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1. Introduction

Lévy processes form the fundamental building block for stochastic continuous-time
models with jumps. There is an important trend using Lévy models in finance, see Cont
and Tankov (2004), but also many recent models in physics or biology rely on Lévy pro-
cesses. We consider here the problem of estimating the Lévy-Khintchine characteristics
from time-discrete observations of a Lévy process. Since these characteristics involve the
Lévy measure (or jump measure) and we do not want to impose a parametric model, we
face a nonparametric estimation problem.

When the Lévy process (Xt)t>0 is observed at high frequency, at times (ti)i=0,...,n

with maxi(ti − ti−1) small, then a large increment Xti − Xti−1 indicates that a jump
occurred between time ti−1 and ti. Based on this insight and the continuous-time observa-
tion analogue, nonparametric inference for Lévy processes from high-frequency data has
been considered by Basawa and Brockwell (1982), Figueroa-López and Houdré (2006) and
Nishiyama (2007). For low-frequency observations, however, we cannot be sure to what
extent the increment Xti −Xti−1 is due to one or several jumps or just to the Brownian
motion part of the Lévy process. The only way to draw inference is to use that the in-
crements form independent realisations of infinitely divisible probability distributions. We
shall assume that we dispose of equidistant observations at ti = i∆, i = 0, . . . , n, and con-
sider the asymptotic behaviour of estimators for n →∞ and ∆ > 0 fixed. This can be cast
into the classical framework of i.i.d. observations (Xi∆−X(i−1)∆)i=1,...,n from an infinitely
divisible distribution. A natural question in this framework is to estimate the underlying
Lévy-Khintchine characteristics. In this general setting we are only aware of the work by
Watteel and Kulperger (2003) who propose and implement an approach for estimating the
jump distribution by a fixed spectral cut-off procedure, which is related to the pilot esti-
mator in Section 5 below. In the special case of compound Poisson processes the problem
of estimating the jump density is known as decompounding, see van Es, Gugushvili, and
Spreij (2007), Gugushvili (2007) and the references therein. For parametric inference under
the assumption of a stable law see e.g. Feuerverger and McDunnough (1981b). A related
low-frequency problem for the canonical function in Lévy-Ornstein-Uhlenbeck processes
has been considered by Jongbloed, van der Meulen, and van der Vaart (2005), where a
consistent estimator has been constructed.

In Section 2 we recall basic facts about Lévy processes and prepare the idea of
minimum-distance estimators based on the empirical characteristic function. Under very
general conditions we then show in Section 3 consistency of these estimators for the Lévy-
Khintchine characteristics. The only way to achieve this is to merge the diffusion coeffi-
cient σ2 and the Lévy measure ν to a single quantity νσ, which is a finite Borel measure,
and to consider weak convergence of estimators of νσ. In Section 4 we construct a rate-
optimal estimator using a minimum-distance fit, based on a C2-criterion for the empirical
characteristic function. A fundamental tool is Theorem 4.1, which gives a uniform con-
trol on the deviations of the empirical characteristic function on the whole real line and
may be of independent interest. The optimal rates of convergence depend on the decay
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of the characteristic function as in deconvolution problems. Interestingly, our estimator
attains the optimal rates without knowing this decay behaviour and without any further
regularisation parameter. In Section 5 we briefly discuss the implementation of the esti-
mator, using a two-step procedure, and show a typical numerical example. Most proofs
are postponed to Section 6.

2. Basic notions, assumptions, and a few simple facts

We assume that we observe a one-dimensional Lévy process (Xt)t>0 at equidistant
time points 0 = t0 < t1 < · · · < tn. Such a process is characterized by its characteristic
function

ϕ(u, t; b̄, σ, ν) := E[exp(iuXt)] = exp(t Ψ(u; b̄, σ, ν)), u ∈ R,

where

Ψ(u) = Ψ(u; b̄, σ, ν) = iub̄ − σ2

2
u2 +

∫
R

(
eiux − 1 − iux

1+x2

)
ν(dx).

The triplet (b̄, σ, ν) is called Lévy-Khintchine characteristic or characteristic triplet with
drift-like part b̄ ∈ R, volatility σ > 0 and jump measure ν, which is a non-negative σ-
finite measure on (R,B) with

∫
x2

1+x2 ν(dx) < ∞. The function Ψ is called characteristic
exponent or cumulant function.

For reasons explained below, we introduce a measure ν̄σ by

ν̄σ(dx) = σ2δ0(dx) +
x2

1 + x2
ν(dx),

where δ0 denotes the point measure in zero. This gives another representation of Ψ in
terms of b̄ ∈ R and the finite Borel measure ν̄σ as

Ψ(u) = Ψ(u; b̄, ν̄σ) = iub̄ +
∫

R

(eiux − 1)(1 + x2)− iux

x2
ν̄σ(dx).

Here we have used the continuous extension of the integrand at x = 0, which evalu-
ates to −u2/2. Let Pb̄,ν̄σ

denote the probability distribution with characteristic function
ϕ(•, t; b̄, ν̄σ) = exp(t Ψ(•; b̄, ν̄σ)) for some fixed t > 0. Writing µn =⇒ µ for weak conver-
gence of the finite Borel measures µn to the finite Borel measure µ on (R,B), the following
well-known result will be essential in the sequel (Theorem VII.2.9 and Remark VII.2.10
in Jacod and Shiryaev (2002) or Theorem 19.1 in Gnedenko and Kolmogorov (1968)).

Proposition 2.1. The convergence Pb̄n,ν̄σ,n
=⇒ Pb̄,ν̄σ

takes place if and only if b̄n → b̄

and ν̄σ,n =⇒ ν̄σ.

By the scaling properties of Lévy processes there is no loss in generality when we
suppose tk = k, k = 0, . . . , n. We write ϕ(u; b̄, ν̄σ) short for ϕ(u, 1; b̄, ν̄σ). Let us introduce
the empirical characteristic function of the increments

ϕ̂n(u) :=
1
n

n∑
t=1

eiu(Xt−Xt−1), u ∈ R.
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Since these increments are independent and identically distributed it follows from the
Glivenko-Cantelli theorem that

(2.1) Pb̄,ν̄σ

(
ϕ̂n(u) −→

n→∞
ϕ(u; b̄, ν̄σ) ∀u ∈ R

)
= 1.

We will consider minimum distance fits, that is, we intend to choose ̂̄bn and ̂̄νσ,n such
that, for an appropriate metric d,

(2.2) d(ϕ̂n, ϕ(•; ̂̄bn, ̂̄νσ,n)) = inf
b̃∈R, ν̃σ∈M(R)

d(ϕ̂n, ϕ(•; b̃, ν̃σ)).

Here M(R) denotes the space of all finite Borel measures on (R,B). Our basic motivation
for this estimation procedure arises from the fact that an exact maximum likelihood esti-
mator is not feasible since there is in general no closed form expression for the probability
density of the observations available. Moreover, it is well-known that methods based on
the empirical characteristic function can be asymptotically efficient; see Feuerverger and
McDunnough (1981a, 1981b). Since we are not sure that the infimum in (2.2) is always
obtained, we take a sequence of positive reals (δn)n∈N with δn → 0 as n →∞ and choosê̄bn and ̂̄νσ,n such that

(2.3) d(ϕ̂n, ϕ(•; ̂̄bn, ̂̄νσ,n)) 6 inf
b̃∈R, ν̃σ∈M(R)

d(ϕ̂n, ϕ(•; b̃, ν̃σ)) + δn.

For the metric d, we assume that

(2.4) lim
n→∞

d(ϕ̂n, ϕ(•; b̄, ν̄σ)) = 0 Pb̄,ν̄σ
-almost surely

and that the following implication holds:
limn→∞ d(ϕ(•; b̄n, ν̄σ,n), ϕ(•; b̄, ν̄σ)) = 0

=⇒
limn→∞

∫ t
s ϕ(u; b̄n, ν̄σ,n) du =

∫ t
s ϕ(u; b̄, ν̄σ) du ∀s, t ∈ R.

(2.5)

A simple example of such a distance is given by the weighted Lp-norms,

d(ϕ1, ϕ2) =
(∫ ∞

−∞
|ϕ1(u)− ϕ2(u)|pw(u) du

)1/p
,

where p > 1 and w : R → (0,∞) is a continuous weight function with
∫∞
−∞w(u) du < ∞.

Then Assumption (2.4) follows by dominated convergence from the convergence result
(2.1), while Assumption (2.5) is immediate.

3. Consistency

We derive from the triangle inequality, the definition of the minimum-distance estima-
tor and Assumption (2.4) that

d(ϕ(•; ̂̄bn, ̂̄νσ,n), ϕ(•; b̄, ν̄σ)) 6 d(ϕ(•; ̂̄bn, ̂̄νσ,n), ϕ̂n) + d(ϕ̂n, ϕ(•; b̄, ν̄σ))

6 2d(ϕ̂n, ϕ(•; b̄, ν̄σ)) + δn(3.1)

−→ 0 Pb̄,ν̄σ
-a.s.
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By Assumption (2.5) this implies for the integrated characteristic function that

(3.2) Pb̄,ν̄σ

(∫ t

s
ϕ(u; ̂̄bn, ̂̄νσ,n) du −→

n→∞

∫ t

s
ϕ(u; b̄, ν̄σ) du ∀s, t ∈ R

)
= 1.

By Theorem 6.3.3 in Chung (1974, page 163), we obtain from (3.2) that

Pb̄bn,b̄νσ,n
−→v Pb̄,ν̄σ

Pb̄,ν̄σ
-a.s.,

where ‘−→v’ denotes vague convergence to a possibly defective (that is, with a mass less
than 1) measure. However, since this vague limit is a probability measure, it turns out
that the mode of convergence is actually the weak one, that is,

(3.3) Pb̄bn,b̄νσ,n
=⇒ Pb̄,ν̄σ

Pb̄,ν̄σ
-a.s.

As an immediate consequence of Equation (3.3) and Proposition 2.1 above we obtain
the following consistency result for the parameters of the Lévy process:

Theorem 3.1. If the distance d satisfies properties (2.4) and (2.5), then the minimum
distance fit (̂b̄n, ̂̄νσ,n) is a strongly consistent estimator, that is, with probability one we
have for n →∞ ̂̄bn → b̄ and ̂̄νσ,n =⇒ ν̄σ.

Remark 3.2. Without further assumptions we cannot estimate the diffusion parameter σ

in a uniformly consistent way. We have for example that the stable law with characteristic
function ϕα(u) = e−|u|

α/2 converges for α ↑ 2 to the standard normal law (α = 2) in
total variation norm: by Scheffé’s Lemma it suffices to show pointwise convergence of the
density functions, which follows from the L1-convergence of the characteristic functions.
Hence, for n observations no test can separate the hypotheses H0 : α = 2 and H1 : α < 2.
Since we have σ = 1 for α = 2 and σ = 0 for α < 2, this implies for the estimation problem
uniform inconsistency in the following sense:

lim sup
n→∞

inf
σ̂n

sup
b̄, ν̄σ

Pb̄,ν̄σ
(|σ̂n − σ| > 1/2) > 0,

where the infimum is taken over all estimators based on n observations. Thus, from a
statistical perspective the estimation of the volatility σ makes no sense, unless we restrict
the class of Lévy processes under consideration, e.g. to the finite intensity case as in
Belomestny and Reiß (2006).

The practical implementation of the minimum distance method raises naturally the
question of computational feasibility. It is certainly not possible to compute ̂̄νσ,n by an
optimisation over the full set M(R). In our simulations, for example, we approximate the
measure ν̄σ by measures with step-wise constant densities. To assess the effect of such an
approximation, consider a sequence of subsets M(n) ⊆ M(R) with the density property
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that there exist measures ν̃(n) ∈ M(n) with ν̃(n) =⇒ ν̄σ, as n → ∞. The definition from
(2.3) is now replaced by

d(ϕ̂n, ϕ(•; ̂̄bn, ̂̄νσ,n)) 6 inf
b̃∈R, ν̃σ∈M(n)

d(ϕ̂n, ϕ(•; b̃, ν̃σ)) + δn.

We obtain instead of (3.1) that

d(ϕ(•; ̂̄bn, ̂̄νσ,n), ϕ(•; b̄, ν̄σ)) 6 2d(ϕ̂n, ϕ(•; b̄, ν̄σ)) + δn + d(ϕ(•; b̄, ν̄σ), ϕ(•; b̄, ν̃(n)))

−→ 0 Pb̄,ν̄σ
-a.s.

Hence, we obtain in complete analogy to Theorem 3.1 that with probability one for n →∞̂̄bn → b̄ and ̂̄νσ,n =⇒ ν̄σ.

Given the existence of certain moments for Pb̄,ν̄σ
, we could also search our minimum-

distance estimator in the class of those parameter values that fit the empirical moments.
Using a similar error decomposition and the consistency of the empirical moments, this
approach will also yield consistent estimators under mild conditions on the distance d.

4. A rate-optimal estimator

4.1. The construction. In this section we intend to devise estimators which attain opti-
mal rates of convergence. We henceforth restrict the class of Lévy processes to those with
finite second moments. This is equivalent to requiring that the Lévy measure satisfies∫

x2ν(dx) < ∞. In this case the following reparametrisation of the characteristic exponent
is much more convenient:

Ψ(u; b, σ, ν) = iub − σ2

2
u2 +

∫
R
(eiux − 1 − iux) ν(dx),

where the parameter b = b̄+
∫

R(x− x
1+x2 )ν(dx) denotes now indeed the mean trend because

of E[X1] = −iϕ′(0) = b. Let us mention that this is the original Kolmogorov canonical
representation of a Lévy process (Kolmogorov 1932), the historial background of which
is nicely exposed by Mainardi and Rogosin (2006). Instead of ν̄σ, we consider the finite
measure νσ defined by

νσ(dx) = σ2δ0(dx) + x2 ν(dx),

which allows the nice identity Var(X1) = −ϕ′′(0)+ϕ′(0)2 = νσ(R). From now on, we shall
express the characteristic exponent in terms of (b, νσ):

Ψ(u) = Ψ(u; b, νσ) = iub +
∫

R

eiux − 1− iux

x2
νσ(dx).

While b can be easily estimated by 1
n

∑n
t=1(Xt − Xt−1) = Xn/n, the construction of

an optimal nonparametric estimator of νσ requires more work. Before we start with our
search for optimal rates of convergence for estimators of νσ, we have to decide about
an appropriate metric to measure the deviation of any potential estimator ν̃σ,n from its
target νσ.
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The parameter νσ lies in the space of finite Borel measures, which is naturally equipped
with the total variation norm. As we have seen above in the consistent estimation problem
for σ, this topology is too strong here. Moreover, we are usually not interested in the
problem of estimating νσ itself, but rather in estimating integrals

∫
f dνσ for certain inte-

grands f . In mathematical finance for example, the so-called ∆ in the quadratic hedging
approach requires calculating

∫ C(t,S(1+z))−C(t,S)
Sz νσ(dz), where C(t, S) denotes the option

price at time t and S the corresponding stock price, cf. Proposition 10.5 in Cont and
Tankov (2004). This is why we choose to measure the performance of our estimator by
metrizing weak convergence with certain classes F of continuous test functions f :

l(ν̃σ,n, νσ) = sup
{∣∣∣∣∫ f dν̃σ,n −

∫
f dνσ

∣∣∣∣ : f ∈ F

}
.

Note that for any class F of uniformly bounded, equicontinuous functions consistency
with respect to weak convergence implies l(ν̃σ,n, νσ) → 0 (Dudley 1989, Cor. 11.3.4). For
instance, the bounded Lipschitz metric is generated by the test functions of Lipschitz norm
less than one.

Let us introduce the Fourier transform for functions f ∈ L1(R) or measures µ ∈M(R)
by

Ff(u) =
∫

f(x)eiuxdx, Fµ(u) =
∫

eiuxµ(dx), u ∈ R.

Note that we have by Parseval’s equality∫
f dνσ =

1
2π

∫ ∞

−∞
Ff(u)Fνσ(u) du,

provided Ff ∈ L1(R) (Katznelson 1976, Theorem VI.2.2). Estimation of νσ turns out to
be particularly transparent when we employ the fact that

Ψ′′(u) =
d2

du2

∫
eiux − 1− iux

x2
νσ(dx) = −Fνσ(u),

and consequently

(4.1) Fνσ(u) = − d2

du2
log(ϕ(u)) =

ϕ′(u)2

ϕ(u)2
− ϕ′′(u)

ϕ(u)
.

Recall that
∫

x2ν(dx) < ∞ implies E[X2
t ] < ∞ and hence ϕ ∈ C2. Moreover, in order

to recover Ψ from ϕ we use the distinguished logarithm of the complex-valued function
u 7→ ϕ(u), which is required to ensure log(ϕ(0)) = 0 and continuity of u 7→ log(ϕ(u)),
cf. Cont and Tankov (2004). This formula indicates that estimating νσ is strongly related
to estimating ϕ in a C2-sense. Before we study rates of convergence, we need to investigate
uniform rates of convergence of the empirical characteristic function ϕ̂n and its derivatives.

4.2. Estimating the characteristic function. For i.i.d. random variables (Zt)t∈N, de-
note by

Cn(u) := n−1/2
n∑

t=1

(
eiuZt − E[eiuZ1 ]

)
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the normalized characteristic function process. Furthermore, denote by C
(k)
n its kth deriv-

ative which exists if E|Z1|k < ∞. For an appropriate weight function w : R −→ [0,∞), we
consider

E‖C(k)
n ‖L∞(w) := E sup

u∈R

{
|C(k)

n (u)|w(u)
}

.

For every k > 0 we have the following general result.

Theorem 4.1. Suppose that (Zt)t∈N are i.i.d. random variables with E|Z1|2k+γ < ∞ for
some γ > 0 and let the weight function be defined as w(u) = (log(e + |u|))−1/2−δ for some
δ > 0. Then

sup
n>1

E‖C(k)
n ‖L∞(w) < ∞.

Its proof is given in Section 6.1. Let us mention that the logarithmic decay of the
weight function w is in accordance with the well known result that ϕ̂n → ϕ a.s. holds
uniformly on intervals [−Tn, Tn] whenever log(Tn)/n → 0, cf. Csörgő and Totik (1983).

4.3. Upper risk bounds. In view of (4.1) and Theorem 4.1, we define our estimators of
b and νσ by a minimum distance fit based on a weighted C2-norm. Defining

d(2)(ϕ1, ϕ2) :=
2∑

k=0

‖ϕ(k)
1 − ϕ

(k)
2 ‖L∞(w),

we choose the estimators b̂n ∈ R and ν̂σ,n ∈M(R) such that

(4.2) d(2)
(
ϕ(•; b̂n, ν̂σ,n), ϕ̂n

)
6 inf

b̃∈R, ν̃σ∈M(R)
d(2)

(
ϕ(•; b̃, ν̃σ), ϕ̂n

)
+ δn,

where δn → 0 as n → ∞. We verify by Theorem 4.1 that d(2) satisfies Assumptions (2.4)
and (2.5), hence, Theorem 3.1 gives immediately a consistency result. Moreover, with the
choice δn = O(n−1/2) these estimators will turn out to be rate-optimal.

While b can always be estimated at rate n−1/2, rates of convergence of
∫

f dν̂σ,n as an
estimator of

∫
f dνσ depend both on the smoothness of f and on the decay of |ϕ(u)| as

|u| → ∞. For the function f , we will assume that it belongs to the class

Fs :=
{

f :
∫

(1 + |u|)s|Ff(u)| du 6 1
}

,

for some s > 0. Note that
∫
|Ff(u)| du 6 1 implies by the Riemann-Lebesgue Lemma

that f is continuous with ‖f‖∞ 6 1. By Fourier theory the condition f ∈ Fs is slightly
stronger than requiring f ∈ Cs with ‖f‖Cs 6 1 for a suitable norming of Cs. We therefore
introduce a loss function for an estimator µ̂ of the finite measure µ by

`s(µ̂, µ) := sup
f∈Fs

∣∣∣∣∫ f dµ̂ −
∫

f dµ

∣∣∣∣ .
Note that by duality the loss `s can be interpreted as a negative smoothness norm of
order −s.
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The faster |ϕ(u)| decays, the more difficult it will be to estimate νσ. We consider in
particular the following three cases:

(a) Gaussian part
If σ2 > 0, then the characteristic function ϕ has Gaussian tails, i.e.

log |ϕ(u)| = Re (log ϕ(u)) = −σ2u2/2(1 + o(u)), as |u| → ∞.

(To see this, note that F (x, u) := (eiux − 1 − iux)/(ux)2 is uniformly bounded
with lim|u|→∞ F (x, u) = 0 for x 6= 0 such that by dominated convergence
lim|u|→∞

∫
R F (x, u)x2 ν(dx) = 0 and thus log ϕ(u) = −σ2u2/2 + o(u2).)

(b) Exponential decay
Here the characteristic function ϕ decays at most exponentially, i.e. for some α > 0,
C > 0,

|ϕ(u)| > Ce−α|u|, for all u ∈ R.

Examples of distributions with this property include normal inverse Gaussian
(Cont and Tankov 2004, page 117), and generalized tempered stable distributions
(Cont and Tankov 2004, page 122).

(c) Polynomial decay
In this case the characteristic function satisfies, for some β > 0, C > 0,

|ϕ(u)| > C(1 + |u|)−β , for all u ∈ R.

Typical examples for this are the compound Poisson distribution, the gamma dis-
tribution, the variance gamma distribution and the generalized hyperbolic distri-
bution (Cont and Tankov 2004, pages 75, 116, 117, 127).

The proof of the following main theorem is postponed to Section 6.2.

Theorem 4.2. Suppose that Eb,νσ |X1|4+γ < ∞ for some γ > 0. We choose the weight
function w as w(u) = (log(e+ |u|))−1/2−δ, where δ is any positive number. The estimators
b̂n and ν̂σ,n of b and νσ, respectively, are chosen according to (4.2) with δn = O(n−1/2).
Then

Eb,νσ |̂bn − b| = O(n−1/2)

and for any s > 0

`s(ν̂σ,n, νσ) = OPb,νσ

(
n−1/2• sup

u∈[0,Un]

{
(1 + u)2−s

w(u)|ϕ(u; b, νσ)|

})
,

where

Un := inf

{
u > 0 :

(1 + u)2n−1/2

w(u)|ϕ(u; b, νσ)|
> 1

}
.

The constants in the risk bounds depend continuously on |b| and νσ(R). In the specific
cases we obtain the following rates of convergence for `s(ν̂σ,n, νσ) in Pb,νσ -probability:

(a) Gaussian part: (log n)−s/2

(b) Exponential decay: (log n)−s
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(c) Polynomial decay of order β > 0: [(log n)1/2+2δn−1/2]s/β ∨ n−1/2.

Remark 4.3. The results are presented for convergence in probability, but the proof im-
mediately yields convergence of moments of order 1/2 of the loss in cases (a), (b), cf.
Equation (6.4). Higher moments are achieved whenever the order of the moment bound
in Theorem 4.1 can be increased.

4.4. Lower risk bounds. We prove that the rates of convergence obtained in Theorem
4.2 for cases (a), (b), (c) are optimal, at least up to a logarithmic factor in the latter case.
The proof in Section 6.3 can be naturally generalized to cover further decay scenarios of
the characteristic function.

Theorem 4.4. For C, C̄ > 0 large enough and for any α > 0, β > 0 introduce the
following nonparametric classes of νσ:

A(C, σ) :=
{

νσ ∈M(R)
∣∣∣ νσ(R) 6 C

}
(σ > 0),

B(C,α) :=
{

νσ ∈M(R)
∣∣∣ νσ(R) 6 C, |ϕ(u)| > C̄e−α|u|

}
(σ = 0),

C(C, C̄, β) :=
{

νσ ∈M(R)
∣∣∣ νσ(R) 6 C, |ϕ(u)| > C̄−1(1 + |u|)−β

}
(σ = 0).

Then we obtain for some fixed b ∈ R and for any s > 0 the following minimax lower
bounds, where ν̃σ,n denotes any estimator of νσ based on n observations:

(a) ∃ε > 0 : lim inf
n→∞

inf
ν̃σ,n

sup
νσ∈A(C,σ)

Pb,νσ

(
(log n)s/2`s(ν̃σ,n, νσ) > ε

)
> 0,

(b) ∃ε > 0 : lim inf
n→∞

inf
ν̃σ,n

sup
νσ∈B(C,α)

Pb,νσ

(
(log n)s`s(ν̃σ,n, νσ) > ε

)
> 0,

(c) ∃ε > 0 : lim inf
n→∞

inf
ν̃σ,n

sup
νσ∈C(C,C̄,β)

Pb,νσ

(
n(s/2β)∧(1/2)`s(ν̃σ,n, νσ) > ε

)
> 0.

4.5. Discussion. The convergence rates for ν̂σ,n can be understood in analogy with a
deconvolution problem where the Fourier transform of the error density decays like the
characteristic function ϕ in our case, see e.g. Fan (1991). The interesting point here is
that this decay property is not assumed to be known and depends on the parameters to
be estimated. At first sight, it is rather surprising that our minimum distance estimator
adapts automatically to the decay of ϕ, even for the whole range of loss functions `s, s > 0.
This is due to the fact that the noise level in the empirical characteristic function ϕ̂n is of
the same size for different frequencies and this is where we fit our estimator. In contrast,
when fitting the characteristic exponent Ψ, which is more attractive from a computational
point of view and for example advocated in Jongbloed, van der Meulen, and van der Vaart
(2005), we face a highly heteroskedastic noise level in log(ϕ̂n(u)) governed by |ϕ(u)|−1

because of log(ϕ̂n(u))−Ψ(u) ≈ (ϕ̂n(u)− ϕ(u))/ϕ(u).
Another point of view on our estimation problem is that we want to estimate the linear

functional
∫

f dνσ based on an inverse problem setting for estimating νσ. In an abstract
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Hilbert scale context, adaptive estimation for this has been considered by Goldenshluger
and Pereverzev (2003) and their rate for the polynomially ill-posed case reads in our
notation (n/ log(n))−(r+s)/(2r+2β) ∨ n−1/2, with r the regularity of νσ, s the regularity of
f and β the degree of ill-posedness. In our case, we measure the regularity s of f in the
Fourier domain by an L1-criterion such that a dual L∞-criterion for the regularity of νσ

yields r = 0 because ‖Fνσ‖∞ is finite. Hence, the rate (n/ log(n))−s/2β ∨ n−1/2, up to the
logarithmic factor of power δ, obtained in case (c) of Theorem 4.2, confirms this analogy.
We suspect that the gap by a logarithmic factor in the polynomial case between our upper
and lower bound is mainly due to a suboptimal lower bound, because `s can be expressed
in the Fourier domain via

`s(µ̂, µ) = sup
f∈Fs

∣∣∣∫ Ff(u)F(µ̂− µ)(u) du
∣∣∣ = sup

u∈R
(1 + |u|)−s|F(µ̂− µ)(u)|,

giving a supremum-type norm.
It is certainly remarkable that no regularisation parameter is involved in our estimation

procedure which becomes more intuitive by noticing that the results of Section 3 imply con-
sistency already for s = 0. On the other hand, better rates of convergence can be obtained
when we restrict the model to measures νσ which have a regular Lebesgue density gσ. A
natural plug-in approach yields the kernel-type estimator ĝσ,n,h(x) := Kh ∗ ν̂σ,n(x), con-
volving the minimum-distance estimator with a smooth kernel Kh of bandwidth h > 0.
Noting that

∫
fĝσ,n,h =

∫
(f ∗Kh) dν̂σ,n, we infer that the bound on the stochastic error∣∣∣∫ f(ĝσ,n,h −Kh ∗ gσ)

∣∣∣ = ∣∣∣∫ (f ∗Kh)d(ν̂σ,n − νσ)
∣∣∣

is controlled by the regularity of f ∗Kh. To be more specific, consider a function f with
|Ff(u)| � (1+ |u|)−s−1 (e.g. f(x) = e−|x| with s = 1), suppose supu(1+ |u|)r|Fgσ(u)| < ∞
for r > 0 and assume polynomial decay of order β > s of the characteristic function. Then∫

(1 + |u|)β|Ff(u)FKh(u)| du � hs−β holds such that ch−s+βf ∗Kh lies in Fβ , c > 0 some
small constant, and Theorem 4.2 implies that∣∣∣∫ f(ĝσ,n,h −Kh ∗ gσ)

∣∣∣ = OP

(
hs−βn−1/2(log n)1/2+2δ

)
.

Together with an easy bias estimate of order hs+r this yields for the estimation error
|
∫

f(ĝσ,n,h − gσ)| up to logarithmic factors the rate n−(r+s)/(2r+2β), provided the band-
width is chosen in an optimal way. We conclude that our results also allow to obtain risk
bounds under smoothness restrictions, which are coherent with the abstract results in
Goldenshluger and Pereverzev (2003). The rates should also be compared with the case of
continuous-time observations on [0, T ], where Figueroa-López and Houdré (2006) obtained
the classical nonparametric rate T−r/(2r+1) for estimating gσ on a bounded interval.

5. Implementation

Although the main focus of our work is theoretical, we point out how the minimum
distance estimator can be implemented and show a numerical example. The main compu-
tational problem is that the procedure requires to minimize a nonlinear functional over



11

the space of all finite measures. One possibility is to use a global optimisation procedure,
e.g. based on simulated annealing, cf. Hall and Yao (2003) for an application to minimum-
distance fits based on characteristic functions. Here we shall look for a good preliminary
estimator and minimize the d(2)-criterion locally around this pilot estimator, which turns
out to be more stable in simulations than global optimisation routines.

We use the identification formula (4.1) to build a first-stage plug-in estimator (̃bn, ν̃σ,n).
While the mean b will be easily estimated by

b̃n :=
1
n

n∑
t=1

(Xt −Xt−1) = Xn/n,

we have to be more careful with an estimator of νσ. Since Fνσ(u) = ϕ′′(u)/ϕ(u) −
(ϕ′(u)/ϕ(u))2 one might be tempted to estimate its Fourier transform just by plugging in
the empirical characteristic function ϕ̂n for ϕ. It turns out, however, that the occurrence
of ϕ̂n(u) in the denominator might have unfavorable effects, particularly if |ϕ(u)| is small.
To get some intuition for a possible remedy, consider the problem of estimating 1/ϕ(u).
1/ϕ̂n(u) is certainly a good estimator as long as |ϕ̂n(u)| is not too small. On the other
hand, since the noise level of ϕ̂n(u) is O(n−1/2) we should no longer rely on 1/ϕ̂n(u) if
ϕ̂n(u) = O(n−1/2). To take this into account, one can use I1{|ϕ̂n(u)|>κn−1/2}/ϕ̂n(u) as an
estimator for 1/ϕ(u) which can be proven to satisfy

Eb,νσ

∣∣∣∣ I1{|ϕ̂n(u)|>κn−1/2}

ϕ̂n(u)
− 1

ϕ(u)

∣∣∣∣p = O

((
n−1/2

|ϕ(u)|2
∧ 1
|ϕ(u)|

)p)
,

for any positive threshold value κ and all p ∈ N. This is what we can at best expect from
an estimator of 1/ϕ(u). Using this idea we define our preliminary estimator of Fνσ(u) by

(5.1) F ν̃σ,n(u) :=

(
ϕ̂′′n(u)
ϕ̂n(u)

−
(

ϕ̂′n(u)
ϕ̂n(u)

)2
)

I1{|ϕ̂n(u)|>κn−1/2},

where κ is a positive constant. In Section 6.4 below we shall prove the following result.

Proposition 5.1. We have Eb,νσ(b̃n − b)2 = O(n−1) and for u ∈ R

Eb,νσ |F ν̃σ,n(u) − Fνσ(u)| = O

((
n−1/2

|ϕ(u)|
∧ 1

)(
1 + |Ψ′(u)|2

))
.

This will give pointwise rates of convergence in a similar fashion as before and serves
well as a starting point of a local optimisation routine. Note that this pilot estimator is
very easy and fast to implement. Yet, it has certain drawbacks, most importantly F ν̃σ,n

is usually not positive semidefinite so that ν̃σ,n is not necessarily a non-negative measure.
In practice, our two-stage procedure works reasonably well. For a numerical example

we simulate a Lévy process (Xt)t>0 with σ = 1, b = 1 and ν(dx) = x−1e−x I1{x>0}dx.
The process X is a superposition of an infinite-intensity Gamma process and a standard
Brownian motion. The law of its increments Xt−Xt−1 is the convolution of an N(0, 1)- and
an Exp(1)-distribution. We have n = 1000 observations, see Figure 1(left) for a histogram
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Figure 1. Left: Histogram of the data. Right: modulus of the empirical
(solid blue) and true (dashed orange) characteristic function.

of the increments. The sample is rather disperse with some increments close to 10 and a
sample mean of b̃n = 0.936 (true b = 1). The true characteristic function has Gaussian
decay and its absolute value is shown together with that of the empirical characteristic
function in Figure 1(right).

We discretize the pilot estimate ν̃σ,n of the jump measure by using a Haar wavelet basis
on the interval [−10, 10] with 15 basis functions. Moreover, we allow for a point measure in
zero to have a better resolution there. Its pilot mass is set to zero. Using the FindMinimum
local optimisation procedure in Mathematica, we minimize the d(2)-criterion locally around
the discretized pilot estimator, constraining to non-negative Lévy measures. In Figure
2(left) we display for the given data the imaginary part of the empirical characteristic
function together with the imaginary parts of the other characteristic functions of interest
(true, pilot, final estimator). The errors in fitting the real part are less pronounced because
there a less oscillations around zero (note (Re ϕ)′(0) = 0). Typically, the pilot estimator
gives already a reasonably good fit and the final estimator has a characteristic function
which is closer to the empirical characteristic function than the true one.

Figure 2(right) finally shows the densities of the rescaled Lévy measures νσ, but sup-
presses the point masses in zero. Note that the original Lévy density and also its plug-in
estimators have a singularity at zero because of ν(dx) = x−2νσ(dx) for x 6= 0. The pa-
rameters are estimated as b̂n = 0.922 (true b = 1) and ν̂σ,n({0})1/2 = 1.092 (true σ = 1).
The pilot estimator has no point mass in zero and its density is therefore large around
zero. It is seen that the final estimator improves upon the pilot estimator, in particular by
excluding negative values and catching the point mass in zero. Given 1000 observations
and a Gaussian deconvolution problem, the estimation problem is quite hard. The rough,
step-wise form of the final estimator is not so pleasant for the human eye, but we only
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Figure 2. Left: Imaginary part of the empirical (dot-dashed blue), true
(orange dashed), pilot (dotted green) and final estimated (red solid) char-
acteristic function. Right: pilot (dotted green), final (red solid) estimator
and true (dashed orange) density of νσ; the pilot estimator does not have
a point mass in zero.

want to use this estimator as an integrator of smooth functions and, as discussed above, we
could apply a kernel to obtain a smooth density function. As an example for a functional
to be estimated, we calculated

∫∞
1 x−2ν̂σ(dx) which estimates ν([1,∞)), the probability

of jumps larger than one. In this sample, the true value 0.22 was estimated by 0.16. Let
us remark that the high-frequency estimator, using the relative frequency of increments
Xt −Xt−1 that are larger than one, yields the estimate 0.46. The large error of the latter
confirms a strong violation of the underlying high-frequency assumption that between two
observations very rarely more than one larger jump occurs and that the diffusion part is
negligible. Hence, the frequency of the observations must indeed be considered as low for
the construction of the estimator.

6. Proofs

6.1. Proof of Theorem 4.1. We begin the proof with a few definitions. Given two
functions l, u : R −→ R the bracket [l, u] denotes the set of functions f with l 6 f 6 u.
For a set G of functions the L2-bracketing number N[ ](ε, G) is the minimum number of
brackets [li, ui], satisfying E[(ui(Z1) − li(Z1))2] 6 ε2, that are needed to cover G. The
associated bracketing integral is defined as

J[ ](δ,G) =
∫ δ

0

√
log(N[ ](ε, G)) dε.

Furthermore, a function f is called envelope function for G, if |f | 6 f holds for all f ∈ G.
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To apply Corollary 19.35 from van der Vaart (1998), we decompose Cn in its real and
imaginary parts,

Re(Cn(u)) = n−1/2
n∑

t=1

(cos(uZt) − E cos(uZ1)) ,

Im(Cn(u)) = n−1/2
n∑

t=1

(sin(uZt) − E sin(uZ1)) .

Accordingly, we consider the following class of functions:

Gk =
{

z 7→ w(u) ∂k

∂uk cos(uz)
∣∣∣u ∈ R

}
∪
{

z 7→ w(u) ∂k

∂uk sin(uz)
∣∣∣u ∈ R

}
.

An envelope function fk for Gk is given by fk = |x|k. Now we obtain from Corollary 19.35
in van der Vaart (1998) that

(6.1) E‖C(k)
n ‖L∞(w) 6 C

{
E(fk(Z1))2 + J[ ](

√
EZ2k

1 , Gk)
}

.

Since EZ2k
1 < ∞ it remains to bound the bracketing integral on the right-hand side of

(6.1). Inspired by Yukich (1985), we proceed by setting, for every ε > 0,

M := M(ε, k) := inf
{

m > 0 | E[Z2k
1 I1{|Z1|>m}] 6 ε2

}
.

Furthermore, we set, for grid points uj ∈ R to be specified below,

g±j (z) =
(
w(uj) ∂k

∂uk cos(ujz)± ε|z|k
)

I1[−M,M ](z) ± ‖w‖∞|z|k I1[−M,M ]c(z),

h±j (z) =
(
w(uj) ∂k

∂uk sin(ujz)± ε|z|k
)

I1[−M,M ](z) ± ‖w‖∞|z|k I1[−M,M ]c(z).

We obtain for the width of the brackets that

E
[(

g+
j (Z1) − g−j (Z1)

)2
]

6 E
[
4ε2Z2k

1 I1[−M,M ](Z1) + 4‖w‖2
∞Z2k

1 I1[−M,M ]c(Z1)
]

6 4ε2
(
EZ2k

1 + ‖w‖2
∞

)
,

and, analogously,

E
[(

h+
j (Z1) − h−j (Z1)

)2
]

6 4ε2
(
EZ2k

1 + ‖w‖2
∞

)
.

It remains to choose the grid points uj in such a way that the brackets cover the set Gk.
We consider an arbitrary u ∈ R and any grid point uj . Then with the Lipschitz constant
Lip(w) of the weight function w∣∣∣w(u) ∂k

∂uk cos(uz) − w(uj) ∂k

∂uk cos(ujz)
∣∣∣

6 |z|k min{|u− uj |(Lip(w) + ‖w‖∞|z|), w(u) + w(uj)}.

Therefore, the function z 7→ w(u) ∂k

∂uk cos(uz) is contained in the bracket [g−j , g+
j ] if

min{|u− uj |(Lip(w) + ‖w‖∞M), w(u) + w(uj)} 6 ε.

Consequently, we choose the grid points as

uj = jε/(Lip(w) + ‖w‖∞M(ε, k)),
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for |j| 6 J(ε), where J(ε) is the smallest integer such that uJ(ε) is greater than or equal
to

U(ε) = inf

{
u > 0 | sup

v: |v|>u
w(v) 6 ε/2

}
.

This yields the estimate N[ ](ε, Gk) 6 2(2J(ε) + 1). It follows from the generalized Markov
inequality that

M(ε, k) 6
(
E[|Z1|2k+γ ]/ε2

)1/γ
.

Now we obtain from the inequality

J(ε) 6 2U(ε)(Lip(w) + ‖w‖∞M(ε, k))/ε + 1

that log(N[ ](ε, Gk)) = O(log(J(ε))) = O(ε−(δ+1/2)−1
+ log(ε−1−2/γ)) = O(ε−κ) for κ =

(δ + 1/2)−1 < 2. This implies∫ δ

0

√
log(N[ ](ε, Gk)) dε < ∞,

as required. �

6.2. Proof of Theorem 4.2. To simplify the notation, we use the abbreviations Ψn(u) =
Ψ(u; b̂n, ν̂σ,n) and ϕn(u) = exp(Ψn(u)).

First of all, we obtain from the triangle inequality that

d(2)(ϕn, ϕ) 6 d(2)(ϕ̂n, ϕ) + d(2)(ϕ̂n, ϕn)

6 2d(2)(ϕ̂n, ϕ) + δn.(6.2)

Proof for b̂n

We have that ϕ′(0) = ib and ϕ′n(0) = îbn. Therefore, we obtain from (6.2) and Theorem 4.1
that

Eb,νσ |̂bn − b| = Eb,νσ |ϕ′n(0) − ϕ′(0)|

6 Eb,νσd(2)(ϕn, ϕ)

6 2Eb,νσd(2)(ϕ̂n, ϕ) + δn = O(n−1/2).

Proof for ν̂σ,n

We consider the following set of “unfavorable” events:

An := {ν̂σ,n(R) > νσ(R) + 1} ∪
{
|̂bn| > |b| + 1

}
.

From ϕ′(0)2 − ϕ′′(0) = νσ(R) and the analogous formula for ϕn it follows that

|ν̂σ,n(R)− νσ(R)| = |(ϕ′(0)2 − ϕ′n(0)2)− (ϕ′′(0)− ϕ′′n(0))|

6 (2|ϕ′(0)|+ d(2)(ϕ, ϕn) + 1)d(2)(ϕ, ϕn),(6.3)
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Consequently, the (generalized) Markov inequality yields

Pb,νσ(An) 6 Eb,νσ [|ν̂σ,n(R) − νσ(R)| ∧ 1] + Eb,νσ [|̂bn − b|]

6 Eb,νσ

[((
2|b|+ d(2)(ϕ, ϕn) + 1

)
d(2)(ϕ, ϕn)

)
∧ 1
]

+ Eb,νσ

[
d(2)(ϕ, ϕn)

]
6 Eb,νσ

[
(4|b|+ 2)d(2)(ϕ, ϕn)

]
+ Eb,νσ

[
d(2)(ϕ, ϕn)

]
6 (4|b|+ 3)

(
Eb,νσ [d(2)(ϕ̂n, ϕ)] + δn

)
= O(n−1/2),

which implies that

I1An• sup
f∈Fs

∣∣∣∣∫ f dν̂σ,n −
∫

f dνσ

∣∣∣∣
6 I1An• sup

f∈Fs

‖f‖∞• (ν̂σ,n(R) + νσ(R))

6 2 νσ(R) I1An + (2|ϕ′(0)|+ d(2)(ϕ, ϕn) + 1)d(2)(ϕ, ϕn)

= OPb,νσ
(n−1/2).(6.4)

It remains to analyse the loss under Ac
n. It follows from Parseval’s identity that∣∣∣∣∫ f dν̂σ,n −

∫
f dνσ

∣∣∣∣
=

1
2π

∫ ∞

−∞
Ff(u)(F ν̂σ,n(u) − Fνσ(u)) du

=
1
2π

∫ ∞

−∞
Ff(u)

{((ϕ′n(u)
ϕn(u)

)2 − (ϕ′(u)
ϕ(u)

)2) −
(

ϕ′′n(u)
ϕn(u)

− ϕ′′(u)
ϕ(u)

)}
du.(6.5)

The differences occurring in the integrand on the right-hand side of (6.5) can be estimated
using ϕ′/ϕ = Ψ′, ϕ′n/ϕn = Ψ′

n:∣∣∣∣∣
(

ϕ′n(u)
ϕn(u)

)2

−
(

ϕ′(u)
ϕ(u)

)2
∣∣∣∣∣ =

∣∣∣∣ϕ′n(u)
ϕn(u)

− ϕ′(u)
ϕ(u)

∣∣∣∣ |Ψ′
n(u) + Ψ′(u)|

6

{∣∣∣∣ϕn(u) − ϕ(u)
ϕ(u)

∣∣∣∣ |Ψ′
n(u)| +

∣∣∣∣ϕ′n(u) − ϕ′(u)
ϕ(u)

∣∣∣∣} |Ψ′
n(u) + Ψ′(u)|

(6.6)

and∣∣∣∣ϕ′′n(u)
ϕn(u)

− ϕ′′(u)
ϕ(u)

∣∣∣∣ 6

∣∣∣∣ϕn(u) − ϕ(u)
ϕ(u)

∣∣∣∣ ∣∣∣∣ϕ′′n(u)
ϕn(u)

∣∣∣∣ +
∣∣∣∣ϕ′′n(u) − ϕ′′(u)

ϕ(u)

∣∣∣∣
=

∣∣∣∣ϕn(u) − ϕ(u)
ϕ(u)

∣∣∣∣ ∣∣∣Ψ′′
n(u) +

(
Ψ′

n(u)
)2∣∣∣ +

∣∣∣∣ϕ′′n(u) − ϕ′′(u)
ϕ(u)

∣∣∣∣ .(6.7)

Note that the following estimates hold true under Ac
n:

|Ψ′
n(u)| 6 |̂bn| + |u|ν̂σ,n(R) 6 |b| + 1 + |u|(νσ(R) + 1),(6.8)

|Ψ′′
n(u)| 6 |F ν̂σ,n(u)| 6 ν̂σ,n(R) 6 νσ(R) + 1.(6.9)
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Hence, we obtain from (6.5) to (6.9) and the trivial estimate |F ν̂σ,n(u) − Fνσ(u)| 6

ν̂σ,n(R) + νσ(R) that under Ac
n, with some constant C > 0,∣∣∣∣∫ f dν̂σ,n −

∫
f dνσ

∣∣∣∣
6 C

∫ ∞

−∞
|Ff(u)|

(
|ϕn(u)− ϕ(u)| + |ϕ′n(u)− ϕ′(u)| + |ϕ′′n(u)− ϕ′′(u)|

|ϕ(u)|
(1 + |u|)2 ∧ 1

)
du

6 C

∫ ∞

−∞
(1 + |u|)s|Ff(u)| du • sup

u∈R

{
(1 + |u|)−s

(
(1 + |u|)2 d(2)(ϕn, ϕ)

w(u)|ϕ(u)|
∧ 1

)}

6 C sup
u>0

{
(1 + u)−s

(
(1 + u)2 n−1/2

w(u)|ϕ(u)|
∧ 1

)} (
n1/2d(2)(ϕn, ϕ) + 1

)
.

By monotonicity of (1 + u)−s we can replace the supremum over [0,∞) by the supremum
over [0, Un] and we arrive at

Eb,νσ

[
I1Ac

n
• sup

f∈Fs

∣∣∣∣∫ f dν̂σ,n −
∫

f dνσ

∣∣∣∣
]

= O

(
sup

u∈[0,Un]

{
(1 + u)−s

(
(1 + u)2n−1/2

w(u)|ϕ(u)|
∧ 1

)})
.(6.10)

Together with the bound (6.4) on the set An this yields the asserted general estimate.
Tracing back the constants, we see that they depend continuously on |b| and νσ(R).

Proof of the rate results (a), (b)
(a) Under the condition log |ϕ(u)| = −σ2u2/2(1 + o(u)) we have Un �

√
log n and we

obtain the rate U−s
n = (log n)−s/2.

(b) If |ϕ(u)| > Ce−αu, then we have Un � log n and we obtain the rate U−s
n = (log n)−s.

Proof of the rate result (c)
The same reasoning as for cases (a) and (b) would only yield the rate

((log n)1/2+δn1/2)−s/(β+2) for s ∈ (0, β + 2] and the parametric rate for s > β + 2. In
the polynomial case (c), though, better estimates for |Ψ′

n(u)| hold, i.e. we can improve
upon (6.8). First, we formulate and prove a lemma for |Ψ′(u)|.

Lemma 6.1. If a Lévy process with a finite first moment has a characteristic function (at
time t = 1) satisfying |ϕ(u)| > C(1 + |u|)−β for some β > 0, C > 0 and all u ∈ R, then∫
[−1,+1]|x|

αν(dx) is finite for all α > 0 and the derivative of its characteristic exponent is
uniformly bounded:

sup
u∈R

|Ψ′(u)| < ∞.

Proof of Lemma 6.1. Since we have necessarily σ2 = 0 in the Lévy-Khinchine charac-
teristic as well as

∫
[−1,1]c |x| ν(dx) < ∞ from the first moment condition, the additional
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property
∫
[−1,+1]|x|ν(dx) < ∞ implies

sup
u∈R

|Ψ′(u)| = sup
u∈R

∣∣∣ib +
∫

(eiux − 1)ix ν(dx)
∣∣∣ 6 |b|+ 2

∫
|x| ν(dx) < ∞.

It therefore remains to prove the first result for any α > 0. We obtain with c :=
minu∈[1,2](1− cos(u)) > 0:∫

[−1,+1]
|x|αν(dx) 6

∞∑
n=1

∫
{x: 2−n6|x|62−n+1}

|x|αν(dx)

6
∞∑

n=1

2−α(n−1)

∫
{x: 2−n6|x|62−n+1}

c−1(1− cos(2nx)) ν(dx)

6 c−1
∞∑

n=1

2−α(n−1) Re(−Ψ(2n))

6 c−1
∞∑

n=1

2−α(n−1)
(
log(C−1) + β log(1 + 2n)

)
.

This latter series is obviously finite. �

Resuming the proof for case (c), we remark that |ϕ(u)| > C(1 + |u|)−β implies for any
U > 0

Pb,νσ

(
∃u ∈ [−U,U ] : |ϕn(u)| < C

2
(1 + |u|)−β

)
6 Pb,νσ

(
sup
|u|6U

|ϕn(u)− ϕ(u)|(1 + |u|)β > C/2

)

6
2
C

E[‖ϕn − ϕ‖L∞(w)]w(U)−1(1 + U)β = O(n−1/2w(U)−1(1 + U)β).

Consequently, for Un →∞ with w(Un)−1Uβ
n = o(n1/2) we have

(6.11) lim
n→∞

Pb,νσ

(
∀u ∈ [−Un, Un] : |ϕn(u)| > C

2
(1 + |u|)−β

)
= 1;

in the sequel we shall work with Un = n1/(2β)(log n)−(1/2+2δ)/β . Theorem 4.1, Lemma 6.1
and Equation (6.11) then yield

sup
|u|6Un

|Ψ′
n(u)−Ψ′(u)| 6 sup

|u|6Un

{
|ϕ′n(u)− ϕ′(u)|

|ϕn(u)|
+ |Ψ′(u)| |ϕ(u)− ϕn(u)|

|ϕn(u)|

}
= OP (n−1/2)w(Un)−1 2

C
(1 + |Un|)β .(6.12)

Together with Estimate (6.12) and again Lemma 6.1 we have thus established for
n →∞

(6.13) sup
|u|6Un

|Ψ′
n(u)| = OP

(
1 + n−1/2w(Un)−1|Un|β

)
= OP (1).
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We therefore get instead of (6.10) the estimate

sup
f∈Fs

∣∣∣∣∫ f dν̂σ,n −
∫

f dνσ

∣∣∣∣
= sup

u∈R

{
(1 + |u|)−s

(
(OP (1) + u2 I1{|u|>Un})n

−1/2

w(u)|ϕ(u)|
∧ 1

)}
OP

(
n1/2d(2)(ϕn, ϕ) + 1

)
= sup

u∈R

{
(1 + |u|)−s

(
(OP (1) + u2 I1{|u|>Un})n

−1/2

(log(e + |u|))−1/2−δ(1 + |u|)−β
∧ 1

)}
OP (1).

For s 6 β the right-hand side is of order OP (U−s
n ) and we obtain

sup
f∈Fs

∣∣∣∣∫ f dν̂σ,n −
∫

f dνσ

∣∣∣∣ = OP

(
n−s/2β(log n)s(1/2+2δ)/β

)
,

while for s > β the parametric rate OP (n−1/2) follows. �

6.3. Proof of Theorem 4.4. The lower bound will be established by looking at a decision
problem between two local alternatives, see e.g. Korostelev and Tsybakov (1993) for the
general idea. For γ > 0 and β > 0 consider the bilateral Gamma distribution which
is obtained as the law of X − Y where X and Y are independent and both Γ(γ, β/2)-
distributed. This bilateral Gamma distribution is infinitely divisible with the following
characteristic function and Lévy triplet:

ϕΓ(u) :=
(
1 + γ−2u2

)−β/2
, bΓ = 0, σΓ = 0, νΓ(dx) := β|x|−1e−γ|x|dx.

Its density fΓ satisfies fΓ(x) > ce−γ|x| for some c > 0 (Küchler and Tappe 2008). For
σ > 0 consider the infinitely divisible distribution with characteristic function

(6.14) ϕ0(u) := ϕΓ(u)eiub−σ2u2/2,

which has a density f0 that is a convolution of fΓ with a normal density and therefore
still satisfies f0(x) > c e−γ|x| with some c > 0. The corresponding Lévy density satisfies
ν0 = νΓ.

Let us further introduce for K > 0 and ρ > 0

µK(x) := e−x2/(2ρ2) sin(Kx).

For any β > 0 and γ > 0 we can choose ρ sufficiently small such that ν0(x) + µK(x) > 0
holds for all K > 0. In this case the following characteristic function also generates an
infinitely divisible distribution:

ϕK(u) := ϕ0(u) exp
(∫

R
(eiux − 1) µK(dx)

)
= ϕ0(u) exp(FµK(u)).
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Using the fact that sin(Kx) sin(ux) = (cos((K − u)x) − cos((K + u)x))/2 we obtain the
following explicit calculation of the Fourier transform of µK :

FµK(u) = i

∫ ∞

−∞
e−x2/(2ρ2) sin(Kx) sin(ux) dx

= i

∫ ∞

0
e−x2/(2ρ2) cos((K − u)x) dx − i

∫ ∞

0
e−x2/(2ρ2) cos((K + u)x) dx

= iρ
√

π/2 (e−ρ2(K−u)2/2 − e−ρ2(K+u)2/2).

Note that ϕK has the same decay behavior as ϕ0 due to lim|u|→∞FµK(u) = 0. Therefore
ν0,σ and νK,σ lie in the class A(C, σ) (σ > 0) or C(C, C̄, β) (σ = 0), respectively, provided
C, C̄ are large enough.

Let us now estimate the χ2-distance between the distributions with characteristic func-
tions ϕK and ϕ0:

χ2(fK , f0) :=
∫ ∞

−∞

(fK(x)− f0(x))2

f0(x)
dx

6 c−1

∫ ∞

−∞

(
eγ|x|/2fK(x)− eγ|x|/2f0(x)

)2
dx

6 c−1

{∫ ∞

−∞

(
eγx/2fK(x)− eγx/2f0(x)

)2
dx(6.15)

+
∫ ∞

−∞

(
e−γx/2fK(x)− e−γx/2f0(x)

)2
dx

}
.

For functions g whose Fourier transform can be extended holomorphically to complex
values z with |Im(z)| < γ we have:

F
(
e±γx/2g(x)

)
(u) =

∫
g(x)e(iu±γ/2)xdx = Fg(u± (−i)γ/2).

Using this identity in Plancherel’s formula and then the estimate |ez − 1| 6 |z|e|Re(z)|,
z ∈ C, together with |FµK(u)| 6 ‖µK‖L1 , we continue from (6.16):

χ2(fK , f0)

6
c−1

2π

∫ ∞

−∞
(|ϕK(u− iγ/2)− ϕ0(u− iγ/2)|2 + |ϕK(u + iγ/2)− ϕ0(u + iγ/2)|2) du

=
c−1

2π

∫ ∞

−∞
e−σ2u2

∣∣∣3
4

+
u2

γ2
+

iu

γ

∣∣∣−β (
|eFµK(u−iγ/2) − 1|2 + |eFµK(u+iγ/2) − 1|2

)
du

6
e2‖µK‖L1

2cπ

∫ ∞

−∞
e−σ2u2

(
3
4

+
u2

γ2

)−β (
|FµK(u− iγ/2)|2 + |FµK(u + iγ/2)|2

)
du

=
e2‖µK‖L1ρ2

4cπ

∫ ∞

−∞
e−σ2u2

(
3
4

+
u2

γ2

)−β (
e−ρ2(u−K)2/2 − e−ρ2(u+K)2/2

)2
du.

The last line is for K →∞ of order
∫∞
−∞ e−σ2u2

(1+u2)−β(e−ρ2(u−K)2 + e−ρ2(u+K)2) du. In
the case σ = 0 (polynomial decay) this gives the order K−2β , whereas for σ > 0 (Gaussian
part) the order is e−σ2K2(1+o(1)).
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For n observations the distributions do not separate provided K−2β � n−1 (σ = 0)
and e−σ2K2(1+o(1)) � n−1 (σ > 0), respectively. Consequently, when choosing Kn � n1/2β

(σ = 0), respectively Kn = c
√

log(n) with c > 0 sufficiently large (σ > 0), this closeness
of the distributions implies (Korostelev and Tsybakov 1993) that for any sequence of
estimators (ν̂σ,n)n we have

lim inf
n→∞

{
P0

(
`s(ν̂σ,n, ν0,σ) > `s(νKn,σ, ν0,n)/2

)
+PKn

(
`s(ν̂σ,n, ν0,σ) > `s(νKn,σ, ν0,n)/2

)}
> 0.

It remains to consider the loss `s between the alternatives. Using the formula
F(x2e−x2/(2ρ2))(u) = ρ3(1− ρ2u2)e−ρ2u2/2, we calculate:

`s(νK,σ, ν0,σ) = sup
f∈Fs

∣∣∣∫ ∞

−∞
f(x)x2e−x2/2ρ2

sin(Kx) dx
∣∣∣

=
1
2π

sup
f∈Fs

∣∣∣Im((Ff ∗ F(x2e−x2/2ρ2
))(K))

∣∣∣
=

1
2π

sup
f∈Fs

∣∣∣∫ ∞

−∞
Im(Ff(x))ρ3(1− ρ2(K − u)2)e−ρ2(K−u)2/2 du

∣∣∣
=

1
2π

ρ3 sup
u∈R

{
(1 + |u|)−s|1− ρ2(K − u)2|e−ρ2(K−u)2/2

}
� K−s.

Setting ε := lim infn→∞Ks
n`s(νK,σ, ν0,σ)/2 > 0, we have thus shown

lim inf
n→∞

sup
νσ

Pb,νσ(Ks
n`s(ν̂σ,n, νσ) > ε) > 0.

For σ = 0 (polynomial decay) this gives the desired lower bound K−s
n = n−s/(2β) for any

β > 0 and for s 6 β. For s > β a standard parametric argument shows that the minimax
rate is never faster than n−1/2. For σ > 0 (Gaussian part) we obtain the lower bound
K−s

n = (log n)−s/2, which matches exactly the upper bound.
In the case (b), i.e. where |ϕ(u)| > Ce−α|u|, we consider instead of (6.14)

ϕ0(u) = ϕΓ(u)ϕα(u),

where ϕα is an infinitely divisible characteristic function with |ϕ(u)| � e−α|u| such that
the corresponding density function fα has faster exponential decay than f0. For example,
a tempered stable law (Cont and Tankov 2004, Prop. 4.2) with ν(dx) = α|x|−2e−|λ|xdx

and λ > 0 sufficiently large meets these requirements. The remaining steps of the proof
are exactly the same, just replace e−σ2u2/2 by e−α|u|. �

6.4. Proof of Proposition 5.1. Note first that Eb,νσ |̃bn − b|2 = O(n−1) follows directly
from EX2

1 < ∞.
To prove the result for the jump measure, we distinguish between two cases. We set

Ψ̂′
n(u) = ϕ̂′n(u)/ϕ̂n(u) and Ψ̂′′

n(u) = ϕ̂′′n(u)/ϕ̂n(u)− (ϕ̂′n(u)/ϕ̂n(u))2.

Case 1: |ϕ(u)| > 2κn−1/2
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It follows from (6.6) and (6.7) that

|F ν̃σ,n(u) − Fνσ(u)|

6

{∣∣∣∣ ϕ̂n(u)− ϕ(u)
ϕ(u)

∣∣∣∣ |Ψ̂′
n(u)| +

∣∣∣∣ ϕ̂′n(u)− ϕ′(u)
ϕ(u)

∣∣∣∣ ∣∣∣Ψ̂′
n(u) + Ψ′(u)

∣∣∣} I1{|ϕ̂n(u)|>κn−1/2}

+
{∣∣∣∣ ϕ̂n(u)− ϕ(u)

ϕ(u)

∣∣∣∣ ∣∣∣Ψ̂′′
n(u) + (Ψ̂′

n(u))2
∣∣∣ +

∣∣∣∣ ϕ̂′′n(u)− ϕ′′(u)
ϕ(u)

∣∣∣∣} I1{|ϕ̂n(u)|>κn−1/2}(6.16)

+ |Fνσ(u)| I1{|ϕ̂n(u)|<κn−1/2}

= Tn,1 + Tn,2 + Tn,3,

say.
We obtain from the inequality

I1{|ϕ̂n(u)|>κn−1/2}

ϕ̂n(u)
6

1
|ϕ(u)|

+
|ϕ̂n(u) − ϕ(u)|
κn−1/2|ϕ(u)|

that

(6.17) E
[
|ϕ̂n(u)|−p I1{|ϕ̂n(u)|>κn−1/2}

]
= O

(
|ϕ(u)|−p

)
holds for all p ∈ N. This implies, by Ψ̂′

n(u) = (ϕ̂′n(u) − ϕ′(u))/ϕ̂n(u) + Ψ′(u)ϕ(u)/ϕ̂n(u),
that

(6.18) E
[∣∣∣Ψ̂′

n(u)
∣∣∣p I1{|ϕ̂n(u)|>κn−1/2}

]
= O

(
(1 + |Ψ′(u)|)p

)
.

Therefore, we obtain that

(6.19) ETn,1 = O

(
n−1/2

|ϕ(u)|
(
1 + |Ψ′(u)|

)2)
.

Since

Ψ̂′′
n(u) =

ϕ̂′′n(u)
ϕ̂n(u)

−
(
Ψ̂′

n(u)
)2

=
ϕ̂′′n(u)− ϕ′′(u)

ϕ̂n(u)
+
(
Ψ′′(u) +

(
Ψ′(u)

)2) ϕ(u)
ϕ̂n(u)

−
(
Ψ̂′

n(u)
)2

we obtain, in conjunction with (6.17) and (6.18), that

E
[∣∣∣Ψ̂′′

n(u)
∣∣∣2 I1{|ϕ̂n(u)|>κn−1/2}

]
= O

((
1 + |Ψ′(u)|

)2)
.

We conclude that

(6.20) ETn,2 = O

(
n−1/2

|ϕ(u)|
(
1 + |Ψ′(u)|

)2)
.

Finally, it follows from Hoeffding’s inequality for bounded random variables that

P
(
|ϕ̂n(u)| < κn−1/2

)
6 P

(
|ϕ̂n(u)− ϕ(u)| > |ϕ(u)| − κn−1/2

)
6 P (|ϕ̂n(u)− ϕ(u)| > |ϕ(u)|/2)

6 exp(−c n |ϕ(u)|2),
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for some c > 0. This yields that P (|ϕ̂n(u)| < κn−1/2) = O(n−1/2|ϕ(u)|−1), and therefore

(6.21) ETn,3 = O

(
n−1/2

|ϕ(u)|

)
.

Equations (6.16), (6.19), (6.20), and (6.21) yield the desired bound in the case
|ϕ(u)| > 2κn−1/2.

Case 2: |ϕ(u)| < 2κn−1/2

In contrast to Case 1, this time we use the following decomposition:

|F ν̃σ,n(u) − Fνσ(u)|

6

{∣∣∣∣ ϕ̂n(u)− ϕ(u)
ϕ̂n(u)

∣∣∣∣ |Ψ′(u)| +
∣∣∣∣ ϕ̂′n(u)− ϕ′(u)

ϕ̂n(u)

∣∣∣∣ ∣∣∣Ψ′(u) + Ψ̂′
n(u)

∣∣∣} I1{|ϕ̂n(u)|>κn−1/2}

+
{∣∣∣∣ ϕ̂n(u)− ϕ(u)

ϕ̂n(u)

∣∣∣∣ ∣∣Ψ′′(u) + (Ψ′(u))2
∣∣ +

∣∣∣∣ ϕ̂′′n(u)− ϕ′′(u)
ϕ̂n(u)

∣∣∣∣} I1{|ϕ̂n(u)|>κn−1/2}(6.22)

+ |Fνσ(u)| I1{|ϕ̂n(u)|<κn−1/2}.

Taking into account that Ψ′′ is bounded and using again (6.18) as well as the trivial
estimate |Fνσ(u)| 6 νσ(R) < ∞ we obtain that

E |F ν̃σ,n(u) − Fνσ(u)| = O
((

1 + |Ψ′(u)|
)2)

,

as required. �
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