
Exact Algorithms for Group Closeness Centrality∗

Luca Pascal Staus†† Christian Komusiewicz‡‡ Nils Morawietz†§ Frank Sommer†¶

Abstract

The Group Closeness Centrality problem asks,
given a graph G and an integer k, for a vertex set S of
size k such that the sum of distances from the vertices
of V \ S to S is minimal. Being a generalization of the
NP-hard Dominating Set problem, Group Close-
ness Centrality is NP-hard as well and W[2]-hard
with respect to k meaning that it presumably has no
algorithm with running time f(k) ·nO(1). We first show
that, in contrast to Dominating Set, Group Close-
ness Centrality remains W[2]-hard when restricted
to graphs with constant maximum degree. We then de-
velop and evaluate two new exact algorithms forGroup
Closeness Centrality, one based on branch-and-
bound and one based on a new ILP formulation. We
further show how to embed both approaches in an iter-
ative method that allows to solve the problem without
computing all pairwise distances in G. Our experiments
show that on small and medium-sized real-world net-
works, the new ILP formulation substantially outper-
forms a previous ILP formulation and that the branch-
and-bound algorithm is competitive with the new ILP
formulation for small values of k.

1 Introduction

The identification of important actors or groups of
actors is a critical task in social network analysis [12, 11,
22, 33]. A standard approach for translating this task
into a computational optimization problem is to define a
centrality measure for vertex sets and to compute for a
given number k a vertex set of size k that optimizes
this measure. Numerous different group centrality
measures have been proposed and investigated, for
example degree centrality [22] (which measures how
many edges emanate from a group), variants of Katz-

∗Some of the results of this work are also contained in the first

author’s Bachelor thesis [32].
†Philipps-Universität Marburg, Germany,

staus@students.uni-marburg.de,

{morawietz, fsommer}@informatik.uni-marburg.de
‡Friedrich Schiller University Jena, Germany,

c.komusiewicz@uni-jena.de,

Work done while affiliated with Philipps-Universität Marburg.
§Supported by the DFG, project OPERAH (KO 3669/5-1).
¶Supported by the DFG, project EAGR (KO 3669/6-1).

centrality [4] (which measure how many short walks visit
a group), or closeness centrality [3, 5, 10, 16] (which
measures the distance of a group to the rest of the
network). We study the problem of computing a group
of fixed size k with optimal closeness centrality.

To define closeness centrality, consider an undi-
rected connected graph G and a vertex set S ⊆ V (G).
The distance of a vertex u from S, denoted dist(u, S),
is the length of a shortest path that has u as one end-
point and some vertex v ∈ S as the other endpoint.
The group farness of S is c(S) :=

∑
v∈V (G) dist(v, S).

Intuitively, the higher the group farness, the further
the vertices of V \ S are from S. In applications, one
is often interested in maximizing the closeness central-

ity of S, defined as c̄(S) := n−|S|
c(S) . Here, n := |V (G)|.

Clearly, minimizing group farness is equivalent to max-
imizing the closeness centrality. Here, we use group far-
ness since some of our improvements can be described
easier with this notation. Accordingly, we say that a
k-closeness group for a graph G and some k ∈ N is a
subset C ⊆ V (G) of size exactly k such that c(C) is
minimal among all size-k vertex sets. This leads to the
following problem.

Group Closeness Centrality
Input: A graph G = (V,E) and an inte-
ger k ≤ n.
Task: Find a k-closeness group C ⊆ V .

Note that the centrality of a k-closeness group
is n− k if and only if S is a dominating set, that is, ev-
ery vertex v /∈ S has some neighbor in S. Consequently,
Group Closeness Centrality is NP-hard [23] and
W[2]-hard with respect to k which suggests that a run-
ning time of f(k) ·nO(1) cannot be achieved [19]. Thus,
the brute-force nk+O(1)-time algorithm that considers
all vertex sets of size k cannot be substantially improved
in terms of worst-case running time. Hence, Group
Closeness Centrality is computationally challeng-
ing even for small values of k.

Known Results. Closeness-related centrality def-
initions for assessing the centrality of single vertices
date back to works of Bavelas [6], Beauchamp [7], and
Sabidussi [31]. The extension of centrality notions from
single vertices or edges to vertex sets was proposed by

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



Everett and Borgatti [22] who also defined the group
closeness measure.

Group Closeness Centrality was considered
by Chen et al. [16] who observed NP-hardness and
proposed a greedy heuristic. Subsequently, Bergamini
et al. [10] developed an improved variant, Greedy++,
which provided better solutions and was able to quickly
compute solutions on large real-world networks. Later,
local-search-based heuristics were developed which find
even better solutions at the cost of an increased running
time [5]. To our knowledge, the only existing exact
algorithm is an ILP formulation which was used to
assess the quality of heuristic solutions [10].

Further works are concerned with identifying the
vertices with the top-k centralities [8, 27], or with
approximating the best centrality within a factor of (1+
ε) via random sampling [21]. The latter approach was
also evaluated experimentally [13, 18, 15]. Finally,
there are also approaches for estimating the centrality
of groups on massive graphs [34].

Group Closeness Centrality and its variants
have also found application. For example, Adebayo
and Sun [1] modified the closeness centrality measure to
identify vertices which are liable to voltage instability
in electric power networks; Chea and Livesay [14] used
closeness centrality in the analysis of protein structures.

Our Results. We first examine whether certain
exact algorithms forDominating Set on sparse graphs
can be translated to Group Closeness Centrality.
For example, it is easy to see that Dominating Set
can be solved in f(∆ + k) · nO(1) time where ∆ is the
maximum degree of the input graph: when the graph
has more than ∆ · k + k vertices, then the instance is a
no-instance. This led to a fruitful line of research where
instead of ∆, smaller parameters, for example the de-
generacy of the input graph, were considered [2, 28, 26].
We show that such a line of attacking the problem dif-
ficulty is presumably fruitless for Group Closeness
Centrality by showing that the problem is W[2]-hard
even on graphs with constant maximum degree. The
reduction also shows that if the Exponential Time Hy-
pothesis [24] (ETH) holds, then a running time of nΘ(k)

is necessary for solving Group Closeness Central-
ity on graphs with constant maximum degree.

We then propose two new exact approaches for
solving Group Closeness Centrality. The first
is based on augmenting the brute-force algorithm that
enumerates all size-k subsets of V (G) by problem-
specific pruning rules. The enumeration is organized in
a search tree that enumerates the size-k vertex sets by
gradually extending smaller vertex sets by adding one
vertex at a time. The rules aim at either discarding
a current vertex set and all of its extensions or at

shrinking the set of candidates to add for a current
vertex set. All of the rules make use of a lower bound
for the achievable centrality of size-k sets containing the
current smaller vertex set S: If the lower bound is higher
than the current best solution, then S can be discarded.
Moreover, if the lower bound is only slightly smaller,
then one may discard vertices which give only a small
centrality improvement as candidates for addition to S.
Moreover, we identify some vertices which need not
be considered based on the existence of better vertices
which are guaranteed to give a centrality improvement
which is at least as large. We show that these rules yield
a considerable speed-up over the brute-force algorithm,
making it now possible to solve networks with ≈ 2 500
vertices for k up to 10 and networks with ≈ 20 000
vertices for k up to 5.

The second approach is a new ILP formulation
which is guaranteed to have fewer variables and con-
straints (than the previous ILP) on networks with small
diameter. We show that this new ILP formulation is also
faster in practice, making it now possible to solve real-
world instances with 2 500 vertices and k = 20. For both
algorithms we present an iterative approach that allows
to solve the problem without computing the lengths of
all shortest paths. The idea is to perform a truncated
breadth-first search from each vertex and to only ex-
plore further layers when this may lead to solutions with
lower group farness. This iterative approach leads to a
further speed-up of both algorithms, with the ILP for
example now being able to solve instances with 10 000
vertices and k = 15. The comparison between ILP and
search tree algorithm shows that some larger instances
with small k cannot be solved by the best ILP but by
the search tree algorithm. Hence, in such circumstances
the search tree algorithm is preferable to the ILP.

Since our new algorithms managed to solve in-
stances which were previously not solved optimality, we
re-examine the quality of previous heuristics for these
instances. We find that Greedy++ [10] provides very
good solutions and that the local search algorithms [5]
are able to improve these solutions slightly.

Due to lack of space, several proofs (marked with
(⋆)) are deferred to a full version of this article.

Preliminaries. We consider undirected connected
graphs G and let V (G) denote the vertex set of G
and E(G) its edge set. Let n and m denote the number
of vertices and edges in G, respectively. For a pair
of vertices u and v, let dist(u, v) denote the length
of a shortest path between u and v. Moreover, for a
vertex set S ⊆ V (G), let dist(u, S) := minv∈S dist(u, v)
denote the length of a shortest path from u to some
vertex in S. For a vertex v, let N(v) := {u ∈ V (G) |
{u, v} ∈ E(G)} and N [v] := N(v)∪{v} denote the open

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



and closed neighborhood of v, respectively. Moreover,
define N [S] :=

⋃
v∈S N(v) ∪ S. The eccentricity ecc(v)

is the largest distance between v and any other vertex
in G. The diameter of a graph G, denoted by diam(G),
is the largest distance between any pair of vertices in G,
that is, diam(G) = maxv∈V (G) ecc(v). The density of a

graph is dens(G) := m/
(
n
2

)
.

For a ∈ N0 and b ∈ N, a < b, define [a, b] :=
{a, . . . , b} and [b] := {1, . . . , b}.

2 A Tight Running Time Lower Bound

We first show that even on graphs of constant maximum
degree, there is little hope to improve substantially over
the worst-case running time of nk+O(1) of the search
tree algorithm presented in Section 3. Hence, on sparse
graphs Group Closeness Centrality is consider-
ably harder than Dominating Set which can be solved
in (∆+1)k ·nO(1) time. To show the running time lower
bound, we present a parameter preserving polynomial-
time reduction from an instance I = (U ,F , k) of Hit-
ting Set to an instance I ′ of the decision version
of Group Closeness Centrality.

Hitting Set
Input: A universe U , a collection F of non-
empty subsets of U , and an integer k ≤ |U|.
Question: Is there a hitting set H ⊆ U of
size at most k, that is, a set H ⊆ U of size at
most k such that for each hyperedge F ∈ F , H
contains at least one element of F .

Theorem 2.1. (⋆) Even on graphs of maximum de-
gree six, Group Closeness Centrality is W[2]-
hard when parameterized by k and cannot be solved in
no(k) time, unless the ETH fails.

The idea of the construction is as follows: Each
hyperedge F ∈ F is represented by a vertex vF .
Additionally, for each i ∈ [k], there will be a vertex
set Vi containing a vertex ui for each element u ∈ U . We
will define an integer Z such that, for each vertex vF and
each vertex ui, the distance between vF and ui is Z if u
is contained in the hyperedge F and Z + 1, otherwise.
To remain a constant maximum degree, this integer Z
is very large. The idea is that each k-closeness group S
contains for each i ∈ [k] exactly one vertex from Vi.
To ensure this, we will add for each element u ∈ U and
each i ∈ [k], a complete binary tree with root ui of large
depth. Finally, we have to ensure that each k-closeness
group S corresponds to a hitting set. Hence, we have
to ensure that the distance of each vertex vF to some
vertex of S has to be small, that is, dist(vF , S) = Z.
To this end, we will add for each hyperedge F ∈ F , a
complete binary tree with root vF of large depth.

The constructions yields an instance of Group
Closeness Centrality with O(|U|21 ·k21 · |F|10) ver-
tices. If Group Closeness Centrality could be
solved in no(k) time on graphs of constant maximum de-
gree, then one could solve Hitting Set in |I|o(k) time.
Unless the ETH fails, this is not possible [17, 19].

3 A Search Tree Algorithm

We now describe a search tree algorithm for Group
Closeness Centrality which at its heart is based on
the naive brute-force algorithm with running time nΘ(k).
In light of the hardness result shown above, this seems
unavoidable. We will then describe several speed-ups
which allow us to obtain a much better running time
performance in practice.

3.1 The Basic Search Algorithm. A straightfor-
ward exact algorithm to find a k-closeness group com-
putes for every S ⊆ V (G) of size exactly k the central-
ity c(S) and returns the set such that c(S) is minimal.
More precisely, this algorithm uses a set enumeration
tree [30] in which each node T corresponds to a vertex
set ST of size at most k. To enumerate each set ex-
actly once, each node T is equipped with a set RT of
remaining vertices, which may be added to enlarge ST .
In other words, the vertices of V (G)\RT are forbidden.
For a non-root node T , we denote by T ∗ the parent
of T and by vT := ST \ST∗ the unique vertex which was
added to the vertex set corresponding to T . Similarly, a
node T ′ is a child of T if vT ′ := ST ′ \ST and vT ′ ∈ RT .
By C(T ) we denote the set of all children of T . The
vertex set ST of a node T with depth dT has size ex-
actly dT . Hence, the root corresponds to the empty set
and each leaf, that is, each node T with depth k cor-
responds to a possible solution, that is, a vertex set of
size exactly k. Clearly, if |RT | + dT < k, then there
does not exist any further solution containing ST and
hence the algorithm can return to the parent T ∗ of T .
This search tree contains Ω(

(
n
k

)
) nodes and thus this al-

gorithm is not practical, even for very small values of k.
We refer to this algorithm as Plain.

We now present several speed-up techniques.

3.2 Lower Bounds based on Centrality-
Improvements. Our first speed-ups are based on a
measure of how much the centrality of a vertex set Z
improves if some vertex v is added to Z. This is
captured in the following definition.

Definition 3.1. Let Z ⊆ V (G) and let v ∈ V (G).
The centrality-improvement of v with respect to Z
is ci(Z, v) := c(Z)− c(Z ∪ {v}).

Note that ci(Z, v) is also known as the marginal

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



gain of v with respect to Z [10]. Observe that if v ∈ Z,
then ci(Z, v) = 0. If Z = ∅, then we set c(Z) = n2. Now,
for a node T in the search tree, we define the centrality-
improvement of T with respect to its parent T ∗, that
is, ci(T ) := ci(ST∗ , vT ). In other words, ci(T ) is the
difference of the centrality of ST∗ and the centrality
of ST . The centrality function is supermodular [16, 10]
which implies the following.

Proposition 3.1. Let S ⊆ V (G) and S′ ⊆ S be vertex
sets. Moreover, let v ∈ V (G), then ci(S′, v) ≥ ci(S, v).

At each node T , the algorithm now computes
the centrality-improvements of all children C(T ) of T .
While this computation is time-consuming, it allows us
to compute lower bounds to prune the search tree.

Centrality Lower Bound. In the centrality lower
bound of a node T with respect to a vertex set R and
an integer k, we aim to capture the smallest centrality
of any vertex set Y of size k such that ST ⊆ Y ⊆ R.
Moreover, we make use of the more general case where
we also consider subsets of size k′ for some k′ < k. In our
algorithm, R will be the set of remaining vertices RT .
Furthermore, by cbest we denote the smallest centrality
of any vertex set detected by the algorithm so far.

Definition 3.2. Let T be a node in the search tree,
let k′ ≤ k an integer, and let R ⊆ V (G). Then the
centrality lower bound of T with respect to R and k′ is

clb(T,R, k′) := c(ST )− max
Y⊆R:|Y |=k′−|ST |

∑
y∈Y

ci(ST , y).

The correctness of the centrality lower bound, as
stated in the lemma below, follows from Proposition 3.1.

Lemma 3.1. Let T be a node in the search tree, let k′ ≤
k an integer, and let R ⊆ V (G). Then, for each Y
with |Y | = k′ and ST ⊆ Y ⊆ RT , we have clb(T,R, k) ≤
c(Y ).

The algorithm can use the centrality lower bound
as follows: If clb(T,RT , k) is not smaller than the
previous best centrality cbest, then one can immediately
return to the parent T ∗ of T . Furthermore, when the
algorithm returns from a child T ′ ∈ C(T ) to T , then
the algorithm computes clb(T,RT \ {vT ′}, k) since all
solutions containing ST ∪ {vT ′} have been considered.

A naive computation of the centrality lower bound
requires finding the top k elements which takes at least
linear time. To avoid this, we use the dynamic sorting
of the centrality improvements.

Dynamic Vertex Ordering. In the brute-force
algorithm from Section 3.1, the order in which the
remaining vertices of RT are added to ST at a node T

is irrelevant. With the centrality improvements of
all vertices in RT at hand, we now sort the vertices
in RT descendingly according to ci(S(T ), v) each time
the algorithm explores some node T . As a result,
the algorithm first explores a child T ′ such that ci(T ′)
is maximal among all children C(T ) of T . For the
computation of the centrality lower bound this has the
advantage that it is sufficient to compute the sum of the
first k − |ST | vertices in this order. Even better, this
sum can be updated in constant time: Store the sum z
of the k−|ST | largest centrality improvements and each
time the algorithm returns from a child T ′ ∈ C(T )
to T , subtract ci(T ′) from z and add the centrality
improvement of the next vertex of RT to z. Hence, the
initial computation of the centrality lower bound at T
requires O(k) time and each update needs O(1) time.

To further prune the search tree, we use two tech-
niques which are based on the centrality improvements
and use cbest. If cbest is too high, our lower bounds do
not apply. Thus, a standard approach is to initially use
a simple greedy heuristic to compute an initial solution.

A good candidate for this is the greedy algorithm
proposed by Chen et al. [16] in which k times a vertex
with the currently highest centrality improvement is
chosen. Chen et al. [16] claimed that this gives a (1 −
1/e)-approximation which was disproved by Bergamini
et al. [9]. Because in our algorithm the vertices are
ordered descendingly by their centrality improvement,
the first subset of size k is precisely the set found by
the greedy algorithm of Chen et al [16]. Thus, with the
dynamic vertex ordering, our algorithm implicitly uses
this greedy algorithm to compute the first solution and
hence cbest is already initially quite large.

Minimal Centrality Threshold. The minimal
centrality threshold is a measure on how large the
centrality improvement of each vertex v has to be at
least so that the centrality of a vertex set of size k
containing v and all vertices of ST , is lower than the
currently smallest centrality cbest.

Definition 3.3. Let T be a node in the search tree,
and S ⊆ V such that |S| ≥ k− |ST |. Then the minimal
centrality threshold of T with respect to S, k, and cbest
is mc(T, S, k, cbest) := clb(T, S, k − 1)− cbest.

Next, we verify the intuition discussed above.

Lemma 3.2. Let T be a node in the search tree, S ⊆ V
such that |S| ≥ k − |ST |, and L := {v ∈ S | ci(ST , v) ≤
mc(T, S, k, cbest)}. Then, for each R ⊆ S of size
exactly k−|ST | such that R∩L ̸= ∅ we have c(ST ∪R) ≥
cbest.

Proof. Assume towards a contradiction that there exists
a set R ⊆ S with R ∩ L ̸= ∅ and |R| = k − |ST | such

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



that c(ST ∪R) < cbest. Let v ∈ R ∩ L. We obtain that

c(ST ∪R) < cbest

= clb(T, S, k − 1)−mc(T, S, k, cbest)

≤ clb(T, S, k − 1)− ci(ST , v)

From c(ST ∪R) = c(ST ∪R \ {v})− ci(ST ∪R \ {v}, v)
we obtain that

c(ST ∪R \ {v}) < clb(T, S, k − 1)− ci(ST , v)

+ ci(ST ∪R \ {v}, v)

Now, from Proposition 3.1, we obtain ci(ST , v) ≥
ci(ST ∪R \ {v}, v) and thus

c(ST ∪R \ {v}) < clb(T, S, k − 1)

Since |R \ {v}| = k − 1 − |ST | this inequality is a
contradiction to Lemma 3.1.

In other words, each vertex set of size k contain-
ing ST and a vertex v whose centrality improvement
with respect to T is at most mc(T, S, k, cbest) can never
have a lower centrality than cbest. In the algorithm
we can use the minimal centrality threshold as fol-
lows: All vertices whose centrality improvement is at
most mc(T, S, k, cbest) can be removed from RT . Re-
moving these vertices has the advantage that they can
also not be added to the vertex set in any descendant
of T . Furthermore, when the algorithm returns from a
child T ′ ∈ C(T ) to T it can recompute mc(T, S, k, cbest)
to remove further vertices from RT .

To evaluate the minimal centrality threshold effi-
ciently, the algorithm can use the sum of the k − |ST |
best centrality improvements which is already known
after computing the centrality lower bound (Defini-
tion 3.2). Now, to determine the minimal centrality
threshold, only the smallest term has to be subtracted
from this sum. Thus, the minimal centrality threshold
can be computed in constant time, if the centrality lower
bound is already computed. Removing the vertices
whose centrality improvement is below the minimal cen-
trality threshold can be done in O(ℓ) time where ℓ is the
number of vertices whose centrality improvement is too
small: Since the centrality improvements are sorted de-
scending, the algorithm first compares mc(T, S, k, cbest)
with the worst centrality improvement and removes this
vertex if possible. Then, it considers the vertex with the
second smallest centrality improvement. This continues
until the first vertex with a higher centrality improve-
ment is detected.

Parent Threshold. Next, we extend the minimal
centrality threshold to remove some vertices in RT ′

for some child T ′ ∈ C(T ). This threshold has the
advantage that we can remove vertices without having
to recompute their centrality improvements.

Definition 3.4. Let T be a search tree node, T ′ ∈
C(T ) a child of T , and S ⊆ V such that |S| ≥ k− |ST |.
Then the parent threshold of T with respect to T ′, S, k,
and cbest is pt(T, T ′, S, k, cbest) := clb(T, S, k − 2) −
ci(T ′)− cbest.

The parent threshold is similar to the minimal centrality
threshold, the difference are that 1) we use the centrality
lower bound of parent node T and not of T ′ and 2) we
use the centrality lower bound of size k − 2.

Lemma 3.3. (⋆) Let T be a node in the search
tree, T ′ ∈ C(T ) a child of T , S ⊆ V such
that |S| ≥ k − |ST |, and L := {v ∈ S | ci(ST , v) ≤
pt(T, T ′, S, k, cbest)}. Then, for each R ⊆ S of size k −
dT ′ such that R ∩ L ̸= ∅ we have c(ST ′ ∪R) ≥ cbest.

Note that for each vertex which is removed by the
parent threshold we save Ω(n) time. Since the minimal
centrality threshold provides a better threshold, we only
have to compute the parent threshold once. Similar to
the minimal centrality threshold, the parent threshold
can also be computed in constant time provided that
the centrality lower bound is already computed. In the
following, we denote the algorithm using these three
lower bounds as CI.

3.3 Dominating Vertices. Currently, we only use
lower bounds (see Section 3.2) to prune the search
tree. In this section, we additionally use neighborhood
relations. The pruning is based on the observation
for two vertices u,w ∈ V (G) with N [u] ⊆ N [w]: If
there exists a k-closeness group containing u, then there
exists another one containing w. Here, we extend
this observation to scenarios in which we search for a
solution that contains a set ST ⊆ V (G) since this is
what we aim to find at node T of the search tree.

Definition 3.5. Let u,w ∈ V (G) and let S ⊆ V (G).
Then, u is dominated by w with respect to S if

1. N [u] \N [S] ⊆ N [w] \N [S] or

2. N(u) = N(w).

In the following, we denote the set of vertices
dominated by v with respect to S by DS(v). The aim of
dominating vertices is to identify in the subtree rooted
at a node T a smaller subset of ST which is sufficient to
detect the best vertex set containing ST .

Definition 3.6. Let S,R ⊆ V . A set X ⊆ R is an
(S,R)-sufficient set if

1. each r ∈ R is dominated by at least one x ∈ X with
respect to S, and

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



2. for each Z ⊆ R with Property 1, we have |Z| ≥ |X|.

Theorem 3.1. (⋆) Let k ∈ N, S,R ⊆ V , |S| ≤ k, and
let X be an (S,R)-sufficient set of size at least k − |S|.
For each C ⊆ R\S with |C| = k−|S|, there is a set D ⊆
X of the same size such that c(D ∪ S) ≤ c(C ∪ S).

At each search tree node T , we thus only need to
consider an (ST , RT )-sufficient set of size at least k.
Preliminary experiments showed that the restriction to
these sets at every node of the search tree increases
the running time. Thus, we only use dominating
vertices in the root, that is, we initially compute
a (∅, V (G))-sufficient set and restrict our search to this
set. The algorithm using the improvements so far and
the dominating vertices is denoted as DV.

4 A new ILP Formulation

Bergamini et al. [10] presented an ILP formulation for
Group Closeness Centrality using n2 + n binary
variables and n2 + n + 1 constraints. We denote this
ILP formulation as ILPold.

A More Compact ILP for Small World Net-
works. We now present a new ILP formulation with
only n ·(diam(G)+1) binary variables and n ·diam(G)+
n+1 constraints. Since diam(G) is much smaller than n
in most real-world graphs (see Table 1) our ILP formu-
lation is thus much smaller than the one of Bergamini
et al. [10]. As we will show, it also performs better in
terms of running time.

The idea of the ILP is as follows. For each
vertex v ∈ V (G) and each i ∈ [0,diam(G)] we introduce
a binary variable xv,i. The meaning of this variable is
that xv,i = 1 if and only if dist(v, S) = i where S is an
optimal solution computed by the ILP. In particular, for
every vertex v, we have xv,0 = 1 if and only if v ∈ S.

The ILP formulation reads as follows:

min
∑

v∈V (G),i∈[0,diam(G)]

i · xv,i subject to(4.1)

k =
∑

v∈V (G)

xv,0(4.2)

For each v ∈ V (G) we have:

1 =
∑

i∈[0,diam(G)]

xv,i(4.3)

For each v ∈ V (G) and each i ∈ [0,diam(G)] we have:

xv,i ≤
∑

w∈V (G):dist(v,w)=i

xw,0(4.4)

xv,i ∈ {0, 1}(4.5)

The objective function (Equation (4.1)) equals
the centrality of the chosen vertex set S, assuming
that xv,i = 1 if and only if dist(S, v) = i. Thus, to
show correctness we have to argue that this is the case.
Assuming that S consists of all vertices v ∈ V (G) such
that xv,0 = 1, Equation (4.2) guarantees that S has
size k. Now, Equation (4.3) ensures that each vertex
contributes exactly one value to the objective function.
Furthermore, Equation (4.4) guarantees that this value
is not too small. More precisely, xv,i = 1 only if there
exist at least one vertex w ∈ S which has distance ex-
actly i to v which implies that dist(S, v) ≤ i. Finally,
Equation (4.5) ensures that all variables are binary.

One can further reduce the number of variables in
this ILP formulation as follows: if a vertex v ∈ V (G) has
distance at most ecc(v) < diam(G) to all other vertices
of G, we only need the variables xv,i for i ∈ [0, ecc(v)]
since for larger values of i, the sum in Equation (4.4)
is empty which implies that the corresponding variable
always equals 0. We refer to this formulation as ILPnew.

5 Iterative Approach

5.1 An Iterative ILP Approach. Despite having
less variables than ILPold, ILPnew may still contain
some unnecessary variables: If for example G contains a
dominating set of size k, then for each vertex v ∈ V (G),
only xv,0 or xv,1 will be set to 1 and for each i ≥ 2, each
variable xv,i will be set to 0. Ideally, we want to avoid
the creation of the variables xv,i for i ≥ 2 in such cases.
More generally, we only want to create the variables
which are necessary to obtain an optimal solution.

To exploit this observation we use several iterations
of an ILP formulation described below. In one iteration
of this formulation, for each vertex v ∈ V (G) we have
variables xv,0, . . . , xv,d(v). The idea is that if xv,d(v) = 1,
then our current variables are not sufficient to compute
the distance of v and S, where S is the solution
consisting of k vertices. More precisely, if xv,j = 1
for some j < d(v), then dist(v, S) = j and otherwise,
if xv,d(v) = 1, then dist(v, S) ≥ d(v). Now, the ILP
formulation reads as follows:

min
∑

v∈V (G)

∑
i∈[0,d(v)]

i · xv,i subject to(5.6)

k =
∑

v∈V (G)

xv,0(5.7)

For each v ∈ V (G) and each i ∈ [0, d(v)] we have:

xv,i ∈ {0, 1}(5.8)

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



For each v ∈ V (G) and each i ∈ [0, d(v)− 1] we have:

xv,i ≤
∑

w∈V (G):dist(v,w)=i

xw,0(5.9)

For each v ∈ V (G) we have:

1 =
∑

i∈[0,d(v)]

xv,i(5.10)

Initially, we set d(v) = 2 for each v ∈ V (G); in
other words, the first iteration of the ILP formulation
corresponds to Dominating Set as described above.
To avoid adding all variables we use the following fact.

Theorem 5.1. (⋆) An optimal solution for the ILP is
also an optimal solution for the Group Centrality
Closeness instance (G, k) if each vertex fulfills the
distance property, that is, if for each vertex v ∈ V (G),
we have d(v) = ecc(v) or xv,i = 1 for some i < d(v).

If at least one vertex does not fulfill the distance
property, then an optimal solution for this ILP is not
necessarily an optimal solution for (G, k). Now, there
are several natural ways of selecting vertices for which
we add variables. In Section 6.3, we describe the two
variants which we implemented and evaluated.

This iterative approach also allows us to avoid the
computation of the full distance matrix: Initially, only
the neighborhood of each vertex has to be known to
check whether G has a dominating set of size k. Then,
if xv,2 = 1 for some vertex v ∈ V (G), the computation
of N2(v) is necessary. More generally, if for some
vertex v ∈ V (G) the variable xv,i exists for each i ∈
[0, d(v)] and xv,d(v) = 1, then we have to compute
the d(v)th neighborhood of v. These observations can
be exploited as follows: Before the initial ILP we use
BFS to compute the neighbors of each vertex in the
graph. Thereby, we store the BFS-queues containing
the neighbors. Now, if for some vertex v ∈ V (G) we
have xv,2 = 1 after the initial ILP, we use the existing
BFS-queue of v to compute N2(v) and also save the new
BFS-queue of v consisting of N2(v). More generally,
whenever some vertex v ∈ V (G) violates the distance
property, that is, if xv,d(v) = 1 and d(v) < ecc(v), then
we use the BFS-queue of v to update this information.
Note that in the worst case, we need Ω(n2) space since
each of the n BFS-queues may have size Ω(n).

Dominating Vertices. Finally, we also use domi-
nating vertices (see Section 3.3) in all iterative ILP for-
mulations: For each vertex u which is dominated by
another vertex v with respect to ∅, we do not create
the variable xu,0. In other words, we only add the
variable xv,0 for each vertex v which is contained in
an (∅, V (G))-sufficient set. The correctness of this ap-
proach follows directly from Theorem 3.1.

0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

DV
CI
Plain

1 10 100 1000 3600

1 ≤ k ≤ 10

0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

DV
CI
Plain

1 10 100 1000 3600

11 ≤ k ≤ 20

Figure 1: Comparison of Plain, CI and DV.

5.2 An Iterative Search Tree Algorithm. A sim-
ilar approach to avoid the initial computation of the
distance matrix is also possible for our search tree algo-
rithm described in Section 3: Initially, we have d(v) = 2
for each vertex v ∈ V (G). Recall that this means, that
we initially search for an dominating set of size k and
whenever some vertex v ∈ V (G) has distance d(v) <
ecc(v) to the solution, we have to compute more dis-
tances. Similar to the iterative ILP, we use BFS to
compute the neighborhood of each vertex and we store
the BFS-queues containing them, for the case that more
distances have to be computed. Now, if for some ver-
tex v ∈ V (G) the current d(v)-value was not sufficient,
we use the existing BFS-queue of v to compute Nd(v)

and store this set in the queue. Note that in contrast
to the iterative ILP, we here use a n×n matrix to store
the pairwise distances of the vertices. For the search
tree, this information is necessary to compute the lower
bounds, described in Section 3.2. Thus, we still need
Θ(n2) space. The main advantage of this approach is
to avoid the computation of the distance matrix which
requires O(nm) time by invoking BFS from each vertex.

A Sparse Variant. To avoid having to store the
pairwise distances of the vertices, we use another vari-
ant: For each vertex v ∈ V (G) we use an dynamic ar-
ray A having length d(v). Now, in A[i] we store all ver-
tices with distance i to v. These arrays can be efficiently
maintained whenever we increase some d(v)-value and
use the BFS-queue of v to compute Nd(v). By using this
approach, we only store the distances which are neces-
sary to find an optimal solution.

6 Experiments

Each experiment was performed on a single thread of
an Intel(R) Xeon(R) Silver 4116 CPU with 2.1 GHz,
12 CPUs, 24 threads, and 128 GB RAM running Java
openjdk 17.0.4. Our algorithms are implemented in
Kotlin, using JGraphT (https://jgrapht.org)

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).

https://jgrapht.org


0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

ILPnew
ILPold

1 10 100 1000 3600

1 ≤ k ≤ 10

0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

ILPnew
ILPold

1 10 100 1000 3600

11 ≤ k ≤ 20

Figure 2: Comparison of ILPold and ILPnew.

as graph data structure. To solve the ILPs
(see Sections 4 and 5.1), we use Gurobi 10.0
(https://www.gurobi.com). Bergamini et al. [10]
used IBM-CPLEX (https://www.ibm.com/de-de/
products/ilog-cplex-optimization-studio)
to solve their ILP formulation. Since all ILP
formulations are faster with Gurobi than with
IBM-CPLEX we used Gurobi. Our source code
and result files can be downloaded at https:

//www.uni-marburg.de/en/fb12/research-groups/

algorith/closeness-centrality.zip.
We used 30 social and technical networks from

Konect [25] and the Network Repository [29]. The
graphs have between 50 and 22 000 vertices; an overview
is given in Table 1. For disconnected graphs, we only
considered the largest connected component and in
Table 1 only the size of the largest connected component
is stated. Each variant of our algorithms was tested for
each k ∈ [20]. Furthermore, we used a time limit of
60 minutes in our experiments.

The first step in the non-iterative variants (Plain,
CI, DV, ILPold, and ILPnew) is to compute the dis-
tance matrix of the graph. This is a limitation of these
variants as it leads to memory errors for graphs with
more than 100 000 vertices. The distance matrix com-
putation is done rather naively, via breadth-first search
from each vertex. For all graphs shown in Table 1, the
running time for this step is less than 10 minutes and
thus probably not crucial for determining whether or
not the instance is solved within the time limit.

6.1 Search Tree Variants. As shown in Figure 1,
the lower bound and the lower-bound based thresholds
used in algorithm CI give a tremendous speed-up over
the brute-force algorithm Plain. For small k, the num-
ber of instances solved within the time limit increases
from roughly 25% to roughly 75% and for large k, now
more than 10% of the instances can be solved, compared

0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

ILPind
ILPglob
ILPnew

1 10 100 1000 3600

1 ≤ k ≤ 10

0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

ILPind
ILPglob
ILPnew

1 10 100 1000 3600

11 ≤ k ≤ 20

Figure 3: Comparison of ILPnew, ILPind and ILPglob.

0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

DVind
DVglob
DV

1 10 100 1000 3600

1 ≤ k ≤ 10

0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

DVind
DVglob
DV

1 10 100 1000 3600

11 ≤ k ≤ 20

Figure 4: Comparison of DV, DVind and DVglob.

to almost no instances for Plain. Roughly 30% of the
instances with small k were solved within 100 seconds.

Figure 1 also shows that using dominating vertices
in algorithm DV on top of the improvements from
algorithm CI gives another large speed-up. For small k,
the number of instances solved within the time limit
increases from roughly 75% to roughly 85% and for
large k, the number of solved instances roughly doubles
so that DV solves more than 20% of the instances.

6.2 Comparison with the Previous ILP. As
shown in Figure 2, ILPnew is roughly 10 times faster
than ILPold [10] for small and large k. For small k,
ILPnew solves 75% of the instances compared to
roughly 55% for ILPold ; for large k, ILPnew solves 75%
compared to roughly 50% for ILPold.

6.3 Iterative Algorithms. First, we describe the
two variants on how new variables are added to the ILP
formulation described in Section 5.1: In the first variant,
denoted as ILPglob, we add for each vertex v ∈ V (G)
such that d(v) < ecc(v) a new variable xv,d(v)+1 to
the ILP. In the second variant, denoted as ILPind, we

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).

https://www.gurobi.com
https://www.ibm.com/de-de/products/ilog-cplex-optimization-studio
https://www.ibm.com/de-de/products/ilog-cplex-optimization-studio
https://www.uni-marburg.de/en/fb12/research-groups/algorith/closeness-centrality.zip
https://www.uni-marburg.de/en/fb12/research-groups/algorith/closeness-centrality.zip
https://www.uni-marburg.de/en/fb12/research-groups/algorith/closeness-centrality.zip


Table 1: Overview of the graphs used in our experiments. The last seven columns show the total number of
instances for which the corresponding algorithm finds a solution within the time limit of 60 minutes. A bold
number indicates that no other algorithm solved more instances within the time limit; a value of N/A means
that for every k no solution was found within the time limit. For the search tree variants (Plain, DV, DVind,
DVindSp) the number of solved instances equals the largest integer k for which a solution was found.

graph name n m diam dens Plain DV DVind DVindSp ILPold ILPnew ILPind

contiguous-usa 49 107 11 0.091 11 20 20 20 20 20 20
brain 1 65 730 3 0.351 9 20 20 20 20 20 20

arenas-jazz 198 2 742 6 0.141 5 16 16 16 20 20 20

ca-netscience 379 914 17 0.013 4 20 20 20 20 20 20
robot24c1 mat5 404 14 261 3 0.175 4 9 8 8 20 20 20

reptilia-tortoise 496 984 21 0.001 4 11 20 20 20 20 20

econ-beause 507 39 428 3 0.307 4 20 20 20 20 20 20
bio-diseasome 516 1 188 15 0.009 4 18 20 20 20 20 20

soc-wiki-Vote 889 2 914 13 0.007 3 11 20 20 20 20 20
ca-CSphd 1 025 1 043 28 0.002 3 9 20 20 20 20 20

arenas-email 1 133 5 451 8 0.009 3 10 10 8 6 20 20

econ-mahindas 1 258 7 513 8 0.010 3 9 12 13 20 20 20
bio-yeast 1 458 1 948 19 0.002 3 11 20 19 20 20 20

comsol 1 500 48 119 12 0.043 3 15 16 16 14 20 20

medulla 1 1 770 8 905 6 0.006 3 20 20 20 20 20 20
heart2 2 339 340 229 6 0.124 2 13 13 15 17 20 20

econ-orani678 2 529 86 768 5 0.027 2 11 13 14 20 20 20

inf-openflights 2 905 15 645 14 0.004 2 11 13 7 10 20 20
ca-GrQc 4 158 13 422 17 0.002 2 8 11 8 N/A 13 20

inf-power 4 941 6 594 46 0.001 2 4 15 13 N/A 18 17

ca-Erdos992 4 991 7 428 14 0.001 2 9 13 11 N/A 15 20
soc-advogato 5 054 39 374 9 0.003 2 10 15 16 1 20 20

bio-dmela 7 393 25 569 11 0.001 2 7 8 4 N/A N/A 15
ia-escorts-dynamic 10 106 39 016 8 0.001 2 6 7 4 N/A 1 19

ca-HepPh 11 204 117 619 13 0.002 2 6 7 4 N/A N/A 5

soc-anybeat 12 645 49 132 9 0.001 2 9 20 20 N/A 12 20
econ-poli-large 15 575 17 468 15 < 0.001 2 9 20 19 N/A 5 20

ca-AstroPh 17 903 196 972 14 0.001 2 5 5 1 N/A N/A N/A

ca-CondMat 21 363 91 286 13 < 0.001 1 6 7 4 N/A N/A N/A
ca-cit-HepTh 22 271 2 444 642 7 0.002 1 1 1 5 N/A N/A 12

add for each vertex v ∈ V (G) such that v violates the
distance property a new variable xv,d(v)+1 to the ILP.
Intuitively, for ILPglob we would expect fewer iterations
whereas for ILPind, we would expect that the solved
ILPs contain fewer variables.

We use similar variants for the iterative search
tree algorithms described in Section 5.2: In DVglob
we increase the d(v) value for each vertex v ∈ V (G)
with d(v) < ecc(v) and in DVind we increase the
d(v) value of each vertex v ∈ V (G) violating the
distance property. We use similar variants, denoted by
DVglobSp and DVindSP, for the sparse variant of the
search tree algorithm.

As shown in Figure 3, ILPglob performs overall
similar to ILPnew ; it only performs slightly better
for the more difficult instances but the total number
of solved instances is roughly the same. In contrast,
ILPind is much faster: it is roughly 10 times faster than
ILPnew for the more difficult instances. The speed-up

can also be observed in the number of solved instances:
for both small and large k, ILPind solved roughly 85%
of the instances compared to the 75% of ILPnew.

As shown in Figure 4, DVglob performs slightly
worse than DV for small k while it performs very similar
to DV for large k. In contrast, DVind improves upon
DV : for small k it performs slightly better than DV but
for large k it is more than a 100-times faster than DV
and solves overall twice as many instances.

Since the number of iterations for ILPglob is upper-
bounded by the diameter of the graph, it is illustrative
to put the number of iterations in relation to diam. On
average, ILPglob needed 0.45·diam iterations for small k
and 0.35 · diam iterations for large k. The minimum
number of iterations was 0.17·diam for small k and 0.09·
diam for large k; the maximum was 0.83·diam iterations
for small k and 0.67 · diam iterations for large k. In
comparison, for ILPind the average number of iterations
is 0.48 · diam for small k and 0.40 · diam iterations for

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

number of iterations

nu
m

be
r 

of
 in

st
an

ce
s

0
10

20
30

40
50

60 Small k ILPind
Large k ILPind
Small k ILPglob
Large k ILPglob

Figure 5: Number of iterations of ILPind and ILPglob.

0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

ILPind
DVind

1 10 100 1000 3600

1 ≤ k ≤ 10

0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

ILPind
DVind

1 10 100 1000 3600

11 ≤ k ≤ 20

Figure 6: Comparison of ILPind and DVind.

large k. The minimum number was 0.17 · diam for
small k and 0.09 · diam for large k; the maximum was
1.17 · diam for small k and 0.67 · diam for large k.

Both ILP formulations and iterative search tree
algorithms need fewer iterations for larger k. This
may be viewed as desirable since instances with large k
are harder for the search tree algorithm. ILPglob and
DVglob need fewer iterations than ILPind and DVind.
However, the number of iterations for ILPind and
DVind is notmuch higher. This explains the superiority
of ILPind and DVind as their instances are on average
smaller than the ones solved by ILPglob and DVglob.

6.4 Comparison of Search Tree and ILP. Finally
we compare the best search tree algorithm DVind and
the best ILP formulation ILPind. As shown in Figure 6,
they both perform very similar for small k. However
for large k, ILPind is much faster than DVind. While
DVind solves roughly 50% of all instances with large k,
ILPind can solve roughly 90% of those instances.

6.5 Accuracy of the Heuristics. With our two
exact solvers at hand, we evaluated the accuracy of
Greedy++ [10] on all instances for which we found an

5 10 15 20

0.
98

0
0.

98
5

0.
99

0
0.

99
5

1.
00

0

k

ac
cu

ra
cy ●

●

●

●

●

●

● ●

●

●

●

●

●
● ● ● ●

●
●

●

Greedy++
GrowShrink
GrowShrinkExt

Figure 7: Accuracy of Greedy++ and GrowShrink.

optimal solution. Here, the accuracy is the quotient
of the closeness centrality of the solution found by
the algorithm and the optimal closeness centrality.
We also evaluated the accuracy of GrowShrink [5]
and GrowShrinkExt [5], two local search algorithms
which used the Greedy++ solution as starting solution.
Figure 7 shows the average accuracy of all solved
instances. Greedy++ is very close to the optimum
(98%). Furthermore, both local search algorithm are
able to improve the solution provided by Greedy++; the
margin of improvement is particularly large for small k.

It should be noted that Greedy++ achieved low ac-
curacy on some instances, the worst being comsol.edges
with k = 2, where only an accuracy of 85% was
achieved. For k ≥ 10, the worst case is better than
for k < 10: here, Greedy++ achieved an accuracy of at
least 95% on each instance.

7 Conclusion

We have provided two new algorithms (in several vari-
ants) for computing optimal solutions for Group Cen-
trality Closeness. Our new ILP formulation im-
proves substantially over the state-of-the art and our
search tree algorithm is a viable alternative for small k.
To further accelerate the search tree algorithm, one ap-
proach could be to use better starting upper bounds.
However, providing the search tree with a starting so-
lution computed by Greedy++ instead of the simple
greedy solution and did not give a speed-up. Hence,
it seems more promising to find further lower bounds
and further cases for domination relations between ver-
tices. One could investigate in particular those instances
which need to be solved during the iterative approach.
These may contain for example some vertices which
have distance 1 or 2 to all other vertices. A further
interesting direction is to adapt our algorithms to other
group centrality measures like harmonic centrality [3],
GED-Walk centrality [4], or betweenness centrality [22].

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



References

[1] Isaiah G. Adebayo and Yanxia Sun. A novel ap-
proach of closeness centrality measure for voltage sta-
bility analysis in an electric power grid. Interna-
tional Journal of Emerging Electric Power Systems,
21(3):20200013, 2020.

[2] Noga Alon and Shai Gutner. Linear time algorithms
for finding a dominating set of fixed size in degenerated
graphs. Algorithmica, 54(4):544–556, 2009.

[3] Eugenio Angriman, Ruben Becker, Gianlorenzo
D’Angelo, Hugo Gilbert, Alexander van der Grinten,
and Henning Meyerhenke. Group-harmonic and group-
closeness maximization - approximation and engineer-
ing. In Proceedings of the Symposium on Algorithm
Engineering and Experiments (ALENEX ’21), pages
154–168. SIAM, 2021.

[4] Eugenio Angriman, Alexander van der Grinten,
Aleksandar Bojchevski, Daniel Zügner, Stephan
Günnemann, and Henning Meyerhenke. Group cen-
trality maximization for large-scale graphs. In Pro-
ceedings of the Symposium on Algorithm Engineering
and Experiments (ALENEX ’20), pages 56–69. SIAM,
2020.

[5] Eugenio Angriman, Alexander van der Grinten, and
Henning Meyerhenke. Local Search for Group Close-
ness Maximization on Big Graphs. In Proceedings of
the International Conference on Big Data, (IEEE Big
Data ’19), pages 711–720. IEEE, 2019.

[6] Alex Bavelas. Communication patterns in task-
oriented groups. The Journal of the Acoustical Society
of America, 22(6):725–730, 1950.

[7] Murray A Beauchamp. An improved index of central-
ity. Behavioral science, 10(2):161–163, 1965.

[8] Elisabetta Bergamini, Michele Borassi, Pierluigi
Crescenzi, Andrea Marino, and Henning Meyerhenke.
Computing top-k Closeness Centrality Faster in Un-
weighted Graphs. ACM Transactions on Knowledge
Discovery from Data, 13(5):53:1–53:40, 2019.

[9] Elisabetta Bergamini, Tanya Gonser, and Henning
Meyerhenke. Scaling up Group Closeness Maximiza-
tion. CoRR, abs/1710.01144, 2017.

[10] Elisabetta Bergamini, Tanya Gonser, and Henning
Meyerhenke. Scaling up Group Closeness Maximiza-
tion. In Proceedings of the 20th Workshop on Algo-
rithm Engineering and Experiments (ALENEX ’18),
pages 209–222. SIAM, 2018.

[11] Paolo Boldi and Sebastiano Vigna. Axioms for Cen-
trality. Internet Mathematics, 10(3-4):222–262, 2014.

[12] Stephen P. Borgatti, Martin G. Everett, and Jeffrey C.
Johnson. Analyzing social networks. SAGE, 2013.

[13] Ulrik Brandes and Christian Pich. Centrality Estima-
tion in Large Networks. International Journal of Bi-
furcation and Chaos, 17(7):2303–2318, 2007.

[14] Eric Chea and Dennis R. Livesay. How accurate and
statistically robust are catalytic site predictions based
on closeness centrality? BMC Bioinformatics, 8, 2007.

[15] Shiri Chechik, Edith Cohen, and Haim Kaplan. Av-
erage Distance Queries through Weighted Samples in
Graphs and Metric Spaces: High Scalability with Tight
Statistical Guarantees. In Proceedings of the 18th In-
ternational Workshop on Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and
Techniques, (APPROX/RANDOM ’15), volume 40 of
LIPIcs, pages 659–679. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015.

[16] Chen Chen, Wei Wang, and Xiaoyang Wang. Efficient
Maximum Closeness Centrality Group Identification.
In Proceedings of the 27th Australasian Database Con-
ference, (ADC ’16), volume 9877 of Lecture Notes in
Computer Science, pages 43–55. Springer, 2016.

[17] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen
Huang, David W. Juedes, Iyad A. Kanj, and Ge Xia.
Tight lower bounds for certain parameterized NP-hard
problems. Inf. Comput., 201(2):216–231, 2005.

[18] Edith Cohen, Daniel Delling, Thomas Pajor, and
Renato F. Werneck. Computing Classic Closeness
Centrality, at Scale. In Proceedings of the second ACM
conference on Online social networks, (COSN ’14),
pages 37–50. ACM, 2014.

[19] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel
Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal
Pilipczuk, and Saket Saurabh. Parameterized Algo-
rithms. Springer, 2015.

[20] Rodney G. Downey and Michael R. Fellows. Funda-
mentals of Parameterized Complexity. Texts in Com-
puter Science. Springer, 2013.

[21] David Eppstein and Joseph Wang. Fast Approxima-
tion of Centrality. Journal of Graph Algorithms and
Applications, 8:39–45, 2004.

[22] M. G. Everett and S. P. Borgatti. The centrality
of groups and classes. The Journal of Mathematical
Sociology, 23(3):181–201, 1999.

[23] M. R. Garey and David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[24] Russell Impagliazzo and Ramamohan Paturi. On the
complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–
375, 2001.

[25] Jérôme Kunegis. KONECT: The Koblenz Network
Collection. In Proceedings of the 22nd International
World Wide Web Conference, (WWW ’13), pages
1343–1350. International World Wide Web Conferences
Steering Committee / ACM, 2013.

[26] Daniel Lokshtanov and Vaishali Surianarayanan. Dom-
inating set in weakly closed graphs is fixed parameter
tractable. In Proceedings of the 41st IARCS Annual
Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS ’21), volume
213 of LIPIcs, pages 29:1–29:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[27] Paul W. Olsen, Alan G. Labouseur, and Jeong-Hyon
Hwang. Efficient top-k Closeness Centrality Search.
In Proceedings of the 30th International Conference on
Data Engineering, (ICDE ’14), pages 196–207. IEEE

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



Computer Society, 2014.
[28] Geevarghese Philip, Venkatesh Raman, and Somnath

Sikdar. Polynomial kernels for dominating set in
graphs of bounded degeneracy and beyond. ACM
Trans. Algorithms, 9(1):11:1–11:23, 2012.

[29] Ryan A. Rossi and Nesreen K. Ahmed. The Network
Data Repository with Interactive Graph Analytics and
Visualization. In Proceedings of the 29th Conference on
Artificial Intelligence, (AAAI ’15), pages 4292–4293.
AAAI Press, 2015.

[30] Ron Rymon. Search through Systematic Set Enumer-
ation. In Proceedings of the 3rd International Confer-
ence on Principles of Knowledge Representation and
Reasoning (KR ’92), pages 539–550. Morgan Kauf-
mann, 1992.

[31] Gert Sabidussi. The centrality index of a graph.
Psychometrika, 31(4):581–603, 1966.

[32] Luca Pascal Staus. Algorithm engineering für
group closeness centrality. Bachelorarbeit, Philipps-
Universität Marburg, 2021.

[33] Alexander van der Grinten, Eugenio Angriman, and
Henning Meyerhenke. Scaling up network centrality
computations - A brief overview. it – Information
Technology, 62(3-4):189–204, 2020.

[34] Junzhou Zhao, John C. S. Lui, Don Towsley, and
Xiaohong Guan. Measuring and Maximizing Group
Closeness Centrality over Disk-Resident Graphs. In
Proceedings of the 23rd International World Wide Web
Conference, (WWW ’14), pages 689–694. ACM, 2014.

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



A Appendix – Proofs

A.1 Proof of Theorem 2.1

Proof. We present a parameterized reduction fromHitting Set which is W[2]-hard when parameterized by k [20].

Hitting Set
Input: A universe U , a collection F of non-empty subsets of U , and an integer k ≤ |U|.
Question: Is there a hitting set H ⊆ U of size at most k, that is, a set H ⊆ U of size at most k such
that for each hyperedge F ∈ F , H contains at least one element of F .

Unless the ETH fails, Dominating Set cannot be solved no(k) time [17, 19]. By the standard reduction
from Dominating Set to Hitting Set this implies that Hitting Set cannot be solves in |I|o(k) time, unless
the ETH fails.

We reduce to the decision version of Group Closeness Centrality where we ask for an integer t, if the
group farness of any k-closeness group in G is at most t. The hardness and the running-time lower bound then
directly extend to Group Closeness Centrality since computing the group farness of a k-closeness group can
be done in polynomial time.

Let I := (U ,F , k) be an instance of Hitting Set. We describe how to obtain an instance I ′ := (G = (V,E), k)
of Group Closeness Centrality in polynomial time and an in integer t, such that there is hitting of size at
most k for I if and only if the group farness of each k-closeness group S in G is at most t, that is, the sum of
distances of all vertices of V to S is at least t. Figure 8 shows the construction of G.

V1

u1 w1 y1

V2

u2 w2 y2

Vk

uk wk yk

R1
u R2

y Rk
w

T 1
u(F1) T 1

u(Fm)

T 1
u

T 2
u(F1) T 2

u(Fm)

T 2
u

T k
w(F1) T k

w(Fm)

T k
w

vF2vF1 vFm F

RF1
RF2

RFm

TF1
(u1) TF1

(u2) TF1(w
k)

TF1

TFm
(u1) TFm

(u2) TFm(wk)

TFm

PF1

u1 PF1

u2 PF1

wk

PFm

u1

PFm

u2

PFm

wk

Figure 8: An illustration of the construction of the proof of Theorem 2.1. Only some of the binary trees of the
construction are depicted.

Let n := |U| and let m := |F| and assume without loss of generality that n is odd. We initialize G as the
empty graph. For each i ∈ [k] and each element u ∈ U , we add a binary tree T i

u with m leaves and root ui to G,
such that the leaves of T i

u are bijectively labeled with the hyperedges of F and that ui has distance ⌈log(m)⌉ to
each leaf of T i

u. For each i ∈ [k], let Vi := {ui | u ∈ U}. For each i ∈ [k], we add a minimal number of edges to G
such that G[Vi] is an arbitrary cycle of length n. For each hyperedge F ∈ F ,we add a binary tree TF with n · k
leaves and root vF to G, such that the leaves of TF are bijectively labeled with the vertices {ui | u ∈ V, i ∈ [k]}

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



and that vF has distance ⌈log(k · n)⌉ to each leaf of TF . Next, for each element u ∈ U , each i ∈ [k], and each
hyperedge F ∈ F , let T i

u(F ) be the leaf of T i
u labeled with F and let TF (u

i) be the leaf of TF labeled with ui.
If u is contained in the hyperedge F , we add a path PF

ui of length n4 · k4 · m between T i
u(F ) and TF (u

i) to G.
Otherwise, if u is not contained in the hyperedge F , we add a path PF

ui of length n4 · k4 ·m + 1 between T i
u(F )

and TF (u
i) to G.

Note that vF and ui have distance Z := ⌈log(m)⌉ + n4 · k4 · m + ⌈log(k · n)⌉ if u is contained in F and
distance Z + 1, otherwise. Let V ′ be the set of all vertices currently in G. Note that each tree T i

u contains at
most 4 ·m vertices, each tree TF contains at most 4 ·n ·k vertices and each path PF

ui contains at most n4 ·k4 ·m+1
vertices. Hence, |V ′| ≤ 8 · n · k ·m+ n · k ·m · (n4 · k4 ·m+ 1) ∈ O(n5 · k5 ·m2).

We set X := ⌈log(|V ′|2)⌉ + 1. Hence 2X ∈ O(n10 · k10 ·m4). For each hyperedge F ∈ F , we extend G by a
complete binary tree RF of depth X with root vF . Each of these trees is a RF -trees. Let V ′′ be the set of all
vertices currently in G. Hence, |V ′′| ≤ |V ′|+m · 2X+1 ∈ O(n10 · k10 ·m5).

We set Y := ⌈log(|V ′′|2)⌉ + 1. Hence 2Y ∈ O(n20 · k20 · m10). For each i ∈ [k] and each element u ∈ U ,
we extend G by a complete binary tree Ri

u of depth Y with root ui. Each of these trees is a RU -trees.
Hence, |V | ≤ |V ′′|+ n · k · 2Y+1 ∈ O(n21 · k21 ·m10). Finally, we set

t := |V ′|2 +m · (2X+1 ·X − 2X+1 + 2+Z · (2X+1 − 1)) + k · (n · (2Y+1 · Y − 2Y+1 + 2)+ 2 ·
(
⌊n/2⌋
2

)
· (2Y+1 − 1))

and show that there is hitting of size at most k for I if and only if the group farness of each k-closeness group
in G is at most t.

Note that for each i ∈ [k], each vertex ui ∈ Vi has two neighbors in G[Vi] and is the root of both binary
trees T i

u and Ri
u. Hence, ui has degree six. Moreover, for each hyperedge F ∈ F , each vertex vF is the root of

both binary trees TF and RF . Hence, vF has degree four. All remaining vertices of V have degree at most three.
Hence, G has a maximum degree of six.

Before we show the correctness of the reduction, we first make some observations about distances of vertices
in the graph G.

Observation A.1. a) The subgraph G[V ′] is connected and for each vertex set S containing at least one vertex
of V ′,

∑
v∈V ′ dist(v, S) ≤ |V ′|2 < 2X . b) The subgraph G[V ′′] is connected and for each vertex set S containing

at least one vertex of V ′′,
∑

v∈V ′′ dist(v, S) ≤ |V ′′|2 < 2Y .

Hence, if a vertex set S contains at least one vertex of Vi for some i ∈ [k], then
∑

v∈V ′ dist(v, S) ≤ |V ′|2
and

∑
v∈V ′′ dist(v, S) ≤ |V ′′|2.

Next, we bound the distances of vertices in RU -trees and RF -trees to vertex sets S that contain no vertices
of these trees.

Observation A.2. Let S be a set of vertices, let u be an element of U , let i ∈ [k], and let F be a hyperedge
of F . Moreover, let du := dist(ui, S) and let dF := dist(vF , S). a) If S \ {ui} contains no vertex of Ri

u,
then

∑
w∈V (Ri

u)
dist(w, S) = (2Y+1 · Y − 2Y+1 + 2) + du · (2Y+1 − 1). b) If S \ {vF } contains no vertex of RF ,

then
∑

w∈V (RF ) dist(w, S) = (2X+1 ·X − 2X+1 + 2) + dF · (2X+1 − 1).

(⇒) Let H := {u1, . . . , uk} be a hitting set of size k for I. We set S := {ui
i ∈ Vi | i ∈ [k]} and show

that c(S) ≤ t. Note that S contains a vertex of V ′. Hence, since G[V ′] is connected,
∑

v∈V ′ dist(v, S) ≤ |V ′|2.
Since H is a hitting set for I, for each hyperedge F ∈ F , there is some ui ∈ H such that ui is contained in F .

Hence, by construction, for each hyperedge F ∈ F , dist(vF , S) = Z since ui
i is contained in S. Consequently, due

to Observation A.2, the distances of vertices of RF -trees to S is∑
v∈V ′′\V ′

dist(v, S) ≤
∑
F∈F

∑
w∈V (RF )

dist(w, S)

≤ m · (2X+1 ·X − 2X+1 + 2 + Z · (2X+1 − 1)).

Finally, since for each i ∈ [k], S contains exactly one vertex of Vi and G[Vi] is a cycle of length n, where n is
odd, for each j ∈ [1, ⌊n/2⌋], there are two vertices of Vi of distance j with ui

i in G. Hence, due to Observation A.2,

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



the distances of vertices of RU -trees to S is

∑
v∈V \V ′′

dist(v, S) ≤
k∑

i=1

∑
ui∈Vi

∑
w∈V (Ri

u)

dist(w, S)

≤ k · (n · (2Y+1 · Y − 2Y+1 + 2) + 2 ·
⌊n/2⌋∑
j=1

j · (2Y+1 − 1))

= k · (n · (2Y+1 · Y − 2Y+1 + 2) + 2 ·
(
⌊n/2⌋
2

)
· (2Y+1 − 1)).

As a consequence,

∑
v∈V

dist(v, S) =
∑
v∈V ′

dist(v, S) +
∑

v∈V ′′\V ′

dist(v, S) +
∑

v∈V \V ′′

dist(v, S) ≤ t.

(⇐) Let S be a k-closeness group of G with c(S) ≤ t. We show that there is a hitting set of size at most k
for I.

Fist, we show that for each i ∈ [k], dist(ui, S) ≤ n4 · k4 · m for each vertex ui ∈ Vi. Assume towards a
contradiction, that there exists some i ∈ [k] such that dist(ui, S) > n4 · k4 · m for some vertex ui ∈ Vi. Recall

that 2Y is upper-bounded by some polynomial function of n4·k4·m
n3·k3 = n · k · m. Hence, if n · k · m is sufficiently

large, Y · n3 · k3 ≤ n4 · k4 ·m. Since each vertex of Ri
u has distance at most Y to ui, S contains no vertex of Ri

u.
Hence, due to Observation A.2 and since 2Y+1 + 2 > Y ,

∑
v∈V

dist(v, S) ≥
∑

w∈V (Ri
u)

dist(w, S)

≥ (2Y+1 · Y − 2Y+1 + 2) + (n4 · k4 ·m) · (2Y+1 − 1)

≥ (Y · n3 · k3) · (2Y+1 − 1)

≥ (Y · n · k + n2 · k2) · (2Y+1 − 1)

= n · k · (2Y+1 · Y − Y ) + n2 · k2 · (2Y+1 − 1)

≥ k · (n · (2Y+1 · Y − 2Y+1 + 2) + n2 · (2Y+1 − 1)) + (2Y+1 − 1)

≥ t+ (2Y+1 − 1)− (|V ′|2 +m · (2X+1 ·X − 2X+1 + 2 + Z · (2X+1 − 1))).

Since 2Y > |V ′′|2 and |V ′′| ≥ |V ′|+m ·2X+1, we get 2Y+1−1 > |V ′|2+m · (2X+1 ·X−2X+1+2+Z · (2X+1−1)).
Hence

∑
v∈V dist(v, S) ≥

∑
w∈V (Ri

u)
dist(w, S) > t, a contradiction.

Hence, for each i ∈ [k], for each vertex ui ∈ Vi, dist(u
i, S) ≤ n4 · k4 ·m. Note that for each vertex ui ∈ Vi

and each vertex wj ∈ Vj with i ̸= j, each shortest path between ui and wj contains at least one vertex of the
tree TF for some hyperedge F . Since the distance between ui (respectively wj) and any vertex TF is at least
the length of PF

ui (respectively PF
wj ). Consequently, ui and wj have distance more than 2 · n4 · k4 · m. Hence,

for each i ∈ [k], there is a unique vertex si ∈ S with dist(si, u
i) ≤ n4 · k4 · m for each vertex ui ∈ Vi. We

show that for each i ∈ [k], the vertex si is from Vi. Assume towards a contradiction that there is some i ∈ [k]
such that si is not a vertex of Vi. Let ui be the vertex of Vi of smallest distance to si. Hence, si is either a
vertex of T i

u, a vertex of Ri
u, or a vertex of the path between T i

u and TF for some hyperedge F ∈ F . In all three
cases, dist(S,wi) = dist(si, w

i) = dist(si, u
i) + dist(ui, wi) for each element w ∈ U . Let S′ := (S \ {si}) ∪ {ui}.

We show that c(S′) < c(S).
Note that for each vertex u′ ∈ V (Ri

u), dist(S
′, u′) ≤ dist(S, u′) − dist(si, ui), and that for each vertex wi ∈

Vi \ {ui} and each vertex y ∈ V (Ri
w), dist(S

′, y) = dist(S, y) − dist(si, ui). Since dist(si, ui) > 0 and n ≥ 3, this

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



implies that ∑
wi∈Vi

∑
w∈V (Ri

w)

dist(w, S′)

≤

 ∑
wi∈Vi

∑
w∈V (Ri

w)

dist(w, S)

+ 2Y+1 − 1− (n− 1) · (2Y+1 − 1)

≤ −2Y+1 + 1 +
∑

wi∈Vi

∑
w∈V (Ri

w)

dist(w, S)

< −|V ′′|2 +
∑

wi∈Vi

∑
w∈V (Ri

w)

dist(w, S).

Moreover, for each j ∈ [k] \ {i}, for each vertex vj ∈ Vj , and for each vertex w ∈ V (Rj
v), dist(w, S) ≥ dist(w, S′)

since dist(w, sj) < dist(w, si). Finally, since G[V ′′] is connected and ui is an element of V ′′,
∑

v∈V ′′ dist(v, ui) ≤
|V ′′|2. Hence,

c(S′) =
∑
v∈V

dist(v, S′)

=
∑

v∈V \V ′′

dist(v, S′) +
∑
v∈V ′′

dist(v, S′)

< −|V ′′|2 +
∑

v∈V \V ′′

dist(v, S) +
∑
v∈V ′′

dist(v, S′) ≤
∑
v∈V

dist(v, S) = c(S).

This contradicts the fact that S is a k-closeness group. Hence, for each i ∈ [k], S contains exactly one vertex
of Vi. Hence, since for each i ∈ [k], G[Vi] is a cycle of length n, Observation A.2 implies

k∑
i=1

∑
ui∈Vi

∑
w∈V (Ri

u)

dist(w, S)

= k · (n · (2Y+1 · Y − 2Y+1 + 2) + 2 ·
⌊n/2⌋∑
j=1

j · (2Y+1 − 1))

= k · (n · (2Y+1 · Y − 2Y+1 + 2) + 2 ·
(
⌊n/2⌋
2

)
· (2Y+1 − 1)).

Let H := {u ∈ U | ∃i ∈ [k] : ui ∈ S}. We show that H is a hitting set for I. Assume towards a contradiction,
that there is a hyperedge F ∈ F such that H contains no element of F . Hence, dist(vF , S) = Z + 1 and by
construction, for each hyperedge F ′ ∈ F \ {F}, dist(vF ′ , S) ≥ Z. Since S contains no vertex of RF ′ for any
hyperedge F ′ ∈ F , Observation A.2 implies that the distance to all RF -trees is∑

w∈V (RF )

dist(w, S) +
∑

F ′∈F\{F}

∑
w∈V (RF ′ )

dist(w, S)

≥ (2X+1 ·X − 2X+1 + 2) + (Z + 1) · (2X+1 − 1)

+ (m− 1) · ((2X+1 ·X − 2X+1 + 2) + Z · (2X+1 − 1))

= m · (2X+1 ·X − 2X+1 + 2) + Z · (2X+1 − 1)) + 2X+1 − 1.

Since 2X+1 − 1 > |V ′|2, we conclude∑
v∈V

dist(v, S) ≥
k∑

i=1

∑
u∈U

∑
w∈V (Ri

u)

dist(w, S) +
∑
F∈F

∑
w∈V (RF )

dist(w, S)

≥ t− |V ′|2 + 2X+1 − 1 > t.

A contradiction. Hence, S is a hitting set for I.

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



A.2 Proof of Lemma 3.3

Proof. Assume towards a contradiction that there exists
a set R ⊆ S with R ∩ L ̸= ∅ and |R| = k − dT ′ such
that c(ST ′ ∪R) < cbest. Let v ∈ R ∩L. We obtain that

c(ST ′ ∪R) < cbest

= clb(T, S, k − 2)− ci(T ′)

− pt(T, T ′, S, k, cbest)

≤ clb(T, S, k − 2)− ci(T ′)− ci(ST , v)

From c(ST ′ ∪R) ≥ c(ST ∪R\{v})−ci(ST ∪R\{v}, v)−
ci(ST ∪R \ {v, vT ′}, vT ′) we obtain that

c(ST ∪R \ {v}) < clb(T, S, k − 2)− ci(ST , v)

+ ci(ST ∪R \ {v}, v)
− ci(T ′) + ci(ST ∪R \ {v, vT ′}, vT ′)

Now, from Proposition 3.1, we obtain ci(ST , v) ≥
ci(ST ∪ R \ {v}, v) and ci(T ′) = ci(ST , vT ′) ≥ ci(ST ∪
R \ {v, vT ′}, vT ′). Thus,

c(ST ∪R \ {v}) < clb(T, S, k − 2)

Since |R \ {v}| = k − 2 − |ST | this inequality is a
contradiction to Lemma 3.1.

A.3 Proof of Theorem 3.1

Proof. Let C ⊆ R \ S with |C| = |S| − k. If C ⊆ X,
then we are done. Otherwise, we replace each vertex
of C \ X by a vertex in X without increasing the
centrality. Let u ∈ C \ X and let w ∈ X be a vertex
dominating u with respect to S.

Case 1: w /∈ C. We replace u by w. Let A := C∪S
and B := (A \ {u}) ∪ {w}.

First, consider the case that u ∈ DS(v) fulfills the
Property 1 of Definition 3.5. Assume that uw inE(G).
Observe that dist(u,A) = 0, dist(u,B) = 1 since uw ∈
E(G), dist(w,A) = 1, and dist(w,B) = 0. Furthermore,
for each further vertex z we have dist(z,B) ≤ dist(z,A):
If u is the only vertex of A such that dist(z,A) =
dist(u, z), then u is not contained in N [S] and the
shortest path from A to z does not contain a ver-
tex from N [S]. Consequently, dist(u, z) ≥ dist(w, z)
since N [u] \ N [S] ⊆ N [w] \ N [S] and A and B only
differ in u and w, respectively. Otherwise, consider the
case that uw /∈ E(G). Since N [u] \ N [S] ⊆ N [w] \
N [S], we conclude that u ∈ N [s]. Thus, dist(u,A) =
0, dist(u,B) = 1, dist(w,B) = 0, and dist(w,A) ≥ 1.
For each vertex in z ∈ N(u)\S we have dist(z, u) = 1 =
dist(z, w) and for each remaining vertex in the graph
the distance to B compared to A does not increase.
Thus, c(B) ≤ c(A).

Second, consider the case that u ∈ DS(v) fulfills
Property 2 of Definition 3.5. Observe that dist(u,A) =
0 and dist(w,B) = 0. Furthermore, since N(u) =
N(w), if S ∩ (N(u) ∩ N(w)) ̸= ∅, then dist(u,B) =
1 = dist(w,A) and otherwise dist(u,B) = dist(w,A).
Furthermore, for each further vertex z ∈ R we
have dist(z,B) ≤ dist(z,A), by the same arguments as
above. Thus, c(B) ≤ c(A).

Case 2: w ∈ C. Observe that u ∈ N [(C \{u})∪S]:
This is obviously true if u ∈ N [S]. Otherwise, u fulfills
Property 1 and thus, u ∈ N [u]\N [S] ⊂ N [w]. Since w ∈
C, the claim follows. Now, we replace u by some
vertex v ∈ X \C. Note that v exists since |X| ≥ k−|S|
and thus |X ∩ C| < k − |S|. Now, let A := C ∪ S
and B := (A \ {u}) ∪ {v}. Observe that dist(u,A) =
0, dist(u,B) = 1 since u ∈ N [(C \{u})∪S], dist(v,A) ≥
1, and dist(v,B) = 0. Furthermore, for each further
vertex z we have dist(z,B) ≤ dist(z,A), by the same
arguments as above. Thus, c(B) ≤ c(A).

A.4 Proof of Theorem 5.1

Proof. First, observe that if each vertex fulfills the dis-
tance property for some optimal solution with objec-
tive value c, then the set S containing the vertices
with xv,0 = 1 has centrality exactly c. Now, as-
sume towards a contradiction that there exists an op-
timal solution Z for the instance (G, k) with central-
ity c′ < c. Consider the following solution of the ILP:
For each v ∈ Z, set xv,0 = 1. Observe that for each ver-
tex v ∈ V (G)\Z, xv,i = 1 for some i ≤ dist(v, Z). Thus,
this solution has an objective value of c′′ ≤ c′ < c in the
ILP, a contradiction to the optimality of the solution
with objective value c.

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).



0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

DVind
DVindSp
DVglobSp

1 10 100 1000 3600

1 ≤ k ≤ 10

0
50

10
0

15
0

20
0

25
0

30
0

time in seconds

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

DVind
DVindSp
DVglobSp

1 10 100 1000 3600

11 ≤ k ≤ 20

Figure 9: Comparison of DVind, DVindSp and DV-
globSp.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

number of iterations

nu
m

be
r 

of
 in

st
an

ce
s

0
10

20
30

40
50

Small k DVind
Large k DVind
Small k DVglob
Large k DVglob

Figure 10: Number of iterations of DVind and DVglob.

B Appendix – Further Experimental Results

Figure 9 compares the search tree variants DVindSp
and DVglobSp using the sparse matrix representation
with DVind. Both algorithms perform very similar to
their non sparse counterpart which is not surprising
since they only differ in the way the distance matrix
is represented. DVindSp only performs slightly worse
than DVind on the more difficult instances.

We also evaluated how many iterations ILPglob
and ILPind need to obtain an optimal solution (see
Figure 10). As a rule of thumb, a lower number of
iterations should give a smaller running time.

As shown in Figure 10, the results are very similar
for DVind and DVglob. Hence, both ILP formulations
and both iterative search tree algorithms need fewer
iterations for larger k.

Accepted for publication at the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA ’23).


	Introduction
	A Tight Running Time Lower Bound
	A Search Tree Algorithm
	The Basic Search Algorithm.
	Lower Bounds based on Centrality-Improvements.
	Dominating Vertices.

	A new ILP Formulation
	Iterative Approach
	An Iterative ILP Approach.
	An Iterative Search Tree Algorithm.

	Experiments
	Search Tree Variants.
	Comparison with the Previous ILP.
	Iterative Algorithms.
	Comparison of Search Tree and ILP.
	Accuracy of the Heuristics.

	Conclusion
	Appendix – Proofs
	Proof of hardness
	Proof of lem-plb
	Proof of thm-suff-vertices
	Proof of thm-corecctness-ilp-iterative

	Appendix – Further Experimental Results

