Diffusion control ranking games Part I Diffusion control with threshold rewards

Stefan Ankirchner

AIMS Ghana, Accra, December 2024

The simple random walk

The 1-2 random walk

Question: $\lim_{N\to\infty} P(X_N \ge 0) =?$

The 1-2 random walk

Let (Y_n) be an iid sequence with $P(Y_n = \pm 1) = \frac{1}{2}$. The 1-2 random walk (X_n) is defined by $X_0 = 0$ and

$$X_{n+1} = \begin{cases} X_n + Y_n, & \text{if } X_n \ge 0, \\ X_n + 2Y_n, & \text{if } X_n < 0. \end{cases}$$

Lemma

The number of 1-2 paths of length n with a value ≥ 0 at the end is given by

$$\frac{1}{3}(2^{n+1}+(-1)^n).$$

For a proof see Chapter 9 in the unpublished notes "Lessons from coin tosses" [AKT].

Corollary

 $\lim_n P(X_n \ge 0) = \frac{2}{3}.$

Why interesting ?

- different step sizes in different regions changes the skewness and the quantiles (but not the mean)
- taking risk in the loosing region increases the probability of getting back into the winning region
- explains behavior of sports teams, managers, animals searching for food, ...

Questions

 Suppose a controller can choose the step size from the set {1,2} at any time. How can one prove that the feedback control (closed loop control)

$$\sigma^*(x) = \begin{cases} 1, & \text{if } x \ge 0, \\ 2, & \text{if } x < 0, \end{cases}$$

maximizes the probability of being above 0 at some time finite time $N \ ?$

• What about the x-y random walk, where $x, y \in (0, \infty)$?

Concise answers can be found for the

diffusion limits of the random walks

Diffusion limit of the simple random walk Scaling: time with N, space with $1/\sqrt{N}$

Diffusion limit the simple random walk

Let $(Y_n)_{n \in \mathbb{N}_0}$ be the simple random walk. Scaled version:

$$Y_t^{(N)} := \left\{ egin{array}{c} rac{1}{\sqrt{N}} Y_{Nt}, & ext{if } Nt \in \mathbb{Z}_{\geq 0}, \ ext{linear} & ext{else} \ . \end{array}
ight.$$

Theorem (Donsker's Theorem)

Let $T \in (0, \infty)$. Then $(Y_t^{(N)})_{t \in [0, T]}$ converges in distribution to a Brownian motion $(W_t)_{t \in [0, T]}$.

Diffusion limit of the 1-5 random walk

Oscillating Brownian motion

An OBM is a process solving an SDE of the form

$$dX_t = \left(\sigma_1 \mathbb{1}_{\{X_t \ge b\}} + \sigma_2 \mathbb{1}_{\{X_t < b\}}\right) dW_t$$

formula for the density in closed form

Link to skew BM

References

- Keilson, Wellner 1978
- McNamara 1983

CLT for the σ_1 - σ_2 random walk

Let $(X_n)_{n \in \mathbb{N}_0}$ be the σ_1 - σ_2 random walk. Scaled version:

$$X_t^{(N)} := \left\{ egin{array}{cc} rac{1}{\sqrt{N}} X_{Nt}, & ext{if } Nt \in \mathbb{Z}_{\geq 0}, \ ext{linear} & ext{else} \ . \end{array}
ight.$$

Theorem

Let $T \in (0, \infty)$. Then $(X_t^{(N)})_{t \in [0, T]}$ converges in distribution to the OBM with parameters σ_1 and σ_2 .

Diffusion control problems

A diffusion control problem

state dynamics:

$$dX_t^{\alpha} = \alpha_t dW_t$$

▶ controls α with values in $[\sigma_1, \sigma_2]$, where $0 < \sigma_1 < \sigma_2$

target:

$$P(X_T^{\alpha} > 0) \longrightarrow max!$$

Questions:

- **1**. Optimal control = ?
- **2.** maximal probability if $X_0 = 0$?

Solution of the control problem

Theorem *The control with feedback function*

$$\sigma^*(x) = \begin{cases} \sigma_1, & \text{if } x \ge 0, \\ \sigma_2, & \text{if } x < 0, \end{cases}$$

is optimal.

Moreover,

$$\max_{\alpha} P(X_T^{\alpha} > 0 | X_0^{\alpha} = 0) = \frac{\sigma_2}{\sigma_1 + \sigma_2}.$$

Analytic solution method

State dynamics:

$$dX_t^{\alpha} = \alpha_t dW_t$$

Gain function:

$$J(t, x, \alpha) = P(X_T^{t, x, \alpha} \ge 0),$$

Value function:

$$V(t,x) = \sup_{\alpha \in \mathcal{A}} J(t,x,\alpha).$$

HJB equation:

$$-w_t(t,x) - \frac{1}{2} \sup_{u \in [1,2]} u^2 w_{xx}(t,x) = 0,$$

Terminal condition: $w(T, x) = 1_{[0,\infty)}(x)$.

Analytic solution method II

A candidate solution of the HJB equation:

$$F(t,x) = \begin{cases} \frac{2}{3} + \frac{1}{3} \int_{T-t}^{\infty} \frac{|x|}{\sqrt{2\pi z^3}} e^{-\frac{|x|^2}{2z}} dz, & x > 0, \\ \frac{2}{3}, & x = 0, \\ \frac{2}{3} \int_{0}^{T-t} \frac{|x/2|}{\sqrt{2\pi z^3}} e^{-\frac{|x/2|^2}{2z}} dz, & x < 0. \end{cases}$$

Classical verification yields

Theorem

V(t,x) = F(t,x), and the optimal control function is given by $\alpha(t,x) = \sigma^*(x)$.

The inverse control problem of McNamara 1983

Suppose that controlled state dynamics satisfy

$$dX_t^{\alpha} = \alpha_t dW_t$$

with $\alpha \in [\sigma_1, \sigma_2]$, and let

$$\sigma^*(x) = \begin{cases} \sigma_1, & \text{if } x \ge 0, \\ \sigma_2, & \text{if } x < 0, \end{cases}$$

be threshold control function from before. **Terminal reward:** $E[R(X_T^{\alpha})]$.

McNamara's pb: For which reward functions R the threshold strategy σ^* is optimal?

The inverse control problem cont'd

We know already one example: $R(x) = 1_{[0,\infty)}(x)$.

Theorem (McNamara 1983)

Let R be a continuous function with R(0) = 0. Then σ^* is an optimal feedback control if and only if

(i) R is convex on
$$(-\infty, 0)$$
 and concave on $(0, \infty)$,
(ii) $\sigma_2 R(\sigma_1 x) = -\sigma_1 R(-\sigma_2 x)$ $x \ge 0$.

Example:

$$R(x) = \sqrt{\sigma_1 x} \mathbf{1}_{(0,\infty)}(x) - \sqrt{\sigma_2 |x|} \mathbf{1}_{(-\infty,0)}(x)$$

Math lessons to take

- Discrete time processes are usually more difficult to analyze than continuous time counterparts. Therefore: to simplify discrete time models, you can pass to the limit.
- Diffusion control problems in cont. time easier than corresponding control problems in discrete time.
- Standard approach for solving control problems: set up the HJB equation, try to find an explicit solution and then do a verification.
- Diffusion control allows to change skewness and quantiles (but not the mean)

Economic lessons to take

- Threshold rewards incentivize agents to take risk if things are going badly
- We confirm a known rule from sports: take risk if behind, play safe if ahead

What if the payoff depends on the performance of other agents?

- sports games: a team wins if it has more points than the other team
- management: bonus if the own company performs better than other companies
- research: the best results will be published or put into production
- elections: a candidate is elected if she has more votes than another candidate

 \longrightarrow see Part II

Literature

- S. Ankirchner and N. Kazi-Tani. Lessons from coin tosses. Unpublished lecture notes. Available at: https://www.fmi. uni-jena.de/2376/prof-dr-stefan-ankirchner
- McNamara, J. M. Optimal control of the diffusion coefficient of a simple diffusion process. Mathematics of Operations Research 8.3 (1983): 373-380.