
Department of Mathematics & Computer Science

Algorithmics Research Group

Master-Thesis

Cluster Deletion on Unit Disk Graphs

Author: Sebastian Ochs

Supervisors: Prof. Dr. Christian Komusiewicz

Dr. Frank Sommer

Jaroslav Garvardt, M. Sc.

September 30, 2023



Eigenständigkeitserklärung

Hiermit versichere ich, Sebastian Ochs, dass ich die vorliegende Arbeit mit
dem Titel ,,Cluster Deletion on Unit Disk Graphs” selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.
Diese Arbeit wurde in dieser oder ähnlicher Form noch keiner anderen
Hochschule vorgelegt und hat noch keiner anderen Prüfungsleistung gedient.

Marburg, den 30.09.2023

2



Abstract.

For an undirected graph G and a natural number k, the
Cluster Deletion problem asks whether G can be transformed
into a cluster graph by deleting at most k edges. The related
Cluster Editing problem asks whether G can be transformed
into a cluster graph by k edge modifications, that is, the addition
or the deletion of an edge. The intersection graphs of unit diameter
circles in the two-dimensional plane are called unit disk graphs.
In this work, we show that Cluster Deletion and Cluster
Editing are NP-hard even on planar unit disk graphs with
maximum degree 4. Under the exponential time hypothesis (ETH),
we show a running time lower bound of 2o(

√
n+m) for Cluster

Deletion and Cluster Editing, also on planar unit disk graphs
with maximum degree 4. In the second part of this work, we
present an FPT-algorithm for Cluster Deletion parameterized
by treewidth ω. Our algorithm has a running time of O(3ω · ω · n),
provided that a nice tree decomposition of width ω is given.
We conclude that on unit disk graphs of constant maximum degree
as well as on planar graphs Cluster Deletion can be solved
in 2O(

√
n) · n1.5 time, which matches our running time lower bound

up to a polynomial factor.

3



Contents

1 Introduction 5
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10
2.1 Boolean Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Computational Complexity Theory . . . . . . . . . . . . . . . 11
2.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Graph Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Simple Observations for Cluster Deletion . . . . . . . . . 17

3 Running Time Lower Bound 18
3.1 Special Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Triangle-Ring . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Triangle-Star . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Construction . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Implications for Cluster Editing . . . . . . . . . . . . . . . 36

4 Parameterized Complexity 37
4.1 Cluster Deletion parameterized by Treewidth . . . . . . . 37

4.1.1 Dynamic Algorithm . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Termination . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Running Time . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.4 Space Complexity . . . . . . . . . . . . . . . . . . . . . 44

4.2 Direct Implications . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Adaptions for related problems . . . . . . . . . . . . . . . . . 45

4.3.1 Clique Partition . . . . . . . . . . . . . . . . . . . 46
4.3.2 Clique Packing . . . . . . . . . . . . . . . . . . . . 47

5 Conclusion 49
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4



1 Introduction

Clustering is the process of splitting a set of objects into groups so that
the objects within a group are similar and objects from different groups are
dissimilar. As a form of exploratory data analysis, clustering is a central
technique in unsupervised machine learning with many fields of application,
including pattern recognition, data compression, bioinformatics and business
intelligence [30]. Naturally, there are many ways of formulating clustering
problems. Several of them are defined on graphs, where two objects,
represented by vertices, are similar if there is an edge between them.
Two well-studied graph clustering problems are Cluster Editing and
Cluster Deletion. In both problems, the goal is to transform a graph
into a cluster graph, where any two vertices share an edge if and only if
they are in the same group. The decision version of Cluster Deletion
asks whether it is possible to transform a graph G into a cluster graph by
deleting k edges. The decision version of Cluster Editing asks whether
it is possible to transform a graph G into a cluster graph by k edge modi-
fications, that is, additions or deletions. The optimization version of any of
the two problems asks for the smallest number k so that the problem can be
solved. In the general case, Cluster Editing and Cluster Deletion
are known to be NP-hard [54, 64]. For many different graph classes, the com-
plexity analysis of both problems has been settled, as efficient algorithms and
running time lower bounds are known.

In this work we study the problem of Cluster Deletion on unit disk
graphs, a subclass of simple undirected graphs. Unit disk graphs are the
intersection graphs of unit diameter circles in the two-dimensional plane.
For a set of points P ⊂ R2, the corresponding unit disk graph is created the
following way: For each point in P , we create a vertex. We then connect any
two vertices by an edge if and only if the distance between their associated
points is at most 1. Any graph that can be created in this way is a unit disk
graph. The set of points P is called a unit disk representation of the graph.
Different sets of equal size can have the same corresponding unit disk graph.
This definition gives rise to the hope that the geometrical properties of unit
disk graphs can be used to create efficient, perhaps even polynomial time
algorithms. To the best of our knowledge, neither Cluster Deletion nor
Cluster Editing has yet been explored on unit disk graphs.

5



1.1 Related Work

The NP-hardness of Cluster Editing has been shown even on graphs with
maximum degree 5 [31]. Cluster Deletion is NP-hard even on graphs
with maximum degree 4 and solvable in O(n1.5 log2(n)) time on graphs with
maximum degree 3 or less [49]. Note that we use n to denote the number of
vertices in a graph andm to denote the number of edges in a graph. Cluster
Editing is also known under the name Correlation Clustering [6],
whereas Cluster Deletion is sometimes called Maximum Edge Clique
Partition [29]. A cluster graph is eqivalently defined as a P3-free graph,
that is, a graph that contains no path on three vertices (P3) as an induced
subgraph.

Cluster Editing and Cluster Deletion are fixed-parameter
tractable for the number k of edge modifications required to transform the
graph G into a cluster graph [18]: Both problems can be solved by recursively
searching a P3 and considering the possible edge modifications to destroy it.
For Cluster Deletion, this results in a running time of O(2k · n3), as for
each P3, two possible edge deletions need to be considered. For Cluster
Editing, this results in a running time of O(3k ·n3), as one must also consider
adding an edge to turn the P3 into a triangle [18]. There have been multiple
improvements to this approach [40, 39, 8, 27]. They make use of a wide range
of techniques, such as solving connected components independently, merging
vertices which are to end up in the same cluster and calculating lower bounds
to terminate branches early. For Cluster Editing, the current best FPT-
algorithm has a running time of O(1.62k+n+m) [10], whereas, for Cluster
Deletion a running time of O∗(1.415k) has been achieved [7].

One reason why the parameter k of edge modifications has attracted
attention is that there exits a 2k-vertex kernel for both Cluster Editing
and Cluster Deletion [21][19]: It is possible inO(n+m) time to transform
any instance (G, k) of Cluster Editing into an equivalent instance (G′, k′)
with k′ ≤ k so that G′ has at most 2k′ vertices. The same algorithm also
produces a 2k-vertex kernel for Cluster Deletion and the related problem
of Strong Triadic Closure [20].

Under the exponential time hypothesis (ETH), both Cluster Editing
and Cluster Deletion cannot be solved in 2o(n+m) time [49]. Therefore,
any future improvements can only be expected to reduce the base of the
exponential function of the running times mentioned above. In search for
subexponential or even polynomial running times for Cluster Editing

6



and Cluster Deletion, one has to restrict the properties of the input
graph to a subclass. Cluster Deletion can be solved in polynomial time
on graphs where no edge is contained in three different P3s [27]. Cluster
Deletion can also be solved in polynomial time on cographs, that is, graphs
which do not contain a P4 [35]. In contrast, Cluster Deletion is NP-
hard even on P5-free chordal graphs [15], aswell as on planar graphs [38, 48].
Cluster Deletion can be solved in polynomial time on (unit) interval
graphs [15, 51]. The class of (unit) interval graphs is defined as the inter-
section graphs of (unit) intervals. They can, therefore, be considered the
one-dimensional pendant to (unit) disk graphs.

One of the central questions adressed in this work is the complexity of
Cluster Deletion on the class of unit disk graphs. There are several in-
duced subgraphs which cannot exist in unit disk graphs [5]. However, there
are up to 2

n
2 maximal cliques in unit disk graphs [69, 41] compared to 3

n
3 max-

imal cliques in general graphs. Although the upper bound is lower for unit
disk graphs, the number of maximal cliques still grows exponentially with the
number of vertices. Recognizing whether a graph is a unit disk graph, that is,
whether it has a unit disk representation, is NP-hard [17]. The best-known
problem that is NP-hard in the general case but solvable in polynomial time
on unit disk graphs is Clique. It is possible in O(n3.5 · log(n)) time to find
the biggest clique in a given unit disk graph [16]. This is true even if no
unit disk representation is given [63]. Independent Set, however, is NP-
hard on unit disk graphs [22]. The NP-hardness of many other problems
on unit disk graphs has also been proven, including: Vertex Cover [22],
Hamiltonian Cycle [45], Steiner Tree [36] and 3-Coloring [22].

Although most well-known graph problems that are NP-hard in the gen-
eral case are also NP-hard on unit disk graphs, there is some hope for finding
better running times: Many problems that, under the ETH, have a running
time lower bound of 2o(n) in the general case, have subexponential or FPT-
algorithms on unit disk graphs. Independent Set can be solved in O(2

√
n)

and in O(2
√
k + n) time on unit disk graphs [1]. Moreover, it is possible

to decide whether a given unit disk graph contains a path/cycle induced

by k vertices in 2O(
√
k·log(k)) · nO(1) time [32]. Under the ETH, this run-

ning time is tight up to the logarithmic factor in the exponent [32]. Also the

k-Coloring problem can be solved in 2O(
√
n·k·log(n)) time on unit disk graphs.

Again this running time is ETH-tight up to the logarithmic factor in the ex-
ponent [25]. Clique Vertex Cover and Clique Edge Cover can be

7



solved in O(n6k+2) time and O(n6k+3) time on unit disk graphs [42]. They
ask whether it is possible to cover the vertices/edges of a graph by selecting
k cliques. Both problems are, therefore, related to clustering problems.

With a recently presented framework it is possible to design subexponen-
tial algorithms and matching ETH lower bounds for problems on intersection
graphs of similarly-sized geometric objects [28]: There exist algorithms with
running times of 2O(

√
n) and, under the ETH, matching lower bounds for

many problems such as Independent Set, r-Dominating Set for con-
stant r, Steiner Tree, Hamilton Cycle/Path on unit disk graphs [28].

Another recently published framework makes use of the fact that disk
graphs of bounded clique size have bounded treewidth [58]. It can be used
to design subexponential FPT-algorithms for problems on disk graphs: For
some constant α < 1 there exist algorithms with running times of 2O(kα)nO(1)

for Triangle Hitting, Feedback Vertex Set and Odd Cycle
Transversal on disk graphs [58].

One general observation for problems on unit disk graphs is that many
running time lower and upper bounds are of the form 2O(

√
n) or similar to

it. A graph class where the same observation can be made is the class of
planar graphs. This has been called the square root phenomenon of planar
graphs [62]. It can be attributed to the fact that any planar graph has a
separator consisting of O(

√
n) vertices [56]. A stronger result is that any

planar graph has treewidth ω < 3.182
√
n [34].

The graph parameter treewidth ω is commonly described as a measure of
how tree-like a graph is. A tree has a treewidth of 1, whereas a clique con-
sisting of c vertices has a treewidth of c− 1. Since unit disk graphs can have
arbitrarily large cliques, they can also have arbitrarily large treewidth. If we
do, however, restrict the maximum degree ∆ of a unit disk graph to a con-
stant, we get the following bound on its treewidth: ω ∈ O(∆3

√
n) [33]. There

are other graph classes that have bounded treewidth as well [13, 65]. For this
reason, much research has been devoted to the design of FPT-algorithms
for the parameter treewidth [11, 67, 57, 26]. The problems of Minimum
Clique Partition and Maximum µ-Clique Packing can be solved in
O(2ω · poly(ω) · n) if a tree decomposition of width ω is given [68]. This
is notable as both problems can be considered graph clustering problems.
It is known that Cluster Deletion is fixed-parameter tractable for the
parameter treewidth [50]. To the best of our knowledge, no FPT-algorithm
for Cluster Deletion parameterized by treewidth has yet been presented.

8



1.2 Our Results

In Chapter 3 we present a polynomial-time reduction of 3-Sat to Cluster
Deletion and Cluster Editing on unit disk graphs. More precisely,
we show that both Cluster Deletion and Cluster Editing remain
NP-hard, even when restricted to planar unit disk graphs with maximum
degree 4. For Cluster Editing, this is the first proof of NP-hardness on
graphs of maximum degree 4, as previously NP-hardness was known only
on graphs with maximum degree 5 [31]. Assuming the exponential time
hypothesis (ETH), we show that both Cluster Deletion and Cluster
Editing cannot be solved in 2o(

√
n+m) time on planar unit disk graphs with

maximum degree 4.
In Chapter 4 we present an FPT-algorithm for Cluster Deletion

parameterized by treewidth ω that has a running time of O(3ω · ω · n)
if a nice tree decomposition of width ω is given and 2O(ω) · ω · n otherwise.
This answers the question of whether such an algorithm admits a single expo-
nential running time, recently mentioned by Italiano et al. [46]. Furthermore,
we conclude that Cluster Deletion can be solved in 2O(

√
n) · n1.5 time on

planar graphs and on unit disk graphs of constant maximum degree, as both
graph classes are subject to the bound ω ∈ O(

√
n) [34][33]. We observe

that this running time matches the lower bound stated in Chapter 3 up to a
polynomial factor.

9



2 Preliminaries

In this chapter we will explain the terminology and specify the notations
used throughout this work. We first give a brief introduction to the fields of
boolean algebra and computational complexity theory. We then explain the
notations used to describe graphs and state the definitions of the different
graph classes considered in this work. Subsequently, we define all graph prob-
lems considered in terms of their inputs and outputs. Finally, we state some
simple observations about Cluster Deletion which will help to simplify
further statements.

2.1 Boolean Algebra

In the following, we provide a brief introduction to boolean algebra, a fun-
damental cornerstone of computer science. Boolean algebra is based on the
values true and false. With the operator NOT, denoted by an overline,
values can be negated: true = false. The operator AND, denoted by ∧,
takes in two values and evaluates to true if and only if both of them are
true. The operator OR, denoted by ∨, takes in two values and evaluates to
true if at least one of them is true. Operators can be combined with boolean
variables to express logical propositions, called boolean formulas. Let X be a
set of boolean variables. An assignment α : X → {true, false} maps every
variable of X to a boolean value. A boolean formula Φ over the variable
set X is a function that maps each possible assignment of X to a boolean
value. The formula Φ is satisfiable if and only if there exists an assignment
for its variables so that Φ evaluates to true. The occurrences of the vari-
ables in the formula itself, together with a possible negation, are referred to
as literals L = {`1, ..., `|L|} where `i ∈ {x | x ∈ X} ∪ {x | x ∈ X} for i ∈ N,
i ≤ |L|. Note that L is a multiset, as literals can appear multiple times.
A clause consists of literals which are joined together by operators. For a
multiset of literals L = {`1, `2...}, a clause of the form (`1∧ `2∧ ...) is called a
conjunction, whereas a clause of the form (`1∨ `2∨ ...) is called a disjunction.
A formula Φ is in conjunctive normal form (CNF) if it is a conjunction of
disjunction-clauses. Furthermore, a formula Φ is in 3-CNF if it is in CNF
and every disjunction contains at most three literals. The 3-Sat problem is
defined in the following way.

10



3-Sat
Input: A boolean formula Φ in 3-CNF
Question: Is Φ satisfiable ?

Without loss of generality, we assume that for any instance of 3-Sat, in the
formula Φ all clauses consist of exactly 3 literals. We also assume that each
variable appears at least twice, as otherwise its assignment would be trivial.

Let Φ be a formula in 3-CNF with the variable set X and the clause set C.
The associated graph of Φ is created in the following way: We create a vertex
for every variable in X and for every clause in C. We then create an edge for
every literal in Φ from the vertex of its clause to the vertex of its variable.
The problem of Planar 3-Sat is defined similarly to 3-Sat with the only
difference being that the associated graph of the input formula Φ is planar.
Both 3-Sat and Planar 3-Sat are NP-complete [23, 55].

2.2 Computational Complexity Theory

The field of computational complexity theory aims to answer questions about
the requirements necessary to solve computational problems in terms of
space and running time. In the following, we briefly go over some of the
key concepts in the field. A detailed introduction can be found in several
textbooks [4, 37].

Running Time: The number of steps it takes an algorithm to terminate
in the worst-case is called its running time. When analyzing the running
time of an algorithm, the goal is to bound its running time by a function.
The variables of this running time function can depend on both the input
and the output of the algorithm.

Decision Problem: For a finite alphabet Σ a language L is a subset of
Σ∗. The question of whether a word x ∈ Σ∗ is part of the language L ⊆ Σ∗

is the decision problem PL : Σ∗ → {true, false}. We have:
PL(x) = true ⇔ x ∈ L ⇔ x is a yes-instance of PL.

11



Reduction: Let L1 and L2 be two languages. A reduction from PL1 to PL2
r : Σ∗ → Σ∗ is a computable function so that x ∈ L1 ⇔ r(x) ∈ L2. We
call r a polynomial time reduction from PL1 to PL2 if and only if there exists
an algorithm that, for each x ∈ Σ∗, computes the result r(x) in a running
time polynomial in |x|. In other words: For an instance p1 of a decision
problem P1 a reduction constructs an equivalent instance p2 of another prob-
lem P2. We could now solve the instance p1 by solving p2. This way, we can
show that solving the problem P1 takes at most the time required to perform
the reduction and subsequently solve the problem P2.

P vs. NP: In the field of complexity theory desicion problems are divided
into different categories called complexity classes. The class P is made up
of problems that can be solved in polynomial time by a deterministic turing
machine. The class NP is made up of problems that can be solved in polyno-
mial time by a non-deterministic turing machine and verified in polynomial
time by a deterministic turing machine. We have P ⊆ NP. The assumption
that there are problems that cannot be solved in polynomial time by a de-
terministic turing machine, namely P 6= NP, is widely believed to be true.
A problem is NP-hard if there exists a polynomial time reduction from any
problem in NP to it. A problem is NP-complete if it is both NP-hard and in
NP. The complexity class of a problem tells us whether or not there exists
an algorithm for it with a running time bounded by a polynomial function.
It does, however, not tell us anything about the specific form of this function.

ETH: A stronger assumption, which implies P 6= NP, is the exponential time
hypothesis (ETH). It states that for any integer k ≥ 3, there exists a number
sk > 0 so that k-SAT cannot be solved in 2(sk−ε)n time, where ε > 0 [43].
Under the ETH it is possible to give running time lower bounds [44]: 3-SAT
cannot be solved in 2o(|X |+|C|) time, unless the ETH is false. Note that X
and C are the variables and clauses of the given formula.

Further remarks: We assume that, in our computational model, basic
arithmetic operations, such as adding or multiplying two integers, as well
as querying a table for a single value, are possible in constant time. This is
particularly relevant when analyzing the running time of dynamic algorithms
on tree decompositions [14], as we do in Chapter 4.

12



2.3 Graphs

A graph G = (V,E) consists of a set of vertices V and a set of edges
E ⊆ {{u, v} : u, v ∈ V }. The sizes of those sets are denoted with n = |V |
and m = |E|. We say two vertices u, v ∈ V are adjacent if {u, v} ∈ E. The
edge {u, v} is incident with the vertices u and v. For a vertex v we denote
its neighborhood by N(v) = {u ∈ V : {u, v} ∈ E}. We refer to the vertices
in N(v) as the neighbors of v. The number of neighbors of a vertex v is
denoted by degreeG(v) = |N(v)|. Note that we omit the subscript when the
graph is clear from the context. The maximum degree of a graph G is defined
as ∆ = maxv∈V degree(v).

Let G = (V,E) be a graph. The graph G′ = (V ′, E ′) is called an induced
subgraph of G if V ′ ⊆ V and E ′ = {{u, v} ∈ E : u, v ∈ V ′}. We also
refer to G′ as the graph induced by V ′. For a vertex set S ⊆ V we denote
with G− S the graph induced by the vertex set V \S.

Let G = (V,E) be a graph. A sequence of distinct vertices σ = (v1, ..., v`)
is a path of length ` if {vi, vi+1} ∈ E for all i ∈ [1, ` − 1]. It is also denoted
as a P` or as a (v1, v`)-path since it starts at v1 and ends at v`. A connected
component C = (V ′, E ′) is a maximal induced subgraph of G so that for
every pair of vertices u, v ∈ V ′ there exists a (u, v)-path in G. Every vertex
of a graph belongs to exactly one connected component. A graph is connected
if it has only one connected component. All graphs considered in this work
are simple and undirected, meaning edges have no weight and no direction.

Basic Graph Classes

A graph G = (V,E) is a ...
... triangle, if we have |V | = 3 and |E| = 3.
... diamond, if we have |V | = 4 and |E| = 5.
... (cordless-) cycle, if it is connected and each vertex v has degree(v) = 2.
... tree, if it is connected and contains no cycle as an induced subgraph.
... clique of size s ∈ N, if |V | = s and |E| =

(
s
2

)
.

... cluster graph, if every connected component of G is a clique.

For a number s ∈ N the graph G = (V,E) is called an s-star if it has a
vertex vc ∈ V so that degree(vc) = s = |V |−1 = |E|. The vertex vc is called
the center of the s-star.

13



Planar Graphs

A graph is planar if it can be drawn in the two-dimensional plane in such
a way that no two edges cross each other. More formally, vertices are
represented by distinct points and edges are represented by non-intersecting
curves between the points of their vertices.

Unit Disk Graphs

Let P ⊂ {(x, y) : x, y ∈ R} be a set of points in the two-dimensional plane.
The unit disk graph corresponding to P is created the following way: For
each point we create a vertex. We then connect each pair of vertices by
an edge if and only if their points have a euclidean distance of at most 1.
A graph G = (V,E) is a unit disk graph if it can be created this way.
In other words: G is a unit disk graph if there exists a set of points P
so that G is equivalent to the unit disk graph corresponding to P . We
call P a unit disk representation of G.

Tree Decompositions

A tree decomposision of a graph G is a graph D = (I,Λ) with a set of
nodes I that are connected by the edges Λ to form a tree. Each node i ∈ I
is associated with a vertex set Vi ⊆ V that is called its bag, so that:

1. each vertex is part of at least one bag,
2. for each vertex v, the nodes that contain v in its bag induce a tree in D,
3. for each edge, both of its vertices are part of at least one bag.

A nice tree decomposition of a graph G is a tree decomposition of G that is
a binary tree with the root node r so that the bag of r is empty, Vr = ∅, and
furthermore, each node is of exactly one type:

1. a leaf node i has no child nodes and its bag is empty: Vi = ∅,
2. an introduce node i has one child node j so that Vi = Vj ∪ {v},
3. a forget node i has one child node j so that Vi = Vj\{v},
4. a join node i has two child nodes j and ` so that Vi = Vj = V`.

Let G be a graph and let D = (I,Λ) be a nice tree decomposition of G.
For a node i ∈ I we denote with Gi the graph induced by the vertices in Vi
and all vertices in bags of nodes that appear below i in D. Note that we also
refer to i as a node i ∈ D.

14



The width ω of a (nice) tree decomposition D is defined as the maximum
number of vertices in a bag minus one: ω = maxi∈D |Vi| − 1. The treewidth
of a graph G is the smallest possible width ω of any tree decomposition D of
G. Calculating the treewidth of a graph is NP-hard [3]. For a graph G and
any fixed ω it is possible in 2O(ω3) · n time to compute a tree decomposition
of width ω or to determine that the treewidth of G is greater than ω [12].
There is also a recent algorithm which achieves the same result in 2O(ω2) · n4

time [53]. As both running times contain a double exponential factor, to
compute tree decompositions one often uses approximations with smaller
running times. For a graph G and any fixed ω it is possible in 2O(ω) · n time
to compute a tree decomposition of width at most 2ω + 1 or to determine
that the treewidth of G is greater than ω [52]. One can assume that any
tree decomposition computed or given has at most n nodes. Otherwise it
would be redundant in the sense that it would contain a node whose bag is
a subset of another bag [2]. When given a tree decomposition of width ω, it
is possible in O(ω2 · n) time to create a nice tree decomposition of width ω
that has at most O(ω · n) nodes [2].

The treewidth is commonly described as a measure of how treelike a graph
is. A tree has ω = 1 and a clique has ω = n− 1. A graph with treewidth ω
contains no clique of size ω + 2.

15



2.4 Graph Problems

In the following, the graph problems considered in this work are formally de-
fined. The two main problems adressed are Cluster Editing and Cluster
Deletion. They are closely related, as their definitions show:

Cluster Deletion
Input: A Graph G = (V,E) and an integer k.
Question: Can G be transformed into a cluster graph by deleting

at most k edges ?

Cluster Editing
Input: A Graph G = (V,E) and an integer k.
Question: Can G be transformed into a cluster graph by at most k

edge modifications, that is, additions and deletions ?

Let G be a graph. The minimum number k for which (G, k) is a yes-instance
of Cluster Deletion is greater than or equal to the minimum number k′

for which (G, k′) is a yes-instance of Cluster Editing.
The Clique Partition problem can also be considered a graph clus-

tering problem. Similarly to Cluster Deletion, the goal is to group the
vertex set of G into cliques. Clique Partition seeks to minimize the num-
ber of cliques, whereas Cluster Deletion seeks to maximize the number
of edges within the cliques.

Clique Partition

Input: A Graph G = (V,E) and an integer k.
Question: Can V be divided into k disjoint subsets V1, ..., Vk ⊆ V

so that each subset induces a clique ?

µ-Clique Packing

Input: A Graph G = (V,E) and an integer k.
Question: Is it possible to create k disjoint subsets V1, ..., Vk ⊆ V

so that each subset induces a clique of size µ?

Note that these are the decision versions of the problems. They ask
whether there exists a solution of a given size k. The optimization versions
ask for the smallest/biggest k for which there exists a solution of size k.

16



2.5 Simple Observations for Cluster Deletion

In the following, we list some known reduction rules for instances of Cluster
Deletion. We will not prove them, as they are straightforward and can be
considered common knowledge. Additionally, we state two lower bounds on
the number of edge deletions required to turn certain induced subgraphs
into cluster graphs. These are also stated without a proof, but will help to
simplify further statements.

Reduction Rule 1 Let G be a graph with multiple connected components.
We can solve Cluster Deletion independently on each connected compo-
nent. The solution size k of Cluster Deletion on G is the sum of the
solution sizes for all connected components.

Reduction Rule 2 For a graph G = (V,E) let {u, v}, {v, w} ∈ E be edges.
Further let degree(u) = 1 and degree(v) = 2. We can delete the edge {v, w}
from G and reduce k by 1.

Reduction Rule 3 For a graph G = (V,E) let {v1, v2, v3} be a triangle so
that degree(v1)+degree(v2)+degree(v3) = 7. Let u ∈ V be the only neighbor
of this triangle so that {v1, u} ∈ E. We can delete the edge {v1, u} and
reduce k by 1.

Reduction Rule 4 For a number s ∈ N let G = (V,E) be an s-star. We
can delete all edges except one and reduce k by s− 1.

Reduction Rule 5 For a graph G = (V,E) let {v1, v2, v3, v4} ∈ V be
vertices that induce a P4 with the edges {v1, v2}, {v2, v3}, {v3, v4} ∈ E. Let
N(v1) ∩N(v4) = ∅, degree(v2) = 2 and degree(v3) = 2. We can remove the
vertices v2 and v3 as well as the edges incident with them, add the edge {v1, v4}
and reduce k by 1.

Lower Bound 1 For a number ` ∈ N, let G be a graph that contains a P`
as an induced subgraph. In any optimal solution of Cluster Deletion
on G, at least b `−1

2
c edges of this P` are deleted.

Lower Bound 2 For a number s ∈ N, let G be a graph that contains an
s-star Gs as an induced subgraph. In any optimal solution of Cluster
Deletion on G, at least s− 1 edges of Gs are deleted.

17



3 Running Time Lower Bound

In this chapter we will study the complexity of Cluster Deletion on unit
disk graphs.

Theorem 1 Cluster Deletion is NP-hard even on planar unit disk graphs
with maximum degree 4.

To prove Theorem 1, we present a polynomial-time reduction of 3-SAT to
Cluster Deletion on unit disk graphs. In Section 3.1 we define two types
of subgraphs and show how they help in expressing boolean formulas as
equivalent instances of Cluster Deletion. Section 3.2 contains the for-
mal description of our reduction. In Section 3.2.1 we define a set of gadgets
by giving unit disk representations for them. In Section 3.2.2 we explain how
the gadgets can be combined to construct a unit disk graph G from a given
instance of 3-SAT. We also calculate the number of edge deletions needed to
turn G into a cluster graph. In Section 3.2.3 we prove that the constructed in-
stance of Cluster Deletion is equivalent to the given instance of 3-SAT.
As our reduction takes only polynomial time, we obtain the NP-hardness of
Cluster Deletion on unit disk graphs. The structural properties of the
constructed unit disk graph imply the constraints in Theorem 1.

Theorem 2 Cluster Deletion cannot be solved in 2o(
√
n+m) time on

planar unit disk graphs with maximum degree 4, unless the ETH fails.

In Section 3.2.4 we prove Theorem 2 by bounding the size of the graph
constructed in our reduction.

Overview of Reduction

Most reductions from 3-SAT to graph problems have a common pattern:
Based on a given formula Φ one constructs a graph consisting of so called
gadgets for both the variables and clauses and then connects them according
to Φ. A fundamental challenge when following this pattern to construct a
unit disk graph is that we cannot create edges arbitrarily. The unit disk
graph constructed in our reduction therefore has a clear layout, which is
exemplified in Figure 1.

18



Figure 1: Schematic of a constructed unit disk graph with 3 Variable Gadgets
(yellow), 2 Clause Gadgets (green), Cable Gadgets (light blue), Crossing
Gadgets (dark blue) and Interface Vertices (red).

The two-dimensional space is divided into a grid so that we can distinguish
between tiles of size 15 × 15 individually. The clause gadgets are lined up
horizontally, just below the X-axis. The size of a clause gadget is fixed; it
takes up three tiles, one for each literal. The variable gadgets are lined up
vertically, just left of the Y-axis. The size of a variable gadget varies; it takes
up one tile for each occurence of its variable in the formula Φ. The structure
of the formula Φ, more specifically its associated graph, is modeled by cable
gadgets. Each cable gadget takes up a single tile. For each literal we form a
path consisting of cable gadgets from the corresponding clause gadget to the
corresponding variable gadget. In tiles where two cable gadgets would cross
each other we place a crossing gadget instead. This is necessary because due
to the nature of unit disk graphs placing two cable gadgets on top of each
other would induce additional edges.

19



Our crossing gadget is inspired by the crossing gadget used in a reduction
of 3-SAT to Planar 3-SAT to show its NP-hardness [55]. There are many
more variants of Planar 3-SAT, a lot of them are NP-hard as well [66].
To show the NP-hardness of Cluster Deletion on unit disk graphs a
reduction from any of these variants would suffice. This would not require a
crossing gadget, as by definition the associated graph of a formula in planar
3-CNF is planar. The reason we reduce from 3-SAT is that its running time
lower bound, assuming the ETH, is stronger. In fact, the ETH itself implies
that 3-SAT cannot be solved in 2o(|C|) time, where C is the number of clauses
in the given 3-CNF formula [43].

3.1 Special Subgraphs

In this section we introduce two specific graph structures and calculate the
number of edge deletions it takes to transform them into cluster graphs. We
then show how they will help in our endeavor of expressing boolean formulas
as instances of Cluster Deletion.

3.1.1 Triangle-Ring

The first structure is called a triangle-ring. As seen in Figure 2, it consists of
an even number of triangles which form a ring so that any two neighboring
triangles share a vertex.

Definition 1 (Triangle-Ring) For s ∈ N with s mod 2 = 0 and s ≥ 4, the
graph G = (V,E) is called a triangle-ring of size s if it can be constructed in
the following way:
1. Construct a cordless cycle consisting of s vertices and s edges.
2. For each edge {u1, u2} of this cycle add a vertex v with N(v) = {u1, u2}.

When talking about a triangle-ring, the vertices of the cordless cycle are
referred to as the inner vertices. The other vertices of a triangle-ring are
referred to as the outer vertices. Note that each inner vertex has degree 4
and each outer vertex has degree 2. Further note that the size s is defined
to be an even number, as all triangle-rings used in the reduction have even
size. Finally note that a triangle-ring of size s has exactly 2 · s vertices
and 3 · s edges. In the context of Cluster Deletion, the term deleting
the triangles alternatingly refers to the deletion of the edges of every second
triangle in the ring.

20



Figure 2: Triangle-Rings of sizes 4, 6 and 8 along with a clustering of the
triangle ring of size 8 which matches Lower Bound 3. Some of the edge
disjoint P3s are highlighted in different colors.

Lower Bound 3 Let G be a graph that contains a triangle-ring GT of size s
as an induced subgraph. To transform G into a cluster graph, at least half of
the edges of GT have to be deleted. Moreover, there are exactly two ways of
transforming GT into a cluster graph while still matching this bound. Both
entail deleting the triangles alternatingly.

Proof. We show the lower bound by showing that there are 1.5s edge disjoint
P3s in GT . This can also be seen in Figure 2. Firstly, consider the cordless
cycle that is formed by the inner vertices. As it consists of s edges, there
are clearly 0.5s edge disjoint P3s in this cordless cycle. Secondly, consider
the other 2s edges of GT , more precisely the edges incident to outer vertices.
Each inner vertex forms a P3 with two outer vertices. Note that these P3s are
edge disjoint from each other and from the P3s of the cordless cycle. As there
are s inner vertices, there are s edge disjoint P3s within the edges incident to
outer vertices. This brings the total to 1.5s edge disjoint P3s. We therefore
know that in GT at least 1.5s edges have to be deleted. This is exactly half of
all edges of GT . As seen in Figure 2, this bound can be matched by deleting
the triangles alternatingly. Thus, in any optimal clustering, in each of the
described P3s exactly one edge has to be deleted. There are exactly two
ways of transforming the cordless cycle into a cluster graph while deleting
exactly one edge in each P3. For both of these ways we can directly derive
an optimal clustering of GT . Consider an edge {v1, v2} ∈ E of the cordless
cycle that does not get deleted and thus is part of a cluster. This cluster
can only consist of vertices that are adjacent to both the vertices v1 and v2.
There is only one outer vertex that satisfies this condition. Therefore, all
edges incident to v1 or v2 that are not part of the triangle {v1, v2, v3} have to
be deleted. Performing this for all 0.5s remaining edges of the cordless cycle
deletes s edges and leaves GT as a cluster graph consisting of s triangles. In
total this procedure deletes 0.5s+ s = 1.5s edges. �

21



(a) (2,2) (b) (2,3) (c) (0,4)

Figure 3: Triangle-Stars with different signatures.

3.1.2 Triangle-Star

The second structure is called a triangle-star. As seen in Figure 3, it consists
of a star and a number of triangles.

Definition 2 (Triangle-Star) For t, s ∈ N with t ≤ s, the graph G = (V,E)
is called a triangle-star with signature (t, s) if it can be constructed in the
following way:
1. Construct an s-star.
2. Add t vertex-disjoint triangles so that each of them shares a vertex with
one individual non-center vertex of the s-star.

Lemma 1 Let G be a triangle-star with signature (t, s). Let k be the smallest
number of edges that have to be deleted to transform G into a cluster graph.
We have:

k =

{
s if t = s,

s− 1 if t < s.

Proof. For every triangle we apply Reduction Rule 3. This results in the
deletion of t edges. The remaining graph is a star with s− t edges. If t = s
we are done and the total cost is equal to s. If t < s we apply Reduction
Rule 4, which results in the deletion of (s − t) − 1 edges. The total cost is
then equal to s− 1. �

22



(a) Constructed Graph.

(b) 4 clusterings for 4 assignments. Observe that
one triangle-star requires 2 edge deletions (red), the
others only require 1 edge deletion (green)

Figure 4: The formula (x ∨ y) as an instance of Cluster Deletion.

Expressing Boolean Formulas as Instances of Cluster Deletion

To show how the special instances defined in the previous sections can be
used to model boolean formulas, we give a simple example. We construct
a graph which models the clause (x ∨ y). It can be seen in Figure 4a.
We construct two triangle-rings of size 4 and mark their triangles alternat-
ingly with x and x as well as with y and y respectively. We then connect a
triangle marked with x and a triangle marked with y by a P3. The reason why
this graph models the formula (x ∨ y) becomes apparent when considering
how an optimal clustering of it looks. By Lower Bound 3, in the triangle-
rings at least 2 · 6 = 12 edges have to be deleted. Moreover, in combination
there are exactly 22 = 4 ways of matching this bound by alternatingly delet-
ing the triangles of both of the triangle-rings. Performing any of them would
leave a triangle-star with signature (t, 2) where t ∈ {0, 1, 2}, as Figure 4b
shows. By Lemma 1, this triangle-star has cost 2 if it has signature (2, 2)
and cost 1 otherwise. In other words: If performing the edge deletions in
the triangle-rings leaves a triangle-star with two triangles, the clustering re-
quires an additional edge deletion and is thus not optimal. Now we take into
account the markings of the triangles: The only way for the triangle star to
require an additional edge deletion is if the triangles marked with x and y
get deleted. This corresponds to the assignment x and y which is the only
assignment that does not satisfy the clause (x ∨ y).

23



In the following, we sketch how to construct a graph from an arbitrary
formula Φ in 3-CNF with the variable set X and the clause set C. Variables
are modeled by triangle-rings. For each x ∈ X , we construct a triangle-ring
and alternatingly mark its triangles with x and x. The size of the triangle-
ring depends on the number of occurrences of the variable x. Clauses are
modeled by 3-stars. For each clause c ∈ C, we add a vertex vc and add
three edges to connect vc to three triangles that are marked according to the
literals of the clause c. This way, if we were to delete the triangles of the
triangle-rings alternatingly, the resulting graph does only consist of triangle-
stars of signature (t, 3) where t ∈ {0, 1, 2, 3}.

We can summarize the central idea behind our reduction as follows: The
constructed graph G corresponds to the given formula Φ. The triangle-rings
in G correspond to the variables X . For a variable-ring, the two possible
clusterings matching Lower Bound 3 correspond to the two boolean values a
variable can assume. Deleting the triangles of the triangle-rings alternatingly
corresponds to picking an assignment α : X → B. The resulting triangle-
stars correspond to the clauses C after filling in the boolean values according
to α but before evaluating the clauses themselves. A triangle getting deleted
corresponds to a literal being set to true. A triangle not getting deleted and
therefore being present in a triangle-star corresponds to a literal being set
to false. Remember that the signature (t, s) of a triangle-star refers to the
number of triangles t and the s-star. Further remember that a triangle-star
has a clustering matching Lower Bound 1, if and only if t < s. A triangle-
star having a signature of (t, 3) where t ∈ {0, 1, 2} corresponds to a clause
evaluating to true. A triangle-star having a signature of (3, 3) corresponds to
a clause evaluating to false. Solving Cluster Deletion on a triangle-star
corresponds to evaluating a clause. A clustering of G that matches Lower
Bound 2+3 corresponds to a satisfying assignment of Φ.

Towards Unit Disk Graphs

When constructing a unit disk graph, we cannot create edges arbitrarily.
Implementing the ideas described above to express boolean formulas as in-
stances of Cluster Deletion on unit disk graphs therefore comes with
a challenge. One can see that triangle-rings can be created in unit disk
graphs by carefully crafting a unit disk representation. However, connecting
them directly with 3-stars is only possible for very simple formulas, as the
triangle-rings would have to be placed closely together. To overcome this

24



Figure 5: Top: The clause (x∨ y∨ z) as an instance of Cluster Deletion
on unit disk graphs. Note the cables consisting of 2 and 6 edges (orange).
Middle: The satisfying assignment {x, y, z} → {true, true, false}.
Bottom: The non-satisfying assignment {x, y, z} → {false, true, false}.

challenge, we make use of Reduction Rule 5. Remember that Reduction
Rule 5 allows us to replace an induced P4 by an edge, if its middle vertices
have no other neighbors. Generally speaking, Reduction Rule 5 allows us to
shorten the length of paths. Consider the edges of a 3-star as paths consist-
ing of only one edge. In our construction, we extend these paths by adding
longer paths of even length, called cables. An example of this can be seen in
Figure 5. By exhaustive application of Reduction Rule 5, we could shorten
the paths until they consist of only one edge again. Note that this applica-
tion is only theoretical, as the graph would no longer be a unit disk graph.
It does, however, ensure that the instance constructed is equivalent.

25



3.2 Reduction

In this section we present our reduction of 3-SAT to Cluster Deletion
on unit disk graphs. We first define a set of gadgets by giving unit disk
representations of them. We then explain how to combine these gadgets to
construct a unit disk graph G from a given boolean formula Φ in 3-CNF.
We also describe how to calculate the critical cost k, which completes the
construction of the instance (G, k) of Cluster Deletion. We then prove
that (G, k) is equivalent to the instance of 3-SAT implied by Φ. In the last
part of this section we bound the size of the graph G which will allow us to
bound the running time of Cluster Deletion on unit disk graphs.

3.2.1 Gadgets

In the following, we formally define the gadgets used in our reduction. We
do this by showing a unit disk representation of each type of gadget, that
is, a set of points in the two-dimensional plane. This way we make sure the
gadgets can in fact be created in unit disk graphs. First we do, however,
establish a way of reliably connecting different gadgets.

Interface Vertex Connecting two gadgets, as it is often done in reduc-
tions, is not trivial when constructing a unit disk graph. For this reason we
introduce the notion of an interface vertex. Two gadgets that are placed next
to each other in the grid depicted in Figure 1 may share an interface vertex.
Each interface vertex is defined in two gadgets and serves to connect them.
When placing the gadgets in the two-dimensional plane, an interface vertex
will be placed twice in exactly the same position. At the end of constructing
the unit disk graph, we will identify any two vertices with the same position
as the same vertex. In our figures, the interface vertices are marked in red
as they are also helpful when understanding how the gadgets are combined.

26



Figure 6: A variable gadget: The border between the different parts is green.
The interface vertices are red, the switch vertices are blue. The variable
occurs three times, the last occurrence is negated.

Variable Gadget A variable gadget is depicted in Figure 6. It is essentially
a large triangle-ring. The size of this triangle-ring depends on the number
of times the corresponding variable occurs in the formula Φ. We distinguish
between the lower part, middle part and upper part of a variable gadget.
Each variable gadget has a lower and an upper part for the first and last
time its variable occurs in Φ according to an ordering which will be defined
at the beginning of our construction. Furthermore it has one middle part
for each additional occurrence. The distance between two adjacent vertices

in the variable ring is
√

45
64
≈ 0.84. When a variable occurs in a clause

it is either negated or not negated. To account for this we use a switch
functionality, depicted by the blue vertices in Figure 6. If the occurence in
the corresponding clause is negated, then the lower vertex is placed, forming
a P3 from the interface vertex to the lower triangle. If it is not negated,
then the upper vertex is placed, forming a P3 from the interface vertex to
the upper triangle.

27



Figure 7: A clause gadget.

Figure 8: Two cable gadgets.

Clause Gadget A clause gadget is depicted in Figure 7. It consists of three
path graphs which meet at a 3-star. The distance between two adjacent
vertices is 15

18
= 0.83. This ensures that we do not induce diagonal edges

at the right angles, since, according to the Pythagorean theorem, we have
0.83

2
+ 0.83

2
> 12. A clause gadget has 3 interface vertices.

Cable Gadget There are three types of cable gadgets: horizontal, vertical
and right-angled. As depicted in Figure 8, all of them are path graphs.
The distance between two adjacent vertices is 15

18
= 0.83. This ensures that

we do not induce diagonal edges at the right angle, since, according to the
Pythogareon theorem, we have 0.83

2
+ 0.83

2
> 12. The two vertices at the

ends are interface vertices.

28



(a) unit disk representation, the variable rings
(letters) and the clause (a ∨ b) (green) are
marked for the proof of Lemma 2.

(b) replacement (not a unit disk g.)

(c) clustering

Figure 9: Crossing Gadget

Crossing Gadget Our crossing gadget is inspired by a crossing gadget
from a reduction of 3-SAT to Planar 3-SAT [55], where it is used to
express 3-CNF formulas in planar 3-CNF. Our crossing gadget is depicted in
Figure 9a. It consists of eight triangle-rings and nine connections between
them. A crossing gadget has four interface vertices denoted by vn, ve, vs
and vw. Let E∗ = {e1, ..., e8} denote the eight edges closest to the interface
vertices. The functionality of a crossing gadget is proven by Lemma 2. It
essentially achieves the effect of two cable gadgets at once: a horizontal and
a vertical one. Let (G, k) be an instance of Cluster Deletion where G
contains a crossing gadget GC as an induced subgraph and k is calculated by
Lower Bound 1-3. We can replace GC by two P5s, as depicted in Figure 9b,
and reduce k by 67. The edges of the P5s are denoted by E∗ = {e1, ..., e8}
as well. For a clustering to match Lower Bound 1-3, exactly four of the
edges in E∗ have to be deleted. This holds for the crossing gadget GC before
performing the replacement as well as for the two P5s.

29



Lemma 2 Let G be a graph that contains a crossing gadget GC as an induced
subgraph so that only its four interface vertices vn, ve, vs and vw are adjacent
to G\GC. Let G′ be the graph obtained by replacing the crossing gadget
GC in G by a replacement graph GR that consists of two P5 from vn to vs
and from vw to ve respectively. There is an optimal solution of Cluster
Deletion on G that deletes 71 edges in GC if and only if there is an optimal
solution of Cluster Deletion on G′ that deletes 4 edges in GR.

Proof. First we observe that by the Lower Bounds 1-3, to turn Gc into a
cluster graph at least 71 of its edges have to be deleted. To avoid a tedious
case distinction we make use of the special subgraphs described in Section 3.2
and the way they model boolean formulas. There are eight triangle rings in
a crossing gadget, as indicated in Figure 9a. We interpret them as vari-
ables that result to false if the triangles pointing outwards and inwards
get deleted and to true otherwise. Observe the variable rings a and b. As
suggested in Section 3.1.3, we interpret the path between them as the clause
(a ∨ b). We do so similarly for all eight variable rings. In total a crossing
gadget models nine clauses.

(a ∨ b) (b ∨ c) (c ∨ d) (d ∨ e) (e ∨ f)

(f ∨ g) (g ∨ h) (h ∨ a) (b ∨ d ∨ f ∨ h)

Note that the last clause has four literals, as it originates from the 4-star and
the paths in the middle of the crossing gadget. By conjoining these clauses
and applying a series of boolean reduction rules we see that they imply:

(a ∨ e) ∧ (c ∨ g)

To match the lower bound when turning GC into a cluster graph, both of
these clauses need to be satisfied. The clause (a ∨ e) tells us that in the
variable rings a and e we may only delete one of the triangles pointing at vn
and vs respectively. It follows that, to match the lower bound, we need to
delete either the edge e2 or the edge e3. This is the exact functionality of the
replacement, where e2 and e3 are adjacent in the (vn, vs)-path. Similarly, we
can show that the clause (c∨g) implies that the crossing gadget is subject to
the same functionality as the (vw, ve)-path of the replacement. The edges E ′,
which appear in both the crossing gadget and the replacement, can therefore
be considered as linked. For any clustering of GC that matches the lower
bound of 71 edge deletions we can obtain a clustering of GR with 4 edge

30



deletions where out of E ′ the same edges get deleted. For any clustering
of GR that matches the lower bound of 4 edge deletions we can obtain a
clustering of GC with 71 edge deletions where out of E ′ the same edges get
deleted. An example of this is depicted in Figure 9c. �

Details Table 1 shows the exact number of vertices and edges in each type
of gadget. Additionally, it contains the number of edge deletions necessary
to turn the individial gadgets into cluster graphs. These numbers can be
calculated using Lower Bound 1-3.

Gadget-Type Vertices Edges kmin Count
Variable (per part) 82 122 61 3 · |C|
Clause 46 45 23 |C|
Cable (right-angled) 19 18 9 3 · |C|
Cable (straight) 19 18 9 O(|C|2)
Crossing 97 140 71 O(|C|2)

Table 1: Details of the Gadgets used in the Reduction

3.2.2 Construction

In the following, we formally define how to construct an equivalent instance of
Cluster Deletion on unit disk graph when given an instance of 3-SAT.

Graph

Let Φ be a boolean formula in 3-CNF with the variable set X and clause
set C. We first set an arbitrary order for the variables, clauses and literals
within clauses. Let Lc be the list of literals sorted by their clause. For an
integer i with 1 ≤ i ≤ |Lc| we denote with Lc[i] the literal at position i in
clause order. For a literal ` ∈ Lc we denote with Lindexc [`] the position of `
in clause order. Let Lv be the list of literals sorted by their variable. For an
integer i with 1 ≤ i ≤ |Lv| we denote with Lv[i] the literal at position i in
variable order. For a literal ` ∈ Lv we denote with Lindexv [`] the position of `
in variable order.

We now create a unit disk graphG = (V,E) by giving a unit disk represen-
tation, that is, the coordinates the vertices in V have in the two-dimensional
plane. An example of the underlying schematic is given by Figure 1.

31



For i, j ∈ Z with −1 ≤ i, j < 3 · |C| we adress with tile〈i, j〉 the area in the
two-dimensional plane with x = [i · 15, (i+ 1) · 15] and y = [j · 15, (j+ 1) · 15].
The gadgets defined in the previous section are placed in the tiles in the
following way:

Clauses: For i ∈ Z with 0 ≤ i < |C| we place a clause gadget spanning the
following three tiles: tile〈3i,−1〉, tile〈3i+ 1,−1〉, tile〈3i+ 2,−1〉.

Variables: First we place the bottom part of a variable gadget in tile〈−1, 0〉
and a top part of a variable gadget in tile〈−1, |Lv| − 1〉. Then we place the
rest of the variable gadgets: For i ∈ N with 1 < i < |Lv| let λ0, λ1 and λ2
be the variables of the literals Lv[i − 1], Lv[i] and Lv[i + 1] respectively. In
tile〈−1, i− 1〉 we place a ...

... top part of a variable gadget if λ1 6= λ2,

... middle part of a variable gadget if λ1 = λ2 and λ1 = λ0,

... bottom part of a variable gadget if λ1 6= λ0.

To take into account whether the literal Lv[i] is negated, we make sure the
interface vertex forms a P3 with the right triangle. If Lv[i] is negated, we
place the switch vertex between the interface vertex and the lower triangle.
If the literal Lv[i] is not negated, we place the switch vertex between the
interface vertex and the upper triangle. Additionally, we alternatingly mark
the triangles with λ1 and λ1. In total, we essentially place one variable gad-
get for every variable. All middle parts from a bottom part to the next top
part above it belong to one variable gadget.

Connections: For each pair of values i, j ∈ Z with 1 ≤ i ≤ |Lc| and
1 ≤ j ≤ |Lc| in tile〈i− 1, j − 1〉 we place a ...

... corner cable gadget if Lc[i] = Lv[j],

... vertical cable gadget if Lindexv [Lc[i]] > j and Lindexc [Lv[j]] < i,

... horizontal cable gadget if Lindexv [Lc[i]] < j and Lindexc [Lv[j]] > i,

... crossing cable if Lindexv [Lc[i]] > j and Lindexc [Lv[j]] > i,

... nothing else.

We essentially model the associated graph of the formula Φ, as depicted in
Figure 1. We connect the variable gadgets and the clause gadgets via cable
gadgets, as well as crossing gadgets if a tile would contain two cables.

32



Critical cost k

Together with the graph G, the integer k of allowed edge deletions makes
up an instance of Cluster Deletion. As explained in Section 3.1.3, the
general idea is that the formula Φ is satisfiable if and only if there exists
a clustering that meets Lower Bound 1-3. For the different gadgets, the
minimum number of edge deletions necessary to turn them into cluster graphs
are listed in Table 2. We keep a count on how many of the different gadgets
we place in the construction. The critical cost k is equal to the total number
of minimum edge deletions required to turn all gadgets into cluster graphs:

k = 9 ·#cable
gadgets + 71 ·#crossing

gadgets + 61 · (3 · |C|) + 23 · |C| (1)

k = 9 ·#cable
gadgets + 71 ·#crossing

gadgets + 206 · |C| (2)

3.2.3 Correctness

In the following, we will show the correctness of the reduction described
above. The idea of the proof is that we first transform the constructed
instance of Cluster Deletion with Reduction Rule 5 and according to
Lemma 2. This will result in a graph which only consists of the special
subgraphs defined in Section 3.1.

Lemma 3 For any given formula Φ in 3-CNF the reduction described above
creates a unit disk graph G and calculates a number k so that the following
equivalence holds:

Φ is satisfiable. ⇔ (G, k) is a yes-instance of Cluster Deletion.

Proof. Let (G′, k′) be the instance of Cluster Deletion equivalent to the
instance (G, k) which is is obtained in the following way. We first replace all
crossing gadgets in the way suggested in Lemma 2 and lower k by 67 for each
crossing gadget replaced. We then apply Reduction Rule 5 exhaustively. This
shortens the cable gadgets that connect variable gadgets and clause gadgets.
The graph G′ now only consists of the triangle rings which are connected by
3-stars. Note that this does not alter the variable gadgets or the 3-stars of
the clause gadgets. They are still connected in the same way. Further note
that G′ is not a unit disk graph. This does not matter since we are only
showing the equivalence of instances. We now prove Lemma 3 by showing
that the equivalence holds for (G′, k′):

33



(⇒) Let α be an assignment of the variable set X which satisfies Φ. We
can turn G′ into a cluster graph with exactly k′ edge deletions in the following
way: First, we delete the triangles of the variable gadgets according to α.
More specifically, for each variable gadget, we delete the edges of the triangles
that are marked according to the value assigned to its variable in α. This
matches Lower Bound 3. Other than components that are already clusters,
the remaining graph consists of |C| triangle-stars, one for each clause gadget
placed. Recall that the clause gadgets were connected to variable gadgets via
cable gadgets, according to the formula Φ. The length of these connections
was reduced to exactly one edge in the beginning of this proof. The triangles
of a triangle-star therefore correspond to the literals of the clause its star
originated from. If a triangle did not get deleted, its corresponding literal
was set to false. For the assignment α, in every clause at least one literal is
set to true. By deleting the triangles according to α, in every triangle-star, at
least one triangle gets deleted. By Lemma 1, all triangle-stars can therefore
be transformed into a cluster graph while matching Lower Bound 2. As both
lower bounds are matched, we know that G′ can be turned into a cluster
graph by k′ edge deletions.

(⇐) We know that (G′, k′) is a yes-instance of Cluster Deletion.
Since k′ is calculated according to Lower Bound 1-3 we know that there ex-
ists a clustering of G′ which matches all three of them. In this clustering, for
each triangle ring, the edges of every second triangle are deleted. Performing
this deletion on G′ would result in a graph consisting of |C| triangle-stars,
one for each clause gadget placed. These triangle-stars can be transformed
into a cluster graph while matching Lower Bound 2. This implies that in all
resulting triangle-stars at least one triangle got deleted. The triangles of a
triangle-star correspond to the literals of the clause its star originated from.
As in all resulting triangle-stars at least one triangle got deleted, we know
that in all clauses at least one literal is set to true. The existence of this
clustering therefore implies the existence of an assignment which satifies all
clauses. �

We have shown that for any given instance of 3-SAT, our reduction
creates an equivalent instance of Cluster Deletion. We are now ready to
prove Theorem 1. Our reduction is a polynomial time reduction: Creating
the unit disk graph and calculating the critical number k clearly takes time
polynomial in the size of the formula Φ. If it were possible to solve Cluster
Deletion on unit disk graphs in polynomial time, we could solve 3-SAT

34



in polynomial time as well. Since the latter is NP-complete, we obtain the
NP-hardness of the former. Finally, we observe that the constructed unit
disk graph is planar and has maximum degree 4, justifying the restrictions
in Theorem 1. �

3.2.4 Complexity

For a given instance of 3-SAT, the reduction creates an instance of Cluster
Deletion. An instance of 3-SAT consists of a formula Φ in 3-CNF with
variable set X and clause set C. An instance of Cluster Deletion consists
of a graph G and a number k. In the following, we calculate the asymptotic
size of the graph G. More specifically, we bound the number of vertices n
and edges m with respect to the number of clauses |C| in the formula Φ. As
shown in Table 2, all gadgets have a constant number of vertices and edges.
The size of G therefore only depends on the number of gadgets placed in the
construction. Clearly, there are |C| clause gadgets. We count the variable
gadgets by their individual parts: in total there are 3 · |C| individual parts,
as for each occurence of a variable in Φ, exactly one part is placed. The
number of cable gadgets and crossing gadgets depends on the ordering we
pick in the construction. We can, however, bound their number by taking into
account the area they are placed in. As shown in Figure 1, the area covered
by cable and crossing gadgets is the square defined by the variable gadgets
and the clause gadgets. Both the number of cable gadgets and the number
of crossing gadgets thus scale quadratically with the number of clauses. We
can therefore conclude that the constructed graph G has n = O(|C|2) vertices
and m = O(|C|2) edges.

ETH We are now ready to prove Theorem 2. The lower bound follows
from the size of the graph created in the reduction. For a given formula Φ
the graph constructed has n = O(|C|2) vertices and m = O(|C|2) edges. If
there was an algorithm solving Cluster Deletion on unit disk graphs in
2o(
√
n+m) time, there would also be an algorithm solving 3-SAT in 2o(|C|) time.

This is not possible unless the ETH fails. Again, the structural properties of
the constructed graph G justify the restrictions in Theorem 2. �

35



3.3 Implications for Cluster Editing

By reduction from 3-Sat, we have shown the NP-hardness of Cluster
Deletion on unit disk graphs. Assuming the exponential time hypothe-
sis (ETH), we have also shown a running time lower bound. A problem
closely related to Cluster Deletion is Cluster Editing. Besides edge
deletions, Cluster Editing also allows the addition of edges to transform
the input graph into a cluster graph.

Corollary 1 Cluster Editing is NP-hard even on planar unit disk graphs
with maximum degree 4. Furthermore, Cluster Editing cannot be solved
in 2o(

√
n+m) time on planar unit disk graphs with maximum degree 4, unless

the ETH fails.

Proof. On diamond-free graphs, there is always an optimal solution of
Cluster Editing that does not require the addition of edges [61]. In
other words, on diamond-free graphs, the problem of Cluster Editing
is equivalent to Cluster Deletion. The unit disk graph G constructed
in our reduction is diamond-free. An algorithm solving Cluster Editing
on G would also solve Cluster Deletion on G. We conclude that both
the NP-hardness result of Theorem 1 and the running time lower bound of
Theorem 2 also apply to Cluster Editing. �

Conclusion

In this chapter, we have shown the NP-hardness of both Cluster Deletion
and Cluster Editing on planar unit disk graphs of maximum degree 4. To
the best of our knowledge this is the first proof of NP-hardness for Cluster
Editing on graphs of maximum degree 4. To accompany this result, we
have shown that both Cluster Deletion and Cluster Editing cannot
be solved in 2o(

√
n+m) time on planar unit disk graphs with maximum degree 4,

unless the exponential time hypothesis (ETH) fails. The form of the running
time lower bound, namely the square root in the exponent, is consistent with
many other running time lower bounds for problems on unit disk graphs
[32, 9, 28]. To ensure that our running time lower bound is tight, one would
have to show that an algorithm with a matching running time exists.

36



4 Parameterized Complexity

In this chapter we will study the complexity of Cluster Deletion
parameterized by treewidth ω. In Section 4.1 we present an FTP-algorithm
and analyze its running time and space requirements. In Section 4.2 we
conclude what our results imply for the complexity of Cluster Deletion
on graph classes of bounded treewidth, such as planar graphs. In Section 4.3
we discuss how our algorithm can be adapted to solve related problems such
as Clique Partition instead. Additionally, we elaborate on why adressing
Cluster Editing with similar adaptations might not be straightforward.

4.1 Cluster Deletion parameterized by Treewidth

Courcelle’s Theorem states that any problem definable in MSO2 can be solved
in linear time on graphs of bounded treewidth [24]. This implies the existence
of an algorithm with a running time of O(f(ω) · n) whereas the exact form
of f depends on the problem at hand. Since Cluster Deletion can be
expressed in MSO2 [50], it is FPT for the parameter treewidth. It is, however,
an open question whether such an algorithm admits to a single exponential
running time [46], as it has yet to be formulated in concrete terms.

Theorem 3 Cluster Deletion can be solved in 2O(ω) ·ω ·n time on graphs
of treewidth ω.

For a given graph of treewidth ω it is possible in 2O(ω) · n time to create a
tree decomposition of width at most 2ω + 1 [52]. This tree decomposition
can be turned into a nice tree decomposition in O(ω2 · n) time [2]. Observe
that both steps take linear time on graphs with bounded treewidth and are
thus suitable to be part of an algorithm in the sense of Courcelle’s Theorem.
If a nice tree decomposition would help in solving Cluster Deletion in a
similar running time, the combined algorithm would prove Theorem 1.

Lemma 4 Cluster Deletion can be solved in O(3ω ·ω · n) time provided
a nice tree decomposition of width ω is given.

In the remainder of this section we prove Lemma 2, and thus Theorem 1,
by presenting a dynamic algorithm that solves Cluster Deletion by
traversing a nice tree decomposition.

37



A vertex set is called a separator if the graph would have multiple con-
nected components without it. A common algorithmic strategy is to consider
all possibilities of dividing the sepeartor set among the components and then
solving the problem independently for each of them. Like most graph prob-
lems, Cluster Deletion can be solved independently on connected com-
ponents. Two vertices from different connected components cannot be in the
same cluster since they are not adjacent. Each vertex of the separator can
form a cluster with vertices from only one of the connected components.

One way of reliably finding separators is with the help of a nice tree
decomposition. For each node, the vertices of its bag constituate a separator
which divdes the other vertices into those which appear above and those
which appear below the node. Our algorithm follows the usual procedure of
dynamic algorithms on nice tree decompositions. We start at the leaf nodes
and combine our way up, storing the already calculated solutions. At a node
our algorithm considers all ways of splitting the vertices of its bag into those
that form clusters with vertices from above and those which form clusters
with vertices from below. For each split we then calculate the solution of
Cluster Deletion on the lower component.

4.1.1 Dynamic Algorithm

Let G = (V,E) be a graph. Let D be a nice tree decomposition of G with
width ω. For a node i of D we denote with Vi ⊆ V the vertices contained in
its bag. With Gi ⊆ G we denote the graph that is induced by the vertices Vi
and those that appear below i in D.

We traverse D in post-order: For each node i we create a table Ti which
stores an integer for each possible subset S ⊆ Vi. Formally Ti : P(Vi) → Z.
The values of Ti are calculated as described in the rules below, depending on
the type of the node i. They satisfy the following equation:

Ti[S] = number of edges remaining after solving
Cluster Deletion on the graph Gi − (Vi\S).

By definition the root of a nice tree decomposition is empty. In other words,
we have Vroot = ∅. Therefore, the table Troot has only one entry, for the empty
set. Since all vertices are in bags below, we have Groot = G. By applying
this to the equation above, we conclude that after traversing D we have:

Troot[∅] = number of edges remaining after solving
Cluster Deletion on the graph G.

38



Recurrence Formula.

In the following, we define the recurreces that assure that the equation stated
above is satisfied for each table entry. The formula is different depending on
the type of node.

Leaf Node.
Tleaf [∅] = 0

In nice tree decompositions, the bags of leaf nodes are empty. In other words,
we have Vleaf = ∅. Therefore, the table Tleaf has only one entry, for the empty
set. Since all vertices are in bags above, the graph Gleaf has no vertices. On
the empty graph, the optimal solution of Cluster Deletion does not have
any edges. To implement this, for every leaf node we create a table with one
entry and set it to zero:

Introduce Node.

Ti[S] =


Tj[S] if v /∈ S,

max
C⊆S: v∈C, C is clique

Tj[S\C] +
(|C|

2

)
if v ∈ S.

Claim: Let i be an introduce node which introduces the vertex v above
node j. The recurrence formula above assures that for any possible sub-
set S ⊆ Vi the value Ti[S] is equal to the number of edges remaining after
solving Cluster Deletion on the graph Gi − (Vi\S).

Proof. We have Vi = Vj ∪ {v} and Gi = Gj ∪ {v}. We know that the
value Tj[S] is equal to the number of edges remaining after solving Cluster
Deletion on the graph Gj−(Vj\S). If v /∈ S, the graph Gi−(Vi\S) is equal
to the graph Gj − (Vj\S). Therefore, the values Ti[S] and Tj[S] are equal as
well. If v ∈ S, the graph Gi − (Vi\S) includes v. Let C ⊆ S be the vertices
which make up the cluster of v. We can think of the graph Gi − (Vi\S) as
consisting of C and the rest-graph Grest = Gi−(Vi\(S\C)). By the equalities
above, we have Grest = Gj− (Vj\(S\C)). We know that the number of edges
remaining after solving Cluster Deletion on Grest is equal to the value
Tj[S\C]. Therefore, the value Ti[S] is equal to the number of edges in C plus
the value Tj[S\C]. Since we do not know which vertices, other than v, make

39



up C, we consider all possibilities where C is a clique in G. The value Ti[S]
is equal to the highest number of edges which arises from any combination
of a clique C and the solution of Cluster Deletion on Grest. �

Forget Node.
Ti[S] = Tj[S ∪ {v}]

Claim: Let i be a forget node which forgets the vertex v from node j. The
recurrence formula above assures that for any possible subset S ⊆ Vi the
value Ti[S] is equal to the number of edges remaining after solving Cluster
Deletion on the graph Gi − (Vi\S).

Proof. We have Vj = Vi ∪ {v} and Gj = Gi. We know that the value
Tj[S∪{v}] is equal to the number of edges remaining after solving Cluster
Deletion on the graph Gj − (Vj\(S ∪ {v})). By using the equalities above
we see that this graph is equal to the graph Gi− (Vi ∪{v}\(S ∪{v})), which
is equal to the graph Gi − (Vi\S). �

Join Node.
Ti[S] = max

Sj ,S`⊆S:
Sj∩S`=∅
Sj∪S`=S

Tj[Sj] + T`[S`]

Claim: Let i be a join node which combines the nodes j and `. The recurrence
formula above assures that for any possible subset S ⊆ Vi the value Ti[S] is
equal to the number of edges remaining after solving Cluster Deletion
on the graph Gi − (Vi\S).

Proof. We have Vi = Vj = V` and Gi = Gj ∪ G`. Let Sj, S` ⊆ S be two
sets with Sj ∩ S` = ∅ and Sj ∪ S` = S. In other words, we split S into
two sets Sj and S`. We can think of a clustering of the graph Gi − (Vi\S)
as consisting of two parts: a clustering of the graph Gj − (Vj\Sj) and a
clustering of the graph G` − (V`\S`). The number of edges remaining after
solving Cluster Deletion on the graphs Gj − (Vj\Sj) and G` − (V`\S`)
are equal to the values Tj[Sj] and T`[S`], respectively. Other than that they
are complementary with respect to S, we do not know the compositions of
the sets Sj and Sl. We therefore consider all possible splits. The number of
edges remaining after solving Cluster Deletion on the graph Gi− (Vi\S)

40



is the maximum value of Tj[Sj] + T`[S`] over all possible splits of S into the
sets Sj and S`. �

4.1.2 Termination

In the following, we briefly ensure that our algorithm terminates. The table
of each leaf node is set to have exactly one entry: the empty set is mapped to
zero. For every other node, the values of its table depend only on the tables
of its child nodes. When traversing a tree in post-order, a partent node is
not visited until all its child nodes have been visited. Our algorithm will
therefore fill the table of each node, ultimately arriving at the root.

4.1.3 Running Time

In the following, we analyze the running time of our algorithm. We first
calculate the running time of creating the table of a single node, depending
on its type. The total running time of our algorithm then depends on the
number of nodes in the tree decomposition.

Leaf Node. The table of a leaf node can be created in constant time.

Introduce Node. Let the introduce node i introduce the vertex v above
node j. To optimize the running time we first create a lookup table with infor-
mation about the existence of cliques on the graph induced by Vi. For every
possible subset C ⊆ Vi we store a boolean value which indicates whether C
is a clique. This lookup table allows us to check the existence of a clique in
constant time. Creating it takes 2|Vi| · |Vi|2 time.

We then fill the table Ti according to the recurrence formula. There are
2|Vi| entries in the table Ti, one for each possible subset S ⊆ Vi. We make a
case-distinction for whether v is part of the set S:
Case v /∈ S: To calculate the value Ti[S] we query the table Tj for a single
value. This is possible in constant time. Since they make up exactly half of
the table, calculating all entries with v /∈ S takes 2|Vi|−1 time in total.
Case v ∈ S: To calculate the value Ti[S] we consider all possible clusters
which could be formed with v. To avoid lengthy forumlas, we use S ′ = S\{v}
and V ′i = Vi\{v} as the vertex v is part of all clusters considered. There are
2|S

′| potential clusters to consider; one for each possible subset C ′ ⊆ S ′. We

41



can express the total number of potential clusters considered to fill all entries
with v ∈ S by the following sum, where |S ′| = x:

∑
S′⊆V ′

i

2|S
′| =

|V ′
i |∑

x=0

(
|V ′i |
x

)
· 2x = 3|V

′
i | = 3|Vi|−1

We can rewrite the first sum by counting the potential clusters we need to
consider depending on the size of the set S ′. For the case v ∈ S there are(|V ′

i |
x

)
table entries with |S ′| = x. The equivalence holds since for sets of the

same size we need to check the same number of potential clusters. After
application of the binomial theorem we see that we consider 3|Vi|−1 potential
clusters in total. This is also intuitive, regarding the fact that for every ver-
tex u ∈ V ′i there are exactly 3 options:

1. u ∈ C u is part of the cluster of v.

2. u ∈ S ∧ u /∈ C u is part of the partial solution corresponding
to Ti[S], but not part of the cluster of v.

3. u /∈ S u is not part of the partial solution
corresponding to Ti[S].

For each potential cluster C ′ we check whether the clique exists in G. This
is possible in constant time since we have previously created a lookup table.
If C ′ is in fact a clique we query the table Tj for a single value to calculate
the number of edges in the combination. This is possible in constant time
aswell. Thus, calculating all entries with v ∈ S takes 3|Vi|−1 time in total.

In conclusion: Creating the lookup table and filling the table Ti takes
2|Vi| · |Vi|2 + 2|Vi|−1 + 3|Vi|−1 time. Recall that the width ω of a nice tree
decomposition is defined as the maximum number of vertices in a bag minus
one: ω = maxι∈D |Vι| − 1. It therefore takes O(3ω) time to create and fill the
table of an introduce node.

Forget Node. Let i be a forget node with the child node j. The table Ti
has 2|Vi| entries. For each of them, we query the table Tj for a single value.
This is possible in constant time. Therefore, filling the table of a forget node
takes 2|Vi| time in total. With the definition ω = maxι∈D |Vι| − 1 we can
bound this to O(2ω).

42



Join Node. Let the join node i combine the nodes j and `. There are 2|Vi|

entries in the table Ti, one for each possible subset S ⊆ Vi. To calculate
the value Ti[S] we consider 2|S| possible ways of splitting S into Sj and S`.
We can express the total number of splits considered to fill all entries by the
following sum, where |S| = x.

∑
S⊆Vi

2|S| =

|Vi|∑
x=0

(
|Vi|
x

)
· 2x = 3|Vi|

We can rewrite the first sum by counting the splits considered depending
on the size of the set S. There are

(|Vi|
x

)
table entries with |S| = x. The

equivalence holds since for sets of the same size we have to consider the same
number of splits. After application of the binomial theorem we see that, to
fill all entries, we have to consider 3|Vi| splits in total. This is again intuitive,
regarding the fact that for every vertex u ∈ Vi there are exactly 3 options:

1. u ∈ Sj u is used in the node j.

2. u ∈ S` u is used in the node `.

3. u /∈ S u is not part of the partial solution corresponding to Ti[S].

For each split we query the tables Tj and T` for one value each and add them.
This is possible in constant time. Therefore, filling the table of a join node
takes 3|Vi| time. With the definition ω = maxι∈D |Vι| − 1 we can bound this
to O(3ω).

Total running time A nice tree decomposition, when obtained in the
way described in Section 2.3, has at most O(ω · n) nodes in total. With the
exception of forget nodes, there are no evident constrains of how often the
different types of nodes can occur.

When traversing D in post-order we visit each node exactly once. Upon
visiting a node i we create and fill the table Ti according to the recurrence
formula. The running times of that are analyzed above and depicted in
Table 3. We conclude that our algorithm takes O(3ω · ω · n) time in total. �

43



Type of Node Count Time
Leaf Node O(ω · n) O(1)
Introduce Node O(ω · n) O(3ω)
Forget Node n O(2ω)
Join Node O(ω · n) O(3ω)

Table 2: Count & Running Time for different types of nodes.

4.1.4 Space Complexity

In the following, we analyze the space requirements of our algorithm. This
essentially consists of bounding the size of the tables created. The table of any
node i has 2|Vi| entries. An entry consists of a subset S ⊆ Vi, which takes |Vi|
bits to specify, and an integer for the number of edges in the corresponding
partial solution, which takes at most log2 |E| bits to store. The table of
a node therefore takes up 2|Vi| · (|Vi| + log2 |E|) bits of space. Again, we
assume that any given nice tree decomposition has at most O(ω · n) nodes.
By multiplication we discover that our algorithm has a space complexity of
O(2ω · (ω + log2m) · ω · n).

Note that in a practical application we do not store the tables all at once.
The table of a node is only queried when creating the table of its parent
node. After that, we can discard it. While useful in practice, it is not evident
whether this leads to an asymptotically better space complexity. Of course
this only applies as long as we are interested in the solution of Cluster
Deletion as the number of edges and not in a specific composition of the
clusters.

Conclusion

To prove Lemma 2, we have presented an algorithm that solves Cluster
Deletion in O(3ω ·ω ·n) time when provided with a nice tree decomposition
of width ω. As discussed in the beginning of this section, creating such a
nice tree decomposition is possible in 2O(ω) · n time. The existence of our
algorithm therefore also proves Theorem 1. �

44



4.2 Direct Implications

With the algorithm presented in the previous section, it is now possible to
make statements about the running time of Cluster Deletion on graph
classes with bounded treewidth.

Corollary 2 Cluster Deletion can be solved in 2O(
√
n) · n1.5 time on

planar graphs.

Proof. The treewidth ω of planar graphs is known to be O(
√
n). The most

recent bound states that for any planar graph we have ω < 3.182
√
n [34].

If we combine this result with Theorem 3 we see that our algorithm solves
Cluster Deletion on planar graphs in 2O(

√
n) · n1.5 time. �

Corollary 3 Cluster Deletion can be solved in 2O(
√
n) ·n1.5 time on unit

disk graphs with maximum degree bounded by a constant.

Proof. Let G be a unit disk graph with maximum degree ∆. The treewidth ω
of G can be bounded as ω ∈ O(∆3

√
n) [33]. If we assume that the maximum

degree ∆ is constant, by Theorem 3, we can solve Cluster Deletion on
G in 2O(

√
n) · n1.5 time. �

We observe that the running times stated by Corollary 2 and Corollary 3
both match the running time lower bound implied by Theorem 2 up to a
polynomial factor. The algorithm presented in Section 4.1 is therefore the
best we can hope for when it comes to solving Cluster Deletion efficiently
on both planar graphs and unit disk graphs of constant maximum degree.

4.3 Adaptions for related problems

In this section we discuss how to adapt our algorithm for Cluster Dele-
tion to solve related problems instead. To solve the problems of Minimum
Clique Partition or Maximum µ-Clique Packing only minor changes
to the recurrence formula are required. Note that we provide these adapta-
tions for demonstrational purposes only, as the running time of O(3ω · ω · n)
is not optimal for these problems. In fact, there are dynamic algorithms for
both problems that achieve a running time of O(2ω · poly(ω) · n) provided a
tree decomposition of width ω is given [68].

45



4.3.1 Clique Partition

The Minimum Clique Partition problem seeks to partition the vertex set
of a graph into a minimum number of disjoint cliques.

Corollary 4 Minimum Clique Partition can be solved in O(3ω · ω · n)
time provided a nice tree decomposition of width ω is given.

Proof. We show that the algorithm presented in Section 4.1.1 to solve Clus-
ter Deletion can be adapted to solve Minimum Clique Partition in-
stead. For any node i the values of the table Ti are calculated so that for
each subset S ⊆ Vi they satisfy the following equality:

Ti[S] = minimum number of vertex-disjoint cliques
required to partition the graph Gi − (Vi\S).

To implement this, we redefine the recurrence formula for the introduce node
and the join node in the following way. For the leaf node and the forget node
the recurrence formula is defined in the same way it was in Section 4.1.1.

(Introduce Node:)

Ti[S] =

{
Tj[S] if v /∈ S,

min
C⊆S: v∈C, C is clique

Tj[S\C] + 1 if v ∈ S.

(Join Node:)
Ti[S] = min

Sj ,S`⊆S:
Sj∩S`=∅
Sj∪S`=S

Tj[Sj] + T`[S`]

Instead of maximizing the number of edges within the cliques we minimize
the number of cliques it takes to partition the vertex set of the graph. For an
introduce node we still consider all possible cliques C ⊆ S which include v.
Instead of calculating the combination of C and the rest graph Grest that has
the most edges, we calculate the combination with the fewest cliques. For a
join node we consider all possible splits and calculate the minimum number
of cliques required to partition both corresponding graphs. For both types of
nodes the recurrence formula can be proven with the same arguments as given
in Section 4.1.1. Additionally, the running time of the adapted algorithm is
clearly equivalent to that stated in Section 4.1.3. �

46



4.3.2 Clique Packing

For an integer µ the Maximum µ-Clique Packing problem asks for a
maximum number of disjoint µ-cliques, that is, disjoint cliques of size µ.

Corollary 5 Maximum µ-Clique Packing for µ ≥ 3 can be solved in
O(3ω · ω · n) time provided a nice tree decomposition of width ω is given.

Proof. We show that the algorithm presented in Section 4.1.1 to solve Clus-
ter Deletion can be adapted to solve Maximum µ-Clique Packing
instead. For any node i the values of the table Ti are calculated so that for
each subset S ⊆ Vi they satisfy the following equality:

Ti[S] = maximum number of vertex-disjoint
µ-cliques in the graph Gi − (Vi\S).

To implement this, we redefine the recurrence formula of the introduce node
in the following way. For the other three types of nodes the recurrence for-
mula is defined in the same way it was in Section 4.1.1.

(Introduce Node:)

Ti[S] =

 Tj[S] if v /∈ S,

max
C⊆S: v∈C, C is clique, |C|∈{1,µ}

Tj[S\C] +

⌊
|C|
µ

⌋
if v ∈ S.

Instead of maximizing the number of edges within the cliques we maximize
the number of cliques of size µ. For an introduce node we consider all pos-
sible cliques C ⊆ S that include v and have size µ. We additionally allow
the clique C = {v} to take into account the case where the vertex v does
not end up in a µ clique. The recurrence formula can be proven with the
same arguments as given in Section 4.1.1. The running time of the adapted
algorithm is clearly not bigger than that stated in Section 4.1.3. �

As Maximum µ-Clique Packing is a generalization of several other
clique packing problems we also obtain running time statements for the spe-
cial cases of it.

Corollary 6 Partition into µ-Cliques for µ ≥ 3 and Partition into
Triangles can be solved in O(3ω · ω · n) time provided a nice tree decompo-
sition of width ω is given.

47



Proof: The running times follow directly from Corollary 5. For a graph
G = (V,E) there exists a Partition into µ-Cliques if and only if the

solution of Maximum µ-Clique Packing is is equal to |V |
µ

. Furthermore,
Partition into Triangles is the special case where µ = 3. �

Cluster Editing

The problem of Cluster Editing asks for a minimum number of edge
modifications, that is, additions and deletions, to turn a graph into a cluster
graph. Naturally, we could approach it in the same way that we approached
the other problems. However, when trying to modify the algorithm to solve
Cluster Editing instead, we run into a problem. Since Cluster Editing
also allows adding edges to turn the graph into a cluster graph, not every
potential cluster is already a clique. As a simple example, consider a diamond
graph, which has four vertices that induce five edges. It can be turned into
a cluster graph by adding a single edge. An optimal tree decomposition of a
diamond graph would, however, only contain two bags of size three. We see
that not every potential cluster can be found in a single bag. Simple changes
to the recurrence formula, which are sufficient to solve other problems, do
not seem enough. The running time of Cluster Editing on graphs of
bounded treewidth therefore remains an open question.

Conclusion

We see that only small changes to the recurrence formula of our algorithm
for Cluster Deletion are sufficient to solve several other graph clustering
problems instead. This highlights the versatility of dynamic programming
approaches, as well as the similarity of graph clustering problems that appear
to be quite different at first glance.

48



5 Conclusion

In this chapter, we provide a summary of our results and point out open
questions that offer potential for future research endeavors.

5.1 Summary

In Chapter 3, we studied the complexity of Cluster Deletion and
Cluster Editing on unit disk graphs. We presented a polynomial-time
reduction of 3-Sat to Cluster Deletion on unit disk graphs. We
observed that the constructed graph is planar, has a maximum degree of 4
and, most importantly, that it is diamond-free. The last observation led us to
the conclusion that our reduction is also a reduction to Cluster Editing.
Therefore, we have proven that both Cluster Deletion and Cluster
Editing remain NP-hard even on planar unit disk graphs with maximum
degree 4. To the best of our knowledge this is the first proof of NP-hardness
for Cluster Editing on graphs of maximum degree 4. Accompanying
this result, we have shown that both Cluster Deletion and Cluster
Editing cannot be solved in 2o(

√
n+m) time on planar unit disk graphs with

maximum degree 4, unless the exponential time hypothesis (ETH) fails.
In Chapter 4, we studied the parameterized complexity of Cluster

Deletion for the parameter treewidth ω. We presented a dynamic algorithm
that solves Cluster Deletion by traversing a nice tree decomposition.
A running time analysis showed that, provided a nice tree decomposition of
width ω is given, Cluster Deletion can be solved in O(3ω · ω · n) time.
This answers the question of whether such an algorithm admits a single
exponential running time, recently mentioned by Italiano et al. [46]. We
then considered the direct implications of our result on the complexity of
Cluster Deletion on graph classes of bounded treewidth. We concluded
that Cluster Deletion can be solved in 2O(

√
n) ·n1.5 time on planar graphs

as well as on unit disk graphs with constant maximum degree. This running
time matches the lower bound we had stated in Chapter 3 up to a
polynomial factor. For demonstrational purposes, we showed how our
algorithm can be adapted to solve related graph clustering problems such
as Minimum Clique Partition or Maximum µ-Clique Packing.

49



5.2 Future Work

In this work, we have provided a subexponential algorithm and a matching
running time lower bound. However, when taking a closer look at the results,
we see that there is still room for improvement.

Firstly, as stated by Theorem 2, our running time lower bound applies
to unit disk graphs which are both planar and have maximum degree 4.
On the unrestricted class of unit disk graphs, a stronger running time lower
bound for Cluster Editing and Cluster Deletion might be possible.
The restrictions in Theorem 2 stem from the properties of the graph
created in our reduction. To result in a running time lower bound stronger
than 2o(

√
n+m), a reduction to Cluster Deletion, would have to construct

a non-planar unit disk graph without constant maximum degree. This is
evident when considering the results of Chapter 4, more specifically
Corollary 2 and Corollary 3. Secondly, a subexponential algorithm for
Cluster Deletion on unit disk graphs might be possible. As discussed
in Section 1.1, there are many problems with subexponential algorithms on
unit disk graphs. Of particular interest for this undertaking might be the
two recently presented frameworks mentioned [28, 58].

Another possible line of work is a parameterization of clustering problems
on unit disk graphs by domain area. The domain area of a unit disk graph
refers to the size of the square region its points occupy in the two-dimensional
plane. Both Hamilton Cycle and 3-Coloring are FPT for the domain
area of a unit disk graph [47]. Although this parameter is native to unit
disk graphs and geometric intersection graphs in general, it seems to have
been largely unexplored. For Cluster Editing and Cluster Deletion
the domain area of a given unit disk graph might be related to the number
of clusters in the resulting cluster graph. This might be helpful since, if
we require the resulting cluster graph to have exactly p clusters, Cluster
Editing can be solved in O(2O(

√
pk) + n+m) time [31].

One of the most famous clustering algorithms is called k-means. In the
field of unsupervised machine learning, it is mostly known for its heuristical
application, as finding an optimal k-means clustering is NP-hard even in
the two-dimensional plane [60]. One idea to cope with the complexity of
Cluster Deletion on unit disk graphs is by using an approximation. In
the general case, Cluster Deletion is NP-hard to approximate to within
some constant factor [64]. A straightforward 2-approximation of Cluster
Deletion can be achieved by recursively finding, isolating and removing

50



the biggest clique until the graph is empty [29]. In the general case, this
procedure is not possible in polynomial time, as finding the biggest clique
is known to be NP-hard. However, finding the biggest clique in a unit disk
graph is possible in O(n3.5 · log(n)) time [16, 63]. It is therefore possible in
O(n4.5 · log(n)) time to compute a 2-approximation for Cluster Deletion
on unit disk graphs. The natural question is that of whether a better or faster
approximation is possible. A recently published framework for the design of
efficient polynomial time approximation schemes (EPTAS) on disk graphs
might be of particular interest in this undertaking [59].

Lastly, it appears that no FPT-algorithm for Cluster Editing parame-
terized by treewidth has been presented yet. In Section 4.3 we briefly pointed
out the challenge such an algorithm, if it exists, would need to overcome. If
such an algorithm were to admit a single exponential running time, it would
result in ETH-tight algorithms for Cluster Editing on planar graphs as
well as unit disk graphs of constant maximum degree.

51



References

[1] Jochen Alber and Jiri Fiala. Geometric separation and exact solutions
for the parameterized independent set problem on disk graphs. Journal
of Algorithms, 52(2):134–151, 2004.

[2] Ernst Althaus and Sarah Ziegler. Optimal tree decompositions revisited:
A simpler linear-time fpt algorithm. Graphs and Combinatorial Opti-
mization: from Theory to Applications: CTW2020 Proceedings, pages
67–78, 2021.

[3] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Com-
plexity of finding embeddings in a k-tree. SIAM Journal on Algebraic
Discrete Methods, 8(2):277–284, 1987.

[4] Sanjeev Arora and Boaz Barak. Computational complexity: a modern
approach. Cambridge University Press, 2009.

[5] Aistis Atminas and Viktor Zamaraev. On forbidden induced subgraphs
for unit disk graphs. arXiv preprint arXiv:1602.08148, 2016.

[6] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.
Machine learning, 56:89–113, 2004.

[7] Sebastian Böcker. A golden ratio parameterized algorithm for cluster
editing. Journal of Discrete Algorithms, 16:79–89, 2012.

[8] Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and
Anke Truß. Going weighted: Parameterized algorithms for cluster edit-
ing. Theoretical Computer Science, 410(52):5467–5480, 2009.

[9] Csaba Biro, Edouard Bonnet, Daniel Marx, Miltzow Tillmann, and
Pawel Rzazewski. Fine-grained complexity of coloring unit disks and
balls. In 33rd International Symposium on Computational Geometry
(SoCG 2017), 2017.

[10] Sebastian Böcker and Peter Damaschke. Even faster parameterized
cluster deletion and cluster editing. Information Processing Letters,
111(14):717–721, 2011.

52



[11] Hans L Bodlaender. Dynamic programming on graphs with bounded
treewidth. In Automata, Languages and Programming: 15th Interna-
tional Colloquium Tampere, Finland, July 11–15, 1988 Proceedings 15,
pages 105–118. Springer, 1988.

[12] Hans L Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing, pages 226–234, 1993.

[13] Hans L Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical computer science, 209(1-2):1–45, 1998.

[14] Hans L Bodlaender, Paul Bonsma, and Daniel Lokshtanov. The fine de-
tails of fast dynamic programming over tree decompositions. In Param-
eterized and Exact Computation: 8th International Symposium, IPEC
2013, Sophia Antipolis, France, September 4-6, 2013, Revised Selected
Papers 8, pages 41–53. Springer, 2013.

[15] Flavia Bonomo, Guillermo Duran, and Mario Valencia-Pabon. Com-
plexity of the cluster deletion problem on subclasses of chordal graphs.
Theoretical Computer Science, 600:59–69, 2015.

[16] Heinz Breu. Algorithmic aspects of constrained unit disk graphs. PhD
thesis, University of British Columbia, 1996.

[17] Heinz Breu and David G Kirkpatrick. Unit disk graph recognition is
np-hard. Computational Geometry, 9(1-2):3–24, 1998.

[18] Leizhen Cai. Fixed-parameter tractability of graph modification
problems for hereditary properties. Information Processing Letters,
58(4):171–176, 1996.

[19] Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on
edge cuts. Algorithmica, 64:152–169, 2012.

[20] Yixin Cao and Yuping Ke. Improved kernels for edge modification prob-
lems. arXiv preprint arXiv:2104.14510, 2021.

[21] Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem.
Journal of Computer and System Sciences, 78(1):211–220, 2012.

53



[22] Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk
graphs. Discrete mathematics, 86(1-3):165–177, 1990.

[23] Stephen A Cook. The complexity of theorem-proving procedures,
stoc’71: Proceedings of the third annual acm symposium on theory of
computing, 1971.

[24] Bruno Courcelle. The monadic second-order logic of graphs iii: Tree-
decompositions, minors and complexity issues. RAIRO-Theoretical In-
formatics and Applications, 26(3):257–286, 1992.

[25] Biro Csaba, Edouard Bonnet, Daniel Marx, Miltzow Tillmann, and
Pawel Rzazewski. Fine-grained complexity of coloring unit disks and
balls. Journal of Computational Geometry, 2018.

[26] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Jo-
ham MM van Rooij, and Jakub Onufry Wojtaszczyk. Solving connec-
tivity problems parameterized by treewidth in single exponential time.
In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 150–159. IEEE, 2011.

[27] Peter Damaschke. Bounded-degree techniques accelerate some parame-
terized graph algorithms. In Parameterized and Exact Computation: 4th
International Workshop, IWPEC 2009, Copenhagen, Denmark, Septem-
ber 10-11, 2009, Revised Selected Papers 4, pages 98–109. Springer, 2009.

[28] Mark De Berg, Hans L Bodlaender, Sandor Kisfaludi-Bak, Daniel Marx,
and Tom C Van Der Zanden. A framework for exponential-time-
hypothesis–tight algorithms and lower bounds in geometric intersection
graphs. SIAM Journal on Computing, 49(6):1291–1331, 2020.

[29] Anders Dessmark, Jesper Jansson, Andrzej Lingas, Eva-Marta Lundell,
and Mia Persson. On the approximability of maximum and minimum
edge clique partition problems. International Journal of Foundations of
Computer Science, 18(02):217–226, 2007.

[30] Absalom E Ezugwu, Abiodun M Ikotun, Olaide O Oyelade, Laith
Abualigah, Jeffery O Agushaka, Christopher I Eke, and Andronicus A
Akinyelu. A comprehensive survey of clustering algorithms: State-of-
the-art machine learning applications, taxonomy, challenges, and future

54



research prospects. Engineering Applications of Artificial Intelligence,
110:104743, 2022.

[31] Fedor V Fomin, Stefan Kratsch, Marcin Pilipczuk, Micha l Pilipczuk,
and Yngve Villanger. Subexponential fixed-parameter tractability of
cluster editing. arXiv preprint arXiv:1112.4419, 2011.

[32] Fedor V Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Meirav Zehavi. Finding, hitting and packing cycles in subexponential
time on unit disk graphs. Discrete & Computational Geometry, 62:879–
911, 2019.

[33] Fedor V Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimension-
ality and geometric graphs. In Proceedings of the Twenty-Third An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 1563–1575.
SIAM, 2012.

[34] Fedor V Fomin and Dimitrios M Thilikos. New upper bounds on the
decomposability of planar graphs. Journal of Graph Theory, 51(1):53–
81, 2006.

[35] Yong Gao, Donovan R Hare, and James Nastos. The cluster deletion
problem for cographs. Discrete Mathematics, 313(23):2763–2771, 2013.

[36] Michael R Garey and David S. Johnson. The rectilinear steiner
tree problem is np-complete. SIAM Journal on Applied Mathematics,
32(4):826–834, 1977.

[37] Oded Goldreich. Computational complexity: a conceptual perspective.
ACM Sigact News, 39(3):35–39, 2008.

[38] Petr A Golovach, Pinar Heggernes, Athanasios L Konstantinidis,
Paloma T Lima, and Charis Papadopoulos. Parameterized aspects of
strong subgraph closure. Algorithmica, 82(7):2006–2038, 2020.

[39] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Auto-
mated generation of search tree algorithms for hard graph modification
problems. Algorithmica, 39:321–347, 2004.

[40] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-
modeled data clustering: Exact algorithms for clique generation. Theory
of Computing Systems, 38:373–392, 2005.

55



[41] Rajarshi Gupta, Jean Walrand, and Olivier Goldschmidt. Maximal
cliques in unit disk graphs: Polynomial approximation. In Proceedings
INOC, volume 2005. Citeseer, 2005.

[42] Navid Imani. Parameterized tractability and kernelization of problems
on unit disk graphs. 2013.

[43] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-
sat. Journal of Computer and System Sciences, 62(2):367–375, 2001.

[44] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which
problems have strongly exponential complexity? Journal of Computer
and System Sciences, 63(4):512–530, 2001.

[45] Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter.
Hamilton paths in grid graphs. SIAM Journal on Computing, 11(4):676–
686, 1982.

[46] Giuseppe F Italiano, Athanasios L Konstantinidis, and Charis Pa-
padopoulos. Structural parameterization of cluster deletion. In WAL-
COM: Algorithms and Computation: 17th International Conference and
Workshops, WALCOM 2023, Hsinchu, Taiwan, March 22–24, 2023,
Proceedings, pages 371–383. Springer, 2023.

[47] Hiro Ito and Masakazu Kadoshita. Tractability and intractability of
problems on unit disk graphs parameterized by domain area. In Pro-
ceedings of the 9th International Symposium on Operations Research and
Its Applications (ISORA10), pages 120–127, 2010.

[48] Aθανάσιoς Λ Kωνσταντινίδης. Algorithms and complexity of graph
modification problems. 2021.

[49] Christian Komusiewicz and Johannes Uhlmann. Cluster editing
with locally bounded modifications. Discrete Applied Mathematics,
160(15):2259–2270, 2012.

[50] Athanasios L Konstantinidis and Charis Papadopoulos. Maximizing the
strong triadic closure in split graphs and proper interval graphs. Discrete
Applied Mathematics, 285:79–95, 2020.

56



[51] Athanasios L Konstantinidis and Charis Papadopoulos. Cluster deletion
on interval graphs and split related graphs. Algorithmica, 83(7):2018–
2046, 2021.

[52] Tuukka Korhonen. A single-exponential time 2-approximation algorithm
for treewidth. In 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 184–192. IEEE, 2022.

[53] Tuukka Korhonen and Daniel Lokshtanov. An improved parameterized
algorithm for treewidth. In Proceedings of the 55th Annual ACM Sym-
posium on Theory of Computing, pages 528–541, 2023.

[54] Mirko Křivánek and Jaroslav Morávek. Np-hard problems in
hierarchical-tree clustering. Acta informatica, 23:311–323, 1986.

[55] David Lichtenstein. Planar formulae and their uses. SIAM journal on
computing, 11(2):329–343, 1982.

[56] Richard J Lipton and Robert Endre Tarjan. A separator theorem for
planar graphs. SIAM Journal on Applied Mathematics, 36(2):177–189,
1979.

[57] Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. Known algorithms
on graphs of bounded treewidth are probably optimal. In Proceedings
of the twenty-second annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 777–789. SIAM, 2011.

[58] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav
Zehavi. Subexponential parameterized algorithms on disk graphs (ex-
tended abstract). In Proceedings of the 2022 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 2005–2031. SIAM, 2022.

[59] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav
Zehavi. A framework for approximation schemes on disk graphs. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2228–2241. SIAM, 2023.

[60] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The
planar k-means problem is np-hard. Theoretical Computer Science,
442:13–21, 2012.

57



[61] Sabrine Malek and Wady Naanaa. A new approximate cluster deletion
algorithm for diamond-free graphs. Journal of Combinatorial Optimiza-
tion, 39(2):385–411, 2020.

[62] Daniel Marx. The square root phenomenon in planar graphs. In ICALP
(2), page 28, 2013.

[63] Vijay Raghavan and Jeremy Spinrad. Robust algorithms for restricted
domains. Journal of algorithms, 48(1):160–172, 2003.

[64] Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification
problems. Discrete Applied Mathematics, 144(1-2):173–182, 2004.

[65] Mikkel Thorup. All structured programs have small tree width and good
register allocation. Information and Computation, 142(2):159–181, 1998.

[66] Simon Tippenhauer and Wolfgang Muzler. On planar 3-sat and its
variants. Fachbereich Mathematik und Informatik der Freien Universitat
Berlin, 2016.

[67] Johan MM Van Rooij, Hans L Bodlaender, and Peter Rossmanith. Dy-
namic programming on tree decompositions using generalised fast subset
convolution. In ESA, volume 5757, pages 566–577. Springer, 2009.

[68] Johan MM van Rooij, Hans L Bodlaender, Erik Jan van Leeuwen, Peter
Rossmanith, and Martin Vatshelle. Fast dynamic programming on graph
decompositions. arXiv preprint arXiv:1806.01667, 2018.

[69] G Yu, O Goldschmidt, and H Chen. Clique, independent set and vertex
cover problems in geometric graphs, 1993.

58


