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The simple random walk



The 1-2 random walk

Question: limN→∞ P(XN ≥ 0) =?



The 1-2 random walk
Let (Yn) be an iid sequence with P(Yn = ±1) = 1

2 .
The 1-2 random walk (Xn) is defined by X0 = 0 and

Xn+1 =

{
Xn + Yn, if Xn ≥ 0,
Xn + 2Yn, if Xn < 0.

Lemma
The number of 1-2 paths of length n with a value ≥ 0 at the end is
given by

1
3
(2n+1 + (−1)n).

For a proof see Chapter 9 in the unpublished notes "Lessons from
coin tosses" [AKT].

Corollary
limn P(Xn ≥ 0) = 2

3 .



Why interesting ?

I different step sizes in different regions changes the skewness
and the quantiles (but not the mean)

I taking risk in the loosing region increases the probability of
getting back into the winning region

I explains behavior of sports teams, managers, animals searching
for food, ...



Questions

I Suppose a controller can choose the step size from the set
{1, 2} at any time. How can one prove that the feedback
control (closed loop control)

σ∗(x) =

{
1, if x ≥ 0,
2, if x < 0,

maximizes the probability of being above 0 at some time finite
time N ?

I What about the x-y random walk, where x , y ∈ (0,∞)?



Concise answers can be found for the

diffusion limits of the random
walks



Diffusion limit of the simple random walk
Scaling: time with N, space with 1/

√
N
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Diffusion limit the simple random walk

Let (Yn)n∈N0 be the simple random walk. Scaled version:

Y
(N)
t :=

{
1√
N
YNt , if Nt ∈ Z≥0,

linear else .

Theorem (Donsker’s Theorem)
Let T ∈ (0,∞). Then (Y

(N)
t )t∈[0,T ] converges in distribution to a

Brownian motion (Wt)t∈[0,T ].



Diffusion limit of the 1-5 random walk

Scaling: time with N, space with 1/
√
N
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Oscillating Brownian motion
An OBM is a process solving an SDE of the form

dXt =
(
σ11{Xt≥b} + σ21{Xt<b}

)
dWt

I formula for the density in closed form

I Link to skew BM
References
- Keilson, Wellner 1978
- McNamara 1983



CLT for the σ1-σ2 random walk

Let (Xn)n∈N0 be the σ1-σ2 random walk. Scaled version:

X
(N)
t :=

{
1√
N
XNt , if Nt ∈ Z≥0,

linear else .

Theorem
Let T ∈ (0,∞). Then (X

(N)
t )t∈[0,T ] converges in distribution to

the OBM with parameters σ1 and σ2.



Diffusion control problems



A diffusion control problem

I state dynamics:
dXα

t = αtdWt

I controls α with values in [σ1, σ2], where 0 < σ1 < σ2

I target:

P(Xα
T > 0) −→ max!

Questions:
1. Optimal control = ?
2. maximal probability if X0 = 0?



Solution of the control problem

Theorem
The control with feedback function

σ∗(x) =

{
σ1, if x ≥ 0,
σ2, if x < 0,

is optimal.

Moreover,

max
α

P(Xα
T > 0|Xα

0 = 0) =
σ2

σ1 + σ2
.



Analytic solution method

State dynamics:
dXα

t = αtdWt

Gain function:

J(t, x , α) = P(X t,x ,α
T ≥ 0),

Value function:

V (t, x) = sup
α∈A

J(t, x , α).

HJB equation:

−wt(t, x)−
1
2

sup
u∈[1,2]

u2wxx(t, x) = 0,

Terminal condition: w(T , x) = 1[0,∞)(x).



Analytic solution method II

A candidate solution of the HJB equation:

F (t, x) =


2
3 + 1

3

∫∞
T−t

|x |√
2πz3 e

− |x|2
2z dz , x > 0,

2
3 , x = 0,
2
3

∫ T−t
0

|x/2|√
2πz3 e

− |x/2|2
2z dz , x < 0.

Classical verification yields

Theorem
V (t, x) = F (t, x), and the optimal control function is given by
α(t, x) = σ∗(x).



The inverse control problem of McNamara 1983

Suppose that controlled state dynamics satisfy

dXα
t = αtdWt

with α ∈ [σ1, σ2], and let

σ∗(x) =

{
σ1, if x ≥ 0,
σ2, if x < 0,

be threshold control function from before.
Terminal reward: E [R(Xα

T )].

McNamara’s pb: For which reward functions R the threshold
strategy σ∗ is optimal?



The inverse control problem cont’d

We know already one example: R(x) = 1[0,∞)(x).

Theorem (McNamara 1983)
Let R be a continuous function with R(0) = 0. Then σ∗ is an
optimal feedback control if and only if

(i) R is convex on (−∞, 0) and concave on (0,∞),

(ii) σ2R(σ1x) = −σ1R(−σ2x) x ≥ 0.

Example:

R(x) =
√
σ1x1(0,∞)(x)−

√
σ2|x |1(−∞,0)(x)



Math lessons to take

I Discrete time processes are usually more difficult to analyze
than continuous time counterparts. Therefore: to simplify
discrete time models, you can pass to the limit.

I Diffusion control problems in cont. time easier than
corresponding control problems in discrete time.

I Standard approach for solving control problems: set up the
HJB equation, try to find an explicit solution and then do a
verification.

I Diffusion control allows to change skewness and quantiles (but
not the mean)



Economic lessons to take

I Threshold rewards incentivize agents to take risk if things are
going badly

I We confirm a known rule from sports: take risk if behind, play
safe if ahead



What if the payoff depends on the performance of
other agents?

I sports games: a team wins if it has more points than the other
team

I management: bonus if the own company performs better than
other companies

I research: the best results will be published or put into
production

I elections: a candidate is elected if she has more votes than
another candidate

——> see Part II
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