.3), then we obtain by
∫

K2
β(u) du =

1
2π

∫
(K̂β(ω))2 dω =

2β2

π(β + 1)(2β + 1)

that

lim sup
n→∞

sup
m∈W β

2 (L)∩M

{
n

2β
2β+1

(∫ 1

0

σ2(x)
πm(x)

dx

)− 2β
2β+1

Em‖ ̂̂mn − m‖2L2([0,1])

}

≤ γ(β) L
1

2β+1 .

This does, however, not mean that we can reach the asymptotic efficiency bound
by a modified Priestley–Chao estimator with kernel function Kβ . This kernel is not
compactly supported and is also not a kernel of order β in the usual sense since,
for example,

∫ |Kβ(u)||u|β du = ∞ for β ≥ 1.

Despite this negative result we can get arbitrarily close to the efficiency bound
stated in Theorems 4.1 and 4.2 by using approximations of Kβ by βth order kernels
which do have compact support. This is made clear by the following lemma.

Lemma 4.1. Let K̂β(ω) = (1 − |ω|β)+. Then, for any δ > 0, there exists a
compactly supported and Lipschitz continuous kernel Kβ,δ such that

∣∣∣|1− K̂β(ω)| |ω|−β − |1− K̂β,δ(ω)| |ω|−β
∣∣∣ ≤ δ ∀ω

and
‖Kβ −Kβ,δ‖L2 ≤ δ.

Corollary 4.1. Suppose that stationary observations obeying (2.1) are given,
and that the assumptions made in this section are fulfilled. Then, for any ε > 0,
there exists a kernel function Kβ,ε such that the estimator ̂̂mn with bandwidths
(hn)n∈N according to (4.2) satisfies

lim sup
n→∞

sup
m∈W β

2 (L)∩M

{
n

2β
2β+1

(∫ 1

0

σ2(x)
πm(x)

dx

)− 2β
2β+1

Em‖ ̂̂mn − m‖2L2([0,1])

}

≤ γ(β) L
1

2β+1 (1 + ε).
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Remark 4.3. Without the assumed normality of the innovations (εt)t∈Z, one
could still derive under appropriate regularity conditions an asymptotic lower bound
result as in Theorem 4.1, where only σ2(x) has to be replaced by the inverse of the
Fisher information of the family of densities {pε(· − u) : u ∈ R}. To achieve this
asymptotic risk bound, one has to devise a likelihood-based method of estimation
rather than taking our kernel-weighted mean of the observations. In the context of
nonparametric regression with regular design, an asymptotically efficient estimator
based on orthogonal series expansions and Pinsker’s filter has been studied in the
Diploma thesis of Sprünker (2005), written under the supervision of the first author.
The purpose of the present paper is, however, to provide an adequate modification
of the kernel method in the autoregressive case which includes, in particular, a
remedy against irregularities in the pattern of explanatory variables. In order to
preserve a clear presentation of the basic ideas we restrict ourselves to the Gaussian
case, when sharp asymptotic minimaxity is concerned.

5. Proofs

Proof of Lemma 2.1. For any x ∈ [0, 1], let Mn(x) be the β × β matrix with
entries

(Mn(x))j,k =
1

nhn

∑
t

K

(
x−Xt−1

hn

) (
x−Xt−1

hn

)j−1

gk−1

(
x−Xt−1

hn

)
,

j, k = 1, . . . , β. If Mn(x) is nonsingular, then a solution to (2.4) exists and

Mn(x)ĉ(x) = 1β = (1, 0, . . . , 0)′.

Furthermore, since M1β = 1β , closeness of ĉ(x) to (1/πm(x), 0, . . . , 0)′ will follow
from closeness of Mn(x) to πm(x)M ; see (5.4) below.

We have that

Em[(Mn(x))j,k] =
∫

1
hn

K

(
x− y

hn

)(
x− y

hn

)j−1

gk−1

(
x− y

hn

)
πm(y) dy(5.1)

= πm(x)
∫

K(u)uj−1gk−1(u) du + O(hn)

= πm(x) Mj,k + O(hn)
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and

var
(
(Mn(x))j,k

)
=

1
nh2

n

var
(

K
(x−X0

hn

)(x−X0

hn

)j−1

gk−1

(x−X0

hn

))
(5.2)

+
1

n2h2
n

n∑
t=1

∑

s : 1≤|s−t|≤Cλ log n

cov
(

K
(x−Xt−1

hn

)(x−Xt−1

hn

)j−1

gk−1

(x−Xt−1

hn

)
,

K
(x−Xs−1

hn

)(x−Xs−1

hn

)j−1

gk−1

(x−Xs−1

hn

))

+
1

n2h2
n

n∑
t=1

∑

s : |s−t|>Cλ log n

cov
(

K
(x−Xt−1

hn

)(x−Xt−1

hn

)j−1

gk−1

(x−Xt−1

hn

)
,

K
(x−Xs−1

hn

)(x−Xs−1

hn

)j−1

gk−1

(x−Xs−1

hn

))

= O

(
1

nhn

)
+ O

(
log n

n

)
+ O(n−λ).

Before we proceed, we recall the Bernstein-type inequality from Theorem 1.4.2.4 in
Doukhan (1994, page 36). Assume that Z1, . . . , Zn are β-mixing random variables.
If

(i) EZt = 0 for all t,
(ii) there exists σ2 < ∞ such that, for all n, m, 1

mE(Zn + · · ·+ Zn+m)2 ≤ σ2,
(iii) |Zt| ≤ M < ∞ for all t,

then, for any ε > 0 and any q ∈ (0, n/(1 + ε2/4)], the following inequality holds:

P

(∣∣∣
n∑

t=1

Zt

∣∣∣ ≥ x

)
≤ 4 exp

{
− (1− ε)x2

2(nσ2 + qMx/3)

}
+ 2

nβ[qε2/4]−1

q
.

In the case of geometrically mixing coefficients, this inequality can be simplified to

P

(∣∣∣
n∑

t=1

Zt

∣∣∣ ≥ x

)
≤ 4 exp

{
− Cλx2

nσ2 + log n x

}
+ O(n−λ),

where λ may be chosen arbitrarily large and Cλ > 0 appropriately. Therefore, we
obtain from (5.1) and (5.2) that

P

(
|(Mn(x))j,k − πm(x)Mj,k| > Cλ

(
hn +

( log n

nhn

)1/2))
= O(n−λ).

Since K and K(·)gj(·) (j = 1, . . . , β−1) are Lipschitz continuous functions, we can
deduce by an approximation on increasingly fine grids in conjunction with a simple
continuity argument that also

(5.3) P

(
|(Mn(x))j,k − πm(x)Mj,k| ≤ Cλ

(
hn +

( log n

nhn

)1/2)
∀x ∈ [0, 1]

)

= 1−O(n−λ)
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holds true. Since the matrix M is by assumption nonsingular, we obtain that
the matrices Mn(x) are also nonsingular with ((Mn(x))−1 being bounded, with
probability exceeding 1−O(n−λ). This implies that

ĉ(x) = (Mn(x))−1M1β(5.4)

=




1/πm(x)
0
...
0


 + (Mn(x))−1 (πm(x)M − Mn(x))




1/πm(x)
0
...
0


 ,

which yields

P

(
|ĉj(x)− cj(x)| ≤ Cλ

(
hn +

( log n

nhn

)1/2)
∀x ∈ [0, 1]

)
= 1−O(n−λ). ¤

Proof of Theorem 3.1. Recall that, according to Lemma 2.1, there exist sets Xn

with

(5.5) P (Xn 6∈ Xn) = O(n−λ)

and, for Xn ∈ Xn, the system of equations (2.4) possesses a unique solution
(ĉ0(x), . . . , ĉβ−1(x)) for all x with

(5.6) sup
x∈[0,1]

|ĉj(x)− cj(x)| ≤ δn −→
n→∞

0.

From (5.5) we obtain that

Em

[ ∫ 1

0

(m̂n(x)−m(x))2 dx ∧ 1
]

(5.7)

= Em

[
I(Xn ∈ Xn)

∫ 1

0

( n∑
t=1

Kn(x,Xt−1)σ(Xt−1)εt

)2

dx

]

+ Em

[
I(Xn ∈ Xn)

∫ 1

0

( n∑
t=1

Kn(x,Xt−1)m(Xt−1)−m(x)
)2

dx

]

+ 2Em

[
I(Xn ∈ Xn)

∫ 1

0

( n∑
t=1

Kn(x,Xt−1)σ(Xt−1)εt

)

×
( n∑

t=1

Kn(x,Xt−1)m(Xt−1)−m(x)
)

dx

]
+ O(n−1)

= T1 + T2 + T3 + O(n−1),

say.
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First, we consider the stochastic term, T1. We obtain by standard arguments
that

Em

[ ∫ 1

0

(
1

nhn

n∑
t=1

K

(
x−Xt−1

hn

)
σ(Xt−1)εt

)2

dx

]2

=
1

n4h2
n

n∑
t1,... ,t4=1

Em

[ ∫ 1

0

1
hn

K

(
x−Xt1−1

hn

)
K

(
x−Xt2−1

hn

)
dx

× σ(Xt1−1)εt1σ(Xt2−1)εt2

×
∫ 1

0

1
hn

K

(
x−Xt3−1

hn

)
K

(
x−Xt4−1

hn

)
dx σ(Xt3−1)εt3σ(Xt4−1)εt4

]

=
1

(nhn)2

( ∫
1
hn

K2

(
x− y

hn

)
σ2(x)πm(x) dx

)2

+ o

(
1

(nhn)2

)
= O

(
1

(nhn)2

)
,

which implies by the Cauchy–Schwarz inequality that

(5.8) Em

[
I(Xn ∈ Xn)

∫ 1

0

(πm(x))−2

(
1

nhn

n∑
t=1

K

(
x−Xt−1

hn

)
σ(Xt−1)εt

)2

dx

]

= Em

[
1

nhn

∫ 1

0

(πm(x))−2 1
hn

K

(
x−X0

hn

)2

dx σ2(X0)
]

+ o
(
(nhn)−1

)
.

Moreover, it holds for j = 0, . . . , β − 1 with g0(x) = 1 that

Em

[ ∫ 1

0

(
1

nhn

n∑
t=1

K

(
x−Xt−1

hn

)
gj

(
x−Xt−1

hn

)
σ(Xt−1)εt

)2

dx

]
= O

(
(nhn)−1

)
,

which implies, in conjunction with (5.6), that

(5.9) T1 =
1

nhn

∫
K2(u) du

∫ 1

0

σ2(x)
πm(x)

dx + o
( 1
nhn

)
.

Now we turn to the bias-type term, T2. We use the Taylor expansion

m(y)−m(x) =
β−1∑

k=1

m(k)(x)
(y − x)k

k!
+

∫ y

x

(y − z)β−1

(β − 1)!
m(β)(z) dz,

with the usual convention that
∫ y

x
. . . = − ∫ x

y
. . . if y < x. For Xn ∈ Xn, we have
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that

n∑
t=1

Kn(x,Xt−1)m(Xt−1)−m(x)(5.10)

=
n∑

t=1

Kn(x,Xt−1)
∫ Xt−1

x

(Xt−1 − z)β−1

(β − 1)!
m(β)(z) dz

=
1

πm(x)

n∑
t=1

1
nhn

K

(
x−Xt−1

hn

) ∫ Xt−1

x

(Xt−1 − z)β−1

(β − 1)!
m(β)(z) dz

+
β−1∑

j=0

(
ĉj(x)− cj(x)

) n∑
t=1

1
nhn

K

(
x−Xt−1

hn

)
gj

(
x−Xt−1

hn

)

×
∫ Xt−1

x

(Xt−1 − z)β−1

(β − 1)!
m(β)(z) dz.

Denote

fn(u, v) =
1

(nhn)2

∫ 1

0

1
π2

m(x)

[
K

(
x− u

hn

) ∫ u

x

(u− z)β−1

(β − 1)!
m(β)(z) dz

×K

(
x− v

hn

) ∫ v

x

(v − z)β−1

(β − 1)!
m(β)(z) dz

]
dx.

Since K is supported on [−CK , CK ], we obtain the following rough bound for
|fn(u, v)|:

|fn(u, v)| ≤ C
1

(nhn)2
h2β−2

n

∫ min{u,v}+CKhn

max{u,v}−CKhn

dx

×
∫ u+CKhn

u−CKhn

|m(β)(z)| dz

∫ v+CKhn

v−CKhn

|m(β)(z)| dz

≤ 2 CK C

n2
h2β−3

n

[
(min{u, v} −max{u, v}+ 2CKhn) ∨ 0

]

×
{ ∫ u+CKhn

u−CKhn

(m(β)(z))2 dz +
∫ v+CKhn

v−CKhn

(m(β)(z))2 dz

}
.

Hence,
sup
u,v

|fn(u, v)| = O
(
n−2h2β−2

n

)
.

Moreover, since πm is bounded,

Em|fn(X0, X0)| = O
(
n−2h2β−1

n

)
,

and since all joint densities are also bounded,

Em|fn(Xs, Xt)| = O
(
n−2h2β

n

)
,
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uniformly in s 6= t. Denote by X ′
0 a random variable independent of X0 and with

the same distribution. Then we obtain the more precise result

Em[fn(X0, X
′
0)] =

∫ 1

0

[ ∫
1
hn

K

(
x− y

hn

)( ∫ y

x

(y − z)β−1

(β − 1)!
m(β)(z) dz

)
dy

+
∫ (

πm(y)
πm(x)

− 1
)

1
hn

K

(
x− y

hn

)(∫ y

x

(y − z)β−1

(β − 1)!
m(β)(z) dz

)
dy

]2

dx

=
∫ 1

0

[ ∫
1
hn

K

(
x− y

hn

)( ∫ y

x

(y − z)β−1

(β − 1)!
m(β)(z) dz

)
dy

]2

dx + o(h2β
n )

=
∫ 1

0

( ∫
1
hn

K

(
x− y

hn

)
m(y) dy −m(x)

)2

dx + o(h2β
n ).

These estimates imply that

Em

[
I(Xn ∈ Xn)

∫ 1

0

(
1

πm(x)

n∑
t=1

1
nhn

K
(x−Xt−1

hn

)
(5.11)

×
∫ Xt−1

x

(Xt−1 − z)β−1

(β − 1)!
m(β)(z) dz

)2

dx

]

= n2Em

[
fn(X0, X

′
0)

]
+ O

(
h2β

n

(
1

nhn
+

log n

n

))

=
∫ 1

0

( ∫
1
hn

K
(x− y

hn

)
m(y) dy −m(x)

)2

dx + o(h2β
n ).

Furthermore, we obtain by analogous considerations that

Em

[ ∫ 1

0

( n∑
t=1

1
nhn

K
(x−Xt−1

hn

)
gj

(x−Xt−1

hn

)

×
∫ Xt−1

x

(Xt−1 − z)β−1

(β − 1)!
m(β)(z) dz

)2

dx

]
= O(h2β

n ),

which implies, in conjunction with (5.6) and (5.19), that

(5.12) T2 =
∫ 1

0

( ∫
1
hn

K
(x− y

hn

)
m(y) dy −m(x)

)2

dx + o(h2β
n ).

Finally, it can be shown by straightforward calculations that

(5.13) T3 = o

(
1

nhn
+ h2β

n

)
.

Now (5.7), (5.9), (5.12), and (5.13) imply that

(5.14) Em

[ ∫ 1

0

(
m̂n(x)−m(x)

)2
dx ∧ 1

]
=

1
nhn

∫
K2(u) du

∫ 1

0

σ2(x)
πm(x)

dx

+
∫ 1

0

( ∫
1
hn

K
(x− y

hn

)
m(y) dy −m(x)

)2

dx + o

(
1

nhn
+ h2β

n

)
.

The second assertion is a well-known result. ¤
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Proof of Theorem 4.1. This proof follows the pattern of the proof of the lower
asymptotic risk bound in Butucea and Neumann (2005) and bears many similarities
to the corresponding proof in Golubev and Nussbaum (1990). We include it since
the dependence in the present context and the slightly modified loss function require
certain modifications.

Let ε > 0 be arbitrary. We will actually show that

Rn = inf
m̃n

sup
m∈Un

{
n

2β
2β+1

( ∫ 1

0

σ2(x)
πm(x)

dx

)− 2β
2β+1

Em‖m̃n −m‖2L2([0,1])

}
(5.15)

≥ γ(β)L
1

2β+1 − ε

holds for sufficiently large n, where

Un =
{
m

(n)
θ : θ ∈ Θn

}

is an appropriate sequence of asymptotically least favorable parametric subclasses
of W β

2 (L) ∩M. The functions m
(n)
θ are of the form

(5.16) m
(n)
θ (x) =

s∑

j=1

qn∑

k=1

θj,kφ
(n)
j,k (x),

where φ
(n)
j,k is supported on the interval [(k−1)/qn, k/qn] and will be derived from φj

described below.
To define appropriate functions φj , j ∈ N, we consider the eigenvalue problem

(−1)βf (2β)(x) = λf(x), x ∈ [0, 1],

with boundary conditions f (k)(0) = f (k)(1) = 0 for k = 0, . . . , β−1. We arrange the
solutions in such a way that the eigenvalues (λj)j∈N are nondecreasing and choose
the corresponding eigenfunctions (fj)j∈N so that they are orthonormal. (They are
automatically orthogonal if they belong to different eigenvalues; to orthonormalize
them we can use the Gram–Schmidt orthogonalization algorithm.) It is known that
the eigenvalues satisfy the asymptotic relation

λj = (πj)2β(1 + o(1)) as j →∞,

see, e.g., Neumark (1960, Section II.4.9). From integration by parts we obtain that
∫ 1

0

f
(β)
j (x)f (β)

k (x) dx = λjδj,k ∀j, k ∈ N.

Let φj be the continuation of fj by zero outside the interval [0, 1]. Then φj ∈
W̃ β

2 = {f ∈ L2(R) : f (β) ∈ L2(R) and f (k)(0) = f (k)(1) = 0 ∀k = 0, . . . , β − 1} .
We define

qn =
[
s−1

(
nL∫ 1

0
σ2(x)/π0(x) dx

∫ 1/π

0
(πx)β(1− (πx)β) dx

) 1
2β+1

]
,
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where the choice of the integer s will be described below. (Here π0 denotes the
stationary density in the case m ≡ 0.) Furthermore, let

ck,n = qn

∫ k/qn

(k−1)/qn

σ2(x)
π0(x)

dx.

We define the perturbations φ
(n)
j,k (j = 1, . . . , qn; k = 1, . . . , s) as

φ
(n)
j,k (x) = n−1/2 q1/2

n c
1/2
k,n φj(qnx− (k − 1)).

Note that the function m
(n)
θ belongs to W β

2 (L) if and only if the parameter θ =
(θj,k)j=1,... ,qn;k=1,... ,s is contained in

(5.17) Θn =
{

θ ∈ Rsqn :
1
n

q2β
n

s∑

j=1

λj

qn∑

k=1

ck,nθ2
j,k ≤ L

}
.

The risk Rn will be estimated by a certain Bayesian risk, which will enable us
to calculate a lower efficiency bound explicitly. A sharp asymptotic risk bound
can then be obtained by taking a sequence of asymptotically least favorable prior
distributions. In view of available results in related settings, it could be anticipated
that this can be achieved by sequences of asymptotically normal priors. Denote
by (µN )N∈N a sequence of distributions with finite support,

∫
x2 µN (dx) < 1 and∫

x4 µN (dx) ≤ 3 ∀N , and µN =⇒ N (0, 1) as N →∞. Let µN,j be the distribution
of a random variable sjZN , where ZN ∼ µN and s2

j = a(j/s), j = 1, . . . , s, and
a(x) = (πx)−β(1− (πx)β)+. As prior measure for the parameter vector θ, we take
the product measure µ

(n)
N = ⊗s

j=1µ
⊗qn

N,j , where θj,k ∼ µN,j .
Now we obtain that

(5.18) Rn ≥ inf
m̃n

{
n

2β
2β+1

∫

Θn

( ∫ 1

0

σ2(x)
π

m
(n)
θ

(x)
dx

)− 2β
2β+1

× E
m

(n)
θ

‖m̃n −m
(n)
θ ‖2 µ

(n)
N (dθ)

}
≥ Rn,1(1 + o(1))−Rn,2,

say, where

Rn,1 = n
2β

2β+1 inf
m̃

∫

supp(µ
(n)
N

)

E
m

(n)
θ

‖m̃−m
(n)
θ ‖2 µ

(n)
N (dθ)

( ∫ 1

0

σ2(x)
π0(x)

dx

)− 2β
2β+1

,

Rn,2 = n
2β

2β+1 sup
θ∈supp(µ

(n)
N

)

{( ∫ 1

0

σ2(x)
π

m
(n)
θ

(x)
dx

)− 2β
2β+1

}

× sup
θ1,θ2∈supp(µ

(n)
N

)

{‖m(n)
θ1
−m

(n)
θ2
‖2} µ

(n)
N (Θc

n).

(The o(1) term in (5.18) is due to the fact that π
m

(n)
θ

(x) is replaced by π0(x) in
the definition of Rn,1; the fact that supθ∈Θn

supx∈[0,1] |πm
(n)
θ

(x) − π0(x)| −→
n→∞

0
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follows along the lines of the proof of Theorem 3 in Franke, Kreiss, Mammen,
and Neumann (2002). The second inequality in (5.18) follows from convexity of
{m(n)

θ : θ ∈ Θn}, which implies that the Bayes estimator lies in this set.) Let
∆ = ∆(N) = 1− ∫

x2 µN (dx) . We choose s such that

1
sβ+1

s∑

j=1

λjs
2
j ≤

1−∆/2
1−∆

∫ 1/π

0

(πx)β
(
1− (πx)β

)
dx.

Now we obtain that

1
n

q2β
n

s∑

j=1

λj

qn∑

k=1

ck,nEµN,j
[θ2

j,k] =
1
n

q2β
n

s∑

j=1

λj

∫ 1

0

σ2(x)
π0(x)

dx (1−∆)s2
j ≤ (1−∆/2)L,

which implies by the weak law of large numbers that

µ
(n)
N (Θc

n) −→
n→∞

0.

Since

sup
θ∈supp(µ

(n)
N

)

{( ∫ 1

0

σ2(x)
π

m
(n)
θ

(x)
dx

)− 2β
2β+1

}
= O(1)

and
sup

θ1,θ2∈supp(µ
(n)
N

)

{‖m(n)
θ1
−m

(n)
θ2

∥∥2} = O(n−
2β

2β+1 ),

we obtain that

(5.19) Rn,2 −→
n→∞

0.

Now we analyze the term Rn,1. Using the orthonormality of the perturbations
we obtain that

Rn,1 = n−
1

2β+1

( ∫ 1

0

σ2(x)
π0(x)

dx

)− 2β
2β+1

(5.20)

×
s∑

j=1

qn∑

k=1

ck,n inf
θ̃j,k

∫

supp(µ
(n)
N

)

Eθ

[|θ̃j,k − θj,k|2
]
µ

(n)
N (dθ)

≥ n−
1

2β+1 qn

( ∫ 1

0

σ2(x)
π0(x)

dx

) 1
2β+1

×
s∑

j=1

min
1≤k≤qn

inf
θl,m∈supp(µN,j),

(l,m) 6=(j,k)

inf
θ̃j,k

∫

supp(µN,j)

Eθ

[|θ̃j,k − θj,k|2
]
µN,j(dθj,k),

that is, we can reduce our considerations to the separate analysis of certain one-
dimensional Bayesian estimation problems.
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To establish the link to Gaussian shift experiments whose analysis finally leads
to explicit lower bounds, we are going to prove local asymptotic normality (LAN)
for the family of one-dimensional subexperiments given by

{
m(j,kn)

u =
∑

(l,m) : (l,m) 6=(j,kn)

θ
(j,n)
l,m φ

(n)
l,m + uφ

(n)
j,kn

: u ∈ [csj , csj ]
}

,

where kn and (θl,m)(l,m) 6=(j,kn) are sequences which afford the minimum on the
right-hand side of (5.20).

We obtain, under P
m

(j,kn)
0

, that

Λ(j,kn)
u := log

p
m

(j,kn)
u

(X0, . . . , Xn)

p
m

(j,kn)
0

(X0, . . . , Xn)

= log
p

m
(j,kn)
u

(X0)ϕ
(

X1−m(j,kn)
u (X0)

σ(X0)

)
· · ·ϕ

(
Xn−m(j,kn)

u (Xn−1)
σ(Xn−1)

)

p
m

(j,kn)
0

(X0)ϕ
(

X1−m
(j,kn)
0 (X0)

σ(X0)

)
· · ·ϕ

(
Xn−m

(j,kn)
0 (Xn−1)

σ(Xn−1)

)

= log
p

m
(j,kn)
u

(X0)

p
m

(j,kn)
0

(X0)
+

n∑
t=1

log
ϕ
(

εt+m
(j,kn)
0 (Xt−1)−m(j,kn)

u (Xt−1)

σ(Xt−1)

)

ϕ
(

εt

σ(Xt−1)

)

= log
p

m
(j,kn)
u

(X0)

p
m

(j,kn)
0

(X0)
+ u

n∑
t=1

φ
(n)
j,kn

(Xt−1)
εt

σ2(Xt−1)
− u2

2

n∑
t=1

(φ(n)
j,kn

(Xt−1))2

σ2(Xt−1)
.

According to Lemma 6.1 in Grama and Neumann (2006) we have that

log
(p

m
(j,kn)
u

(X0)

p
m

(j,kn)
0

(X0)

)
P−→ 0.

Therefore, we obtain by a central limit theorem for triangular arrays of strongly
mixing random variables (see Politis, Romano, and Wolf, 1997, Theorem A.1) that

(5.21) Λ(j,kn)
u

d−→ N
(
−u2

2
, u2

)
.

Now we proceed in the same way as Golubev and Nussbaum (1990) did in the
proof of their Theorem A1. Because of the LAN property (5.21), we obtain, for
any fixed N ,

(5.22) lim inf
n→∞

inf
θ̃j,kn

∫

supp(µN,j)

Eθ(j)

[|θ̃j,kn − θj,kn |2
]
µN,j(dθj,kn)

≥ inf
θ̃j

∫

supp(µN,j)

Ẽθj

[|θ̃j − θj |2
]
µN,j(dθj) + o(1),

where θ(j) is the parameter vector consisting of (θ(j,kn)
l,m )(l,m) 6=(j,kn) and θj,kn , and

Ẽθj is the expectation in the Gaussian shift experiment, where

(5.23) Yj = θj + ξj
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is observed and ξj ∼ N (0, 1). Moreover, it follows from the arguments in the
proof of Theorem A1 in Golubev and Nussbaum (1990) that the right-hand side
of (5.22) converges to the Bayesian risk for experiment (5.23) with normal prior
µ∞,j = N (0, s2

j ) as the parameter N tends to infinity; see also Theorem 3.1 of
Neumann and Spokoiny (1995). Therefore, we obtain that

lim
N→∞

lim inf
n→∞

inf
θ̃j,kn

∫

supp(µN,j)

Eθ(j)

[|θ̃j,kn
− θj,kn

|2] µN,j(dθj,kn
)(5.24)

≥ inf
θ̃j

∫
Ẽθj

[|θ̃j − θj |2
]
pN (0,s2

j
)(θj) dθj =

s2
j

1 + s2
j

.

Choosing c sufficiently large we obtain from (5.20) and (5.22) that

lim inf
n→∞

Rn,1 ≥
(
1− 1

2
ε
)
L

1
2β+1

( ∫ 1/π

0

(πx)β
(
1− (πx)β

)
dx

)− 1
2β+1 1

s

s∑

j=1

s2
j

1 + s2
j

.

This yields, for s large enough,

lim inf
n→∞

Rn,1 ≥ (1− ε)L
1

2β+1

( ∫ 1/π

0

(πx)β(1− (πx)β) dx

)− 1
2β+1

∫ 1/π

0

(1− (πx)β) dx

= (1− ε)L
1

2β+1 γ(β).

This implies, in conjunction with (5.18) and (5.19), that inequality (5.15) is fulfilled
and, hence, that the assertion holds true. ¤

Proof of Theorem 4.2. A close inspection of the computations in the proof of
Theorem 3.1 (in particular, (5.14) in that proof) and the remark to the proof of
Theorem 3.2 reveal that

Em‖ ̂̂mn −m‖2L2([0,1]) ≤
1

nhn

∫
K2(u) du

∫ 1

0

σ2(x)
πm(x)

dx

+
∫ 1

0

(
1
hn

K
(x− y

hn

)
m(y) dy −m(x)

)2

dx + o

(
1

nhn
+ h2β

n

)

holds uniformly in m ∈ W β
2 (L) ∩M.

Let ε > 0 be arbitrary. Now we can replace m by a function m̃ ∈ L1(R) with
the property that, for sufficiently small δ > 0,

m̃(x) = m(x), for all x ∈ [−δ, 1 + δ]

and ∫ ∞

−∞

(
m̃(β)(x)

)2
dx ≤

∫ 1

0

(
m(β)(x)

)2
dx + ε.
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Therefore, we obtain, for n large enough, that

∫ 1

0

(
1
hn

K
(x− y

hn

)
m(y) dy −m(x)

)2

dx

=
∫ 1

0

(
1
hn

K
(x− y

hn

)
m̃(y) dy − m̃(x)

)2

dx

≤
∫ ∞

−∞

(
1
hn

K
(x− y

hn

)
m̃(y) dy − m̃(x)

)2

dx

=
1
2π

∫ ∞

−∞

(
1
hn

̂
K

( ·
hn

)
(ω)− 1

)2( ̂̃m(ω)
)2

dω

≤ h2β
n sup

ω

{
(K̂(ω)− 1)2ω−2β

} 1
2π

∫ ∞

−∞
ω2β

( ̂̃m(ω)
)2

dω

≤ h2β sup
ω

{
(K̂(ω)− 1)2ω−2β

}
(L + ε),

which yields the first assertion of the theorem. The proof of the second assertion
is straightforward. ¤

Proof of Lemma 4.1. We will derive the kernel Kβ,δ in two steps. First, we ap-
proximate K̂β by a sufficiently often differentiable function whose inverse Fourier
transform constitutes a kernel of order β. Then, in order to get a kernel with com-
pact support, we taper this kernel (in time domain) and add appropriate correction
terms which preserve the required moment properties.

First, we choose a (β + 2)-times continuously differentiable function g with
bounded support and

(5.25) K̂β(ω) ≤ g(ω) ≤ 1 ∀ω ∈ R

and ‖g − K̂β‖L2 ≤
√

2πδ/2. The latter property implies that

(5.26) ‖G−Kβ‖L2 ≤ δ/2,

where G is the inverse Fourier transform of g, that is,

G(x) = F (g)(x) =
1
2π

∫ ∞

−∞
e−ixωg(ω) dω.

According to Theorem 1.8 on page 4 in Stein and Weiss (1990), we have that

(5.27) xkG(x) = (−i)kF (g(k))(x), for k = 0, . . . , β + 2.

Since g ∈ L1 and g(β+2) ∈ L1, it follows in particular that

(5.28)
∫

(1 + |x|)β |G(x)| dx ≤ sup
y

{
(1 + |y|)β+2|G(y)|}

∫
(1 + |x|)−2 dx < ∞.
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Therefore,
∫ ∞

−∞
xkG(x) dx = (−i)kg(k)(0) = δk,0, for k = 0, . . . , β − 1,

that is, G is a kernel of order β.
Let r : R → [0, 1] be a Lipschitz continuous function with r(x) = 1 if |x| ≤ 1

and r(x) = 0 if |x| ≥ 2. Let GN (x) = G(x)r(x/N) . We will add appropriate
correction terms to GN to preserve the properties of a kernel of order β. To this end,
we choose compactly supported and Lipschitz continuous functions H0, . . . , Hβ−1

such that
∫

xlHk(x) dx = δk,l for l, k = 0, . . . , β − 1. Define

mN,k =
∫ ∞

−∞
xkG(x)(1− r(x/N)) dx.

Then KN with

KN (x) = GN (x) +
β−1∑

k=0

mN,kHk(x)

is by construction a Lipschitz continuous kernel of order β. By (5.28) we have that
mN,k −→

N→∞
0, which implies that

(5.29) ‖KN −G‖L2 −→
N→∞

0.

By (5.25) and the construction of KN we have that

g(k)(0) = K̂
(k)
N (0) = δk,0, for k = 0, . . . , β − 1.

Furthermore, it holds that

∣∣g(β)(ω)− K̂
(β)
N (ω)

∣∣ ≤
∣∣g(β)(ω)− Ĝ

(β)
N (ω)

∣∣ +
β−1∑

k=0

|mN,k| |Ĥ(β)
k (ω)|

≤ MN,β +
β−1∑

k=0

|mN,k| sup
ν
|Ĥ(β)

k (ν)|,

where MN,β =
∫∞

N
|x|β(|G(x)| + |G(−x)|) dx −→

N→∞
0. This implies by a Taylor

expansion that

|g(ω)− K̂N (ω)| =
∣∣∣∣
∫ ω

0

(
g(β)(ν)− K̂

(β)
N (ν)

) (ω − ν)β−1

(β − 1)!
dν

∣∣∣∣(5.30)

≤ sup
ν

∣∣g(β)(ν)− K̂
(β)
N (ν)

∣∣ |ω|β
β!

−→
N→∞

0.

Now (5.29) and (5.30) imply that there exists an Nδ < ∞ such that

‖KNδ
−G‖L2 ≤ δ/2
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and ∣∣g(ω)− K̂Nδ
(ω)

∣∣ |ω|−β ≤ δ.

These two properties and (5.25) and (5.26) imply that Kβ,δ := KNδ
has the claimed

properties. ¤
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