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Abstract
In the NP-hard MAX c-CUT problem, one is given
an undirected edge-weighted graph G and wants
to color the vertices of G with c colors such that
the total weight of edges with distinctly colored
endpoints is maximal. The case with c = 2 is
the famous MAX CUT problem. To deal with the
NP-hardness of this problem, we study parameter-
ized local search algorithms. More precisely, we
study LS MAX c-CUT where we are also given a
vertex coloring f and an integer k and the task is
to find a better coloring f ′ that differs from f in
at most k entries, if such a coloring exists; other-
wise, f is k-optimal. We show that, for all c ≥
2, LS MAX c-CUT presumably cannot be solved
in g(k) · nO(1) time even on bipartite graphs. We
then show an algorithm for LS MAX c-CUT with
running time O((3e∆)k · c · k3 ·∆ · n), where ∆ is
the maximum degree of the input graph. Finally, we
evaluate the practical performance of this algorithm
in a hill-climbing approach as a post-processing
for state-of-the-art heuristics for MAX c-CUT. We
show that using parameterized local search, the re-
sults of this heuristic can be further improved on a
set of standard benchmark instances.

1 Introduction
Graph coloring and its generalizations are among the most
famous NP-hard optimization problems [Jensen and Toft,
2011] with numerous practical applications. In one promi-
nent problem variant, we want to color the vertices of an
edge-weighted graph with c colors so that the sum of the
weights of all edges that have endpoints with different colors
is maximized. This problem is known as MAX c-CUT [Frieze
and Jerrum, 1997; Kann et al., 1997] or MAXIMUM COL-
ORABLE SUBGRAPH [Papadimitriou and Yannakakis, 1991].
Applications of MAX c-CUT include data clustering [Chatzi-
afratis et al., 2021; Felzenszwalb et al., 2022], computation
of rankings [Chatziafratis et al., 2021], design of experimen-
tal studies [Arbour et al., 2021], sampling of public opinions
in social networks [Huang et al., 2017], channel assignment
in wireless networks [Subramanian et al., 2008], module de-
tection in genetic interaction data [Leiserson et al., 2011], and

scheduling of TV commercials [Gaur et al., 2009]. In addi-
tion, MAX c-CUT is closely related to the energy minimiza-
tion problem in Hopfield neural networks [Šı́ma et al., 1999;
Kleinberg and Tardos, 2006; Wang, 2006]. An equivalent for-
mulation of the problem is to ask for a coloring that mini-
mizes the weight sum of the edges whose endpoints receive
the same color; this formulation is known as GENERALIZED
GRAPH COLORING [Vredeveld and Lenstra, 2003].

From an algorithmic viewpoint, even restricted cases
of MAX c-CUT are hard: The special case c = 2 is
the MAX CUT problem which is NP-hard even for positive
unit weights [Karp, 1972; Garey and Johnson, 1979], even
on graphs with maximum degree 3 [Berman and Karpinski,
1999]. Moreover, for all c ≥ 3 the GRAPH COLORING prob-
lem where we ask for a coloring of the vertices with c colors
such that the endpoints of every edge receive different colors
is NP-hard [Karp, 1972]. As a consequence, MAX c-CUT is
NP-hard for all c ≥ 3, again even when all edges have posi-
tive unit weight. While MAX c-CUT admits polynomial-time
constant factor approximation algorithms [Frieze and Jerrum,
1997], there are no polynomial-time approximation schemes
unless P=NP [Papadimitriou and Yannakakis, 1991], even on
graphs with bounded maximum degree [Berman and Karpin-
ski, 1999]. Due to these hardness results, MAX c-CUT is
mostly solved using heuristic approaches [Festa et al., 2002;
Leiserson et al., 2011; Ma and Hao, 2017; Zhu et al., 2013].

A popular heuristic approach for MAX c-CUT is hill-
climbing local search [Festa et al., 2002; Leiserson et al.,
2011] with the 1-flip neighborhood. Here, an initial solution
(usually computed by a greedy algorithm) is replaced by a
better one in the 1-flip neighborhood as long as such a better
solution exists. Herein, the 1-flip neighborhood of a color-
ing f is the set of all colorings that can be obtained by chang-
ing the color of one vertex. A coloring f that has no improv-
ing 1-flip is called 1-optimal and the problem of computing
1-optimal solutions has also received interest from a theoret-
ical standpoint: Finding 1-optimal solutions for MAX CUT is
PLS-complete on edge-weighted graphs [Schäffer and Yan-
nakakis, 1991] and thus presumably not efficiently solvable
in the worst case. This PLS-completeness result for the 1-flip
neighborhood was later extended to GENERALIZED GRAPH
COLORING, and thus to MAX c-CUT, for all c [Vredeveld
and Lenstra, 2003]. For graphs where the absolute values of
all edge weights are constant, however, a simple hill climb-



ing algorithm terminates after O(m) improvements, where m
is the number of edges in the input graph. Here, a differ-
ent question arises: Can we replace the 1-flip neighborhood
with a larger efficiently searchable neighborhood, to avoid
being stuck in a bad local optimum? A natural candidate
is the k-flip neighborhood where we are allowed to change
the color of at most k vertices. As noted by Kleinberg and
Tardos [2006], a standard algorithm for searching the k-flip
neighborhood takes Θ(nk · m) time where n is the number
of vertices. This led Kleinberg and Tardos to conclude that
the k-flip neighborhood is impractical. In this work, we ask
whether we can do better than the brute-force Θ(nk ·m)-time
algorithm or, in other words, whether the dismissal of k-flip
neighborhood may have been premature.

The ideal framework to answer this question is parameter-
ized local search, where the ultimate goal would be to de-
sign an algorithm that in g(k) · nO(1) time either finds a bet-
ter solution in the k-flip neighborhood or correctly answers
that the current solution is k-optimal. Such a running time
is preferable to O(nk · m) since the degree of the polyno-
mial running time part does not depend on k and thus the
running time scales better with n. The framework also pro-
vides a toolkit for negative results that allows to conclude
that an algorithm with such a running time is unlikely by
showing W[1]-hardness. In fact, most parameterized local
search problems turn out to be W[1]-hard with respect to the
parameter k [Bonnet et al., 2019; Dörnfelder et al., 2014;
Fellows et al., 2012; Guo et al., 2013; Guo et al., 2014;
Gaspers et al., 2012; Komusiewicz et al., 2023; Marx, 2008;
Szeider, 2011]. In contrast to these many, mostly negative,
theoretical results, there are so far only few encouraging ex-
perimental studies [Gaspers et al., 2019; Grüttemeier et al.,
2021; Hartung and Niedermeier, 2013; Katzmann and Ko-
musiewicz, 2017]. The maybe most extensive positive results
so far were obtained for LS VERTEX COVER where the in-
put is an undirected graph G with a vertex cover S and the
question is whether the k-swap neighborhood of S contains
a smaller vertex cover. The key to obtain practical parame-
terized local search algorithms is to consider parameteriza-
tion by k and the maximum degree ∆ of the input graph. As
shown by Katzmann and Komusiewicz [2017], LS VERTEX
COVER can be solved in (2∆)k · nO(1) time. An experimen-
tal evaluation of this algorithm showed that it can be tuned
to solve the problem for k ≈ 20 on large sparse graphs, and
that k-optimal solutions for k ≥ 9 turned out to be optimal
for almost all graphs considered in the experiments.

Our Results. We study LS MAX c-CUT, where we want
to decide whether a given coloring has a better one in its k-
flip neighborhood. We first show that LS MAX c-CUT is pre-
sumably not solvable in g(k) · nO(1) time by showing W[1]-
hardness for the parameter k. We then show an algorithm
with running time O((3e∆)k · c · k3 · ∆ · n), where ∆ is
the maximum degree of the input graph. To put this running
time bound into context, two aspects should be discussed.
First, the NP-hardness of the special case of MAX c-CUT
with ∆ = 3 implies that a running time of g(∆) ·nO(1) is im-
possible unless P=NP. Second, only the parameter k occurs in

the exponent; we say that the running time grows mildly with
respect to ∆ and strongly with respect to k. This is desirable
as k is a user-determined parameter whereas ∆ depends on
the input; a broader discussion of this type of running times
is given by Komusiewicz and Morawietz [2022].

The algorithm is based on two main facts: First, we show
that minimal improving flips are connected in the input graph.
This allows to enumerate candidate flips in O((e∆)k · k ·
n) time. Second, we show that, given a set of k vertices to
flip, we can determine an optimal way to flip their colors in
O(3k · c · k2 + k · ∆) time. We then discuss several ways
to speed up the algorithm, for example by computing upper
bounds for the improvement of partial flips. We finally eval-
uate our algorithm experimentally when it is applied as post-
processing for a state-of-the-art MAX c-CUT heuristic [Ma
and Hao, 2017]. In this application, we take the solutions
computed by the heuristic and improve them by hill-climbing
with the k-flip neighborhood for increasing values of k. We
show that, for a standard benchmark data set, a large fraction
of the previously best solutions can be improved by our al-
gorithm, leading to new record solutions for these instances.
The post-processing is particularly successful for the harder
instances of the data set (with c > 2 and both positive and
negative edge weights).

Due to lack of space, several proofs are deferred to a full
version.

2 Preliminaries
Notation. For integers i and j with i ≤ j, we de-
fine [i, j] := {k ∈ N | i ≤ k ≤ j}. For a set A, we de-
note with

(
A
2

)
:= {{a, b} | a ∈ A, b ∈ A} the collection of

all size-two subsets of A. A tuple (A,B) is a partition of C
if A ∪B = C and A ∩B = ∅.

An (undirected) graph G = (V,E) consists of a vertex
set V and an edge set E ⊆

(
V
2

)
. For vertex sets S ⊆ V

and T ⊆ V we denote with EG(S, T ) := {{s, t} ∈ E | s ∈
S, t ∈ T} the edges between S and T and with EG(S) :=
EG(S, S) the edges between vertices of S. Moreover, we
define G[S] := (S,EG(S)) as the subgraph of G induced
by S. A vertex set S is connnected if G[S] is a connected
graph. For a vertex v ∈ V , we denote with NG(v) :=
{w ∈ V | {v, w} ∈ E} the open neighborhood of v in G
and with NG[v] := NG(v) ∪ {v} the closed neighborhood
of v in G. Analogously, for a vertex set S ⊆ V , we de-
fine NG[S] :=

⋃
v∈S NG[v] and NG(S) :=

⋃
v∈S NG(v)\S.

Moreover, the closed i-neighborhood N i
G[x] of x is defined

via N0
G[x] := {x}, and N i

G[x] := NG[N
i−1
G [x]] for i > 0.

We say that vertices v and w have distance at least i + 1
if w ̸∈ N i

G[v]. If G is clear from context, we may omit the
subscript.

Problem Formulation. Let X and Y be sets and let f, f ′ :
X → Y . The flip between f and f ′ is defined as D(f, f ′) :=
{x ∈ X | f(x) ̸= f ′(x)} and the flip distance between f
and f ′ is defined as d(f, f ′) := |D(f, f ′)|. For an integer c
and a graph G = (V,E), a function f : V → [1, c] is a c-
coloring of G. Let f be a c-coloring of G, we define the
set E(f) of properly colored edges as E(f) := {{u, v} ∈
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E | f(u) ̸= f(v)}. For an edge-weight function ω : E → Q
and an edge set E′ ⊆ E, we let ω(E′) denote the sum of
the weights of all edges in E′. Let f and f ′ be c-colorings
of G. We say that f and f ′ are k-neighbors if d(f, f ′) ≤ k.
If ω(E(f)) > ω(E(f ′)), we say that f is improving over f ′.
Finally, a c-coloring f is k-optimal if f has no improving k-
neighbor f ′. The problem of finding an improving neighbor
of a given coloring can now be formalized as follows.

LS MAX c-CUT
Input: A graph G = (V,E), c ∈ N, a weight
function ω : E → Q, a c-coloring f , and k ∈ N.
Question: Is there a c-coloring f ′ such
that d(f, f ′) ≤ k and ω(E(f ′)) > ω(E(f))?

The special case of LS MAX c-CUT where c = 2 is de-
noted as LS MAX CUT.

While these problems are defined as decision problems, our
algorithms solve the search problem that returns an improving
k-flip if it exists.

Let f and f ′ be c-colorings of a graph G. We say that f ′

is an inclusion-minimal improving k-flip for f , if f ′ is an
improving k-neighbor of f and if there is no improving k-
neighbor f̃ of f with D(f, f̃) ⊊ D(f, f ′).

For details on parameterized complexity we refer to the
standard monographs [Cygan et al., 2015; Downey and Fel-
lows, 2013].

3 W[1]-hardness of LS Max Cut
We first show an intractability result. More precisely, we
show that LS MAX CUT is W[1]-hard for parameteriza-
tion by k even on bipartite graphs with unit weights. This
implies that LS MAX CUT presumably cannot be solved
within g(k) · nO(1) time for any computable function g.

To prove the hardness, we introduce the term of blocked
vertices in instances with unit weights. Intuitively, a vertex v
is blocked for a color class i if we can conclude that v does
not move to i in any optimal k-neighbor of the current solu-
tion just by considering the graph neighborhood of v. This
concept is formalized as follows.

Definition 1. Let G = (V,E) be a graph, let f be a c-
coloring of G, and let k be an integer. Moreover, let v be
a vertex of V and let i ∈ [1, c] \ {f(v)} be a color. The ver-
tex v is (i, k)-blocked in G with respect to f if |{w ∈ N(v) :
f(w) = i}| ≥ |{w ∈ N(v) : f(w) = f(v)}|+ 2k − 1.

Lemma 1. Let G = (V,E) be a graph, let f be a c-
coloring of G, let k be an integer. Moreover, let v be a vertex
in V which is (i, k)-blocked in G with respect to f . Then,
there is no inclusion-minimal improving k-neighbor f ′ of f
with f ′(v) = i.

The idea of blocking a vertex by its neighbors finds appli-
cation in the construction for the W[1]-hardness from the next
theorem.

Theorem 1. LS MAX CUT is W[1]-hard for k on bipartite 2-
degenerate graphs with unit weights.

Proof. We reduce from CLIQUE, which is given an undi-
rected graph G and k ∈ N and asks whether G contains a

A′
V Vu Vy Vx

B′
Vw v∗ Vz

Figure 1: The connections between the different vertex sets
in G′. Two vertex sets X and Y are non-adjacent in the figure
if E(X,Y ) = ∅. Each vertex v in a vertex set with a rectangu-
lar node is k′-blocked from the opposite part of the partition. The
vertex set Γ is not shown.

clique of size k. CLIQUE is W[1]-hard for the size k of the
sought clique [Downey and Fellows, 2013].

Let I := (G = (V,E), k) be an instance of CLIQUE. In the
following, we construct an equivalent instance I ′ := (G′ =
(V ′, E′), ω′, A′, B′, k′) of LS MAX CUT with ω′ : E′ →
{1}. Here, (A′, B′) is a partition of G′ and describes the
initial 2-coloring of the instance. We start with an empty
graph G′ and add each vertex of V to G′. Next, for each
edge e ∈ E, we add two vertices ue and we to G′ and add for
each such vertex an edge to each endpoint of e to G′. After-
wards, we add a vertex v∗ to G′ and for each edge e ∈ E,
we add vertices xe and ye and edges {we, xe}, {we, ye},
and {xe, v

∗} to G′. Finally, we add a set Vz of |E|−2·
(
k
2

)
+1

vertices to G′ and connect each vertex of Vz to v∗.
In the following, let Vα := {αe | e ∈ E} for any α ∈

{u,w, x, y}. We set B′ := Vw ∪ {v∗} ∪ Vz , A′ := V ′ \
B′, and k′ := 2 ·

(
k
2

)
+ k + 1.

To ensure that some vertices are blocked in the final in-
stance, we add the following further vertices to A′ and B′:
For each vertex v′ ∈ Vu∪Vy , we add a set of 2k′+2 vertices
to B′ that are only adjacent to v′ and for each vertex v′ ∈ Vz ,
we add a set of 2k′ + 2 vertices to A′ that are only adjacent
to v′. Let Γ be the set of those additional vertices. Figure 1
shows a sketch of the vertex sets and their connections in G′.
Note that G′ is bipartite and 2-degenerate.

A formal correctness proof is deferred to the full version.
Instead, we provide some intuition. Note that each vertex
in Vu∪Vy is contained in A′, has at most two neighbors in A′,
and at least 2k′ + 2 neighbors in B′. Morever, each vertex
in Vz is contained in B′, has one neighbor in B′, and 2k′ + 2
neighbors in A′. Hence, each vertex in Vu ∪ Vy is (B′, k′)-
blocked and each vertex in Vz is (A′, k′)-blocked. Con-
sequently, due to Lemma 1, no inclusion-minimal improv-
ing k′-flip for (A′, B′) contains any vertex of Vu ∪ Vy ∪ Vz .
As a consequence, no inclusion-minimal improving k′-flip
for (A′, B′) contains any vertex of Γ. In other words, only
vertices in V , Vw, Vx, and the vertex v∗ can flip their colors.
A clique S in the graph G then corresponds to a flip of v∗,
the vertices corresponding to S, and the vertices we and xe

for each edge e of the clique. The key mechanism is that each
inclusion-minimal improving flip has to contain v∗, so that
edges between v∗ and Vz become properly colored. To com-
pensate for the edges between Vx and v∗ that are not properly
colored after flipping v∗, for some edges e of G, the corre-
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sponding vertices of Vx and Vw and both endpoints of e have
to flip their color. The size of Vz ensures that this has to be
done for at least

(
k
2

)
such edges of G. Since we only allow

a flip of size k′, this then ensures that the edges of G whose
corresponding vertices flip their color belong to a clique of
size k in G.

The above reduction can be adapted to prove hardness of
LS MAX c-CUT for each fixed c ≥ 2.
Corollary 1. For every c ≥ 2, LS MAX c-CUT is W[1]-hard
for k on bipartite 2-degenerate graphs with unit weights.

4 Algorithms
Our algorithm for LS MAX c-CUT follows a simple frame-
work: Generate a collection of candidate sets S that may im-
prove the coloring if the vertices in S flip their colors. For
each such candidate set S, we only know that the colors of
the vertices of S change, but we do not yet know which new
color the vertices receive. To answer this question, that is, to
find whether there is any coloring of S that leads to an im-
proved global coloring, we use dynamic programming.

We first describe the subroutine that we use to check for
the existence of a good coloring of a given candidate set S.
Theorem 2. Let G = (V,E) be a graph, let ω : E → Q
be an edge-weight function, let f be a c-coloring of G, and
let S ⊆ V be a set of size at most k. One can compute in
O(3k · c · k2 + k · ∆(G)) time a c-coloring f ′ of G such
that D(f, f ′) ⊆ S and ω(E(f ′)) is maximal.

Proof. We use dynamic programming. Initially, we com-
pute for each v ∈ S and each i ∈ [1, c] the weight θiv :=
ω({{v, w} ∈ E | w ∈ N(v) \ S ∧ f(w) ̸= i}) of edges
between v and vertices of V \ S that do not receive color i
under f . Moreover, we compute the weight ωS of all prop-
erly colored edges of E(S,N [S]) as ωS := ω({{u, v} ∈
E(S,N [S]) | f(u) ̸= f(v)}). This can be done in O(c ·
k + k ·∆(G)) time.

The table T has entries of type T [S′, c′] where S′ ⊆ S
and c′ ∈ [1, c]. Each entry T [S′, c′] stores the maximum sum
of weights of properly colored edges with at least one end-
point in S′ and no endpoint in S \ S′ such that the following
holds:

1. the vertices in S′ have some color in [1, c′], and
2. every vertex v ∈ V \ S has color f(v).
We start to fill the dynamic programming table by setting

T [S′, 1] :=
∑

v∈S′ θ1v for each S′ ⊆ S.
For S′ ⊆ S and c′ ∈ [2, c], we set:

T [S′, c′] := max
S′′⊆S′

T [S′ \ S′′, c′ − 1]

+ ω(E(S′′, S′ \ S′′)) +
∑
v∈S′′

θc
′

v .

The maximal improvement ω(E(f ′))−ω(E(f)) for any c-
coloring f ′ with D(f, f ′) ⊆ S can then be found by evaluat-
ing T [S, c]−ωS : this term corresponds to the maximum sum
of weights of properly colored edges we get when distributing

the vertices of S among all color classes minus the original
weights when every vertex of S sticks with its color under f .
The corresponding c-coloring can be found via traceback.

The formal correctness proof is straightforward and thus
omitted. Hence, it remains to show the running time. The
dynamic programming table T has 2k ·c entries. Each of these
entries can be computed in O(2|S

′| · k2) time. Consequently,
all entries can be computed in O(

∑k
i=0

(
k
i

)
· 2i · c · k2) =

O(3k · c · k2) time in total. Hence, the total running time is
O(3k · c · k2 + k ·∆(G)).

For LS MAX CUT, if we interpret a candidate set S as
vertices that must all flip their colors, the situation is even
simpler: When given a set S ⊆ V of k vertices that must flip
their colors, the best possible improvement can be computed
in O(k ·∆(G)) time, since every vertex of S must replace its
color with the unique other color.

Recall that the idea of our algorithms for LS MAX CUT
and LS MAX c-CUT is to iterate over possible candidate sets
of vertices that may flip their colors. With the next lemma
we show that it suffices to consider those vertex sets that are
connected in the input graph.
Lemma 2. Let I := (G = (V,E), c, ω, f, k) be an instance
of LS MAX c-CUT. Then, for every improving k-neighbor f ′

of f where d(f, f ′) is minimal, the flip D(f, f ′) is connected
in G.

We next combine Theorem 2 and Lemma 2.
Theorem 3. LS MAX c-CUT can be solved in O((3 · e)k ·
(∆(G)− 1)k+1 · c · k3 · n) time.

Proof. Let I = (G, c, ω, f, k) be an instance of LS MAX c-
CUT. By Lemma 2, I is a yes-instance of LS MAX c-CUT
if and only if f has an improving k-neighbor f ′ where S :=
D(f, f ′) is connected. Since we can enumerate all connected
vertex sets S of size at most k in G in O(ek · (∆(G) − 1)k ·
k ·n) time [Komusiewicz and Sorge, 2015; Komusiewicz and
Sommer, 2021] and we can compute for each such set S the c-
coloring f ′ with D(f, f ′) ⊆ S that maximizes ω(E(f ′)) in
O(3k · c · k2 +∆(G) · k) time due to Theorem 2, we obtain
the stated running time.

For LS MAX CUT, we can improve the running time
since computing the unique flip for a given set can be done
in O(∆(G) · k) time.
Theorem 4. LS MAX CUT can be solved in O(ek · (∆(G)−
1)k+1 · k2 · n) time.
Hill-Climbing Algorithm To obtain not only a single im-
provement of a given coloring but a c-coloring with a total
weight of properly colored edges as high as possible, we in-
troduce the following hill-climbing algorithm.

Given an initial coloring f , we set the initial value of k to
one. In each step, we use the above-mentioned algorithm for
LS MAX c-CUT to search for an improving coloring in the
k-flip neighborhood of the current coloring. Whenever the
algorithm finds an improving k-neighbor f ′ for the current
coloring f , the current coloring gets replaced by f ′ and k gets
set back to one. If the current coloring is k-optimal, the value
of k is incremented and the algorithm continues to search for
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an improvement in the new k-flip neighborhood. This is done
until a given time limit is reached.

5 Speedup Strategies
We now introduce several speedup strategies that we use in
our implementation to avoid enumerating all candidate sets.
First we describe how to speed up the algorithm for LS
MAX c-CUT.

5.1 Upper Bounds
To prevent the algorithm from enumerating all possible con-
nected subsets of size at most k, we use upper bounds to de-
termine for a given connected subset S′ of size smaller than k
if S′ can possibly be extended to a set S of size k such that
there is an improving c-coloring f ′ for G where the flip of f
and f ′ is exactly S. If there is no such possibility, then we pre-
vent our algorithm from enumerating supersets of S′. With
the next definition we formalize this concept.
Definition 2. Let I := (G, c, ω, f, k) be an instance of LS
MAX c-CUT and let S′ with |S′| < k be a subset of ver-
tices of G. A value b(I, S′) is an upper bound if for every c-
coloring f ′ of G, with S′ ⊂ D(f, f ′) and d(f, f ′) = k, we
have

b(I, S′) ≥ ω(E(f ′)).

In our implementation, we use upper bounds as follows:
Given a set S′ we compute the value b(I, S′) and check if
it is not larger than ω(E(f)) for the current coloring f . If
this is the case, we abort the enumeration of supersets of S′,
otherwise, we continue.

We introduce two upper bounds; one for c = 2 and one
for c ≥ 3. To describe these upper bounds, we introduce
the following notation: Given a vertex v and a color i, we
let ωi

v := ω({{v, w} | w ∈ N(v) ∧ f(w) ̸= i}) denote
the total weight of properly colored edges incident with v if
we change the color of v to i in a given coloring f . Thus,
the term ωi

v − ω
f(v)
v describes the improvement obtained by

changing only the color of v to i. Furthermore, let ωmax :=
maxe∈E |ω(e)| denote the maximum absolute edge weight.
Upper Bound for c = 2. Let I be an instance of LS
MAX c-CUT with c = 2 and let S′ be a vertex set of size
less than k. Since c = 2, we let f(v) denote the unique
color distinct from f(v) for each vertex v. For a vertex
set A ⊆ V , let fA denote the coloring where fA(v) := f(v)

for all v /∈ A and fA(v) = f(v), otherwise. Intuitively, fA is
the coloring resulting from f when exactly the vertices in A
change their colors. For each vertex v ∈ V \ S′, we de-

fine αv := ω
f(v)
v − ω

f(v)
v + βv , where

βv :=
∑

e∈E(v,S′)∩E(f)

2 · ω(e)−
∑

e∈E(v,S′)\E(f)

2 · ω(e).

Intuitively, αv−βv is an upper bound for the improvement ob-
tained when we choose to change only the color of v to f(v).
The term βv corresponds to the contribution of the edges be-
tween v and the vertices of S′. In the definition of βv , we
take into account the edges between v and S′ that are falsely

counted twice, once when extending fS′ with v and a second

time in the term ω
f(v)
v −ω

f(v)
v . Hence, αv is the improvement

over the coloring fS′ obtained by changing only the color
of v. Let Y ⊆ V \ S′ be a set containing the k − |S′| ver-
tices from V \S′ with largest αv-values. We define the upper
bound by

bc=2(I, S
′) := ω(E(fS′)) +

∑
v∈Y

αv︸ ︷︷ ︸
(1)

+2

(
k − |S′|

2

)
ωmax︸ ︷︷ ︸

(2)

.

Recall that the overall goal is to find a set X such that chang-
ing the colors of S′ ∪ X results in a better coloring. The
summand (1) corresponds to an overestimation of all weights
of edges incident with exactly one vertex of X by fixing
the falsely counted edges between X and S′ due to the in-
cluded βv summands. The summand (2) corresponds to an
overestimation of the weight of properly colored edges with
both endpoints in X . We next show that bc=2 is in fact an
upper bound.
Proposition 1. If c = 2, then bc=2(I, S

′) is an upper bound.
Upper Bound for c ≥ 3. We next present an upper
bound bc≥3 that works for the case where c ≥ 3. Recall
that the upper bound bc=2 relies on computing ω(E(fS′)),
where fS′ is the coloring resulting from f when exactly the
vertices in S′ change their colors. This was possible since
for c = 2, there is only one coloring for which the flip with f
is exactly S′. In case of c ≥ 3, each vertex in S′ has c−1 ≥ 2
options to change its color. Our upper bound bc≥3 con-
sequently contains a summand b(S′) that overestimates the
edge weights when only the vertices in S′ change their col-
ors.

To specify b(S′), we introduce the following notation:
Given a vertex v ∈ S′ and a color i, we let

θiv := ω({{v, w} | w ∈ N(v) \ S′ ∧ f(w) ̸= i}).
Analogously to ωi

v , the value θiv describes the weight of prop-
erly colored edges when changing the color of v to i, but ex-
cludes all edges inside S′. We define the term

b(S′) := ω(E(f)) +

(
|S′|
2

)
· ωmax −

∑
e∈E(S′)
e∈E(f)

ω(e)

+
∑
v∈S′

(
max
i ̸=f(v)

θiv − θf(v)v

)
.

As mentioned above, bc≥3 the summand b(S′) re-
places ω(E(fS′)) which was used for bc=2. Intuitively, the
sum

∑
v∈S′(maxi ̸=f(v) θ

i
v − θ

f(v)
v ) is an overestimation of

the improvement for properly colored edges with exactly one
endpoint in S′, the term

(|S′|
2

)
· ωmax overestimates the prop-

erly colored edges inside S′, and the remaining terms overes-
timate the properly colored edges outside S′.

Analogously to bc=2, for every v ∈ V \ S′, we define a
value αv := maxi ̸=f(v)(ω

i
v − ω

f(v)
v ) + βv with

βv :=
∑

e∈E(v,S′)

2 · |ω(e)|,
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and let Y ⊆ V \ S′ be a set containing the k − |S′| vertices
with biggest αv-values from V \ S′. We define the upper
bound by

bc≥3(I, S
′) := b(S′) +

∑
v∈Y

αv + 2

(
k − |S′|

2

)
· ωmax

and show that it is in fact an upper bound.
Proposition 2. If c ≥ 3, then bc≥3(I, S

′) is an upper bound.

5.2 Prevention of Redundant Flips
We introduce further speed-up techniques that we used in
our implementation of the hill-climbing algorithm. Roughly
speaking, the idea behind these speed-up techniques is to
exclude vertices that are not contained in an improving
flip D(f, f ′) of any k-neighbor f ′ of f . To this end, we intro-
duce for each considered value of k an auxiliary vertex set Vk

containing all remaining vertices that are potentially part of
an improving flip of a k-neighbor of f . For each value of k,
the set Vk is initialized once with V , when we search for the
first time for an improving k-neighbor.

It is easy to see that all vertices x that are (i, k)-blocked
for all i ̸= f(x) can be removed from Vk if each edge of G
has weight 1. This also holds for general instances when con-
sidering an extension of the definition of (i, k)-blocked ver-
tices for arbitrary weight functions. Moreover, whenever our
algorithm has verified that a vertex v is in no improving k-
flip D(f, f ′), then we may remove v from Vk.

Recall that we set the initial value of k to one and incre-
ment k if the current coloring f is k-optimal. If at any time
our algorithm replaces the current coloring f by a better col-
oring f ′, we set k back to one and continue by searching
for an improving k-neighbor of the new coloring f ′, where k
again is incremented if necessary. Now, for each value of k′
that was already considered for a previous coloring, we only
consider the remaining vertices of Vk′ together with vertices
that have a small distance to the flip between f ′ and the last
previously encountered (k′ − 1)-optimal coloring. This idea
is formalized by the next lemma.
Lemma 3. Let G = (V,E) be a graph, let ω : E → Q
be an edge-weight function, and let k be an integer. More-
over, let f and f ′ be (k − 1)-optimal c-colorings of G and
let v be a vertex within distance at least k + 1 to each ver-
tex of D(f, f ′). If there is no improving k-neighbor f̂ of f
with v ∈ D(f, f̂), then there is no improving k-neighbor f̃

of f ′ with v ∈ D(f ′, f̃).
In our implementation, we use Lemma 3 as follows: if we

want to find an improving k-neighbor for a (k − 1)-optimal
coloring f ′, we take the last previously encountered (k − 1)-
optimal coloring f and add only the vertices of distance at
most k to D(f, f ′) to the current vertices in Vk instead of set-
ting Vk back to V . This is correct since every vertex which is
not in Vk, is not part of any improving k-flip of f and there-
fore according to Lemma 3 the only vertices outside of Vk

that can possibly be in an improving k-flip of f ′ are those
with distance at most k to D(f, f ′).

Next, we provide a further technique to identify vertices
that can be removed from Vk. The idea behind this tech-
nique can be explained as follows: if a vertex can be excluded

Table 1: The graphs from the G-set for which LS or ILP found an
improved coloring, or for which we verified that MOH colorings
are globally optimal (for c = 3). MOH shows the value of the
published solutions of [Ma and Hao, 2017], LS and ILP show the
best solution of our hill-climbing algorithm and any of the two ILP-
runs, respectively. The best coloring is bold. Finally, UB shows the
better upper bound computed during the two ILP-runs. For empty
entries, no improved coloring was found. For bold UB entries, some
found solution matches this upper bound, verifying its optimality.

data |V | |E| MOH LS ILP UB
g11 800 1 600 669 — 671 671
g12 800 1 600 660 661 663 663
g13 800 1 600 686 687 688 688
g15 800 4 661 3 984 3 985 3 985 4 442
g24 2 000 19 990 17 162 17 163 — 19 989
g25 2 000 19 990 17 163 17 164 — 19 989
g26 2 000 19 990 17 154 17 155 — 19 989
g27 2 000 19 990 4 020 4 021 — 9 840
g28 2 000 19 990 3 973 3 975 — 9 822
g31 2 000 19 990 4 003 4 005 — 9 776
g32 2 000 4 000 1 653 1658 1 666 1 668
g33 2 000 4 000 1 625 1628 1 636 1 640
g34 2 000 4 000 1 607 1609 1 616 1 617
g35 2 000 11 778 10 046 10 048 — 11 711
g37 2 000 11 785 10 052 10 053 10 053 11 691
g40 2 000 11 766 2 870 2 871 — 5 471
g41 2 000 11 785 2 887 2 888 — 5 452
g48 3 000 6 000 6 000 — — 6 000
g49 3 000 6 000 6 000 — — 6 000
g50 3 000 6 000 6 000 — — 6 000
g55 5 000 12 498 12 427 12 429 12 432 12 498
g56 5 000 12 498 4 755 4 757 — 6 157
g57 5 000 10 000 4 080 4092 4 103 4 154
g59 5 000 29 570 7 274 7 276 — 14 673
g61 7 000 17 148 6 858 6 861 — 8 728
g62 7 000 14 000 5 686 5 710 5 706 5 981
g63 7 000 41 459 35 315 35 318 — 41 420
g64 7 000 41 459 10 429 10 437 — 20 713
g65 8 000 16 000 6 489 6 512 6 535 6 711
g66 9 000 18 000 7 414 7 442 7 443 7 843
g67 10 000 20 000 8 088 8 116 8 141 9 080
g70 10 000 9 999 9 999 — — 9 999
g72 10 000 20 000 8 190 8 224 8 244 9 166
g77 14 000 28 000 11 579 11 632 11 619 13 101
g81 20 000 40 000 16 326 16 392 16 374 18 337

from Vk, then all equivalent vertices can also be excluded,
where equivalence is defined as follows.
Definition 3. Let G = (V,E) be a graph, let ω : E → Q
be an edge-weight function. Two vertices v and w of G are
weighted twins if N(v)\{w} = N(w)\{v} and ω({v, x}) =
ω({w, x}) for each x ∈ N(v) \ {w}.
Lemma 4. Let G = (V,E) be a graph, let ω : E → Q
be an edge-weight function, and let k be an integer. More-
over, let f be a c-coloring of G and let v and w be weighted
twins in G with f(v) = f(w). If there is no improving k-
neighbor f ′ of f with v ∈ D(f, f ′), then there is no improv-
ing k-neighbor f̃ of f with w ∈ D(f, f̃).

Consequently, when our algorithm removes a vertex v
from Vk for some k because no improving k-neighbor f ′ of f
contains v, then it also removes all weighted twins of v with
the same color as v from Vk.

6 Implementation and Experimental Results
Our hill-climbing algorithm (LS) is implemented in
JAVA/Kotlin and uses the JGraphT library. The enumera-
tion algorithm for enumerating the candidate sets is a JAVA
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implementation of a polynomial-delay algorithm for enumer-
ating all connected induced subgraphs of a given size [Ko-
musiewicz and Sommer, 2021].

We used the graphs from the G-set benchmark (https:
//web.stanford.edu/∼yyye/yyye/Gset/), an established bench-
mark data set for MAX c-CUT with c ∈ {2, 3, 4} (and thus
also for MAX CUT) [Benlic and Hao, 2013; Festa et al., 2002;
Ma and Hao, 2017; Shylo et al., 2015; Wang et al., 2013;
Zhu et al., 2013]. The data set consists of 71 graphs with
vertex-count between 800 and 20,000 and a density between
0.02% and 6%.

As starting solutions, we used the solutions computed by
the MOH algorithm of Ma and Hao (2017) for each graph
of the G-set and each c ∈ {2, 3, 4}. For c = 3 and c = 4,
these are the best known solutions for all graphs of the G-
set. MOH is designed to quickly improve substantially on
starting solutions but after a while progress stalls (we pro-
vide more details on this below). In contrast, our approach
makes steady progress but is not as fast as MOH concerning
the initial improvements. Hence, we focus on evaluating the
performance of LS as a post-processing for MOH by trying
to improve their solutions as fast as possible.

We excluded the graph (g23) from our evaluation since
there is a large gap between the value of the published color-
ings and the stated value of the corresponding colorings and
we did not want to exploit this gap in our evaluation. The re-
maining 70 graphs are of two types: 34 graphs are unit graphs
(where each edge has weight 1) and 36 graphs are signed
graphs (where each edge has weight 1 or -1). For each of
these graphs, we ran experiments for each c ∈ {2, 3, 4} with
a time limit of 30 minutes and the published MOH solution
as initial solution. In addition to LS, for each instance we ran
standard ILP-formulations1 for MAX c-CUT (again with 30
minute time limit) using the Gurobi solver version 9.5, once
without starting solution and once with the MOH solution as
starting solution. Each run of an ILP provides both a best
found solution and an upper bound on the maximum value of
any c-coloring for the given instance. Each experiment was
performed on a single thread of an Intel(R) Xeon(R) Silver
4116 CPU with 2.1 GHz, 24 CPUs and 128 GB RAM.

The ILP upper bounds verified the optimality of 22 MOH
solutions. Thus, of the 210 instances, only 188 instances are
interesting in the sense that LS or the ILP can find an im-
proved solution. The upper bounds also verified the optimal-
ity of 8 further improved solutions found by LS or ILP.

In total, the ILP found better colorings than the MOH col-
oring for 43 of the 188 instances. In comparison, LS was able
to improve on the MOH solutions for 69 instances of the 188
instances. Table 1 gives the results for c = 3, showing those
instances where the MOH coloring was verified to be opti-
mal by the ILP or where LS or the ILP found an improved
coloring.

Over all c ∈ {2, 3, 4}, on 35 instances, both LS and the ILP
found improved colorings compared to the MOH coloring.
For c > 2, both approaches find new record colorings. More
precisely, for 23 instances, only the ILP found a new record

1Details on the ILP-formulation are provided in a full version of
this work.

Table 2: The number of instances where LS or ILP found improved
solutions. Column ’improvable’ shows how many best known MOH
colorings [Ma and Hao, 2017] might be suboptimal (as they do not
meet the ILP upper bounds). Columns LS and ILP show how many
of these solutions where improved by the respective approaches.
Columns I1, I2, and I3 show for how many instances the first im-
provement was found by LS within 10 seconds, between 10 and 60
seconds, and after more than 60 seconds, respectively.

improvable I1 I2 I3 LS ILP
unit c = 2 31 2 1 0 3 2
unit c = 3 30 8 0 0 8 3
unit c = 4 28 5 3 1 9 4

signed c = 2 29 1 1 0 2 6
signed c = 3 36 19 2 1 22 14
signed c = 4 34 20 5 0 25 14

sum 188 55 12 2 69 43

coloring; for 6 instances, both approaches found a new record
coloring, and for 38 instances only LS found a new record
coloring. Thus, LS finds improvements also for very hard
instances on which MOH provided the best known solutions
so far.

The MOH solutions were obtained within a time limit of
30, 120, and 240 minutes for small, medium, and large in-
stances, respectively. Each such run was repeated at least 10
times. The average time MOH took to find the best solution
was 33% of the respective time limit. Hence, on average, after
MOH found their best solution, in the remaining time (at least
20 minutes), MOH did not find any better solution. For all in-
stances where LS was able to improve on the MOH solution,
the average time to find the first improving flip was 15.17 sec-
onds. For an overview on the number of improved instances
and the time when LS found the first improvement, see Ta-
ble 2. It is also interesting to see for which value of k the first
improvement was found (in other words, the smallest value k
such that the MOH solutions are not k-flip optimal). On av-
erage, this value was 3.39. Hence, it is indeed helpful to con-
sider larger values of k than the commonly used values of 1
or 2.

7 Conclusion
We summarize our main experimental findings as follows.
First, parameterized local search can be used successfully as
a post-processing for state-of-the-art heuristics for MAX c-
CUT, in many cases leading to new record solutions for c > 2.
Second, the number of instances where an improvement was
found is larger for LS than for the ILP approaches. Third, to
find improved solutions, it is frequently necessary to explore
k-flip neighborhoods for larger values of k. Finally, this can
be done within an acceptable amount of time by using our
algorithm for LS MAX c-CUT and our speed-up strategies.
Altogether, these findings indicate that parameterized local
search is a promising technique in the design of local search
algorithms and that its usefulness should be explored for fur-
ther hard problems.
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[Schäffer and Yannakakis, 1991] Alejandro A. Schäffer and
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