Diffusion control ranking games Part II

Stefan Ankirchner

AIMS Ghana, Accra, December 2024

A 2-player game

State of player 1:

$$dX_t = \alpha(X_t, Y_t) dW_t^1, \quad X_0 = 0$$

State of player 2:

$$dY_t = \beta(X_t, Y_t) dW_t^2, \quad Y_0 = 0$$

▶ $\alpha, \beta : \mathbb{R}^2 \to [\sigma_1, \sigma_2]$ closed loop controls ▶ W^1 and W^2 are independent BM

2-player game cont'd

reward of player
$$1 = \begin{cases} 1, & \text{if } X_T > Y_T, \\ 0, & \text{else.} \end{cases}$$

reward of player
$$2 = \begin{cases} 1, & \text{if } Y_T > X_T, \\ 0, & \text{else.} \end{cases}$$

Comments:

- Zero-sum payoff
- Players can observe the opponent's state

Solving the game

The state difference $D_t := X_t - Y_t$ satisfies

$$dD_t = (\alpha_t^2 + \beta_t^2)^{1/2} d\tilde{W}_t$$

Target of player 1: $P(D_T > 0) \longrightarrow \max!$ Target of player 2: $P(D_T > 0) \longrightarrow \min!$

Irrespective of β_t :

- $\alpha_t = \sigma_2$ maximizes the diffusion rate
- $\alpha_t = \sigma_1$ minimizes the diffusion rate

Solving the game

Theorem *Let*

$$\alpha^*(x,y) = \begin{cases} \sigma_1, & \text{if } x \ge y, \\ \sigma_2, & \text{if } x < y, \end{cases}$$

and

$$\beta^*(\mathbf{x},\mathbf{y}) = \alpha^*(\mathbf{y},\mathbf{x}).$$

Then (α^*, β^*) is a saddle point (and hence a Nash equilibrium).

Rigoros proof

Isaacs equations....

What if more than 2 players?

- management: bonus if the own company is among the best performing companies
- research competition among many R & D teams
- Olympic games: the best three athletes receive a medal
- elections with many candidates

A large ranking game

n players
X¹,...,Xⁿ = states of player 1,...,n dX^{i,a}_t = a_i(X^{i,a}_t, X^{-i,a}_t)dWⁱ_t, X^{i,a}₀ = 0.
a_i : ℝⁿ → [σ₁, σ₂]
W¹,...,Wⁿ independent Brownian motions

A large ranking game

empirical distribution of all states at T:

$$\mu^{n,a} = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_T^{i,a}}$$

• the α *100% best players receive a prize:

reward of player
$$i = \begin{cases} 1, & \text{if } X_T^{i,a} > (1 - \alpha) \text{-quantile of } \mu^{n,a}, \\ 0, & \text{else.} \end{cases}$$

How to find / characterize Nash equilibria?

Stochastic games with many players in general are difficult to analyze. Additional difficulty here: discontinuous reward function.

Idea: for large *n* the mean-field game version yields an approximate Nash equilibrium.

The mean field approximation

▶ 1 player

state dynamics

$$dX_t = a(X_t)dW_t, \quad X_0 = 0$$

$$P(X_T^{a^*} > q(X_T^{a^*}, 1-\alpha)) = \max_a P(X_T^a > q(X_T^{a^*}, 1-\alpha))$$

The mean field equilibrium is a threshold strategy

Theorem

The threshold strategy with threshold

$$b^* = \begin{cases} -\sigma_2 \sqrt{T} \Phi^{-1} \left(\frac{\alpha(\sigma_1 + \sigma_2)}{2\sigma_2} \right), & \text{if } \alpha \le \frac{\sigma_2}{\sigma_1 + \sigma_2}, \\ \sigma_1 \sqrt{T} \Phi^{-1} \left(\frac{(1 - \alpha)(\sigma_1 + \sigma_2)}{2\sigma_1} \right), & \text{if } \alpha > \frac{\sigma_2}{\sigma_1 + \sigma_2}, \end{cases}$$
(1)

is an equilibrium strategy for the mean field game.

The mean field equilibrium is an approximate equilibrium of the *n* player game

Theorem

Let $a = (a_1, \ldots, a_n)$ be the tuple of mean-field equilibrium strategies. Then there exists $\varepsilon_n \downarrow 0$ such that $a = (a_1, \ldots, a_n)$ is an ε_n -Nash equilibrium of the n-player game. We can choose $\varepsilon_n \in \mathcal{O}(n^{-\frac{1}{2}})$.

The smaller the cake...

The smaller the cake...

Figure: $\gamma := \frac{\sigma_1}{\sigma_2} = \frac{2}{3}$, e.g. $\sigma_1 = 2, \sigma_2 = 3$

$$R(\alpha) = \frac{1}{T} \int_0^T P(X_t^{b^*} < b^*) dt$$

The larger the scope of action...

The heat of the battle

Part of the players choosing the small volatility σ_1

Figure: Parameters: $\sigma_1 = 1$, $\sigma_2 = 2$, T = 1, $\alpha = 0.5$

Comparison of large games with the 2-player game

2 players	∞ players
only relative position counts	only absolute position counts
observability is crucial	observability is irrelevant
one of the players always chooses σ_1	at the beginning all choose σ_2

Conclusion

- ► Closed form equilibrium for the limiting cases n = 2 and n = ∞.
- ▶ Games with n ≥ 3 players: equilibrium strategies depend on both the relative and absolute position

Literature

- S. Ankirchner, N. Kazi-Tani, J. Wendt and Chao Zhou. Large ranking games with diffusion control. Mathematics of Operations Research. 2023.
- S. Ankirchner, H,. Bernburg and J. Wendt. A simple random walk game. HAL preprint (https://hal.science/hal-03607763/) 2022.
- J. Wendt. Diffusion control and games. Dissertation, Jena University, 2023. Available at: https: //www.db.thworingen.do/macaiwa/dbt_mode_00050061

//www.db-thueringen.de/receive/dbt_mods_00059061