Diffusion control ranking games Part I Diffusion control with threshold rewards

Stefan Ankirchner

AIMS Ghana, Accra, December 2024

The simple random walk

The 1-2 random walk

Question: $\lim_{N\to\infty} P(X_N \geq 0) = ?$

The 1-2 random walk

Let (Y_n) be an iid sequence with $P(Y_n = \pm 1) = \frac{1}{2}$. The 1-2 random walk (X_n) is defined by $X_0 = 0$ and

$$
X_{n+1} = \left\{ \begin{array}{ll} X_n + Y_n, & \text{if } X_n \geq 0, \\ X_n + 2Y_n, & \text{if } X_n < 0. \end{array} \right.
$$

Lemma

The number of 1-2 paths of length n with a value ≥ 0 at the end is given by

$$
\frac{1}{3}(2^{n+1} + (-1)^n).
$$

For a proof see Chapter 9 in the unpublished notes "Lessons from coin tosses" [AKT].

Corollary

 $\lim_{n} P(X_n \ge 0) = \frac{2}{3}.$

Why interesting ?

- \blacktriangleright different step sizes in different regions changes the skewness and the quantiles (but not the mean)
- \triangleright taking risk in the loosing region increases the probability of getting back into the winning region
- \triangleright explains behavior of sports teams, managers, animals searching for food, ...

Questions

 \triangleright Suppose a controller can choose the step size from the set $\{1, 2\}$ at any time. How can one prove that the feedback control (closed loop control)

$$
\sigma^*(x) = \begin{cases} 1, & \text{if } x \ge 0, \\ 2, & \text{if } x < 0, \end{cases}
$$

maximizes the probability of being above 0 at some time finite time N ?

► What about the x-y random walk, where $x, y \in (0, \infty)$?

Concise answers can be found for the

diffusion limits of the random walks

Diffusion limit of the simple random walk Scaling: time with N , space with $1/\sqrt{2}$ √ N

Diffusion limit the simple random walk

Let $(Y_n)_{n\in\mathbb{N}_0}$ be the simple random walk. Scaled version:

$$
Y_t^{(N)} := \begin{cases} \frac{1}{\sqrt{N}} Y_{Nt}, & \text{if } Nt \in \mathbb{Z}_{\geq 0}, \\ \text{linear} & \text{else}. \end{cases}
$$

Theorem (Donsker's Theorem)

Let $T\in (0,\infty).$ Then $(\boldsymbol{Y^{(N)}_{t}})$ $\sigma_t^{(N)}\big)_{t\in[0,T]}$ converges in distribution to a *Brownian motion* $(W_t)_{t\in[0,T]}$.

Diffusion limit of the 1-5 random walk

Oscillating Brownian motion

An OBM is a process solving an SDE of the form

$$
dX_t = (\sigma_1 1_{\{X_t \ge b\}} + \sigma_2 1_{\{X_t < b\}}) \, dW_t
$$

 \triangleright formula for the density in closed form

 \blacktriangleright Link to skew BM

References

- Keilson, Wellner 1978
- McNamara 1983

CLT for the σ_1 - σ_2 random walk

Let $(X_n)_{n\in\mathbb{N}_0}$ be the σ_1 - σ_2 random walk. Scaled version:

$$
X_t^{(N)} := \left\{ \begin{array}{ll} \frac{1}{\sqrt{N}} X_{Nt}, & \text{if } Nt \in \mathbb{Z}_{\geq 0}, \\ \text{linear} & \text{else}. \end{array} \right.
$$

Theorem

Let $T\in (0,\infty).$ Then $(X_t^{(N)})$ $\sigma_t^{(N)}\big)_{t\in[0,\mathcal{T}]}$ converges in distribution to the OBM with parameters σ_1 and σ_2 .

Diffusion control problems

A diffusion control problem

 \blacktriangleright state dynamics:

$$
dX_t^{\alpha} = \alpha_t dW_t
$$

D controls α with values in $[\sigma_1, \sigma_2]$, where $0 < \sigma_1 < \sigma_2$

 \blacktriangleright target:

$$
P(X_T^{\alpha} > 0) \longrightarrow max!
$$

Questions:

- 1. Optimal control $= ?$
- 2. maximal probability if $X_0 = 0$?

Solution of the control problem

Theorem

The control with feedback function

$$
\sigma^*(x) = \begin{cases} \sigma_1, & \text{if } x \ge 0, \\ \sigma_2, & \text{if } x < 0, \end{cases}
$$

is optimal.

Moreover,

$$
\max_{\alpha} P(X_T^{\alpha} > 0 | X_0^{\alpha} = 0) = \frac{\sigma_2}{\sigma_1 + \sigma_2}.
$$

Analytic solution method

State dynamics:

$$
dX_t^{\alpha} = \alpha_t dW_t
$$

Gain function:

$$
J(t,x,\alpha)=P(X_{\mathcal{T}}^{t,x,\alpha}\geq 0),
$$

Value function:

$$
V(t,x)=\sup_{\alpha\in\mathcal{A}}J(t,x,\alpha).
$$

HJB equation:

$$
-w_t(t,x)-\frac{1}{2}\sup_{u\in[1,2]}u^2w_{xx}(t,x)=0,
$$

Terminal condition: $w(T, x) = 1_{[0,\infty)}(x)$.

Analytic solution method II

A candidate solution of the HJB equation:

$$
F(t,x) = \begin{cases} \frac{2}{3} + \frac{1}{3} \int_{T-t}^{\infty} \frac{|x|}{\sqrt{2\pi z^3}} e^{-\frac{|x|^2}{2z}} dz, & x > 0, \\ \frac{2}{3}, & x = 0, \\ \frac{2}{3} \int_{0}^{T-t} \frac{|x/2|}{\sqrt{2\pi z^3}} e^{-\frac{|x/2|^2}{2z}} dz, & x < 0. \end{cases}
$$

Classical verification yields

Theorem

 $V(t, x) = F(t, x)$, and the optimal control function is given by $\alpha(t,x)=\sigma^*(x).$

The inverse control problem of McNamara 1983

Suppose that controlled state dynamics satisfy

$$
dX_t^\alpha = \alpha_t dW_t
$$

with $\alpha \in [\sigma_1, \sigma_2]$, and let

$$
\sigma^*(x) = \begin{cases} \sigma_1, & \text{if } x \ge 0, \\ \sigma_2, & \text{if } x < 0, \end{cases}
$$

be threshold control function from before. Terminal reward: $E[R(X_T^{\alpha})]$.

McNamara's pb: For which reward functions R the threshold strategy σ^* is optimal?

The inverse control problem cont'd

We know already one example: $R(\mathsf{x}) = 1_{[0,\infty)}(\mathsf{x}).$

Theorem (McNamara 1983)

Let R be a continuous function with $R(0) = 0$. Then σ^* is an optimal feedback control if and only if

\n- (i)
$$
R
$$
 is convex on $(-\infty, 0)$ and concave on $(0, \infty)$,
\n- (ii) $\sigma_2 R(\sigma_1 x) = -\sigma_1 R(-\sigma_2 x) \quad x \geq 0$.
\n

Example:

$$
R(x)=\sqrt{\sigma_1x}1_{(0,\infty)}(x)-\sqrt{\sigma_2|x|}1_{(-\infty,0)}(x)
$$

Math lessons to take

- \triangleright Discrete time processes are usually more difficult to analyze than continuous time counterparts. Therefore: to simplify discrete time models, you can pass to the limit.
- \triangleright Diffusion control problems in cont. time easier than corresponding control problems in discrete time.
- \triangleright Standard approach for solving control problems: set up the HJB equation, try to find an explicit solution and then do a verification.
- \triangleright Diffusion control allows to change skewness and quantiles (but not the mean)

Economic lessons to take

- \triangleright Threshold rewards incentivize agents to take risk if things are going badly
- \triangleright We confirm a known rule from sports: take risk if behind, play safe if ahead

What if the payoff depends on the performance of other agents?

- \triangleright sports games: a team wins if it has more points than the other team
- \triangleright management: bonus if the own company performs better than other companies
- \triangleright research: the best results will be published or put into production
- \triangleright elections: a candidate is elected if she has more votes than another candidate

——> see Part II

Literature

- ▶ S. Ankirchner and N. Kazi-Tani. Lessons from coin tosses. Unpublished lecture notes. Available at: [https://www.fmi.](https://www.fmi.uni-jena.de/2376/prof-dr-stefan-ankirchner) [uni-jena.de/2376/prof-dr-stefan-ankirchner](https://www.fmi.uni-jena.de/2376/prof-dr-stefan-ankirchner)
- \triangleright McNamara, J. M. Optimal control of the diffusion coefficient of a simple diffusion process. Mathematics of Operations Research 8.3 (1983): 373-380.