

Gutachter:

Prof. Dr. Christian Komusiewicz, Friedrich-Schiller-Universität Jena, Deutschland

Prof. Dr. Peter Rossmanith, RWTH Aachen, Deutschland

Prof. Dr. Stefan Szeider, Technische Universität Wien, Österreich

Tag der öffentlichen Verteidigung: 21. Oktober 2024

Dieses Werk bzw. Inhalt steht unter einer
Creative Commons
Namensnennung

Keine kommerzielle Nutzung
Weitergabe unter gleichen Bedingungen

4.0 Deutschland Lizenz.

Die vollständige Lizenz finden Sie unter:
http://creativecommons.org/licenses/by-nc-sa/4.0/de/

Ehrenwörtliche Erklärung

Hiermit erkläre ich,

- dass mir die Promotionsordnung der Fakultät bekannt ist,

- dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte oder
Ergebnisse eines Dritten oder eigenen Prüfungsarbeiten ohne Kennzeichnung
übernommen und alle von mir benutzten Hilfsmittel, persönlichen Mitteilungen
und Quellen in meiner Arbeit angegeben habe,

- dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen habe
und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von
mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der
vorgelegten Dissertation stehen,

- dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder
andere wissenschaftliche Prüfung eingereicht habe.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manu-
skripts haben mich folgende Personen unterstützt:

Jaroslav Garvardt, Niels Grüttemeier, Christian Komusiewicz, Simone Linz, André
Nichterlein, Jannik Schestag, Mathias Weller.

Ich habe die gleiche, eine in wesentlichen Teilen ähnliche bzw. eine andere Abhand-
lung noch bei keiner anderen Hochschule als Dissertation eingereicht.

Ort, Datum Nils Morawietz, Unterschrift

Morawietz, Nils
On the Complexity of Local Search Problems with Scalable Neighborhoods
Dissertation, Friedrich-Schiller-Universität Jena, 2024.

Curriculum vitae

• Since May 2023: Member of the Algorithm Engeneering group
Friedrich-Schiller-Universität Jena, Germany.

• October 2019 – April 2023: Member of the Algorithmics group
Philipps-Universität Marburg, Germany.

• October 2017 – September 2019: M.Sc. in Computer Science
Philipps-Universität Marburg, Germany.

• October 2013 – September 2017: B.Sc. in Computer Science
Philipps-Universität Marburg, Germany.

Preface

This thesis summarizes my research findings on the complexity of local search al-
gorithms with scalable neighborhoods. The results contained in this thesis were
obtained from April 2020 to April 2023 at the Philipps-Universität Marburg at the
Fachbereich Mathematik und Informatik in the Algorithmics research group lead by
Christian Komusiewicz and from May 2023 to January 2024 at the Friedrich-Schiller-
Universität Jena at the Institut für Informatik in the Algorithm Engeneering research
group lead by Christian Komusiewicz.

In the following, I describe which chapters are based on which previous publica-
tions and highlight my contribution to these publications.

Chapter 3 is based on the publication “Parameterized Local Search for Ver-
tex Cover: When Only the Search Radius Is Crucial” written with Christian Ko-
musiewicz. A preliminary version of this publication appeared in the Proceedings of
the 17th International Symposium on Parameterized and Exact Computation
(IPEC ’22) [107]. Christian proposed to analyze the parameterized complexity of
local search for Weighted Vertex Cover. In particular, the goal was to develop
algorithms for this local search problem that run in ℓO(k) ·nO(1) time, where ℓ is some
secondary parameter that ideally fulfills ℓ j n. The first parameter we considered
was the maximum degree ∆ of the input graph. We showed that such an algorithm
for ℓ = ∆ is possible, which directly generalized a previously known algorithm for
the unweighted version of Vertex Cover [98]. Afterwards, we also developed al-
gorithms with similar running times for other structural parameters ℓ. All results of
this chapter were developed by both coauthors together. I worked out all technical
details and prepared the draft of the manuscript.

Chapter 4 is based on the publication “Parameterized Local Search for Max c-
Cut” written with Jaroslav Garvardt, Niels Grüttemeier, and Christian Komusiewicz.
A preliminary version of this publication appeared in the Proceedings of the 32nd
International Joint Conference on Artificial Intelligence (IJCAI ’23) [66]. To exper-
imentally evaluate the performance of parameterized local search for classical graph
problems, Christian and I decided to analyze local search for Max Cut and the
more general Max c-Cut. All authors jointly developed an algorithm solving the
problem in (3 · e · ∆)k · nO(1) time. I worked out all the technical details and im-
plemented this algorithm. Niels and I developed several pruning rules to reduce
the practical running time of the algorithm and Niels prepared the draft of these
pruning rules. I performed the experimental evaluation of our algorithm with some
assistance by Jaroslav. From a negative point of view, we discovered that the con-
sidered parameterized local search problem is W[1]-hard when parameterized by the

I

search radius k. In addition, after the publication of the conference version, I de-
veloped several further hardness results for local search versions of related partition
problems.

Chapter 5 is based on the publication “Graph Clustering Problems Under the
Lens of Parameterized Local Search” written with Jaroslav Garvardt, André Nichter-
lein, and Mathias Weller. A preliminary version of this publication appeared in the
Proceedings of the 18th International Symposium on Parameterized and Exact Com-
putation (IPEC ’23) [67]. Based on the huge success of local search solvers during
the PACE-challenge for Cluster Editing, I proposed to analyze the parameterized
complexity of local search for Cluster Deletion and Cluster Editing with re-
spect to the move neighborhood. We initially observed that the problems are FPT
with respect to the maximum degree ∆ plus the search radius k. André and I worked
out the technical details of this algorithm and André prepared an initial draft of this
algorithm and proved that it runs in ∆8k · kk · nO(1) time. After the publication of
the conference version, I was able to present a different algorithm that solves the
problems in ∆2k · (3 · e)k ·nO(1) time. Additionally, all authors jointly discovered that
the local search version of Cluster Deletion is W[1]-hard when parameterized
by the search radius k. Jaroslav and I worked out the technical details and pre-
pared the draft of this hardness result together. Furthermore, I discovered several
hardness results for LS Cluster Editing and developed FPT-algorithms for the
permissive versions of both local search problems. For all these results, I worked out
the technical details and prepared the draft of the manuscript.

Chapter 6 is based on the publication “On the Complexity of Parameterized Local
Search for the Maximum Parsimony Problem” written with Christian Komusiewicz,
Simone Linz, and Jannik Schestag. A preliminary version of this publication ap-
peared in the Proceedings of the 34th Annual Symposium on Combinatorial Pat-
tern Matching (CPM ’23) [104]. Initially, we aimed to analyze the (parameterized)
complexity of local search for Maximum Parsimony with respect to the dECR-
neighborhoods. We observed that for the dsECR-neighborhood, an FPT-algorithm
with respect to the search radius k is possible. Jannik and I worked out the techni-
cal details together. Later, Christian, Simone, and I observed that the parameterized
complexity changes, when considering the dECR-neighborhood. Namely, we observed
that the problem then becomes W[1]-hard when parameterized by the search radius k.
I was later able to extend this result to other famous neighborhoods for Maximum
Parsimony and even if each character is binary. Furthermore, after the publication
of the conference version I was able to lift the intractability results to the permissive
version of the respective local search problems. I worked out all the details for these
intractability results and prepared the draft of the manuscript.

II

Chapter 7 is based on the publication “Finding 3-Swap-Optimal Independent Sets
and Dominating Sets Is Hard” written with Christian Komusiewicz. A preliminary
version of this publication appeared in the Proceedings of the 47th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS ’22) [106] and a
full version is accepted in principle at ACM Transactions on Computation Theory.
Christian proposed to consider the complexity for finding locally optimal solutions
for Weighted Independent Set with respect to the k-swap neighborhood for
small values of k. Initially, I found a reduction proving PLS-hardness for each k g 7.
Later, I was able to lift this hardness even to all values of k g 3. Furthermore, after
the publication of the conference version we observed that this hardness result could
also be shown for a large class of weighted optimization problems. Based on these
results, Christian raised the question about the complexity of finding locally optimal
solutions for k f 2. Christian and I jointly developed polynomial-time algorithms
for this case. I worked out all the technical details of all results and prepared the
draft of the manuscript.

Next, I list all my other conference and journal publications I worked on during
my PhD-studies. These publications are ordered alphabetically.

• “A cop and robber game on edge-periodic temporal graphs”, with Thomas
Erlebach, Jakob T. Spooner, and Petra Wolf. Journal: Journal of Computer
and System Sciences [49].

• “A Graph-Theoretic Formulation of Exploratory Blockmodeling”, with Alexan-
der Bille, Niels Grüttemeier, and Christian Komusiewicz. Conference: 21st
International Symposium on Experimental Algorithms (SEA ’23) [18].

• “A Timecop’s Chase Around the Table”, with Petra Wolf. Journal: Part of
a joint journal version [49]. Conference: 46th International Symposium on
Mathematical Foundations of Computer Science (MFCS ’21) [128].

• “A Timecop’s Work Is Harder Than You Think”, with Carolin Rehs and Math-
ias Weller. Conference: 45th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS ’20) [127].

• “Can Local Optimality Be Used for Efficient Data Reduction?”, with Christian
Komusiewicz. Journal: Submitted. Conference: 12th International Conference
on Algorithms and Complexity (CIAC ’21) [105].

• “Complexity of Local Search for Euclidean Clustering Problems”, with Bodo
Manthey, Jesse van Rhijn, and Frank Sommer. ArXiv: [121].

III

• “Distance to Transitivity: New Parameters for Taming Reachability in Tem-
poral Graphs”, with Arnaud Casteigts and Petra Wolf. Conference: 49th
International Symposium on Mathematical Foundations of Computer Science
(MFCS ’24) [29].

• “Efficient Bayesian Network Structure Learning via Parameterized Local
Search on Topological Orderings”, with Niels Grüttemeier and Christian Ko-
musiewicz. Conference: 35th Annual Conference on Artificial Intelligence
(AAAI ’21) [77].

• “Exact Algorithms for Group Closeness Centrality”, with Luca Pascal Staus,
Christian Komusiewicz, and Frank Sommer. Conference: 2nd SIAM Confer-
ence on Applied and Computational Discrete Algorithms (ACDA ’23) [157].

• “Multi-Parameter Analysis of Finding Minors and Subgraphs in Edge-Periodic
Temporal Graphs”, with Emmanuel Arrighi, Niels Grüttemeier, Frank Som-
mer, and Petra Wolf. Conference: 48th Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM ’23) [11].

• “On the Complexity of Community-aware Network Sparsification”, with Ema-
nuel Herrendorf, Christian Komusiewicz, and Frank Sommer. Conference: 49th
International Symposium on Mathematical Foundations of Computer Science
(MFCS ’24) [88].

• “On the Complexity of Computing Time Series Medians Under the Move-
Split-Merge Metric”, with Jana Holznigenkemper, Christian Komusiewicz, and
Bernhard Seeger. Conference: 48th International Symposium on Mathematical
Foundations of Computer Science (MFCS ’23) [89].

• “On the Parameterized Complexity of Polytree Learning”, with Niels Grütte-
meier and Christian Komusiewicz. Conference: 30th International Joint Con-
ference on Artificial Intelligence (IJCAI ’21) [78].

• “Parameterized Algorithms for Multi-Label Periodic Temporal Graph Realiza-
tion”, with Thomas Erlebach and Petra Wolf. Conference: 3rd Symposium on
Algorithmic Foundations of Dynamic Networks (SAND ’24) [50].

• “Preventing Small (s, t)-Cuts by Protecting Edges”, with Niels Grüttemeier,
Christian Komusiewicz, and Frank Sommer. Conference: 47th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG ’21) [80].

IV

• “String Factorizations Under Various Collision Constraints”, with Niels Grütte-
meier, Christian Komusiewicz, and Frank Sommer. Conference: 31th Annual
Symposium on Combinatorial Pattern Matching (CPM ’20) [79].

Acknowledgements. I want to express my gratitude to Christian Komusiewicz
who accepted me as his PhD student and introduced me to the world of parameterized
complexity. No matter the time or date, Christian was always available for discus-
sion and new ideas. My thanks also goes to my colleagues who always brought up
new fascinating research topics and provided a pleasant working environment: Niels
Grüttemeier, Frank Sommer, Jaroslav Garvardt, and Luca Pascal Staus. I want to
thank all of my other co-authors: Petra Wolf, Tomas Erlebach, Mathias Weller, Em-
manuel Arrighi, Kaja Balzereit, Alexander Bille, Emanuel Herrendorf, Jana Holzni-
genkemper, Simone Linz, Bodo Manthey, André Nichterlein, Carolin Rehs, Dennis
Reinhardt, Jesse van Rhijn, Jannik Schestag, Bernhard Seeger, and Stefan Wind-
mann. I am also grateful for the financial support by the Deutsche Forschungsge-
meinschaft project Multivariate Operationale Parametrisierung für Heuristiken (OP-
ERAH) during my PhD. Finally, I want to express my gratitude to my parents for
their endless love and support over all the years!

V

Abstract

Local search algorithms are heuristics that find a good solution to an instance of an
optimization problem at hand by computing some starting solution and afterwards
iteratively replacing the current solution by a better one in the local neighborhood.
Here, the local neighborhood of the current solution is a collection of other solutions
that are structurally similar to the current one. This process terminates, when a lo-
cally optimal solution is found, that is, when the current solution cannot be improved
by any solution in its local neighborhood. The choice for the local neighborhood is
a fundamental design aspect of such algorithms and highly influences the quality of
the found solutions as well as the running time of the whole algorithm.

We study local search for several NP-hard optimization problems such as Ver-
tex Cover and Max Cut and their arguably most natural neighborhoods. For
these problems we consider the two most important questions about the worst-case
running time of such local search algorithms: First, how fast can we find a better so-
lution in the local neighborhood, if one exists? Second, how fast can we find a locally
optimal solution? The local neighborhoods we consider are scalable, that is, these
local neighborhoods grow with respect to some user-dependent parameter k (called
the search radius). The parameter k determines a trade-off between solution quality
and running time of the local search algorithm: the larger k, the better the final solu-
tion might be but the more time the algorithm takes. For unbounded values of k, all
considered local search problems become NP-hard. Based on this NP-hardness, for
the first question, we analyze the considered local search problems from the perspec-
tive of parameterized complexity with respect to the search radius k. As we show,
for all these problems, determining whether there is a better solution in the local
neighborhood needs nΩ(k) time, assuming the Exponential Time Hypothesis. We
complement these running time lower bounds by presenting algorithms with running
times of the form ℓO(k) · nO(1) for some secondary parameter ℓ f n. Regarding the
second question involving the total running time of the local search algorithm, we
consider a large class of weighted optimization problems where each feasible solu-
tion is a subset of some polynomial-size universe. As the local neighborhood of a
solution S, we consider all solutions whose symmetric difference with S has size at
most k. We present a dichotomy with respect to k on when locally optimal solutions
can be found in polynomial time. Namely, we show that for k f 2, locally optimal
solutions can be found in polynomial time, whereas finding a locally optimal solution
in polynomial time is unlikely for each k g 3.

VII

Zusammenfassung

Lokale-Suche-Algorithmen sind Heuristiken, die gute Lösungen für ein Optimierungs-
problem finden, indem sie zuerst eine Startlösung berechnen und anschließend wieder-
holt die jeweils aktuelle Lösung durch eine bessere Lösung in der lokalen Nach-
barschaft ersetzen. Die lokale Nachbarschaft der aktuellen Lösung ist hierbei eine
Menge anderer Lösungen, die der aktuellen Lösung strukturell ähnlich sind. Der
Lokale-Suche-Algorithmus terminiert, wenn eine lokal optimale Lösung gefunden
wurde, also eine Lösung, deren lokale Nachbarschaft keine bessere Lösung enthält.
Die Wahl der lokalen Nachbarschaft ist ein fundamentaler Design-Aspekt von solchen
Algorithmen und hat einen hohen Einfluss auf die Qualität der final gefundenen
Lösung sowie auf die Gesamtlaufzeit des Algorithmus.

In dieser Arbeit untersuchen wir Lokale-Suche für diverse NP-schwere Opti-
mierungsprobleme (wie zum Beispiel Vertex Cover und Max Cut) bezüglich
der natürlichsten Nachbarschaften für diese Probleme. Für diese Probleme betra-
chten wir die zwei wichtigsten Fragen bezüglich der Komplexität von solchen Lokale-
Suche-Algorithmen: Erstens, wie schnell können wir eine bessere Lösung in der
lokalen Nachbarschaft finden, sofern eine existiert? Zweitens, wie schnell können
wir eine lokal optimale Lösung finden? Die lokalen Nachbarschaften, die wir betra-
chten sind skalierbar, das heißt, diese lokalen Nachbarschaften wachsen bezüglich
eines vom Anwender definierten Parameters k (dem sogenannten Suchradius). Der
Parameter k stellt eine Stellschraube zwischen Lösungsgüte und Laufzeit des Lokale-
Suche-Algorithmus dar: Je größer k wird, desto besser kann die finale Lösung sein,
aber desto länger wird der Algorithmus brauchen. Für ausreichend große Werte
von k sind alle in dieser Arbeit untersuchten Lokale-Suche-Probleme NP-schwer.
Basierend auf dieser NP-Schwere, untersuchen wir die erste Frage aus der Perspek-
tive der parametrisierten Komplexität bezüglich des Suchradius k. Wir zeigen, dass
für alle betrachteten Probleme die Bestimmung, ob eine bessere Lösung in der lokalen
Nachbarschaft existiert, mindestens nΩ(k) Zeit benötigt, sofern die Exponentialzeit-
Hypothese stimmt. Wir komplementieren diese untere Schranke für die Laufzeit,
indem wir Algorithmen präsentieren, deren Laufzeit die Form ℓO(k) ·nO(1) haben, für
sekundäre Parameter ℓ f n. Bezüglich der zweiten Fragen, die sich mit der Gesamt-
laufzeit des Lokale-Suche-Algorithmus beschäftigt, untersuchen wir eine große Klasse
von gewichteten Optimierungsproblemen, bei denen jede gültige Lösung als eine
Teilmenge eines polynomial-großen Universums aufgefasst werden kann. Als lokale
Nachbarschaft einer solchen Lösung S betrachten wir alle anderen Lösungen deren
symmetrische Differenz zu S eine Größe von maximal k hat. Wir präsentieren eine
Dichotomie bezüglich k, ob eine lokal optimale Lösung in polynomieller Zeit gefunden

VIII

werden kann. Konkret zeigen wir, dass für k f 2, lokal optimale Lösungen in poly-
nomieller Zeit gefunden werden können, wobei das Finden lokal optimaler Lösungen
in polynomieller Zeit unwahrscheinlich erscheint für jedes k g 3.

IX

X

Contents

1 Introduction 1
1.1 Hill-Climbing Local Search . 2
1.2 Variations of Basic Hill-Climbing . 4
1.3 Scope of this Work . 6

2 Preliminaries 9
2.1 Set Notation . 9
2.2 Graph Theory Notation . 10
2.3 Computational Complexity . 11
2.4 Parameterized Complexity . 12
2.5 Optimization and Local Search Problems 14
2.6 Parameterized Local Search . 16
2.7 The Complexity Class PLS . 19
2.8 An Algorithm for Searching the k-Flip Neighborhood 23

3 Parameterized Local Search for Vertex Cover 25
3.1 Basic Observations and Lower Bounds 28
3.2 Parameterization by Treewidth . 36
3.3 Degree-Related Parameterizations . 43
3.4 Using Modular Decompositions . 58
3.5 Concluding Remarks . 61

4 Parameterized Local Search for Max c-Cut 63
4.1 W[1]-hardness and a Tight ETH Lower Bound for LS Max c-Cut and

Related Problems . 66
4.2 Parameterized Algorithms for LS Max c-Cut 80
4.3 Speedup Strategies . 83
4.4 Implementation and Experimental Results 91
4.5 Concluding Remarks . 98

XI

Contents

5 Graph Clustering Problems under the Lens of Parameterized Local
Search 101
5.1 Problem-Specific Notation . 103
5.2 Basic Observations . 105
5.3 Running Time Lower Bounds . 111
5.4 Algorithms for Permissive Problem variants 129
5.5 Concluding Remarks . 147

6 On the Complexity of Parameterized Local Search for the Maximum
Parsimony Problem 149
6.1 Problem-Specific Notation . 152
6.2 Properties of the Considered Distance Measures 155
6.3 Hardness of Local Search for the Maximum Parsimony Problem . . . 157
6.4 An Adaptation for the Permissive Version 172
6.5 Essentially Tight Brute-Force Algorithms 178
6.6 Concluding Remarks . 182

7 The Complexity of Finding k-Swap-Optimal Solutions for Subset
Optimization Problems 185
7.1 Hardness of Finding 7-Optimal Independent Sets 187
7.2 Hardness of Finding 3-Optimal Independent Sets 191
7.3 Hardness of Finding 3-Optimal Solutions for Weighted Subgraph Dele-

tion Problems . 204
7.4 Hardness of Finding 3-Optimal Dominating Sets 211
7.5 Finding Locally Optimal Solutions for some Restricted 3-Swaps . . . 213
7.6 Concluding Remarks . 220

8 Conclusion 223
8.1 “How Fast Can We Decide Whether a Given Solution is Locally Op-

timal?” . 223
8.2 “How Fast Can We Find a Locally Optimal Solution?” 226

Bibliography 229

XII

Chapter 1

Introduction

Many important real-world optimization problems are NP-hard. Hence, finding an
optimal solution in polynomial time for these problems is unlikely. Consider for
example Map Labeling. In this NP-hard [40] optimization problem, we are given
a geographical map as well as a collection of labels for depicted parts of the map, and
the goal is to find a subset S of these labels to display, such that no two labels in S
overlap. Here, based on the fraction of the map, some labels are more important to be
displayed than others. For example, in a map of Germany visualized by a navigation
software on a computer screen, it seems kind of needless to place labels for small
village, but placing labels for large cities as Berlin or Munich is more important. For
a map of Europe, placing labels for cities seems less important than placing labels for
the depicted countries. For a map showing the 100× 100 m2 area with your current
location as center, the label of the city or even the country your are currently in are
rather unimportant and it is more relevant to place labels of the surrounding streets,
rivers, and sights. In Map Labeling, this is usually modeled by a weight function
on the labels, and we aim to maximize to sum of weights of all placed labels. Due
to the frequent usage of navigation software, specifically, navigation software where
we can zoom in and out in no-time, a good set of conflict-free labels should ideally
also be displayed immediately. To achieve this goal, one does not want to rely on
exact algorithms which have superpolynomial worst-case running time due to the
NP-hardness of the problem. Hence, in real-world applications, one has to rely on
heuristic algorithms, that is, algorithms that find good but not necessarily optimal
solutions quickly.

There are different concepts of heuristic algorithms, for example approximation
algorithms and meta-heuristics. In approximation algorithms the goal is to output
a solution for which the value of the objective function differs only by a (mostly)

1

Chapter 1. Introduction

constant factor from the value of the objective function of an optimal solution [166].
Approximation algorithms with small approximation factors do not exists for all
optimization problems and if such algorithms exist, then they are mostly tailored
to the optimization problem at hand. In contrast, meta-heuristics are high-level
strategies that can be applied to a wide range of optimization problems but often
give no guarantee on the quality of the outputted solution [136,167]. Popular meta-
heuristics are for example genetic algorithms [165], simulated annealing [146], ant
colony algorithms [42], or local search [90]. Based on the huge success of local
search [27, 90, 116], the goal of this work is to better understand the problems that
occur during local search and to develop efficient algorithms solving these problems.
Among other optimization problems, we consider the following generalization of Map
Labeling.

Weighted Independent Set
Input: A vertex-weighted graph G.
Task: Find an independent set of maximum total weight in G, that is, a
vertex set S such that no two vertices of S are adjacent in G.

To see that Weighted Independent Set is a generalization of Map Label-
ing, consider an instance of Map Labeling where L is the set of potential labels.
Let G be the vertex-weighted graph on the vertex set L, such that two labels ℓ1
and ℓ2 are adjacent in G if and only if both labels overlap if displayed simulta-
neously.1 Then, the independent sets in G are exactly the label sets that can be
displayed without overlaps. Hence, finding an optimal weighted independent in G
yields an optimal set of labels to display.

1.1 Hill-Climbing Local Search

In this work, we consider questions on the complexity of problems that occur during
hill-climbing local search algorithms for some classical optimization problems. Local
search algorithms [90] work by starting from an initial solution and iteratively im-
proving it by moving to a neighboring (that is, structurally similar) solution that is
better in terms of the value of the objective function. This process continues until
a stopping criterion is met, such as reaching a maximum number of iterations or
exceeding a given time limit. A basic hill-climbing local search algorithm takes as
input an instance I of a given optimization and a local neighborhood, that is, a func-
tion that maps each solution S for I to a collection of other solutions of I (the local

1Recall that the weight of a label represents the importance of this label.

2

1.1. Hill-Climbing Local Search

so
lu
ti
on

q
u
al
it
y

Figure 1.1: Three improvement steps of a hill-climbing algorithm on an abstract solution
space. The first solution (bottom left) is the initial solution computed by Step 1 and
the final solution (top right) is the locally optimal solution outputted by Step 3. In each
iteration, the area limited by the two dashed lines indicates the local neighborhood of the
current solution. In this example, the outputted solution is also globally optimal. Note
that this is not always the case.

neighborhood of S) that are somewhat similar to S. For example for Weighted
Independent Set, a natural local neighborhood of a solution S are all other in-
dependent sets for which the symmetric difference to S has size at most 3, the so
called 3-swap neighborhood.

For an instance I of an optimization problem and a pre-defined local neighbor-
hood, the basic hill-climbing local search algorithm works in three steps.

Step 1: Compute some initial solution S for I.

Step 2: If there is better solution S ′ in the local neighborhood of the current
solution S, replace S by S ′ and repeat Step 2.

Step 3: Output the current solution.

The outputted solution S is locally optimal with respect to the considered local
neighborhood, since no local neighbor of S is better than S. An example for the
improvement steps of such an algorithm is depicted in Figure 1.1.

Even though a locally optimal solution might be arbitrarily bad in comparison
to a globally optimal solution, local search approaches very often find good solutions
in practice [5, 36, 98].

Considering such a hill-climbing algorithm, several questions arise.

Question 1. Which local neighborhood should we consider and how fast can we
search for an improving solution in that local neighborhood?

3

Chapter 1. Introduction

Question 2. How fast will the algorithm output a locally optimal solution and how
good is this locally optimal solution?

Note that these two questions highly depend on the choice for the local neigh-
borhood. Independent from the local search process, the following question arises.

Question 3. What is a good starting solution and how fast can we compute it?

In this work, we do not consider Question 3 because for each problem considered
in this work, feasible starting solutions can be found in linear time. Since this work
aims at better understanding the difficulties that need to be overcome by local search
algorithms, Question 3 is thus not interesting from a theoretical viewpoint for the
considered problems and should rather be evaluated experimentally.

1.2 Variations of Basic Hill-Climbing

There are many variations and extensions of the basic hill-climbing algorithm [90].
In this work, we consider (deterministic) exhaustive hill-climbing local search for
single criteria optimization problems. Below, we list some of the most prominent
and successful practically applied variations to clarify the setting we consider in this
work and put it in a larger context.

Exhaustive search vs. random search. The basic hill-climbing algorithm
performs so called exhaustive search, since the algorithm only terminates, when the
current solution has no better solution in the local neighborhood. Since the local
neighborhood of a given solution S might be very large, exhaustive search may be
too time-consuming and instead, one might be interested in outputting the current
solution even if it is not locally optimal. This can be done for example by choosing
a local neighbor S ′ of the current solution S randomly and checking whether S ′ is
better than S. If this procedure does not find a better solution after r consecutive
random choices, the current solution S is outputted (even though S might not be
locally optimal). In contrast to exhaustive search, such an approach is called random
search [90].

Strict local search vs. permissive local search. A different way to adapt
the basic hill-climbing algorithm is to omit the limitation that the current solution S
can only be replaced by a better solution in the local neighborhood of S. The basic
hill-climbing algorithm is strict in the sense that we only want to replace the current

4

1.2. Variations of Basic Hill-Climbing

solution S by a better solution in the local neighborhood of S. Instead, a hill-climbing
algorithm in which we ask for any better solution to replace the current solution S is
called permissive [69]. Still, such a permissive hill-climbing algorithm is only allowed
to output locally optimal solutions. Depending on the structure of the solution S,
finding any better solution may be easier than performing an exhaustive search over
the whole local neighborhood of S and might also help escaping local optima [69].
The latter is the case, since such a permissive hill-climbing algorithm is allowed to
(but not forced to) stop, when it finds a locally optimal solution.

Variable neighborhood search (VNS). Instead of only considering a single
local neighborhood, one can also consider multiple local neighborhoods of a given
solution. The local neighborhood for which one tries to find a better solution can
be chosen according to some priority ordering of the local neighborhoods (that may
change over time) or randomly. In the first case, the eventually outputted solution
then guarantees to be locally optimal for all considered local neighborhoods. The
idea is that if the current solution is locally optimal with respect to one local neigh-
borhood, then a different local neighborhood may still contain improving solutions.
Hence, the different local neighborhoods may help each other out of bad local op-
tima. Ideally, this will then lead to better solutions than the ones one might find
by considering these local neighborhoods only individually. Such an approach with
more than one local neighborhood is called variable neighborhood search [126].

For example for Weighted Independent Set, one could additionally consider
a change-neighborhood where one is allowed to add a single vertex to the current
solution and afterwards remove all its neighbors from the solution, to again obtain
an independent set. On the one hand, since a vertex may have an arbitrarily large
degree in the current solution, this local neighborhood contains solutions that are
not contained in the 3-swap neighborhood. On the other hand, since this change-
neighborhood only allows to add a single vertex to the solution, the 3-swap neighbor-
hood contains solutions that are not contained in the change-neighborhood. Hence,
no local neighborhood contains the other and any of these local neighborhoods may
help finding better solutions when the current solution is locally optimal with respect
to the other local neighborhood.

Iterated local search (ILS). A different approach to find good local optima is
to run the basic hill-climbing algorithm multiple times on different starting solutions
and to output the best found solution over all such runs. Iterated local search [118,
158] is one such approach, where instead of outputting the found locally optimal
solution S by the basic hill-climbing algorithm, one obtains a new solution S ′ that

5

Chapter 1. Introduction

shares some structure with S by performing perturbations on S, and afterwards
applies the basic hill-climbing algorithm again with S ′ as the new starting solution.
This is usually repeated a given number of times or until a time limit is exceeded.
Afterwards, the best overall found solution is outputted. The perturbation of the
found locally optimal solution S is mostly done randomly [158] and deciding which
and how many perturbations are applied is a difficult task. On the one hand, the
fewer perturbations are applied, the more likely it is that the new run of the basic
hill-climbing algorithm finds the locally optimal solution S again. On the other
hand, the more perturbations are applied, the more structure of the solution S is
lost, which makes it more likely, that the new solution S ′ is way worse than S.

To prevent considering previously encountered solutions, one may additionally
use so called tabu lists to store previously encountered solutions. When searching for
a better solution in the local neighborhood, the solutions that are contained in the
tabu list are excluded from the set of possible better solutions. Hence, the algorithm
will not consider any solution from the tabu list again. This sub-variation of ILS is
called Tabu Search [113].

1.3 Scope of this Work

We consider for several local search problems Questions 1 and 2 with respect to
“scalable neighborhoods”. A scalable neighborhood is a local neighborhood which
is defined over a distance function d between the solutions of the problem instance
at hand. More precisely, for a distance function d and a non-negative integer k,
the k-neighborhood of a solution S with respect to d is the collection of all solutions
for which the distance from S with respect to d is at most k. That is, the k-
neighborhood of S is the collection of all solutions S ′ for which d(S, S ′) f k holds.
In most implementations of local search algorithms, one considers the scalable k-
neighborhood for small constant values of k [98,99,120]. Note that the use of scalable
neighborhoods can also be considered as a variable neighborhood search: When
the hill-climbing algorithm finds a locally optimal solution with respect to the k-
neighborhood, instead of outputting this solution, increase the value of k by 1 and
continue the hill-climbing algorithm. Hence, the (k + 1)-neighborhood might allow
to escape the previous local optima.

To analyze the two considered questions for local search algorithms, the most
established frameworks are: (i) analyzing Question 1 from the perspective of pa-
rameterized complexity for local search problems that use scalable neighborhoods
and (ii) analyzing Question 2 with respect to the complexity class for local search
problems: PLS.

6

1.3. Scope of this Work

1.3.1 Related Work

The study on the parameterized complexity of local search problems (often referred to
as parameterized local search) that use scalable neighborhoods was first initiated by
Marx [122] with respect toTraveling Salesman Problem and the scalable neigh-
borhood based on the symmetric difference between the edge sets of the solutions.
Since in most practical applications the k-neighborhood is only considered for small
constant values and the value of k is independent from the actual problem instance
at hand, one would ideally obtain an algorithm that searches the k-neighborhood in
f(k) · |I|O(1) time. Marx [122], however, showed that searching this k-neighborhood
is W[1]-hard when parameterized by the search radius k, that is, there is presum-
ably no algorithm running in f(k) · |I|O(1) time that determines whether the current
solution is locally optimal with respect to the k-neighborhood. Since then, the pa-
rameterized complexity of parameterized local search was analyzed for many opti-
mization problems. With few exceptions, all considered parameterized local search
problems share the same parameterized intractability result, namely W[1]-hardness
when parametrized by the search radius k [23,43,52,68,69,77,82,83,87,98,122,135,
161, 164]. Besides that, for many considered parameterized local search problems,
FPT-algorithms were developed with respect to parameter combinations including
the search radius k and other structural parameters. Parameterized local search was
mostly analyzed from a theoretical point of view, but the few experimental evalua-
tions showed that hill-climbing based on the developed FPT-algorithms perform well
either as standalone algorithms or as post-processing algorithms for other state-of-
the-art heuristics [68, 77, 87,98].

To analyze Question 2, Johnson et al. [95] introduced the complexity class PLS for
local search problems. Roughly speaking, PLS contains those local search problems
for which each improvement step takes only polynomial time.2 Hence, intuitively, the
worst-case running time for finding a locally optimal solution for problems in PLS
is upper-bounded by the maximal number of improvement steps of a respective hill-
climbing algorithm times some polynomial factor. So far, no polynomial-time al-
gorithm is known that finds a locally optimal solution for any PLS-hard problem.
Since the introduction of PLS in 1988, many local search problems where shown to
be PLS-hard [46,47,95,125,137,151,154].

2A formal definition of PLS is given in Section 2.7.

7

Chapter 1. Introduction

1.3.2 Our Results

In Chapters 3 to 6, we analyze the parameterized complexity of determining whether
there is a better solution in the (scalable) local neighborhood. We consider four
classical optimization problems on graphs and one problem on inferring evolutionary
trees with respect to parameter combinations including the search radius k and
other structural parameters. For all these problems, we present conditional running
time lower bounds of the form |I|Ω(k), where |I| is the whole input size and k is
the search radius of the scalable neighborhood. Except for one considered local
search problem (namely Cluster Editing), we also extend the conditional running
time lower bounds to the permissive version of the respective problem, that is, the
version where we are allowed to return any better solution. For each considered local
search problem, we then provide algorithms that solve the corresponding problem in
ℓO(k)·nO(1) time, where ℓ is some problem-specific parameter fulfilling ℓ f |I|. For one
of the considered optimization problems, namely Max c-Cut, we implemented and
engineered the developed algorithm and experimentally evaluated its performance as
post-processing for a state-of-the-art heuristic.

In Chapter 7, we analyze the worst-case running time of finding locally optimal
solutions for a large class of weighted optimization problems, where each solution is a
subset of some given universe. We consider the most natural scalable neighborhood
for these problems, namely the collection of all solutions for which the symmetric
difference with the current solution has size at most k. With respect to this scal-
able neighborhood, we show that one can find for many such weighted optimization
problems a locally optimal solution in polynomial time when considering only the 2-
neighborhood, but for the 3-neighborhood, the considered problems are PLS-hard.
One of the optimization problems for which we derive this dichotomy is Weighted
Independent Set.

8

Chapter 2

Preliminaries

In this chapter, we introduce some basic concepts of graph theory, (parameterized)
complexity theory, and local search problems that we will use throughout this work.
Additionally, in Section 2.8, we present a generic algorithm that helps us obtain
efficient algorithms for the local search problems considered in Chapters 4 and 5.
Furthermore, this algorithm also improves on the running time of previously best
algorithms for other previously considered local search problems.

2.1 Set Notation

For integers i and j with i f j, we define [i, j] := {k ∈ N | i f k f j}. For a set A
and an integer k, we denote with

(
A
k

)
the collection of all size-k subsets of A. For two

sets A and B, we denote with A·B := (A \B) ∪ (B \ A) the symmetric difference
of A and B.

A partition P of A is a collection of non-empty and pairwise disjoint subsets of A
such that ∪P∈PP = A. Let r g 2. An r-partition of a set A is an r-tuple (B1, . . . , Br)
of (potentially empty) subsets of A, such that each element of A is contained in
exactly one set of (B1, . . . , Br). Intuitively, an r-partition of A is a permutation of
the subsets contained in a partition P of A of size at most ℓ f r plus ℓ − r empty
sets. For r = 2, we may call a 2-partition (A,B) simply a partition.

For some set A, we call a function Ç : A → N \ {0} a coloring of A. If for
some c ∈ N, no element of A is assigned a value larger than c by Ç, we call Ç
a c-coloring of A. Note that there is a one-to-one correspondence between the r-
partitions of a set A and the r-colorings of A. For a function f : A→ B and C ¦ A
we denote by f |C the function f restricted to C. Let f : A → B and g : A → B be
functions and let C ¦ A. Then, we say that f and g agree on C, if f |C = g|C . A

9

Chapter 2. Preliminaries

function d : A×A→ N is a distance function if for each two elements a and b of A,
d(a, b) = 0 if and only if a = b.

2.2 Graph Theory Notation

In this section, we focus on graph notation. For a more detailed introduction to
concepts of graph theory, we refer to the standard monographs [38, 173]. An (undi-
rected) graph G = (V,E) consists of a set of vertices V and a set of edges E ¦

(
V
2

)
.

We also denote the vertex and edge set of a graph G by V (G) and E(G), respec-
tively. Let u and v be distinct vertices of G with {u, v} /∈ E, then we call {u, v}
a non-edge of G. The complement graph of G is the graph (V,

(
V
2

)
\ E). For vertex

sets S ¦ V and T ¦ V , we denote with EG(S, T) := {{s, t} ∈ E | s ∈ S, t ∈ T}
the edges between S and T and we use EG(S) := EG(S, S) as a shorthand. We
define G[S] := (S,EG(S, S)) as the subgraph of G induced by S. For a vertex v ∈ V ,
we denote with NG(v) := {w ∈ V | {v, w} ∈ E} the open neighborhood of v in G
and with NG[v] := {v} ∪ NG(v) the closed neighborhood of v in G. Analogously,
for a vertex set S ¦ V , we define NG[S] :=

⋃
v∈S NG[v] and NG(S) := NG[S] \ S.

The degree of a vertex v in G is the number of neighbors of v in G, that is, |NG(v)|.
We denote the maximum degree of G, that is, the largest degree of any vertex of G,
by ∆(G). If G is clear from the context, we may omit the subscript.

A path P in a graph G is a sequence of pairwise distinct vertices of G that are
consecutively adjacent. The length of a path P := (v0, . . . , vr) is the number of edges
of P , that is, r. We refer to the first and the last vertex of P as the terminals of P .
A graph G is connected if there is a path between any pair of vertices of V . A vertex
set S ¦ V is connected if G[S] is a connected graph. If S is inclusion-maximal under
this property, we call S a connected component of G. Let v and w be two vertices
of G. We say that v and w have distance i if the length of a shortest path between v
and w is i. If there is no path between v and w, that is, if v and w are not part of
the same connected component, we say that v and w have distance∞. The diameter
of G is the maximum distance between any two vertices of G.

A vertex set S ¦ V is a vertex cover of G if at least one endpoint of each edge
in E is contained in S. Similar, a vertex set S ¦ V is an independent set in G if V \S
is a vertex cover of G, that is, the vertices of S are pairwise non-adjacent. A vertex
set S ¦ V is a dominating set of G if for each vertex v of G, S contains v or at least
one neighbor of v. An edge setM ¦ E is a matching in G if no two edges ofM share
an endpoint. A matching M is perfect if each vertex of G is contained in exactly one
edge of M .

The subdivision of an edge e ∈ E in G results in the graph G′ obtained by

10

2.3. Computational Complexity

removing e from G and adding a new vertex which is adjacent to both endpoints
of e. Let v be a vertex of degree 2 in G. The suppression of v in G results in the
graph G′ obtained by removing v from G and joining both neighbors of v by an edge.

For some integer c g 2, a graph G is c-partite if there is a c-partition (V1, . . . , Vc)
of V such that Vi is an independent set in G for each i ∈ [1, c]. We call a 2-partite
graph bipartite. If a graph G is c-partite and we are given a c-partition (V1, . . . , Vc)
of V , we may implicitly assume that Vi is an independent set in G for each i ∈ [1, c].
A graph G is r-regular for some integer r if each vertex of G has exactly r neighbors
in G. The h-index of a graph G, denoted by h(G), is the largest integer such that G
has at least h(G) vertices of degree at least h(G). The degeneracy of G is the smallest
integer d(G), such that each subgraph of G contains at least one vertex of degree at
most d. A degeneracy ordering of G is an ordering Ã of the vertices of G, such that
for each i ∈ [1, |V |] the vertex at position i in Ã has at most d neighbors in G with
larger positions in Ã. For each graph, such a degeneracy ordering exists.

2.3 Computational Complexity

In this section, we summarize the main tools we use throughout this work to analyze
the computational complexity of the considered problems [10, 65,138].

Formally, a decision problem L is a subset of {0, 1}∗. Informally, the task of a
decision problem is to decide whether a given word x ∈ {0, 1}∗ is contained in L.
We say that x is a yes-instance of L if x ∈ L, and a no-instance of L, otherwise.
Each decision problems L considered in this work is decidable, that is, there is an
algorithm that terminates and that decides whether a given word x is a yes-instance
of L.

A complexity class L is a collection of decision problems. The two arguably most
prominent and important complexity classes are P and NP. Here, P is the complexity
class containing all decision problems that can be solved by a deterministic Turing
machine in polynomial time. That is, a decision problem L is contained in P if and
only if there is an algorithm A that decides deterministically in |x|O(1) time, whether
a given word x is contained in L. Similarly, NP is the complexity class containing
all decision problems that can be solved by a non-deterministic Turing machine in
polynomial time. Note that P ¦ NP. While it remains open whether this inclusion
is proper, it is widely believed that P ̸= NP.

A decision problem L′ is NP-hard if for each problem L in NP, there is a
polynomial-time reduction from L to L′. Here, a polynomial-time reduction from L
to L′ (denoted by L fP L′) is an algorithm that takes a word x and computes
a word x′ in |x|O(1) time, such that x is a yes-instance of L if and only if x′ is a

11

Chapter 2. Preliminaries

yes-instance of L′. Note that the composition of two polynomial-time reductions is
a polynomial-time reduction too. Hence, to show that a problem L is NP-hard, it
suffices to show that there is an NP-hard problem L′, such that L′ fP L. A decision
problem L is NP-complete if L is NP-hard and contained in NP. Intuitively, an NP-
complete problem L is as hard as any problem in NP with respect to polynomial-time
solvability. This is due to the fact that each problem L′ of NP can be solved by re-
ducing it to L in polynomial time and afterwards solving the corresponding instance
of L.

An example for an NP-complete problem is 3-SAT, where the input is a Boolean
formula F in 3-CNF and one has to decide whether there is an assignment of the
variables of F that satisfies all clauses of F .

It is further widely assumed that some NP-hard problems cannot be solved in
2o(|I|) time. For example, the Exponential Time Hypothesis (ETH) postulates that
there is a constant c > 0, such that 3-SAT cannot be solved in 2 c·n · nO(1) time [93],
where n denotes the number of variables of the input formula F . Assuming the
ETH, this implies that 3-SAT cannot be solved in 2o(n) · nO(1) time. This has
further implication also to other decision problems. For example, it was shown that
the following problem cannot be solved in f(k) · |I|o(k) time for any computable
function f , unless the ETH fails [35].

Clique
Input: A graph G = (V,E) and k ∈ N.
Question: Is there a clique of size at least k in G?

The same intractability result was also shown for the more restricted Multicol-
ored Clique [35].

Multicolored Clique
Input: A graph G = (V,E) and k ∈ N, such that G is k-partite.
Question: Is there a clique of size at least k in G?

This holds even if a k-partition of G is provided [35]. When reducing fromMulti-
colored Clique, we may thus implicitly assume that a k-partition ofG is provided.

2.4 Parameterized Complexity

In parameterized complexity theory, the goal is to find efficient algorithms for NP-
hard problems under the assumption that specific input-parameters are small. In

12

2.4. Parameterized Complexity

the following, we provide the definitions of the relevant aspects of parameterized
complexity theory that are relevant to this work. For a more detailed overview on
parameterized complexity theory, we refer to the standard monographs [35, 44, 131].

A parameterized problem L is a subset of {0, 1}∗×N. Intuitively, a parameterized
problem consists of a decision problem which is equipped with an additional param-
eter. In general, the goal for parameterized problems is to analyze whether the
following most desirable running time is possible.

Definition 2.1. A parameterized problem L is fixed-parameter tractable if there is
a computable function f such that for every instance (x, k) ∈ {0, 1}∗ × N it can be
decided in f(k) · |x|O(1) time whether (x, k) ∈ L.

The parameterized complexity class FPT contains exactly the parameterized
problems that are fixed-parameter tractable. Moreover, we call a running time of
f(k) · |x|O(1) FPT-time for k.

Definition 2.2. A parameterized problem L is slicewise polynomial if there is a
computable function f such that for every instance (x, k) ∈ {0, 1}∗ × N it can be
decided in |x|f(k) time whether (x, k) ∈ L.

The class XP contains exactly the parameterized problems that are slicewise
polynomial. Clearly, each problem in FPT is also contained in XP and it is widely
assumed that this inclusion is proper. Both parameterized complexity classes are
designed to capture “efficiently” solvable problems. The difference between FPT
and XP is, that the degree of this polynomial function is independent of k in case
of FPT, but might depend on k in case of XP.

To find evidence that a parameterized problem is not contained in FPT, Downey
and Fellows [44] introduced a hierarchy of parameterized complexity classes which all
are supersets of FPT: For each i g 1 they introduced the parameterized complexity
class W[i].

These complexity classes form the W-hierarchy and is widely believed that the
inclusions FPT ¦ W[1] ¦ W[2] ¦ · · · ¦ XP are proper. Similar to NP-hardness,
Downey and Fellows [44] introduced the notion of parameterized problems that are
hard for some class W[i]. A parameterized problem L is W[i]-hard if there is a
parameterized reduction from each problem of W[i] to L. Here, a parameterized
reduction is formally defined as follows.

Definition 2.3. A parameterized reduction from a parameterized problem L to a
parameterized problem L′ is an algorithm that transforms an instance I = (x, k) of L
into an instance I ′ = (x′, k′) of L′ and runs in f(k) · |x|O(1) time such that (i) I ∈ L

13

Chapter 2. Preliminaries

if and only if I ′ ∈ L′ and (ii) k′ f g(k) for some computable functions f and g.
If k′ = k for all instances of L, the reduction is parameter-preserving.

Observe that k′ depends only on k and that the running time of a parameterized
reduction is exactly FPT-time. This implies that if a W[i]-hard parameterized prob-
lem L is contained in FPT, then each problem of W[i] is contained in FPT, that is,
FPT = W[i]. Since it is widely believed that FPT is a proper subset of W[1], this
implies that W[1]-hardness of a parameterized problem L gives evidence that L is
presumably not contained in FPT.

A known W[1]-hard problem is Independent Set parameterized by the size of
the sought solution k [44].

Independent Set
Input: A graph G = (V,E) and a positive integer k.
Question: Is there an independent set of size at least k in G?

In contrast, the dual problem Vertex Cover is in FPT when parameterized by
the size k of the sought solution [44].

Vertex Cover
Input: A graph G = (V,E) and a positive integer k.
Question: Is there a vertex cover of size at most k in G?

Moreover, recall that Clique and Multicolored Clique cannot be solved
in f(k) · no(k) time for any computable function, unless the ETH fails [35]. Note
that this excludes an FPT-algorithm for Clique andMulticolored Clique when
parameterized by k. Hence, also the ETH can give evidence that some parameterized
problem do not admit FPT-algorithms [35].

2.5 Optimization and Local Search Problems

Next, we formally define local search problems [90, 139]. To this end, we first have
to formally define optimization problems.

Definition 2.4. An optimization problem L is specified to be either a minimization
or a maximization problem and consists of

• a set DL ¦ {0, 1}∗ of instances,

• for each instance I ∈ DL, a set of feasible solutions SL(I) ¦ {0, 1}∗ for I, and

14

2.5. Optimization and Local Search Problems

• an objective function valL which assigns a rational number to each pair (I, S),
where I is an instance of L and S is a feasible solution for I.

An optimization problem L is an NP-optimization problem if (i) the encoding length
of each solution S ∈ SL(I) of I is polynomially bounded by |I|, (ii) one can determine
in polynomial time for each pair (I, S) whether S ∈ SL(I), and (iii) the objective
function can be evaluated in polynomial time.

Let I be an instance of an optimization problem L and let S and S ′ be feasible
solutions for I. We say that S is better than or improving over S ′ if (i) L is a max-
imization problem and valL(I, S) > valL(I, S

′) or (ii) L is a minimization problem
and valL(I, S) < valL(I, S

′).
An example of an NP-optimization maximization problem is Max Cut.

Max Cut
Input: A graph G = (V,E) and an edge-weight function É : E → Z.
Task: Find a partition (A,B) of V that maximizes

∑
e∈E(A,B) É(e).

For an instance I := (G = (V,E), É) of Max Cut, the set of feasible solutions
are exactly the partitions of V and for each partition (A,B) of V , the objective
functions assigns value

∑
e∈E(A,B) É(e) to (I, (A,B)).

Another example of an NP-optimization maximization problem is Max Sat.

Max Sat
Input: A Boolean formula F in CNF.
Task: Find an assignment of the variables of F that satisfies a maximum
number of clauses of F .

We are now ready to formally define the main kind of problems we analyze in
this work: local search problems.

Definition 2.5. A local search problem (L,N) consists of

• an optimization problem L and

• a neighborhood structure N for L that maps for each instance I of L, each valid
solution S of I to a set N (I, S) ¦ SL(I) of valid solutions for I, the neighbors
of S with respect to N .

For a given instance I of L a locally optimal solution S with respect to N is a
feasible solution S for I such that no solution in N (I, S) is better than S. We may
write a local search problem (L,N) as L/N .

15

Chapter 2. Preliminaries

An example for a local search problem is Max Cut/flip, where the neighbors
of a partition (A,B) are all partitions obtainable by moving a single vertex from A
to B, or vice versa. This neighborhood may be formally defined as follows: A flip of
a vertex v ∈ V in a partition (A,B) is the partition (A′, B′), where A′ := A · {v}
and B′ := B · {v}. Moreover, we say that (A′, B′) is improving over (A,B) if the
total weight of the cut EG(A

′, B′) is larger than the total weight of the cut EG(A,B).
Furthermore, we say that a partition (A,B) is flip-optimal if there is no vertex v ∈ V
such that the flip (A′, B′) of v in (A,B) is improving over (A,B).

Recall that we aim to analyze the questions on (i) how fast a better solution in
the local neighborhood can be found, if one exists, and (ii) how fast a locally optimal
solution can be found. In Section 2.6 we will formally introduce the kind of problems
we analyze with respect to this first question, and in Section 2.7, we will introduce
the framework to analyze the second question.

2.6 Parameterized Local Search

In most practical applications, the considered local neighborhoods are usually defined
over a simple operation, like the above-mentioned flip of a single vertex for Max
Cut. Since such simple operations are rather restricted and thus might lead to
bad locally optimal solutions, one may allow larger neighborhoods that contain all
solutions that can be obtained by performing k such simple operations consecutively
or simultaneously. In this work, we consider scalable neighborhoods which generalize
this concept of applying multiple simple operations consecutively (or simultaneously)
to obtain a neighboring solution.

Definition 2.6. Let L be an optimization problem and let I be a instance of L.
Moreover let d be a distance measure between the solutions of I. For each solution S
of I and each integer k, the (scalable) k-neighborhood of S with respect to d consists
of all solutions of I that have distance at most k to S.

An example for such a scalable neighborhood is the k-flip neighborhood [66, 102,
161] for partition and coloring problems. This scalable neighborhood is a direct
generalization of the flip neighborhood:

Definition 2.7. Let X be a set and let Ç and Ç′ be colorings of X. The flip
between Ç and Ç′ is defined as Dflip(Ç, Ç

′) := {x ∈ X | Ç(x) ̸= Ç′(x)} and the flip
distance between Ç and Ç′ is defined as dflip(Ç, Ç

′) := |Dflip(Ç, Ç
′)|.

We say that Ç and Ç′ are k-(flip-)neighbors if dflip(Ç, Ç
′) f k. Hence, the scal-

able k-neighborhood of a coloring Ç with respect to dflip consists of all colorings that

16

2.6. Parameterized Local Search

can be obtained by flipping the color of k elements of X consecutively or simulta-
neously. In other words, the scalable k-neighborhood with respect to dflip is defined
over the simple operation of flipping the color of a single element at a time. Still,
the definition of scalable neighborhoods also allows for distance measures that are
not defined over simple operations. An example of a scalable neighborhood over
such a distance measure is considered in Chapter 6, where we study local search for
the Maximum Parsimony problem.

Based on the definition of scalable neighborhoods, we are now ready to formally
define the computational problems we consider in this work from a parameterized
complexity point of view. Let L be an optimization problem and let d be a distance
measure between the solutions of the instances of L. In parameterized local search
for L and d, one is given an instance I of L, a feasible solution S for I, and an
integer k, and one has to determine whether the scalable k-neighborhood with respect
to d contains a better solution than S. This is defined as follows.

d-LS L
Input: An instance I of L, a solution S for I, and an integer k.
Question: Is there a better solution S ′ for I with d(S, S ′) f k?

We refer to k as the search radius. This is motivated by the fact that for most NP-
optimization problems the scalable k-neighborhood with respect to the most natural
distance measures d have size |I|O(k).

Marx [122] was the first to analyze d-LS L with L being the famous Trav-
eling Salesman Problem and d being the distance measure defined over the
symmetric difference between the edge sets of the solutions, that is, the distance
measure over which the so called k-OPT-neighborhood is defined. Marx [122] showed
that d-LS L is W[1]-hard when parameterized by the search radius k. Since then,
the parameterized complexity of parameterized local search was analyzed for many
optimization problems and with only few exceptions [59, 77], all considered param-
eterized local search problems share the same parameterized intractability result,
namely W[1]-hardness when parametrized by the search radius k [23, 43, 52, 68, 69,
82, 83, 87, 98, 135, 161, 164]. Note that d-LS L only allows for a better solution in
the k-neighborhood and one is not allowed to return any better solution of arbitrary
large distance. Gaspers et al. [69] showed that this restriction can be exploited: They
showed that d-LS L is NP-hard and W[1]-hard when parameterized by the search
radius, even on instances where an optimal solution can be found in polynomial time.
This result was shown for d-LS L with L being Vertex Cover and d being the
distance measure defined over the symmetric difference between any two solutions.
Hence, since the overall goal is to develop efficient algorithms for the subroutine of

17

Chapter 2. Preliminaries

finding a better solution within a hill-climbing algorithm, only asking for a better
solutions in the local neighborhood is in some situations an unnecessarily compli-
cated restriction. This motivated the study of permissive parameterized local search
problems [69], where we are allowed to provide any better solution, instead of only
allowing solutions in the scalable local neighborhood. This is formally defined as
follows.

permissive d-LS L
Input: An instance I of L, a solution S for I, and an integer k.
Task: Find a better solution S ′ for I, or correctly output that there is
no better solution S ′ for I with d(S, S ′) f k.

To distinguish between d-LS L and permissive d-LS L, we may refer to them
as the strict and permissive version of d-LS L, respectively.

We will show that most considered parameterized local search problems in this
work do not admit FPT-algorithms when parameterized by their respective search
radius, even when considering the permissive version of these problems. To obtain
these results, we will present parameterized reductions from W[1]-hard problems to
the strict version of d-LS L, such that in the constructed instance of d-LS L, the ini-
tial solution S is locally optimal if and only if S is globally optimal. Hence, on these
constructed instances, an algorithm for the permissive version would also solve the
strict version: If the permissive algorithm outputs any better solution, the current
solution is not globally optimal and thus not locally optimal. Otherwise, if the per-
missive algorithm outputs that there is no better solution is the local neighborhood,
then obviously this answer is also the answer of the strict algorithm.

If a parameterized local search problem does not admit an FPT-algorithm when
parameterized by k, algorithms where the superpolynomial running time part de-
pends only on the search radius k are unlikely. Still, we aim to find algorithms for
these problems that achieve running times which can be considered practical even
though the superpolynomial running time part also depend on other parameters. We
formalize the class of running time functions we aim to achieve as follows.

Definition 2.8. Let f : N×N→ N be a function. We say that f grows mildly with
respect to ℓ and strongly with respect to k if f(ℓ, k) ∈ O(ℓ g(k)) for some computable
function g depending only on k.

We are interested in obtaining algorithms whose running time grows strongly only
with respect to k and mildly with respect to some other parameters. In our opin-
ion, such running times are desirable for parameterized local search problems that

18

2.7. The Complexity Class PLS

are W[1]-hard when parameterized by their search radius k, since in most practical
applications, the search radius k can be considered as a small constant.

Still, the usefulness of for such running times is not limited to local search prob-
lems. Instead, it may be useful whenever

• two parameters k and ℓ are studied,

• k is known to be very small on relevant input instances,

• k is known to be much smaller than ℓ on these instances,

• and the problem is W[1]-hard with respect to k.

2.7 The Complexity Class PLS

Regarding the second question we try to analyze in this work, namely the complexity
of finding locally optimal solutions for local search problems, we consider hardness
with respect to a complexity class called PLS. Johnson et al. [95] introduced the
complexity class PLS for local search problems to analyze the complexity of this
task.

Definition 2.9. A local search problem (L,N) is in the complexity class PLS if

• L is an NP-optimization problem,

• there is an algorithm which computes in polynomial time some feasible solu-
tion S for a given instance I of L, and

• there is an algorithm which in polynomial time determines whether a given
solution S is locally optimal with respect to N for an instance I of L and, if
this is not the case, outputs a better neighbor of S.

An example for a local search problem contained in PLS is Max Cut/flip: Each
possible partition of the vertex set is a feasible solution and for each partition, one
can determine in polynomial time whether a given partition can be improved by
flipping a singe vertex.

To categorize the hardest local search problems in PLS, Johnson et al. [95] further
introduced reductions between local search problems.

Definition 2.10. Let (L1,N1) and (L2,N2) be local search problems. We say
that (L1,N1) is PLS-reducible to (L2,N2) if for each instance I1 of L1, one can
compute an instance I2 of L2 in polynomial time and define a polynomial-time com-
putable solution-mapper f that preserves local optimality.

19

Chapter 2. Preliminaries

Here, a function f is a solution-mapper if f maps each solution S2 of I2 to a
solution f(S2) of I1. Furthermore, f preserves local optimality if for each locally
optimal solution S2 for I2 with respect to N2, f(S2) is locally optimal for I1 with
respect to N1.

Similar to NP-completeness, a local search problem (L,N) is PLS-hard if for
each local search problem (L′,N ′) in PLS, there is a PLS-reduction from (L′,N ′)
to (L,N). Since the composition of two PLS-reductions is again a PLS-reduction,
this can be shown by proving a PLS-reduction from any PLS-hard local search
problem (L′,N ′). Moreover, (L,N) is PLS-complete if (L,N) is contained in PLS
and PLS-hard.

An example for a PLS-complete local search problem isMax Cut/flip [151]. The
PLS-completeness of Max Cut/flip holds even on graphs of degree at most 5 [47]
and when all edge weights are natural numbers.

2.7.1 Subset-Weight Optimization Problems

Next, we introduce a class of optimization problems we consider in Chapters 3 and 7.

Definition 2.11. An NP-optimization problem L is a subset-weight optimization
problem if L can be expressed by

• a polynomial-time computable function U that maps each instance I of L to a
universe U(I), such that each feasible solution of I is a subset of U(I),

• a polynomial-time computable function f which checks for an instance I of L
and a set S ¦ U(I) if S is a feasible solution for I, and

• a polynomial-time computable weight function É which assigns a nonnegative
rational weight to each pair (I, u), where I is an instance of L and u is an
element of U(I).

Furthermore, if L is a minimization (maximization) problem, one wants to find a
feasible solution S for I of minimum (maximum) weight, where the weight of S is
defined as É(I, S) :=

∑
u∈S É(I, u).

In this work, we only consider subset-weight optimization problems, where each
element receives a natural number as its weight.

Weighted Independent Set is a subset-weight maximization problem: the
feasible solutions are the independent sets of the input graph G, these are all subsets
of the vertex set V (the universe), one can check in polynomial time if a vertex
set S is an independent set, and the total weight of S is defined as the sum of the

20

2.7. The Complexity Class PLS

weights of the vertices of S. Similarly, Weighted Vertex Cover—the problem
where we want to find a vertex cover of minimum total weight—is a subset-weight
minimization problem.

While this may not be obvious at first, Max Cut can also be viewed as a subset-
weight minimization problem: We may take the universe as the edge set and the
feasible solutions are exactly those edge sets S ¦ E such that G has a partition (A,B)
with EG(A,B) = S (which can be decided in polynomial time for a given set S).

We also want to remark that there is a close relation between subset-weight min-
imization problems and subset-weight maximization problems. Namely, for each
subset-weight minimization problem there is a dual subset-weight maximization
problem and vice versa. This is formalized by the following definition.

Definition 2.12. Let L be a subset-weight optimization problem consisting of func-
tions U , f , and É. The dual subset-weight optimization problem of L is the subset-
weight optimization problem L′ consisting of functions U ′, f ′, g′, and É′, where DL =
DL′ , that is, L and L′ have the same instances, and where for each instance I of L

• U(I) = U ′(I),

• for each element u ∈ U(I), É(I, u) = É′(I, u),

• for each set S ¦ U(I), f(I, S) = f ′(I, U(I) \ S), that is, S is a solution for I
with respect to L if and only if the complement set U(I) \ S is a solution for I
with respect to L′,

and if L is a subset-weight minimization problem and L′ is a subset-weight maxi-
mization problem, or vice versa.

By definition, if L′ is the dual subset-weight optimization problem of L, then L is
the dual subset-weight optimization problem of L′. Hence, we may simply say that L
and L′ are dual. For example, Weighted Independent Set and Weighted
Vertex Cover are dual subset-weight optimization problems. Note that two dual
subset-weight optimization problems L and L′ are computationally equivalent, that
is, for each instance I of these problems, one can find an optimal solution for I with
respect to L in polynomial time if and only if one can find an optimal solution for I
with respect to L′ in polynomial time.

2.7.2 Swap Neighborhoods

Next, we define the arguably most natural scalable neighborhood for subset-weight
optimization problems.

21

Chapter 2. Preliminaries

Definition 2.13. Let L be a subset-weight optimization problem, let I be an instance
of L, and let S ¦ U(I) be a feasible solution for I. A k-swap, for k ∈ N, is a
subset W ¦ U(I) of size at most k.

We say thatW is valid for S in I if S·W is also a feasible solution for I. We say
that two feasible solutions S and S ′ for I are k-(swap-)neighbors in I if W := S·S ′

is a k-swap. Additionally, we say that S ′ is an improving k-neighbor of S in I and
thatW is an improving k-swap if the total weight of S ′ is better than the total weight
of S. If there is no improving k-neighbor of S in I, then S is k-optimal for I.

Definition 2.14. Let S be a subset of U(I) and let kin and kout be nonnegative
natural numbers. A set W ¦ U(I) is a (kin, kout)-swap for S, if |W \ S| f kin and
if |W ∩ S| f kout.

Informally, W adds at most kin vertices to S and removes at most kout vertices
from S. Note that for k g kin + kout, a (kin, kout)-swap for S is a k-swap. Similar
to k-swaps, we also define the notions of valid (kin, kout)-swaps, improving (kin, kout)-
swaps, (kin, kout)-neighbors, improving (kin, kout)-neighbors, and (kin, kout)-optimality.

For constant values of k, every subset-weight optimization problem with the k-
swap neighborhood is contained in PLS, since for a given feasible solution one can
enumerate all feasible solutions within the k-swap neighborhood in polynomial time.
Moreover, the relation between dual subset-weight optimization problems L and L′

directly implies that one can easily derive PLS-reductions between L and L′ with
respect to swap neighborhoods.

Observation 2.15. Let L and L′ be dual subset-weight optimization problems. For
each k ∈ N, there is a linear-time computable PLS-reduction from L/k-swap to L′/k-
swap. For each kin ∈ N and each kout ∈ N, there is a linear-time computable PLS-
reduction from L/(kin, kout)-swap to L′/(kout, kin)-swap.

Let L and L′ be dual subset-weight optimization problems. The correctness
of Observation 2.15 with respect to (kin, kout)-swaps relies on the fact that for each
instance I of L and each vertex set S ¦ U(I), S is a solution for I with respect
to L if and only if U(I) \ S is a solution for I with respect to L′. Hence, a valid
improving (kin, kout)-swap for S in I with respect to L is a valid improving (kout, kin)-
swap for U(I) \ S in I with respect to L′. Note that Observation 2.15 implies
that L/k-swap is PLS-hard if and only if L′/k-swap is PLS-hard. The same also
holds for PLS-completeness. Furthermore, we can find a (kin, kout)-optimal solution
for L in polynomial time if and only if we can find a (kout, kin)-optimal solution for L′

in polynomial time. Hence, to show hardness results or polynomial-time algorithms
to find locally optimal solutions for L or L′ with respect to swap neighborhoods, we
only need to consider one of L or L′.

22

2.8. An Algorithm for Searching the k-Flip Neighborhood

2.8 An Algorithm for Searching the k-Flip Neigh-

borhood

We now describe a black-box algorithm to find—for several optimization problems—
improving solutions with respect to the k-flip neighborhood. More precisely, we con-
sider NP-optimization problems, where for each instance I of L, there is a polynomial-
time computable universe U(I) such that each solution of I is (or can be expressed
as) a coloring of U(I). Among others, this includes problems like Max Cut and
Max Sat, but also subset-weight optimization problems. For a subset-weight op-
timization problem, a solution S ¦ U(I) can be expressed as the 2-coloring that
assigns color 1 to each element of S and color 2 to all other elements of U(I).

We now provide the definitions that are necessary to present our algorithm.
Let Ç : U(I) → N be a solution for I and let k ∈ N. We say that a collection U
of subsets of U(I) (of size at most k each) is a sufficient candidate collection for Ç, if
there is a better solution Ç′ for I with dflip(Ç, Ç

′) f k if and only if there is a candi-
date S ∈ U such that there is a better coloring Ç∗ for I with Dflip(Ç, Ç

∗) = S. Note
that the collection of all subsets of U(I) of size at most k is a trivial sufficient can-
didate collection for each solution for I. Moreover, note that determining whether
there is a better solution in the k-flip neighborhood of Ç can be done by perform-
ing two steps: Compute a sufficient candidate collection U for Ç and check for each
candidate S ∈ U , whether there is a better solution Ç∗ for I with Dflip(Ç, Ç

∗) = S.
In the following, we describe a general approach to compute a sufficient candidate
collection U for Ç based on some auxiliary support graph.

Let Gsup be a graph with vertex set U(I). We say that Gsup is a candidate support
graph for Ç if the collection of all connected vertex sets of size at most k in Gsup is a
sufficient candidate collection for Ç. Here, the constraint that the considered vertex
sets are connected comes from the intuitive idea that if the flip of a vertex set S
might yield a better solution, then the vertices of S should interact with each other
in the candidate support graph. Note that the complete graph on the vertex set U(I)
is always a candidate support graph for Ç. Since the connected vertex sets of size at
most k of a graph G with n vertices can be enumerated in (e ·∆(G))k ·k ·n time [108],
we thus obtain an efficient algorithm to compute a sufficient candidate collection
for Ç, if a given candidate support graph has a small maximum degree.

Lemma 2.16. Let I be an instance of an NP-optimization problem where each so-
lution of I is a coloring of U(I). Moreover, let Ç be a solution for I, and let Gsup be
a given candidate support graph for Ç. Then, one can compute a sufficient candidate
collection for Ç of size (e ·∆(Gsup))

k ·k · |U(I)| in the same asymptotic running time.

23

Chapter 2. Preliminaries

Since we aim to find a sufficient candidate collection as small as possible, we
ideally want to consider candidate support graphs of rather small maximum degree.

In combination with an algorithm A that determines for a given candidate S ¦
U(I) of size at most k, whether there is a better solution Ç∗ for I with Dflip(Ç, Ç

∗) =
S, we obtain the following black-box algorithm.

Theorem 2.17. Let I be an instance of an NP-optimization problem where each
solution of I is a coloring of U(I). Let Ç be a solution for I and let Gsup be a given
candidate support graph for Ç. One can determine in time (e·∆(Gsup))

k·f(A)·|U(I)|+
|I|O(1), whether there is a better solution Ç′ for I with dflip(Ç, Ç

′) f k. Here, f(A) is
the running time of an algorithm A that determines for any candidate S ¦ U(I) of
size at most k, whether there is a better solution Ç∗ for I with Dflip(Ç, Ç

∗) = S.

Wemake use of this algorithm in Chapters 4 and 5. Note that if each solution for I
can be expressed as a c-coloring for some c g 2, then we can provide an algorithm A
that determines for a given candidate S ¦ U(I) of size at most k, whether there
is a better solution Ç∗ for I with Dflip(Ç, Ç

∗) = S: This can be done for example
by a branching algorithm that considers for each element s ∈ S all possible colors
of [1, c] \ {Ç(s)} that the element s may receive under Ç∗. Since such a branching
algorithm runs in (c− 1)k · |I|O(1) time, this then yields the following result.

Theorem 2.18. Let c g 2. Let I be an instance of an NP-optimization problem
where each solution of I is a c-coloring of U(I). Moreover, let Ç be a solution for I
and let Gsup be a given candidate support graph for Ç. Then, one can determine in
(e ·∆(Gsup))

k · k · (c− 1)k · |U(I)|+ |I|O(1) time, whether there is a better solution Ç′

for I with dflip(Ç, Ç
′) f k.

In addition to its applications in Chapters 4 and 5, Theorem 2.18 has implications
for example for dflip-LS Max Sat which was first analyzed by Szeider [161] under
the name of k-Flip Max Sat. Szeider [161] showed that, for a Boolean formula F ,
there is a polynomial-time computable graph G with vertex set equal to the variable
set of F such that G fulfills the properties of a candidate support graph for dflip-
LS Max Sat. Szeider further showed that this graph G has maximum degree
at most pq, where p denotes the maximum number of occurrences of any variable
in F and q denotes the size of the largest clause in F . Based on this observation,
Szeider concluded that dflip-LS Max Sat can be solved in 2p·q·k · |F |O(1) time. The
presented candidate support graph by Szeider [161] together with Theorem 2.18
imply the following even better running time for dflip-LS Max Sat, since each truth
assignment can be interpreted as a 2-coloring.

Corollary 2.19. dflip-LS Max Sat can be solved in (e · p · q)k · nO(1) time.

24

Chapter 3

Parameterized Local Search for
Vertex Cover

Vertex Cover is the most prominent and well-studied problem in parameterized
complexity [35,44,84] and from the perspective of parameterized local search [52,69,
98]. Recall that in Vertex Cover, the set of feasible solutions of a graph G =
(V,E) is the collection of vertex covers of G, that is, vertex sets S ¦ V that cover
all edges of the graph. When applying local search for Vertex Cover, the most
obvious choice for a local search neighborhood is the k-swap neighborhood.

The problem of deciding whether a given vertex cover S of a graph G has a
smaller vertex cover in its k-swap neighborhood, called LS Vertex Cover, is
W[1]-hard with respect to k [52]. There are, however, some positive results for LS
Vertex Cover. In particular, LS Vertex Cover admits an FPT-algorithm for
∆(G) + k, where ∆(G) is the maximum degree of the input graph [52]. That is, it
can be solved in f(∆(G), k) · nO(1) time. While this running time bound is certainly
interesting for bounded-degree graphs, it does not necessarily deliver on the promise
of parameterized local search that the superpolynomial part of the running time
depends mostly on k: for example f(∆(G), k) could be 2∆(G)·k. However, it is known
that LS Vertex Cover can be solved in timeO(2k ·(∆(G)−1)k/2·k3·n) [98]. In this
running time only k appears in the exponent and ∆(G) appears only in the base of the
exponential function. Consequently, for small values of k the running time guarantee
can still be practically relevant, even when ∆ is not too small. In particular, the
running time is polynomial for every fixed k. Note that the running time of this
algorithm grows strongly with respect to k and only mildly with respect to ∆(G)
(see Definition 2.8). The usefulness of this algorithm was confirmed by experiments
which showed that the problem can be solved efficiently for k up to 25 [98].

25

Chapter 3. Parameterized Local Search for Vertex Cover

Our results. We continue the research on parameterized local search for Ver-
tex Cover. We provide FPT-algorithms for LS Vertex Cover parameterized
by k and several structural parameters ℓ of G. We consider the treewidth of the input
graph G, denoted by tw(G), the h-index of the input graph G, denoted by h(G), and
the modular-width of G, denoted by mw(G). In all our FPT-algorithms, the running
time grows strongly with respect to k and only mildly with respect to the particular
structural parameter. Moreover, for all these algorithms, the running time depends
only linearly on the size of the input graph.

The most general of our algorithms actually solve Gap LS Weighted Vertex
Cover which differs from LS Vertex Cover in two ways: Firstly, the vertices of
the graph are weighted and the goal is to find a vertex cover of smaller weight in
the k-swap neighborhood. Secondly, the weight of the new vertex cover should be
better by at least a given threshold d. Since local search approaches for Weighted
Vertex Cover have been studied from a more practical perspective, analyzing
such a weighted variant of LS Vertex Cover is well motivated. In addition, using
a gap-variant of local search could reduce the number of necessary local improve-
ments before one finds a local optimum. This is important for weighted local search
problems, since the number of such improvement steps may be exponential [95] even
for swaps of constant size (see Chapter 7) when only asking for any better solution.
We now discuss the results in detail.

The h-index of a graph G is the largest number h such that G has at least
h vertices with degree at least h [48]. For Gap LS Weighted Vertex Cover, we
obtain an algorithm with running time O(k! · (h(G)−1)k ·n). This can be seen as an
improvement over the FPT-algorithm for ∆(G) and k [98], since h(G) is never larger
than ∆(G). In fact, in many real-world instances the input graphs are scale-free,
and on scale-free graphs h(G) is drastically smaller than ∆(G). Even in such graphs,
in order to speak of an improvement, it is imperative that the running time of the
FPT-algorithm grows mildly with respect to h(G) and strongly with respect to k: a
running time of O(2h(G)·k ·n) would be less desirable than the previous one for ∆(G)
and k since the exponent would not be confined to the search radius k.

For Gap LS Weighted Vertex Cover the FPT-algorithm for tw(G) and k
has running time O((tw(G)3k + k2) ·n). It is based on dynamic programming on the
tree decomposition. The main observation is that for a bag of the tree decomposition
it is sufficient to consider all possibilities of how an improving swap interacts with the
bag. For LS Vertex Cover we further reduce the running time to O((tw(G)3·+ k

2
,+

k2) ·n) by observing that we only need to consider small interactions with the bags of
the tree decomposition. Hence, compared to the algorithm for Gap LS Weighted
Vertex Cover, we are able to consider swaps of double the size.

26

We then consider the modular-width. This parameter measures a different struc-
tural aspect, the similarity of neighborhoods in the graph, than treewidth or the
degree-related parameterizations. In particular, the modular-width can be very small
in dense graphs. For Gap LS Weighted Vertex Cover we develop an FPT-
algorithm with running time O(mw(G)k ·k ·(mw(G)+k) ·n+m), where mw(G) is the
modular-width of G. The algorithm is based on bottom-up dynamic programming
over the decomposition and considers all possibilities how an improving swap may
interact with a node of the modular decomposition.

We complement these algorithms by conditional lower bounds that are based on
the assumption that matrix-multiplication-based algorithms for Clique are running-
time optimal [1]. We show that under this assumption, we may not expect a very
large improvement over the previously known and new algorithms.

Problem-specific notation. In the following, we formally define the parame-
terized local search problems we consider in this chapter.

Definition 3.1. Let G be a graph, let S be a vertex cover of G, let É : V (G) → N

be a weight function, and let W be a swap. The improvement of W is defined
as ¶SÉ(W) := É(W ∩ S) − É(W \ S). Moreover, W is improving if ¶SÉ(W) > 0
and d-improving for some d ∈ N if ¶SÉ(W) g d.

If S or É are clear from the context, we may omit them. Next, we formally define
the local search problems for Vertex Cover that we consider in this work.

LS Weighted Vertex Cover (LS WVC)
Input: A graph G = (V,E), a weight function É : V → N, a vertex
cover S of G, and k ∈ N.
Question: Is there a valid improving k-swap W ¦ V for S in G?

Gap LS Weighted Vertex Cover (GLS WVC)
Input: A graph G = (V,E), a weight function É : V → N, a vertex
cover S of G, k ∈ N, and d ∈ N.
Question: Is there a valid d-improving k-swap W ¦ V for S in G?

Moreover, we define Gap LS Vertex Cover (GLS VC) as the special case
of GLS WVC where É(v) = 1 for each v ∈ V and d ∈ [1, k], and LS Vertex
Cover (LS VC) as the special case of GLS VC, where d = 1. Note that for
an instance of GLS VC, the improvement of a swap W is |W ∩ S| − |W \ S|.
Let I = (G,S, É, k, d) be an instance of GLS WVC. We say that W ¦ V (G) is a

27

Chapter 3. Parameterized Local Search for Vertex Cover

good swap for I, if W is a valid d-improving k-swap for S in G. Further, we say that
a good swap W for I is minimal, if each proper subset W ′ of W is not a good swap
for I and we say that W is a minimum good swap for I if there is no good swap W ′

for I with |W ′| < |W |.
Observation 3.2. Let I := (G,S, É, k, d) be an instance of GLS WVC, let W be
a good swap for I, and let X ¦ W ∩ S. Then W \X is a valid k-swap for S in G
with ¶(W \X) = ¶(W)− ¶(S).

3.1 Basic Observations and Lower Bounds

In this section, we provide some basic observations about the considered local search
problems and prove two conditional running time lower bounds.

Next, we first define the notion of swap-instances. These are instances obtained
from an instance I of GLS WVC after applying some partial swap. Swap-instances
will be useful for describing certain parts of our algorithms such as branching rules.
We then make some observations on certain useful properties of improving swaps.
Those are mostly generalizations of known results for LS VC. Finally, we present
our running time lower bounds for the considered parameters.

Swap-instances. In our algorithms, we may change instances by performing
some partial swaps, for example during branching. We call the instance obtained
by such an operation a swap-instance. Intuitively, the swap-instance swap(I,W) for
an instance I of GLS WVC and a (partial) swap W is the GLS WVC-instance
obtained as follows: First, swap W . Note that W might not be a valid swap. Thus,
we swap further vertices to again obtain a vertex cover. To simplify the instance, the
setW ′ § W of swapped vertices is then removed from the instance together with the
neighbors of W ∩ S in S. Finally, to maintain equivalence, the remaining budget k
is decreased by the number of swapped vertices and the required improvement d is
decreased by the improvement of W ′.

The unique inclusion-minimal superset W ′ of W that has to be swapped to again
obtain a vertex cover is called the extension of W with respect to I. Note that the
extension of W with respect to I is exactly W ∪ (N(W) \S), since each independent
set vertex adjacent with at least one vertex of S that is swapped out of the vertex
cover, has to be swapped to obtain a vertex cover.

Formally, a swap-instance is defined as follows.

Definition 3.3. Let I = (G,É, S, k, d) be an instance of GLS WVC and let W ¦
V (G) be a k-swap. Let W ′ := W ∪ (N(W) \ S) be the extension of W with respect

28

3.1. Basic Observations and Lower Bounds

G G′

v4 v5 v6 v7 v8

v1 v2 v3
W ′

W
⇝

v3

v7 v8

Figure 3.1: An instance I := (G,S, k, d) of GLS VC (left) and the swap-
instance swap(I,W) := (G′, S′, k′, d′) (right) obtained from the swap W := {v1, v6}. The
vertex cover vertices are black, the independent set vertices are white. The green area
contains the vertices of N(W ∩ S)∪W ′ which are in G but not in G′. Since W ′ has size 4
and contains only one vertex of S, k′ := k − 4 and d′ := d+ 2. Moreover, the vertex v2 is
not contained in G′ since v1 is adjacent to v2 and leaves the vertex cover, which implies
that v2 cannot leave the vertex cover afterwards.

to I. The instance

swap(I,W) := (G′, É′, S ′ := S \W, k′, d′)

with G′ := G− (N(W ∩S)∪W ′), k′ := k− |W ′|, d′ := d− ¶(W ′) = d−É(W ′ ∩S)+
É(W ′ \ S), and where É′ is the restriction of É to V (G′) is the swap-instance for I
and W .

An example of a swap-instance can be seen in Figure 3.1.

Lemma 3.4. Let I = (G = (V,E), É, S, k, d) be an instance of GLS WVC and
let W ¦ V be a vertex set such that W ∩ S is an independent set. There is a good
swap W ∗ for I with W ¦ W ∗ if and only if swap(I,W) is a yes-instance of GLS
WVC.

Proof. Let (G′, É′, S ′, k′, d′) := swap(I,W) and let W ′ be the extension of I with
respect to I, that is, W ′ = W ∪ (N(W) \ S).

Let W ∗ be a good swap for I with W ¦ W ∗. Since W ∗ is valid, W ′ ¦ W ∗.
Moreover, no vertex of W ∗ ∩ S has a neighbor in W ∩ S = W ′ ∩ S. Hence, W ∗ \W ′

contains only vertices of G′, since G′ contains all vertices of G except for the vertices
of N(W ∩ S) ∪ W ′. Moreover, W ∗ \ W ′ has size |W ∗| − |W ′| f k − |W ′| = k′,

29

Chapter 3. Parameterized Local Search for Vertex Cover

and ¶(W ∗ \W ′) = ¶(W ∗)− ¶(W ′) g d− ¶(W ′) = d′. As a consequence, W ∗ \W ′ is
a good swap for swap(I,W).

Let X be a good swap for swap(I,W) and let W ∗ := X ∪ W ′. By definition,
W ∗ has size at most k,W ∗ is d-improving, andW is a subset ofW ∗. Thus, it remains
to show that W ∗ is a valid swap for S in G. Since (i) W ′ is a valid swap for S in G,
(ii) X is a valid swap for S ′ in G′, and (iii) G′ contains all vertices of (V \W ′) \ S,
we have the following: for each vertex v ∈ W ∗ ∩ S, each neighbor of v in V \ S
is contained in W ∗. Hence, W ∗ is valid if there are no two adjacent vertices of S
in W ∗. Since W ′ ∩ S and X ∩ S are both independent sets in G and since no vertex
of V (G′) ∩ S § X ∩ S is adjacent to some vertex of W ′ ∩ S, this property holds.
Consequently, W ∗ is valid.

Consider the swap-instance of an instance I := (G,S, k, d) of the unweighted
problem GLS VC and some W ¦ V (G). Then k′ + d′ = k + d − 2 · |W ∩ S|,
since ¶(W ′) = −|W ′| + 2 · |W ∩ S|. This observation has the following influence for
our branching algorithms: If in each branching step, we swap at least one vertex
out of the vertex cover, the depth of the branching-tree is at most k+d

2
. Let I be

an instance of GLS WVC and let W be the subset of some valid swap. When we
replace the instance I by swap(I,W) we may say that we swap W in I.

Properties of improving swaps. Next, we generalize some known properties
of good swaps of LS VC to the more general problems GLS VC and LS WVC.
Consider some improving swap W for S in G. Then, each connected component
in G[W] is a valid swap and since W is improving, at least one connected component
in G[W] is an improving swap for S in G. Hence, the following holds.

Observation 3.5. Let I = (G,É, S, k) be an instance of LS WVC. If I is a yes-
instance of LS WVC, then there is a good swap W for I such that W is connected.

Next, we show that for the unweighted problem GLS VC it is sufficient to con-
sider instances where k + d is even.

Lemma 3.6. Let I = (G,S, k, d) be an instance of GLS VC where k + d is odd
and k g 1. Then, I is a yes-instance of GLS VC if and only if I ′ := (G,S, k− 1, d)
is a yes-instance of GLS VC.

Proof. (⇒) Let W be a minimal good swap for I. Since d g 1, W contains a
vertex v of S. Consider the swap W ′ := W \{v}. Since W is a k-swap and S·W ′ =
(S ·W) ∪ {v}, W ′ is a valid k-swap for S in G. By the fact that W is a minimal
good swap for I, W ′ is not a good swap for I. Hence, W ′ is not d-improving, since

30

3.1. Basic Observations and Lower Bounds

we already showed that W is a valid k-swap for S in G. This implies that ¶(W) = d,
since ¶(W) g d > ¶(W ′) = ¶(W)− 1. Next, we show that W has size at most k − 1
which then implies that W is a good swap for I ′.

Recall that the improvement ofW is ¶(W) = |W ∩S|−|W \S| = |W |−2 · |W \S|.
Hence, |W | is odd if and only if ¶(W) is odd, that is, |W | + ¶(W) is even. Recall
that ¶(W) = d and that k + d is odd. Consequently, |W |+ ¶(W) = |W |+ d f k + d
implies that W has size less than k. Hence, W is a good swap for I ′.

(⇐) Each (k− 1)-swap is a k-swap. Hence, each good swap for I ′ is a good swap
for I.

Some of our algorithms branch over all possible intersections of a d-improving k-
swap W with a given vertex set X. The following lemma shows that for GLS VC,
we only have to consider intersections of size at most k+d

2
of X with a potential

improving swap W . Namely, we only have to consider vertices SX of W ∩ X in S
and the vertices CX of W ∩X in V \S that are not contained in the extension of Sx.

Lemma 3.7. Let I = (G,S, k, d) be an instance of GLS VC and let W be a good
swap for I. Further, for a set of vertices X ¦ V (G), let SX := W ∩X∩S and CX :=
W ∩X \N [SX]. If |SX ∪CX | > k+d

2
, then there is a good swap W ′ for I such that W ′

is a proper subset of W .

Proof. First, we show that W ∗ := SX ∪ (N(SX) \ S) is a good swap for I. Note
that W ∗ contains no vertex of CX and W ∗ is a (not necessarily proper) subset of W ,
since W is a valid swap for S in G and contains all vertices of SX . By definition,
W ∗ is a valid k-swap for S in G. It remains to show that W ∗ is d-improving. To
this end, note that each d-improving k-swap contains at most k−d

2
vertices of V \ S.

In particular, |W \ S| = |CX | + |N(SX) \ S| f k−d
2
. Since |SX ∪ CX | > k+d

2
, this

implies |SX | > d + k−d
2
− |CX | g d + |(N(SX) \ S)|. Hence, W ∗ is d-improving and

thus a good swap for I.
If W ∗ is a proper subset of W , then the statement already holds. Hence, assume

in the following that W = W ∗. This then implies that CX = ∅. As a consequence,
SX has size more than k+d

2
. Note that this implies that the improvement of W is at

least d + 1, since |W \ SX | = |W | − |SX | < k − k+d
2

= k−d
2
. Let v be an arbitrary

vertex of SX . Consider the swap W ′ := W \ {v}. Due to Observation 3.2, W ′ is a
valid k-swap for S in G with ¶(W ′) = ¶(W)−1 g d. Hence, W ′ is a good swap for I.
Moreover, since W ′ is a proper subset of W , the statement holds.

To obtain FPT running times that are linear in the input size, if the considered
parameters are constant, we handle instances with small values of k separately.

31

Chapter 3. Parameterized Local Search for Vertex Cover

Lemma 3.8. GLS WVC can be solved in O(n +m) time if k f 2 and GLS VC
can be solved in O(n+m) time if k + d f 4.

To show Lemma 3.8, we show the two statements separately. First, we show the
statement for the weighted problem.

Lemma 3.9. GLS WVC can be solved in O(n + m) time if k f 2. Moreover,
for k f 2, a valid k-swap of maximum improvement can be found in O(n+m) time.

Proof. Let I = (G = (V,E), É, S, k, d) be an instance of GLS WVC with k f 2.
We first compute the set S∗ := {v ∈ S | N(v) ¦ S} of vertex cover vertices without
independent set neighbors in O(n + m) time. Moreover, if S∗ ̸= ∅, then we also
compute the vertex v∗ ∈ S∗ that maximizes É(v∗) in O(n) time.

If k = 1, then each good swap for I consists of a single vertex in S∗. Hence,
I is a no-instance of GLS WVC if S∗ = ∅. Otherwise, {v∗} is a valid 1-swap of
maximal improvement for I. Consequently, I is a yes-instance of GLS WVC if and
only if É(v∗) g d and, thus, GLS WVC can be solved in O(n+m) time if k = 1.

If k = 2, then we additionally compute the setW∗ := {{v, w} | v ∈ S,N(v)\S =
{w}, É(v) > É(w)} in O(n +m) time. Moreover, if W∗ ̸= ∅, then we also compute
the swap W ∗ ∈ W∗ that maximizes ¶(W ∗) in O(n) time. Note that each minimal
good swap either (i) consists of a single vertex in S∗, (ii) consists of two non-adjacent
vertices in S∗, or (iii) is a swap in W∗. Hence, if W∗ ̸= ∅ and ¶(W ∗) g d, then I is a
yes-instance of GLS WVC. Suppose that W∗ = ∅ or ¶(W ∗) < d. If S∗ = ∅, then I
is a no-instance of GLS WVC. Thus, suppose that S∗ ̸= ∅. If É(v∗) g d, then I is
a yes-instance of GLS WVC. Otherwise, I is a yes-instance of GLS WVC if and
only if there are two non-adjacent vertices of S∗ of total weight at least d.

In the following, we show that we can determine in O(n+m) time whether such
a pair of vertices exists. Moreover, if such a pair exists, then we can find one in
the same running time. Let Sg := {v ∈ S∗ | É(v) g d/2} be the vertices of S∗ of
weight at least d/2 and let S< := {v ∈ S∗ | É(v) < d/2} be the vertices of S∗ of
weight less than d/2. These sets can be computed in O(n) time. Note that each
good swap for I contains at least one vertex of Sg. If there are two non-adjacent
vertices v and w in Sg, then these vertices can be found in O(n + m) time by
checking for each vertex v of Sg if v has at most |Sg| − 2 neighbors in Sg. In this
case, since É(v) + É(w) g d, I is a yes-instance of GLS WVC. Otherwise, Sg is
a clique and O(|Sg|2) ¦ O(m). Hence, we can sort the vertices of Sg according
to their weight in O(m) time. Since Sg is a clique, each good swap for I consists
of one vertex v of Sg and one vertex w of S< such that {v, w} ̸∈ E. To find such
vertices, we check for each w ∈ S<, whether w is adjacent to each vertex of Sg and,

32

3.1. Basic Observations and Lower Bounds

if this is not the case, whether É(w) + É(v) g d, where v is the vertex with the
highest weight in Sg \N(w). If the latter is true for some v ∈ S<, I is a yes-instance
of GLS WVC. Otherwise, I is a no-instance of GLS WVC. Since Sg is sorted, we
only have to consider the first |N(w)|+1 vertices of highest weight in Sg to find the
vertex v ∈ Sg \ N(w) of highest weight. Hence, this last step can be performed in
O(∑w∈S<

(|N(w)| + 1)) ¦ O(n +m) time and, thus, GLS WVC can be solved in
O(n+m) time if k = 2.

Next, we show the statement for GLS VC.

Lemma 3.10. GLS VC can be solved in O(n+m) time if k + d f 4.

Proof. Let I = (G = (V,E), S, k, d) be an instance of GLS VC with k + d f 4.
If k f 2, then I can be solved in O(n + m) time due to Lemma 3.9. Moreover,
if d = 0, I is a trivial yes-instance of GLS VC. Hence, in the following, we can
assume that k > 2 and d > 0. Since k + d f 4, this then implies that k = 3
and d = 1. Hence, I is a yes-instance of GLS VC if and only if (i) there is a vertex v
of S with N(v) ¦ S or (ii) there are two non-adjacent vertices w1 and w2 of S
that have the same neighborhood in V \S and this neighborhood consists of a single
vertex. In O(n+m) time, we can check if there is some vertex v of S with N(v) ¦ S.
If this is the case, answer yes. Otherwise, we search for the vertices w1 and w2. To
this end, we remove all vertices of S from G that have at least two neighbors in V \S
and store for all remaining vertices of S the corresponding unique neighbor in V \S.
Since the vertices w1 and w2 we are looking for, have the same neighbor in V \S, we
can also remove all edges between vertices of S that are adjacent to different vertices
of V \ S. Hence, each connected component C in the resulting graph G′ contains
exactly one vertex vC of V \ S. More precisely, vC is adjacent to all other vertices
of C. If at least one of the connected components C is not a clique, then there are
two non-adjacent vertices w1 and w2 of C such that NG(w1) \ S = NG′(w1) \ S =
{vC} = NG′(w2)\S = NG(w2)\S. Hence, {w1, vC , w2} is a good swap for I and, thus,
I is a yes-instance of GLS VC. Otherwise, if C is a clique in G′ for each connected
component in G′, then I is a no-instance of GLS VC. Note that all described steps
can be performed by iterating over the edges a constant number of times. Hence,
this algorithm runs in O(n+m) time.

Lower bounds. Let É < 2.373 be the matrix multiplication constant [4]. Using
a reduction to matrix multiplication, one can solve the Clique problem, which asks
whether an n-vertex graph has a clique of size k, in O(nÉ·k/3) time [129]. It is a long-
standing question whether this running time can be improved to O(n(É/3−ε)k) [1,176].

33

Chapter 3. Parameterized Local Search for Vertex Cover

Assuming that this is not the case, we obtain the following lower bounds for our
considered problem.

Theorem 3.11. For every ε > 0 and every d ∈ [1, k], GLS VC cannot be solved

in O(ℓ(É/3−ε)· k+d
2) time where ℓ = max{n − k−d

2
,∆(G), vc(G), |S|,mw(G)}, unless

Clique can be solved in O(n(É/3−ε)·k) time. This holds even for the permissive
version.

Proof. Let ε > 0 be a constant. We assume in the following that ε < É/3, since

the statement follows directly for ε g É/3. Moreover, let Î = (Ĝ = (V, Ê), k)
be an instance of Clique with k g 2

(É/3)−ε
and let n denote the size of V , and

let d be an arbitrary value between 1 and k. We show that we can compute in
O(n2) time an equivalent instance I ′ = (G′ = (V ′, E ′), S, k′, d) of GLS VC such
that ℓ := max{|V ′| − k′−d

2
,∆(G′), vc(G′), |S|,mw(G′)} is at most n. First, let G be

the complement graph of Ĝ, that is, G := (V,E) with E :=
(
V
2

)
\ Ê. Note that a

set X ¦ V is a clique in Ĝ if and only if X is an independent set in G and that
one can compute G in O(n2) time. We can assume that the maximum degree of G
is at most |V | − k, since vertices degree at least |V | − k + 1 are contained in no
independent set of size k. We obtain G′ by adding a set V ∗ of k − d new vertices
to G such that NG′(v) = V for each vertex v of V ∗. Finally, we set k′ := 2k − d
and S := V , which completes the construction of I ′. Note that this takes at most
O(n2) time, since k f n. Next, we show that Î is a yes-instance of Clique if and
only if I ′ is a yes-instance of GLS VC.

(⇒) Let C ¦ V be an independent set of size k in G, then S ′ := (V \ C) ∪ V ∗

is a vertex cover of G′ such that |S · S ′| = k′ and |S ′| f |S|+ |V ∗| − |C| = |S| − d.
Consequently, I ′ is a yes-instance of GLS VC.

(⇐) Let W be a good swap for I ′ and let S ′ := S · W . Since W is a good
swap for I, W has size at most k′ = 2k − d and |S ′| < |S| − d. Consequently,
C := S \ S ′ = W ∩ S is non-empty. We show that C is an independent set of size k
in G. Since S ′ is a vertex cover of G′ and every vertex of V ∗ is adjacent to every
vertex of V , it follows that W contains all vertices of V ∗. By the fact that (i) W has
size at most 2k−d, (ii)W contains all vertices of V ∗, and (iii) V ∗ has size k−d,W∩S
has size at most k. Moreover, since |S ′| f |S| − d, C has size at least k′ − |V ∗| = k.
As a consequence, C has size exactly k. Moreover, since S ′ is a vertex cover of G′

and S ′ contains no vertex of C, C is an independent set in G. Consequently, C is an
independent set of size k in G and, thus, Î is a yes-instance of Clique.

Next, we show that ℓ := max{|V ′|− k′−d
2
,∆(G′), vc(G′), |S|,mw(G′)} is at most n.

By construction, |V ′| = n + k − d = n + k′−d
2

. Since the maximum degree of G is
at most n − k, the maximum degree of G′ is at most n. Moreover, since S is a

34

3.1. Basic Observations and Lower Bounds

vertex cover of size n of G′, vc(G′) f n. Next, we show that the modular-width
of G′ is at most n. Since each vertex of V is adjacent with each vertex of V ∗ in G′,
the modular-width of G′ is the maximum of the modular-width of G′[V] and the
modular-width of G′[V ∗] [124]. By the fact that V ∗ is an independent set in G′, this
implies that the modular-width of G′ is exactly the modular-width of G′[V] = G.
Since the modular-width of any graph is never larger than the number of vertices
of that graph [124], the modular-width of G is thus at most |V | = n. Hence, the
modular-width of G′ is at most n.

Now, if we have an algorithm A solving GLS VC in O(ℓ(É/3−ε)· k+d
2) time, then

Clique can be solved in O(n(É/3−ε)k) time as well: Since k g 2
(É/3)−ε

, the running

time O(n(É/3−ε)·k) dominates the time used to construct the instance I ′ of GLS VC.
Now the running time bound for solving Clique using A follows directly from ℓ f n
and k′+d

2
= k.

For the cases LS VC and GLS WVC, we obtain the following.

Corollary 3.12. For every ε > 0, LS VC cannot be solved in O(ℓ(É/3−ε)·+ k
2
,) time

for ℓ := max{n− k + 1,∆(G), vc(G), |S|,mw(G)} and GLS WVC cannot be solved
in O(n(É/3−ε)·k) time, unless Clique can be solved in O(n(É/3−ε)·k) time.

Proof. The statement for LS VC follows directly from Theorem 3.11 since LS VC is
the case of GLS VC where d = 1. Moreover, the statement for GLS WVC follows
from Theorem 3.11 by considering instances of GLS VC where k = d which are
restricted instances of GLS WVC where each vertex receives weight one.

Note that the latter restriction of Theorem 3.11 and Corollary 3.12 implies that
these running time lower bounds also hold for the permissive version of each consid-
ered problem.

Based on the same reduction, we also derive the following by the fact that Clique
cannot be solved in f(k) · no(k) time for any computable function f , unless the ETH
fails [35].

Corollary 3.13. LS VC cannot be solved in f(k) · no(k) time for any computable
function f , unless the ETH fails. This holds even for the permissive version of LS
VC.

Since LS VC is a special case of GLS VC, LS WVC, and GLS WVC, this
running time lower bound also transfers to these more general problems too.

35

Chapter 3. Parameterized Local Search for Vertex Cover

3.2 Parameterization by Treewidth

In this section, we present FPT-algorithms for k and the treewidth of G. As can be
expected, the algorithms makes use of tree decompositions, for which we recall the
definition in the following.

3.2.1 Definition and Notion of Tree Decomposition

A tree decomposition of a graph G = (V,E) is a pair (T , ´) consisting of a rooted
tree T = (V ,A, x∗) with root x∗ ∈ V and a function ´ : V → 2V such that

1. for each vertex v of V , there is at least one node x ∈ V with v ∈ ´(x),

2. for each edge {u, v} of E, there is at least one node x ∈ V such that ´(x)
contains u and v, and

3. for each vertex v ∈ V , the subgraph T [Vv] is connected, where Vv := {x ∈ V |
v ∈ ´(x)}.

We call ´(x) the bag of x. The width of a tree decomposition is the size of the largest
bag minus one and the treewidth of a graph G, denoted by tw(G), is the minimal
width of any tree decomposition of G.

We consider tree decompositions with specific properties. A node x ∈ V is called

1. a leaf node if x has no child nodes in T ,

2. a forget node if x has exactly one child node y in T and ´(y) = ´(x) ∪ {v} for
some v ∈ V \ ´(x),

3. an introduce node if x has exactly one child node y in T and ´(y) = ´(x) \ {v}
for some v ∈ V \ ´(y), or

4. a join node if x has exactly two child nodes y and z in T and ´(x) = ´(y) =
´(z).

A tree decomposition (T = (V ,A, x∗), ´) is called nice if the bag of the root and the
bags of all leaf nodes are empty sets and if every node x ∈ V is either a leaf node, a
forget node, an introduce node, or a join node.

For a node x ∈ V , we denote with Vx the union of all bags ´(y), where y
is contained in the subtree of T rooted in x. Moreover, we denote Gx := G[Vx]
and Ex := EG(Vx).

36

3.2. Parameterization by Treewidth

To obtain small polynomial factors in the running time, we first analyze the
number of subsets of size at most k of any set X of size x. We denote by

(
x
fk

)

denote the number of different subsets of X that have size at most k, that is,
(

x
fk

)
:=

∑min(k,x)
r=0

(
x
r

)
.

Lemma 3.14. Let k g 1 be an integer and let X be an arbitrary set of size x g 3.
Then,

(
x
fk

)
f 256 · (x− 1)k/k2.

Proof. Note that
(

x
fk

)
=

∑k
r=0

(
x
r

)
f 2x and

(
x
fk

)
f xk. First, if k f 4, then xk f

(2 · (x − 1))k f 16 · (x − 1)k and since k2 f 16,
(

x
fk

)
f 256 · (x − 1)k/k2. Second,

if k g max{4, x/2}, then 4k g 2x and 2k g k2. Hence, if x g 9, then by the fact
that k g x/2 and x g 3, we get

(
x

f k

)
f 2x f 4k f 8k

2k
f 8k

k2
f (x− 1)k

k2
.

If 4 f x f 8, then
(

x
fk

)
f 2x f 256 · (x − 1)k/k2 since (x − 1)k > k2 for all k g 2,

and for x = 3,
(

x
fk

)
f 2x = 8 f 256 · 2k/k2 for all k g 2. Finally, if 4 < k < x/2,

then 2 ·
(
x
k

)
g∑k

r=0

(
x
r

)
=

(
x
fk

)
. Hence,

(
x

f k

)
f 2 ·

(
x

k

)
f 2 · x!

(x− k)! · k! f 2 · x · (x− 1)!

(x− k)! · k2

f 2 · 2(x− 1) · (x− 1)k−1

k2
= 4

(x− 1)k

k2
< 256 · (x− 1)k

k2
.

This completes the proof.

Intuitively, the algorithms based on tree decompositions are obtained by a dy-
namic programming algorithm on a given tree decomposition of width r, where each
entry of the dynamic programming table considers the intersection of the current
bag of size at most r + 1 with an improving swap W of size at most k.

Theorem 3.15. Let G = (V,E) be an undirected graph, let É : V → N be a weight
function, let S ¦ V be a vertex cover of G, let k be a natural number, and let (T =
(V ,A, x∗), ´) be a nice tree decomposition of width r for G with O(r · n) nodes. One
can compute in O((rk+1 + k2) · n) time a valid k-swap W for S in G such that ¶(W)
is maximal under all valid k-swaps for S in G.

37

Chapter 3. Parameterized Local Search for Vertex Cover

Proof. Due to Lemma 3.9, the statement holds for k f 1. In the following, we show
the running time by describing a dynamic programming algorithm for k g 2.

Let Nx(U) := N(U)∩´(x) denote the neighbors of U in the bag of x ∈ V . Recall
that for a node x ∈ V , the vertex set Vx is the union of all bags ´(y), where y is
a node of the subtree of T rooted in x. Moreover, recall that for a node x ∈ V ,
Gx := G[Vx] and Ex := EG(Vx), where Vx is the union of all bags ´(y), where y is
contained in the subtree of T rooted in x.

For each node x ∈ V in the tree decomposition, the dynamic programming ta-
ble Dx has entries of type Dx[Sx, Cx, k

′] with, Sx ¦ S∩´(x), Cx ¦ ´(x)\(N(Sx)∪S)
and k′ ∈ [0, k], such that |Wx| f k′ where Wx := Sx ∪ Cx ∪ (Nx(Sx) \ S).

Each entry stores the maximal improvement ¶S(W) of a valid k′-swap W ¦ Vx
for S ∩ Vx in Gx such that W ∩ S ∩ ´(x) = Sx and W ∩ ´(x) \ (N(Sx) ∪ S) = Cx.
In other words, W intersects with the vertices of S of the current bag exactly in Sx

and W intersects with the vertices of V \ S of the current bag (minus the vertices
that are contained in the extension of Sx) exactly in Cx. Since we restrict W to
be a k-swap, the size of Sx ∪ Cx is thus upper-bounded by k for each reasonable
choice of Sx and Cx. Moreover, since both these subsets are disjoint, this implies
that there are at most |´(x)|k choices for Sx∪Cx one has to consider in the dynamic
programming table.

Since for |Sx ∪ Cx| > k, Dx[Sx, Cx, k
′] is not an entry of the dynamic pro-

gramming table, we define a function fx to prevent the evaluation of non-existing
table entries. For each nodes x ∈ V , each subset Sx ¦ ´(x) ∩ S, each sub-
set Cx ¦ ´(x) \ S, and each k′ ∈ [0, k], we set fx(Sx, Cx, k

′) := Dx[Sx, Cx, k
′]

if |Sx ∪ Cx| f k and fx(Sx, Cx, k
′) := −∞, otherwise.

Next, we describe how to we compute the entries of the dynamic programming
tables. For each leaf node ℓ of T , we fill the table Dℓ by setting Dℓ[∅, ∅, k′] := 0 for
each k′ ∈ [0, k]. This is correct, since Gℓ is the empty graph.

For all non-leaf nodes x of T , we set Dx[Sx, Cx, k
′] := −∞ if

• Sx is not an independent set in G,

• |Sx ∪ Cx ∪ (Nx(Sx) \ S)| > k′, or

• N(Sx) ∩ Cx ̸= ∅.
Note that this is correct since in all three cases, there is no swap fulfilling the con-
straints of the table definition. To compute the remaining entries Dx[Sx, Cx, k

′], we
distinguish between the three types of non-leaf nodes. For each type, we omit the
formal proof and only give an informal argument for of the correctness.

38

3.2. Parameterization by Treewidth

Forget nodes. Let x be a forget node, let y be the unique child of x in T ,
and let v be the unique vertex in ´(y) \ ´(x). The entries for x can be computed as
follows:

Dx[Sx, Cx, k
′] :=

{
max(fy(Sx, Cx, k

′), fy(Sx ∪ {v}, Cx \N(v), k′)) v ∈ S and

max(fy(Sx, Cx, k
′), fy(Sx, Cx ∪ {v}, k′)) v /∈ S.

Informally, we chose the larger improvement of the best swap containing v and the
best swap not containing v. To consider the best swap containing v, we add v to the
corresponding set (Sx or Cx) for the entry of the table Dx. If v is a vertex of S, we
also have to remove the vertices of N(v)\S from Cx, since these vertices are implicitly
stored in the corresponding entry of Dy and, by definition, N(Sy) ∩ Cy = ∅.

Introduce nodes. Let x be an introduce node, let y be the unique child of x
in T , and let v be the unique vertex in ´(x)\´(y). For Wx := Sx∪Cx∪ (Nx(Sx)\S)
and C∗ := (Nx(v) \ S) \N(Sx \ {v}), the entries for x can be computed as follows:

Dx[Sx, Cx, k
′] :=

fy(Sx \ {v}, Cx ∪ C∗, k′ − 1) + É(v) v ∈ Wx ∩ S,
fy(Sx, Cx \ {v}, k′ − 1)− É(v) v ∈ Wx \ S,
fy(Sx, Cx, k

′) otherwise,

.

Informally, if v is a vertex of Wx, we have to consider the entry of Dy where v is
removed from the corresponding set (Sx or Cx) and adding the improvement we
obtain from having v in the considered swap (increasing by É(v) if v ∈ S and
decreasing by É(v) if v /∈ S). If v is a vertex of S, the vertices of C∗ are not stored
implicitly in Dy, so we have to consider the entry of Dy where we also explicitly
swap C∗. Otherwise, if v is not a vertex of Wx, we consider the entry of Dy with the
same subsets Sx and Cx and the same budget k′.

Join nodes. Let x be a join node, let y and z be the unique children of x in T .
Recall that ´(x) = ´(y) = ´(z). For Wx := Sx ∪Cx ∪ (Nx(Sx) \ S), the entries for x
can be computed as follows:

Dx[Sx, Cx, k
′] := max

0fk′′fk′−|Wx|
Dy[Sx, Cx, k

′′ + |Wx|] +Dz[Sx, Cx, k
′ − k′′]− ¶(Wx).

Informally, we divide the budget k′ into two parts. One for the subset of vertices
of W contained in the subtree rooted in y and one for the subset of vertices of W
contained in the subtree rooted in z. Note that Wx is contained in both of these

39

Chapter 3. Parameterized Local Search for Vertex Cover

vertex sets. Hence, we consider all possible ways to divide k′ into two parts, such
that both entries have at least enough budget to swap all vertices of Wx. Since the
improvement ofWx is added twice, we have to remove ¶(Wx) from the obtained sum.

The maximal improvement of any valid k-swap for S in G can then be found
in Dx∗ [∅, ∅, k]. Moreover, a corresponding swap W ∗ can be found via traceback:
W ∗ ∩ S consists of those vertices that are added to the set Sx in introduce nodes x,
and W ∗ \ S is exactly N(W ∗ \ S) \ S.

It remains to show the running time. Recall that (T = (V ,A, x∗), ´) is a nice
tree decomposition of width r for G with O(r · n) nodes. The number of entries of
the table Dx is upper bounded by k+1 times the number of subsets of ´(x) of size at
most k. Since for each node x ∈ V , the bag ´(x) has size at most r+ 1, all dynamic
programming tables together contain O(

(
r+1
fk

)
· k · r · n) entries. Recall that

(
r+1
fk

)

denotes the number of different subsets of size at most k of a set of size r + 1. To
complete the proof, it is sufficient to show, that we can compute each of them in O(k)
time.

To this end, we do the following preprocessing in which we assume that all con-
sidered subsets of V are stored as sorted lists.

First, we compute a degeneracy ordering Ã of G in O(n+m) ¦ O(n·r) time. Note
that the degeneracy ofG is never larger than the treewidth ofG. Hence, with the help
of Ã, we can check in O(r) time whether two given vertices are adjacent. Next, we
compute the adjacency matrix A(x) of G[´(x)] for each node x ∈ V . Since ´(x∗) = ∅
for the root vertex x∗, we start with an empty adjacency matrix. We now show that
for each node x ∈ V where A(x) is already computed, we can compute A(y) for each
child node y of x in O(r2) time. Let x be a forget node with the unique child y and
let v be the unique vertex of ´(y) \´(x). Then, we can copy A(x) in O(r2) time and
add a new row and a new column for the adjacency of v. To fill the new column and
row, we only have to evaluate for each vertex w ∈ ´(x), if v and w are adjacent. These
are at most r evaluations running in O(r) time each. Let x be an introduce node with
the unique child y and let v be the unique vertex in ´(x)\´(y). Then, we obtain A(y)
by copying A(x) and removing the row and the column of v in O(r2) time. Let x
be a join node with the unique children y and z, then A(x) = A(y) = A(z) and we
can obtain these copies of A(x) in O(r2) time. Recall that ´(x∗) = ∅ for the root x∗.
Hence, A(x∗) is the empty matrix which can be computed in O(1) time. Since T
contains O(r · n) nodes, we can compute A(x) for all nodes x ∈ V in O(r3 · n) time.
Since k > 2, this can be upper-bounded by O(rk · n) time. Hence, in the following,
we can check for each node x ∈ V in O(1) time whether two given vertices of ´(x)
are adjacent. Further, for each node x ∈ V , we perform the following steps:

• We store all independent sets Sx ¦ ´(x)∩S of size at most k. This preprocess-

40

3.2. Parameterization by Treewidth

ing runs in O(
(
r+1
fk

)
·k2) time, since for each subset Sx ¦ ´(x)∩S, we can check

in O(k2) time, whether Sx is an independent set, by the fact that |Sx| f k.

• For each independent set Sx ¦ ´(x)∩S of size at most k, we store the neighbor-
hoodNx(Sx)\S if it has size at most k. Otherwise, we store§. This preprocess-
ing runs in O(

(
r+1
fk

)
·k2) time: First consider all subset Sx of size at most k−1,

this can be done in O(r · k) time since |´(x)| f r+1 and |Sx| f k− 1. Second,
consider all subset Sx of size exactly k. Choose an arbitrary vertex u ∈ Sx.
Note that Nx(Sx)\S = (Nx(Sx\{u})\S)∪(Nx(u)\S). Since these two subsets
are already stored and have size at most k (or are set to §) and the union of
two sorted lists can be computed in linear time, for each such subset Sx, this
can be done in O(k) time. Hence, the total running time is O(

(
r+1
fk

)
· k) time.

• For each independent set Sx ¦ ´(x) ∩ S of size at most k and each Cx ¦
´(x) \S with |Sx∪Cx| f k, we store the information whether N(Sx)∩Cx = ∅.
Afterwards, we store the set Wx := Sx ∪ Cx ∪ (Nx(Sx) \ S) if it has size at
most k. Otherwise, we store §. For each combination of sets Sx and Cx, this
preprocessing can be done in O(k) time: Since |Sx∪Cx| f k, the set Nx(Sx)\S
is already stored. If |Nx(Sx)\S| > k, we immediately set Wx to §. Otherwise,
Wx is the union of three sets of size O(k) which are given as sorted lists.

Since there are at most
(
r+1
fk

)
combinations of sets Sx and Cx, this whole pre-

processing runs in O(
(
r+1
fk

)
· k) time.

• Let x be an introduce node with the unique child node y and the unique
vertex v ∈ ´(x) \´(y). Then, for each independent set Sx ¦ ´(x)∩S of size at
most k with |Nx(Sx) \S| f k, we store the set C∗ := (Nx(v) \S) \N(Sx \ {v}).
Now C∗ = (Nx(v) \ S) \ N(Sx \ {v}) = (Nx(v) \ S) \ (Nx(Sx) \ S) and the
two subsets of the latter expression are already stored and have size at most k.
Thus, C∗ can be computed in O(k) time for each independent set Sx of size at
most k, since the difference of two sorted lists can be computed in linear time.

Moreover, note that |C∗| f k. Hence, this preprocessing runs in O(
(
r+1
fk

)
· k)

time.

Since there are O(r · n) nodes, the whole preprocessing (including constructing
the degeneracy ordering and building all the individual adjacency matrices) runs in
O((

(
r+1
fk

)
· k2 +

(
r+1
fk−1

)
· r2 · k) · n) = O((

(
r+1
fk

)
· r · k2) · n) time.

Note that with this preprocessing, each entry of the tables Dx can be computed
inO(k) time: For each forget or introduce node x, one considers O(1) cases, where for
each case, one has to (i) compute set operations for O(1) sets of size at most k each,

41

Chapter 3. Parameterized Local Search for Vertex Cover

as well as (ii) evaluating one function call the function fx(Sx, Cx, k
′). Here, the latter

can be done in O(k) time, since fx(Sx, Cx, k
′) only checks whether |Sx ∪ Cx| f k.

For each join node x, the corresponding set Wx can be computed in O(k) time and
one computes the maximum of O(k) cases in which we combine two other table
entries in O(1) time. Moreover, note that all dynamic programming tables have
O((

(
r+1
fk

)
· r · k · n) entries in total. Since k > 2 and due to Lemma 3.14, we thus

obtain that the whole algorithm runs in O(rk+1 ·n) time if r g 2, and in O(2r ·k2 ·n) =
O(k2 · n) time, otherwise.

Note that the running time of this algorithm can also be bounded by O(2r ·k2 ·n)
which implies that GLS WVC can be solved in polynomial time on graphs with a
constant treewidth. This latter bound is, however, not useful in practice, since one
can find some optimal weighted vertex cover in the same running time [35, 131].

The dynamic programming algorithm deviates from the simple idea mentioned
above in the following detail: it considers only (i) the intersection W S

x of W ∩S with
the vertices of the current bag and (ii) the intersection ofW with those vertices of V \
S in the current bag that are not contained in N(W S

x). This is more technical but has
the following benefit: The intersection ofW with N(Sx)\S is stored implicitly which

decreases the factor rk+1 to r
k+d
2

+1 for GLS VC due to Lemma 3.7. In particular,
for the case of d = 1, that is, for LS VC, this gives a substantial improvement of
the exponential part of the running time from rk+1 to r

k+1
2

+1.

Theorem 3.16. Let I = (G = (V,E), S, k, d) be an instance of GLS VC. When
given a nice tree decomposition of width r for G with O(r ·n) nodes, one can solve I

in O((r k+d
2

+1 + k2) · n) time.

Proof. Due to Lemma 3.10, one can solve I in O(n+m) ¦ O(n · r) time if k+d f 4.
In the following, we may thus assume k+d

2
> 2. To obtain the stated running time,

we modify the dynamic program described in the proof of Theorem 3.15. We limit
the entries of the dynamic programming table such that |Sx ∪ Cx| f k+d

2
. Hence,

we also update fx(Sx, Cx, k
′) to −∞ if |Sx ∪ Cx| > k+d

2
. To determine if there is a

valid d-improving k-swap for S in G it is thus sufficient to check whether Dx∗ [∅, ∅, k]
is at least d, where x∗ denotes the root of T . Moreover, the corresponding swap can
be found via traceback.

The correctness of this modified dynamic program relies on Lemma 3.7 which,
intuitively speaking, states that, if there is a good swap for I, then such a swap can be
found by only considering entries of the dynamic programming table where |Sx∪Cx| f
k+d
2
.

42

3.3. Degree-Related Parameterizations

Since k+d
2
g 2, the adjacency matrix of G[´(x)] can be computed in O(r k+d

2
+1 ·n)

time for all x ∈ V . Moreover, since we now only check for subsets of size at most k+d
2
,

the preprocessing, filling all entries of the table, and checking Dx∗ [∅, ∅, k] g d can be

done in O(
(

r+1
f k+d

2

)
· r · k2 · n) time which, due to Lemma 3.14, is O(r k+d

2
+1 · n) time

for r g 2 and O(k2 · n+m) ¦ O(k2 · n · r) time, otherwise.

Since computing a tree decomposition of minimal width is NP-hard, we cannot
directly obtain a running time of O((tw(G)k+1+k2) ·n) and O((tw(G) k+d

2
+1+k2) ·n),

respectively. We can, however, compute a nice tree decomposition of width tw(G)
in O(n + m) time if tw(G) f 1800 [21]. Moreover, for each r g 0, one can com-
pute a nice tree decomposition of G of width at most 1800 · r2 or correctly output
that tw(G) > r in O(r7 · n · log(n)) time [60]. Hence, we can compute in O(tw(G)8 ·
n · log(n)) time [60] a nice tree decomposition of G of width at most 1800 · tw(G)2
by applying the approximation algorithm for each r ∈ [1, tw(G)]. If tw(G) g 1800,
then the width of the latter tree decomposition is smaller than tw(G)3. Altogether,
we obtain the following by Lemma 3.10 and Lemma 3.9.

Corollary 3.17. GLS VC can be solved in O((tw(G) 3·(k+d)
2

+1+ k2) ·n · log(n)) time
and GLS WVC can be solved in O((tw(G)3k+1 + k2) · n · log(n)) time.

Note that even if a tree decomposition of width tw(G) is given, one cannot im-
prove much on the running time due to the lower bound of Theorem 3.11, since
the treewidth of a graph is never larger than its vertex cover number. Due to this
relation, we further obtain the following by initially computing a 2-approximating of
a minimum vertex cover.

Corollary 3.18. For a given vertex cover S∗ of G, GLS VC can be solved in

O(|S∗| (k+d)
2

+1 ·n+m) time and GLS WVC can be solved in O(|S∗|k+1 ·n+m) time.

In general, GLS VC can be solved in O((2 · vc(G)) (k+d)
2 · n + m) time and GLS

WVC can be solved in O((2 · vc(G))k · n+m) time.

Since S is a vertex cover of G, this also implies an algorithm for GLS VC with

running time O(|S| (k+d)
2

+1 · n +m) and an algorithm for GLS WVC with running
time O(|S|k+1 · n+m). In particular, S∗ may be the current vertex cover S.

3.3 Degree-Related Parameterizations

In this section, we present FPT-algorithms with running times that grow strongly
with respect to k and grow only mildly with respect to ∆(G) or the h-index of G.

43

Chapter 3. Parameterized Local Search for Vertex Cover

In contrast to previous work, these FPT-algorithms solve the more general prob-
lems with weights and gap-improvements; the algorithms for ∆(G) will be used as
subroutines in the algorithm for the h-index of G.

We start by presenting an algorithm for instances with an h-index of at most 1
which will be used to handle border cases for both parameterizations.

Lemma 3.19. GLS WVC can be solved in O(k · log(k) + n) time if the h-index
of G is at most 1.

Proof. Let I = (G = (V,E), É, S, k, d) be an instance of GLS WVC with h(G) f 1.
Note that this implies that m ∈ O(n).

First, we present an algorithm with the stated running time if ∆(G) f 1. To
this end, we apply an initial reduction rule. For each edge e := {u, v} ∈ E where S
contains both u and v, we remove vertex v from G if É(v) f É(u). Otherwise,
we remove vertex u from G. Since each vertex cover of G contains at least one
endpoint of e, it is never optimal to swap the endpoint of {u, v} of smaller weight
out of S and thus, the reduction rule produces an equivalent instance. Moreover, note
that this reduction rule can be applied simultaneously to all edges of E where both
endpoints are in S. This implies that this reduction rule can be applied exhaustively
in O(n) time.

Hence, in the following, we can assume that S contains exactly one endpoint of
each edge of E. Since ∆(G) f 1, each valid connected swap consists either of (i) a
degree-0 vertex in S or (ii) both endpoints of an edge.

We now compute W1 := {{v} | v ∈ S,N(v) = ∅} the set of valid 1-swaps
and W2 := {{v, w} | {v, w} ∈ E, {v, w} ̸¦ S, ¶({v, w}) > 0} the set of valid con-
nected improving 2-swaps for S in G in O(n) time. Note that each vertex is contained
in at most one set inW1∪W2. Since ∆(G) f 1, the unionW of each subset of swaps
of W1 ∪ W2 is a valid swap for S in G. Hence, it remains to find some set W of
size at most k with the maximal improvement. To this end, we compute the set Wk

i

of the k elements of Wi of maximal improvement and sort them according to their
weight for each i ∈ {1, 2}. This can be done by finding the swap W k

i in Wi with
the k-th largest improvement by using the median of the medians in O(n) time and
afterwards filtering all swaps of improvement at least ¶(W k

i) and sorting them in
O(k · log(k) + n) time. Next, we start with an empty set W . If k = 0, I is a
yes-instance of GLS WVC if ¶(W) g d. If k = 1, update W to W ∪W1 and k
to 0, where W1 is the swap in Wk

1 with the maximal improvement. If k g 2, let W1

and W ′
1 be the two swaps in Wk

1 with the maximal improvement and let W2 be the
swap in Wk

2 with the maximal improvement. Then, update W to W ∪ W1 ∪ W ′
1

and remove both W1 and W ′
1 from Wk

1 if ¶(W1 ∪W ′
1) g ¶(W2). Otherwise, update

44

3.3. Degree-Related Parameterizations

to W ∪W2 and remove W2 from Wk
2 . In both cases reduce k by two. This greedy

algorithm is correct and runs in O(k · log(k) + n) time.
Next, we analyze the case where ∆(G) > 1. Since h(G) f 1, there is exactly

one vertex v∗ of degree at least 2 in G. First, we compute the swap-instance I1 :=
(G1, É1, S1, k1, d1) := swap(I, {vx}). Then, sinceG1 has a maximum degree of at most
one, we can check whether I1 is a yes-instance of GLS WVC in O(k ·log(k)+n) time
by using the above algorithm. If I1 is a yes-instance of GLS WVC, then I is a yes-
instance of GLS WVC. Otherwise, vx is contained in no valid d-improving k-swap
for S in G. Hence, let I2 := (G2, É2, S2, k, d) be the instance of GLS WVC we
obtain by removing vx and, if vx ∈ V \S, all vertices in N(vx)∩S from G. Since G2

has a maximum degree of one we can solve the instance I2 in O(k · log(k) + n) time.
Moreover, since I is a yes-instance of GLS WVC if and only if I2 is a yes-instance
of GLS WVC, we obtain the stated running time of O(k · log(k) + n).

Hence, for the following algorithms, we assume that h(G) and ∆(G) are at least 2.

3.3.1 Parameterizing Unweighted Gap Local Search by the
Maximum Degree

In this section, we present an algorithm for GLS VC that runs mildly with respect
to ∆(G) and strongly with respect to k+d. Recall that LS VC (the version of GLS

VC with d = 1) can be solved in 2k · (∆(G) − 1)
k+1
2 · nO(1) time. Except for a

change from the 2k-factor to a k!-factor, the algorithm we present essentially directly
generalizes this running time for larger values of k.

Theorem 3.20. GLS VC can be solved in O(k! · (∆− 1)
k+d
2 · n) time.

The first idea for an algorithm is obviously to adapt the known O(2k · (∆−1)
k+1
2 ·

k2 · n)-time algorithm for LS VC [98] to GLS VC. This algorithm, however, relies
on the fact that for LS VC, it is sufficient to consider only connected swaps. For d-
improving swaps this is not the case: for k = 2, an improvement of at least 2 can
only be achievable by swapping two vertices that out of the current solution that
are not adjacent. These vertices may have an arbitrarily large distance in the graph.
Thus, the gap version of the problem becomes considerably harder.

To avoid considering all possible vertex sets of size at most k, we present two
branching rules. The first rule applies if there is a vertex v in S where N(v) ¦ S and
branches in all possible ways to swap either v or two non-adjacent vertices of N(v).
If this rule cannot be applied, then each vertex in S has at least one neighbor in V \S
and, thus, there is no valid improving swap of size one.

45

Chapter 3. Parameterized Local Search for Vertex Cover

Proposition 3.21. Let I = (G,S, k, d) be a yes-instance of GLS VC and let v be
a vertex of S with N(v) ¦ S. There is a good swap W for I, such that (i) v is
contained in W or (ii) W contains at least two neighbors of v.

Proof. LetW be a good swap for I. Suppose that v is not contained inW and thatW
contains at most one neighbor of v, as otherwise the statement already holds. If W
contains no neighbor of v, let w be an arbitrary vertex of S ∩W . Otherwise, let w
be the unique vertex in W ∩N(v). Note that w ∈ S ∩W by the fact that N(v) ¦ S.
Hence, W ′ := W \ {w} is a valid (d − 1)-improving (k − 1)-swap for I. Observe
that W ′ contains neither v nor a neighbor of v. Consequently, W ∗ := W ′ ∪ {v} is a
valid d-improving k-swap for S in G. Since W ∗ contains v, the statement holds.

From Proposition 3.21, we derive the following branching rule. Here, we swap v
or two independent neighbors of v in each case. This gives a better branching vector
than swapping only a single vertex of N [v] in each case.

Branching Rule 3.3.1. Let I = (G = (V,E), S, k, d) be an instance of GLS VC
and let v be a vertex of S with N(v) ¦ S. For each swap W ∈ (

(
N(v)
2

)
\E) ∪ {{v}},

branch into the case of swapping W .

As mentioned above, if the branching rule cannot be applied anymore, then
each valid improving swap contains at least two vertices. Before applying the sec-
ond branching rule, we perform the following preprocessing. First, we compute for
each j ∈ [2, d] some minimum valid connected j-improving (k−d+ j)-swap Wj for S
in G if there is any. We call a collection {Wj}d2 of such swaps a swap family. The idea
of the branching rule is the following: for each ℓ ∈ [2, d], either the d-improving swap
contains Wℓ, some neighbor of Wℓ, or no connected component that is exactly ℓ-
improving. Intuitively, this is a correct by the following observation: Consider some
valid minimum good swap W for I and let C be a connected component in G[W]
with the minimal improvement. Let ℓ := ¶(C) and let W ′ = (W \C)∪Wℓ. Since Wℓ

contains at most |C| vertices, we have |W ′| f k. The resulting swap W ′ is a good
swap for I if W ∩N [Wℓ] = ∅.

We now formally prove that this intuition is correct.

Proposition 3.22. Let I = (G = (V,E), S, k, d) be a yes-instance of GLS VC
and, let {Wj}d2 be a swap family. There is a good swap W for I such that (i) W is
connected or (ii) there is some j ∈ [1, +d

2
,] such that Wj ¦ W or W ∩N(Wj) ̸= ∅.

Proof. Let W be a minimum good swap for I. Hence, the improvement of W is
exactly d, as otherwise removing an arbitrary vertex of S fromW yields a good swap
as well. Suppose that W is not connected and that for each j ∈ [1, +d

2
,], Wj ̸¦ W ,

46

3.3. Degree-Related Parameterizations

andW ∩N(Wj) = ∅, as otherwise the statement already holds. Let C be a connected
component in G[W] that minimizes ¶(C) among all connected components of G[W],
that is, C is the connected swap ofW with the smallest improvement. Let ℓ := ¶(C).
Since W is not connected and has improvement exactly d, the improvement ℓ of C
is at most +d

2
,. Note that ℓ g 1, as otherwise W is not minimum.

Note thatW ′ := W\C is a valid (d−ℓ)-improving (k−|C|)-swap for I and |C| < k.
Since W has size at most k and is d-improving, W \ S is (d − ℓ)-improving. This
implies that |C| f k − d + ℓ. Recall that Wℓ is some minimum valid connected ℓ-
improving (k− d+ ℓ)-swap for S in G. Hence, |C| g |Wℓ|. In the following, we show
thatW ′∪Wℓ = (W \C)∪Wℓ is a good swap for I. To this end, we first show thatW
contains no vertex of Wℓ.

Assume towards a contradiction that W ∩Wℓ is nonempty and let CW be some
connected component of G[W] that contains at least one vertex of Wℓ. Recall that
by assumption Wℓ ̸¦ W and N(Wℓ) ∩W = ∅. Hence, CW is a proper subset of Wℓ.
Since Wℓ is a smallest valid ℓ-improving k-swap for S in G, ¶(CW) < ¶(Wℓ) = ℓ =
¶(C). This contradicts the fact that C is a connected component of G[W] of minimal
improvement. Consequently, W contains no vertex of Wℓ.

We set W ∗ := W ′ ∪Wℓ. Note that W ∗ is a d-improving k-swap for S in G. It
remains to show thatW ∗ is valid. SinceW ′ andWℓ are both valid, it follows thatW ∗

is valid if W ′ ∩N(Wℓ ∩ S) ∩ S = ∅. By assumption, this is the case.

Proposition 3.21 now directly implies the correctness the following branching rule.

Branching Rule 3.3.2. Let I = (G = (V,E), S, k, d) be an instance of GLS VC
such that there is no connected good swap for I. Moreover, let {Wj}d2 be a given
swap family. For each j ∈ [1, +d

2
,] where Wj exists and each swap W ∈ {{w} | w ∈

N(Wj)} ∪ {Wj}, branch into the case of swapping W .

Since this branching relies on knowing a swap family, we next present an algo-
rithm to efficiently find such a swap family using the algorithm of Katzmann and Ko-
musiewicz [98] as a subroutine.

Proposition 3.23. Let I = (G = (V,E), S, k, d) be an instance of GLS VC. For
all j ∈ [1, d], one can compute a swap family {Wj}d2 in time O(2k ·(∆−1)(k+d)/2·k3·n).

The proof of Proposition 3.23 relies on the following lemma.

Lemma 3.24 ([98]). Let G = (B ∪W,E) be a bipartite and connected graph with
partite sets B and W where |B| > |W |. Then, there is a vertex set B′ ¦ B, such
that |B′| = |W |+ 1 and B′ ∪W is connected.

47

Chapter 3. Parameterized Local Search for Vertex Cover

Since there is no published proof for this lemma, we provide one for the sake of
completeness.

Proof. We prove the statement by showing that there is a vertex v ∈ B such
that G[(B \{v})∪W] is connected. Recursively applying this argument then implies
the desired statement. Let T = (B∪W,E ′) be an arbitrary spanning tree of G, which
is rooted in some vertex w ∈ W . We show that there is a vertex v ∈ B which is a leaf
of T , which then implies that T [(B \{v})∪W] is a spanning tree of G[(B \{v})∪W].
Let d be the depth of T and for each i ∈ [1, d], let Li be the vertices of the ith level
of T . Since G is bipartite, Li ¦ B if i is odd and Li ¦ W if i is even. If d is odd,
then each vertex of Ld ¦ B is a leaf of T . Otherwise, assume d is even. For each
odd i ∈ [1, d], Li contains a leaf of T or |Li+1| g |Li|. Since

∑

odd i∈[1,d]
|Li| = |B| > |W | >

∑

even i∈[1,d]
|Li|,

there is at least one odd i ∈ [1, d] with |Li+1| < |Li|, which implies that Li ¦ W
contains a leaf of T .

We are now able to prove Proposition 3.23.

Proof of Proposition 3.23. Due to Lemma 3.24, for each valid connected improving
swap W for S in G, there is an independent set J ¦ W ∩S such that W ′ = W \ J is
a valid connected swap for S in G with |W ′ ∩ S| = |W ′ \ S|+ 1. Katzmann and Ko-
musiewicz [98] presented an algorithm A to enumerate all valid connected (k−d+1)-
swapsW ′ for S in G with |W ′∩S| = |W ′\S|+1 in O(2k ·(∆(G)−1)(k−d)/2 ·k2 ·n) time.
Our algorithm relies on the following idea: Let j ∈ [1, d] and let Wj be a minimum
valid connected j-improving (k− d+ j)-swap for S in G. Then, Lemma 3.24 implies
that there is an independent set Jj ¦ Wj∩S of size j−1, such thatWj\Jj is a valid 1-
improving (k − d + 1)-swap for S in G. Hence, to find the swap Wj, the intuitive
idea behind our algorithm is to enumerate all valid connected (k − d+ 1)-swaps W ′

for S in G with |W ′∩S| = |W ′ \S|+1 by using algorithm A, and afterwards finding
an independent set of size j − 1 in (V ∩ S) \W ′ that can extend W ′.

We initializeWj with § for each j ∈ [1, d]. For each swapW ′ outputted by A, we
compute in an auxiliary graph G′

W ′ an independent set J of size at most d− 1 which
has maximum size under this property. Intuitively, the graph G′

W ′ is the subgraph
of G induced on exactly those vertices of S that can individually be swapped together
with W ′ to still obtain a valid connected swap. That is, G′

W ′ := G[{v ∈ S \W ′ |
N(v) ¦ S ·W ′, v ∈ N(W ′ \ S)}]. Since

• W ′ contains at least one vertex of V \ S,

48

3.3. Degree-Related Parameterizations

• G′
W ′ contains no vertex of W ′, and

• each vertex of G′
W ′ is a neighbor of some vertex of W ′ \ S in G,

the graph G′
W ′ has a maximum degree of at most ∆ − 1. This implies that we

can find the set J in O((∆ − 1)d−1 · (∆ − 1) · k) time by a standard search-tree
algorithm, since G′

W ′ contains at most (∆ − 1) · k vertices. Note that for each
subset J ′ of J , W ′ ∪ J ′ is a valid connected (|J ′| + 1)-improving k-swap for S in G.
For each r ∈ [0, |J |], let Jr be an arbitrary subset of J of size r and update Wr+1

to W ′ ∪ Jr if |W ′ ∪ Jr| < |Wr+1|.
Next, we show that the algorithm is correct. Let j ∈ [1, d] such that a minimum j-

improving (k−d+j)-swapW ∗
j for S in G exists. We show that the setWj computed

by our algorithm has size |W ∗
j |. SinceW ∗

j is a j-improving (k−d+j)-swap andW ∗
j is

minimum, there is an independent set Jj ¦ W ∗
j ∩S of size j−1 such thatW ′ := W ∗

j \Jj
is connected due to Lemma 3.24. Hence, W ′ is a valid connected (k − d + 1)-swap
for S in G. As a consequence, the algorithm A outputs W ′. Moreover, since W ∗

j is
valid, for each vertex v ∈ Jj, N(v) ¦ S ·W ′. Hence, Jj is an independent set of
size j−1 in G′

W ′ . Thus, when considering W ′, our algorithm finds some independent
set J ′ of size at least j − 1 in G′

W ′ and either updates Wj to W ′ ∪ J ′
j for some

subset J ′
j ¦ J ′ of size j − 1 or Wj already has size |W ∗

j |. Hence, after our algorithm
considered the swap W ′, |Wj| is exactly |W ′ ∪ J ′

j| = |W ∗
j | since W ∗ is minimum.

Moreover, since G′
W ′ contains only vertices that are adjacent to at least one vertex

of W ′ \ S, W ′ ∪ J ′
j is connected.

Hence, for all j ∈ [1, d], if it exists, we can find some minimum valid connected j-
improving k-swap Wj for I where |Wj \ S| f (k− d)/2 in total time O(2k ·∆(k+d)/2 ·
k3 · n).

With the above two branching rules and the algorithm to compute a swap family,
we are now able to prove Theorem 3.20.

Proof of Theorem 3.20. Let I = (G = (V,E), S, k, d) be an instance of GLS VC.
If k+d f 4, we can solve I in O(n+m) time due to Lemma 3.10. If ∆(G) = 2, then
we can compute a nice tree decomposition of G of width at most 2 in O(n+m) time
and afterwards solve I in O((2(k+d)/2 + k2) · n + m) time due to Theorem 3.16.
Since d f k, this is O(k! · n + m) time. Hence, we can assume in the following,
that k + d > 4 and ∆(G) g 3.

First, check in O(n +m) time if there is a vertex v ∈ S with N(v) ¦ S. If this
is the case, apply Branching Rule 3.3.1. Due to Proposition 3.21, this is correct.

If there is no vertex v ∈ S with N(v) ¦ S, compute a swap family {Wj}d2. Due
to Proposition 3.23, this can be done in O(2k · (∆ − 1)(k+d)/2 · k3 · n) time. If Wd

49

Chapter 3. Parameterized Local Search for Vertex Cover

exists, answer yes. Otherwise, apply Branching Rule 3.3.2. Due to Proposition 3.22,
this is correct.

It remains to show the total running time. Let I1 denote the set of swap-instances
considered during one application of Branching Rule 3.3.1 and let I2 denote the set of
swap-instances considered during one application of Branching Rule 3.3.2. We first
analyze I1 and I2. Note that I1 consists of at most

(
∆
2

)
instances where k′ f k − 2

and k′+d′ f k+d−4 and exactly one instance where k′ = k−1 and k′+d′ = k+d−2.
Since ∆ g 3,

(
∆
2

)
f (∆− 1)2.

Hence, if Branching Rule 3.3.1 is applicable, the recurrence for the running time
is

T (k, k + d) f (∆− 1)2 · T (k − 2, k + d− 4) + T (k − 1, k + d− 2) +O(n+m).

Under the assumption that Branching Rule 3.3.1 is not applicable, we bound the
number of instances in I2 and show that for each such instance (G′, S ′, k′, d′) ∈ I2,
k′ f k − 2 and k′ + d′ f k + d− 2. Let ℓ be the largest number of [1, +d

2
,] such that

Wℓ exists. Note that ℓ f d
2
< d f k. Hence, for each j ∈ [1, ℓ], the swap Wj has size

at most k − 1. Further, since Wj is connected, each vertex in Wj has at least one
neighbor in Wj and thus at most ∆− 1 neighbors outside of Wj. Altogether,

|I2| f
d

2
· ((k − 1) · (∆− 1) + 1) f k2

2
· (∆− 1),

since ∆ g 2. By the assumption that Branching Rule 3.3.1 is not applicable, there
is no vertex v ∈ S with N(v) ¦ S. This implies that k′ f k − 2. Further recall that
since each considered swap contains at least one vertex of S, k′ + d′ f k + d− 2 for
each instance of I2.

Hence, if Branching Rule 3.3.1 is not applicable and Branching Rule 3.3.2 is
applicable, the recurrence for the running time is

T (k, k + d) f k2

2
· (∆− 1) · T (k − 2, k + d− 2) +O(2k · (∆− 1)(k+d)/2 · k2 · n).

We now show by induction over k that there is a constant C such that for each d ∈
[1, k], T (k, k + d) f C · k! · (∆− 1)(k+d)/2 · n.

By the above, there is a constant c such that for each k ∈ N and each d ∈ [1, k]

(1) GLS VC can be solved in c · (n+m) time if k < 3,

(2) T (k, k + d) f (∆− 1)2 · T (k − 2, k + d− 4) + T (k − 1, k + d− 2) + c · (n+m)
if there is some vertex v ∈ S with N(v) ¦ S, and

50

3.3. Degree-Related Parameterizations

(3) T (k, k + d) f k2

2
· (∆− 1) · T (k − 2, k + d− 2) + c · 2k · (∆− 1)(k+d)/2 · k3 · n if

there is no vertex v ∈ S with N(v) ¦ S.

We set C := 128c. Hence, for the base case k < 3 the statement holds directly
due to (1). As the inductive step, we show that the statement holds for k if it holds
for all k′ ∈ [1, k − 1].

Suppose that there is some vertex v ∈ S with N(v) ¦ S. By the induction
hypothesis and due to (2),

T (k, k + d) f (∆− 1)2 · T (k − 2, k + d− 4) + T (k − 1, k + d− 2) + c · (n+m)

f C · (∆− 1)2 · (k − 2)! · (∆− 1)(k+d)/2−2 · n
+ C · (k − 1)! · (∆− 1)(k+d)/2−1 · n+ c · (n+m)

= C · (k − 2)! · (∆− 1)(k+d)/2−1 · ((∆− 1) + (k − 1)) · n+ c · (n+m)

(∗)
f C · (k − 1)! · (∆− 1)(k+d)/2 · n+ c · (n+m)

(∗∗)
f C · k! · (∆− 1)(k+d)/2 · n

Inequality (∗) holds, since (∆−1)+(k−1) f (∆−1) ·(k−1) for all k g 3 and ∆ g 3.
Inequality (∗∗) holds, since 2c f C, k g 3, and m f (∆− 1) · n.

Suppose that there is no vertex v ∈ S with N(v) ¦ S. By the induction hypoth-
esis and due to (3),

T (k, k + d) f k2

2
· (∆− 1) · T (k − 2, k + d− 2) + c · 2k · (∆− 1)(k+d)/2 · k3 · n

f C · k
2

2
(∆− 1) · (k − 2)! · (∆− 1)(k+d)/2−1 · n

+ c · 2k · (∆− 1)(k+d)/2 · k3 · n

f C ·
(
k2

2
· (k − 2)! +

1

128
· 2k · k3

)
· (∆− 1)(k+d)/2 · n

(∗)
f C · k! · (∆− 1)(k+d)/2 · n

Inequality (∗) holds, since C = 128c and k2

2
· (k− 2)! + 1

128
· 2k · k3 f k! for all k g 3.

Hence, the whole algorithm runs in O(k! · (∆− 1)(k+d)/2 · n) time.

Note that the above running time is (besides the change from the 2k factor to
a k! factor in the running time) a direct generalization of the previous best algorithm
for LS VC which runs in O(2k · (∆− 1)k/2 · k · n) time [98] to GLS VC.

51

Chapter 3. Parameterized Local Search for Vertex Cover

3.3.2 Parameterizing Weighted Gap Local Search by Maxi-
mum Degree

Next, we consider Gap LS Weighted Vertex Cover when parameterized by
the maximum degree ∆(G) plus k.

Proposition 3.25. Let I = (G = (V,E), É, S, k, d) be an instance of GLS WVC.
One can enumerate all valid connected k-swaps for S in G in O(2k · (∆ − 1)k · k3 ·
n) time.

Proof sketch. We adapt an algorithm of Katzmann and Komusiewicz [98]. Note that
the algorithm by Katzmann and Komusiewicz [98] does not consider the weights of
vertices and only enumerates k-swapsW with |W∩S| = |W \S|+1. Unfortunately, in
weighted graphs, a valid improving swapW does not have to fulfill |W∩S| = |W \S|+
1. Hence, we cannot directly apply the algorithm of Katzmann and Komusiewicz [98]
for weighted graphs.

The idea of our algorithm is to enumerate, for each vertex v ∈ S the valid
connected k-swaps W containing v. In the following, call the vertices in the vertex
cover S black and the vertices of the independent set V \ S white. Recall that if
a black vertex u is contained in a swap W , then no black neighbors of u may be
included in W and all white neighbors of u must be included in W . In other words,
white vertices are added automatically, when they are neighbors of the current swap.
Now, to extend a current swap W , we pick a white vertex u in W and choose 1) to
exclude all neighbors of u outside of W to be swapped in all recursive calls or 2) to
pick one of the at most ∆ − 1 neighbors of u outside of W to be added to W . In
Case 1), we “finish” a white vertex, in the at most ∆ − 1 subcases of Case 2), we
add a black vertex. The total number of white and black vertices is at most k, and
thus we may abort the search at a search tree depth of k. The total search tree size
is thus O(∆k) = O(2k · (∆− 1)k) for each of the O(n) initial vertices v. We omit the
discussion of the further polynomial parts of the running time.

Since an instance I of LS WVC has a good swap if and only if it has a con-
nected good swap (see Observation 3.5), Proposition 3.25 implies that LS WVC can
be solved in the following running time.

Corollary 3.26. LS WVC can be solved in O(2k · (∆− 1)k · k3 · n) time.

To solve the gap version GLS WVC we again encounter the problem that the
sought good swap is not necessarily connected. Hence, for GLS WVC we show a
related algorithm to the one we presented for GLS VC using only one branching

52

3.3. Degree-Related Parameterizations

rule. This rule is, more or less, an adaptation of Branching Rule 3.3.2 to the weighted
version. Consider a good swap W for I. This time, we want to find some valid
improving j-swap Wj for S in G for each j ∈ [1, k] and branch into the cases of
either swapping Wj or swapping some neighbor of Wj.

Unfortunately, a result similar to Proposition 3.21 cannot be obtained, that is, in
the weighted case, each good swap might contain only one neighbor of W1.

1 Hence,
in the worst case, each of these branching cases reduces the parameter k only by
one which would lead to a running time factor of (∆ − 1)2k instead of (∆ − 1)k.
Our goal is, thus, to decrease the number of cases in which the parameter is only
reduced by one. To this end, we analyze the swap W1 separately. Let S1 := {v ∈
S | N(v) ¦ S} denote the set of vertices of improving 1-swaps for S in G and
let v∗ be the unique vertex of W1. Since v∗ is some vertex in S1 of highest weight,
if W ∩ N [v∗] = W ∩ N [W1] = ∅, then we can replace some distinct vertex w∗ of S1

contained in W by v∗ and also obtain a good swap for I. Hence, we can then reduce
our branching cases for j g 2 to the ones in which we consider either swapping Wj

or some neighbor of Wj which is not contained in S1. Since the remaining considered
swaps for j g 2 have size at least 2, only |N [W1]| f ∆+1 cases remain in which the
parameter is only decreased by one.

For each i ∈ [1, k], let Wj denote some valid connected swap of size exactly j
for I with maximal improvement, if such a swap exists. We call a collection {Wj}k1
of such swaps a weighted swap family. Recall that S1 := {v ∈ S | N(v) ¦ S} denotes
the set of vertices of improving 1-swaps for S in G.

Proposition 3.27. Let I = (G = (V,E), É, S, k, d) be a yes-instance of GLS WVC
and let {Wj}k1 be a weighted swap family. There is a good swap W for I such that
(i) W is connected or (ii) W ∩ N [W1] ̸= ∅ or (iii) there is some j ∈ [2, +k

2
,] such

that Wj ¦ W or (W ∩N(Wj)) \ S1 ̸= ∅.

Proof. Since I is a yes-instance of GLS WVC, there is a minimum good swap W
for I. Suppose that W is not connected, W ∩ N [W1] = ∅, for each j ∈ [2, +k

2
,]

where Wj exists, Wj ̸¦ W and W ∩ N(Wj) \ S1 = ∅, as otherwise the statement
already holds. Let C be the smallest connected component in G[W] and let ℓ := |C|.
Since W is not connected, ℓ f +k

2
,. Note that W ′ := W \ C is a valid (d − ¶(C))-

improving (k − ℓ)-swap for S in G. Since C is a connected swap of size exactly ℓ,
the swap Wℓ exists. Recall that Wℓ is some valid connected swap of size exactly ℓ
for I that maximizes ¶(Wℓ). Hence, the improvement ¶(Wℓ) of Wℓ is at least the

1Consider the path (u, v, w), with ω(v) = 3, and ω(u) = ω(w) = 1. Let S = {u, v}, k = d = 2.
The only 2-improving 2-swap is {v, w}. Note that this swap avoids the only valid improving 1-
swap {u} and contains only one neighbor of u.

53

Chapter 3. Parameterized Local Search for Vertex Cover

improvement ¶(C) of C. In the following, we show that W ∗ := W ′ ∪Wℓ is a good
swap for I.

Recall that Wℓ ̸¦ W and (N(Wℓ) ∩ W) \ S1 = ∅. Further, since each vertex
of S1 ∩W is isolated in G[W], Wℓ ∩W is a proper subset of Wℓ and Wℓ is a valid
swap for S in G. Hence, Wℓ ∩W = ∅, as otherwise C is not the smallest connected
component in G[W] by the fact that W ∩ N(Wℓ) \ S1 = ∅. Note that W ∗ is a d-
improving k-swap for S in G. It remains to show that W ∗ is valid. Since W ′ and Wℓ

are both valid, it follows that W ∗ is valid if W ′ ∩ N(Wℓ ∩ S) = ∅. By assumption,
this is the case for ℓ = 1. Moreover by assumption, W ′∩N(Wℓ∩S)\S1 = ∅ if ℓ > 1.
Note that since every valid connected swap containing some vertex of S1 has size 1,
W ′ ∩ S1 ̸= ∅ would then contradict the assumption that C is the smallest connected
swap in G[W] with |C| = ℓ > 1.

Hence, we derive the following branching rule.

Branching Rule 3.3.3. Let I = (G = (V,E), É, S, k, d) be an instance of GLS
WVC such that there is no connected good swap for I. Moreover, let {Wj}k1 be a
given weighted swap family. If W1 exists, branch into the case of swapping W for
each swap W ∈ {{w} | w ∈ N(W1)}. Additionally, for each j ∈ [1, +k

2
,] where Wj

exists, branch into the case of swapping W for each swap W ∈ {Wj} ∪ {{w} | w ∈
N(Wj) \ S1}.

With this branching rule, we are now able to show the algorithm for GLS WVC.

Theorem 3.28. GLS WVC can be solved in O(k! · (∆− 1)k · n) time.

Proof. Let I = (G = (V,E), É, S, k, d) be an instance of GLS VC. If k f 2, then we
can solve I in O(n+m) time due to Lemma 3.9. If ∆(G) = 2, then the treewidth of G
is at most 2 and we can compute a nice tree decomposition of G of width at most 2 in
O(n+m) time and afterwards solve I in O((2k+k2) ·n+m) ¦ O(k! ·n+m) time due
to Theorem 3.15. Hence, we can assume in the following, that k g 3 and ∆(G) g 3.

The algorithm now works as follows. First, compute a weighted swap fam-
ily {Wj}k1. Due to Proposition 3.25, this can be done in O(2k · (∆− 1)k · k3 ·n) time.
Now, if there is some j ∈ [1, k] such that Wj exists and ¶(Wk) g d, then I is a
yes-instance of GLS WVC. Otherwise, there is no connected good swap W for I.
Compute the set S1 := {v ∈ S | N(v) ¦ S} of possible improving swaps of size 1
and apply Branching Rule 3.3.3. Due to Proposition 3.27, this is correct.

It remains to show the running time. Let I1 denote the set of swap-instances
considered during one application of Branching Rule 3.3.3 where a vertex of N [W1]

54

3.3. Degree-Related Parameterizations

is swapped and let I>1 denote the remaining swap-instances considered during one
application of Branching Rule 3.3.3. That is,

I1 :=
{
{swap(I, {w}) | w ∈ N [W1]} W1 exists,

∅ otherwise,

and

I>1 :=
⋃

j∈[2,+ k
2
,]

Wj exists

{swap(I,Wj)} ∪ {swap(I, {w}) | w ∈ N(Wj) \ S1}.

Note that I1 has size at most ∆ + 1 and k′ f k − 1 for each instance I ′ ∈ I1.
Next, we bound the size of I>1. Since for each j ∈ [2, +k

2
,] for which Wj exists, Wj

has size j and each vertex v ∈ Wj has at most ∆ − 1 neighbors outside of Wj, we
can upper-bound the size of |I>1| as

|I>1| f
+ k
2
,∑

j=2

(j ·(∆−1)+1) f
k
2
· (k

2
+ 1)

2
·(∆−1)+ k

2
−∆ =

k2 + 2k

8
·(∆−1)+ k

2
−∆.

Note that for each instance of I>1, we have k′ f k − 2. This is due to the fact that
for each j g 2 where Wj exists, |Wj| g 2 and N(w) \ S ̸= ∅ for each vertex w ∈
N(Wj) \ S1.

Hence, the recurrence for the running time is

T (k) f
(
k2 + 2k

8
· (∆− 1) +

k

2
−∆

)
· T (k − 2)

+ (∆ + 1) · T (k − 1) +O(2k · (∆− 1)k · k2 · n).

We show by induction over k that there is a constant C such that T (k) f C · k! ·
(∆− 1)k · n.

First, observe that there is a constant c such that

(1) GLS WVC can be solved in c · (n+m) time if k < 3,

(2) T (k) f (k
2+2k
8
·(∆−1)+ k

2
−∆)·T (k−2)+(∆+1)·T (k−1)+c·2k ·(∆−1)k ·k3 ·n.

We set C := 700c. Hence, for the base case of k < 3 the statement holds directly
due to (1). As the inductive step, we show that the statement holds for k if it holds
for k − j for each j ∈ [1, k − 1].

55

Chapter 3. Parameterized Local Search for Vertex Cover

By the induction hypothesis and due to (2),

T (k) f
(
k2 + 2k

8
· (∆− 1) +

k

2
−∆

)
· T (k − 2)

+ (∆ + 1) · T (k − 1) + c · 2k · (∆− 1)k · k3 · n

f C ·
(
k2 + 2k

8
· (∆− 1) +

k

2
−∆

)
· (k − 2)! · (∆− 1)k−2 · n

+ C · (∆ + 1) · (k − 1)! · (∆− 1)k−1 · n+ c · 2k · (∆− 1)k · k3 · n
= C · (k − 2)! · (∆− 1)k−2

·
(
k2 + 2k

8
· (∆− 1) +

k

2
−∆+ (k − 1) · (∆2 − 1)

)
· n

+ c · 2k · (∆− 1)k · k3 · n
(∗)
f C · (k − 2)! · (∆− 1)k · (k · (k − 1)− 1) · n+ c · 2k · (∆− 1)k · k3 · n
f C · k! · (∆− 1)k · n− C · (k − 2)! · (∆− 1)k · n+ c · 2k · (∆− 1)k · k3 · n
(∗∗)
f C · k! · (∆− 1)k · n

Inequality (∗) holds, since k2+2k
8
· (∆− 1) + k

2
−∆+ (k − 1) · (∆2 − 1) f (∆− 1)2 ·

(k · (k − 1) − 1) for all k g 3 and ∆ g 3. Inequality (∗∗) holds, since C = 700c
and (k − 2)! g 1

700
· 2k · k3.

Hence, the whole algorithm runs in O(k! · (∆− 1)k · n) time.

3.3.3 Parameterizing the Weighted Gap Version by h-Index

Finally, we show that we can replace ∆(G) in the above running time by the h-index
of G. Recall that the h-index h(G) of a graph G is the largest integer such that G
contains at least h(G) vertices of degree at least h(G). The idea behind this algorithm
is to branch on all possibilities on how a potential improving swap may intersect the
set of high-degree vertices. For each of these potential intersections X, we compute
the corresponding swap-instance and solve it with the help of Theorem 3.28 after
removing the remaining high-degree vertices. Intuitively, we want to avoid all possible
valid swaps that contain any of the high-degree vertices outside of X. For each high-
degree vertex v outside of X, we have to consider two cases: If v is contained in S,
we can simply remove v. Otherwise, if v /∈ S, we additionally have to remove each
neighbor of v. This is due to the fact that each valid swapW that swaps any neighbor
of v out of the vertex cover S has to also swap v into the vertex cover.

56

3.3. Degree-Related Parameterizations

Based on this observation, we define for each vertex set V ′ ¦ V an exclusion
instance I ′ for V ′ and I as the instance of GLS WVC, where all vertices of V ′ ∪
N(V ′ \ S) are removed from I. Formally, let I = (G,É, S, k, d) be an instance
of GLS WVC, then the exclusion instance I ′ of GLS WVC for V ′ and I is defined
as I ′ := (G′, É, S ′, k, d), where G′ := G− (V ′ ∪N(V ′ \ S)) and S ′ := S ∩ V (G′). By
the above argumentation, we derive the following property for exclusion instances.

Lemma 3.29. Let I = (G = (V,E), É, S, k, d) be an instance of GLS WVC and
let V ′ ¦ V be a set of vertices. There is a good swap W for I with W ∩ V ′ = ∅ if
and only if the exclusion instance of V ′ and I is a yes-instance of GLS WVC.

Proof. Let I ′ = (G′, S ′, k, d) be the exclusion instance of V ′ and I. Let W be a good
swap for I that avoids V ′. Since W is valid, W contains no vertex of N(V ′ \ S).
Hence, W is a good swap for I ′.

Let W be a good swap for I ′. By definition of the exclusion instance I ′, W is also
a d-improving k-swap for S in G which avoids V ′. It remains to show that S ·W is
a vertex cover of G. This is the case if no vertex of V ′ \S is adjacent to some vertex
in W . By construction of I ′, there is no vertex in V (G′) which is adjacent to some
vertex in V ′ \ S. Hence W is a good swap for I that avoids V ′.

Based on the concept of exclusion instances and due to Theorem 3.28, we are
now able to show the algorithm for GLS WVC when parameterized by h(G) plus k.

Theorem 3.30. GLS WVC can be solved in O(k! · (h− 1)k · n) time.

Proof. Let I = (G = (V,E), É, S, k, d) be an instance of GLS WVC. If k f 2,
the statement holds due to Lemma 3.9. Otherwise, we compute the h-index h(G)
of G and the set of vertices H with degree at least h(G) + 1 in O(n + m) time.
If h(G) = 2, then the treewidth of G is at most 4 and we can compute a nice tree
decomposition of G of width at most 4 in O(n +m) time and afterwards solve I in
O((4k+k2) ·n+m) ¦ O(k! ·n+m) time due to Theorem 3.15. Hence, we assume in
the following that k g 3 and h(G) g 3. Since h(G) is the h-index of G, H contains
at most h(G) vertices. The idea is to consider all possibilities for the intersection
of a good swap W with H and afterwards solve the resulting swap-instance with
the algorithm of Theorem 3.28. To obtain a linear running time for instances where
the h-index and k are both constants, we initially compute the adjacency matrix
of G[H] in O(h(G)2 + m) time. For each WH ¦ H of size at most k, we check
whether WH ∩ S is an independent set and, if this is the case, compute the swap-
instance I ′ := (G′, É′, S ′, k′, d′) := swap(I,WH) in O(k2) time. Note that if WH has
size exactly k, then k′ f 0 and, thus, I ′ is a trivial instance of GLS WVC and can

57

Chapter 3. Parameterized Local Search for Vertex Cover

be solved in O(1) time. If for such a swapWH of size k, swap(I,WH) is a yes-instance
of GLS WVC, answer yes. Otherwise, suppose that WH has size less than k. Now,
do the following. Since we search for a good swap W for I with W ∩ H = WH ,
no other vertex of H is contained in W . Hence, we can ignore choices of WH ,
where N(WH ∩ S) ∩ H ̸¦ WH . For each remaining choice of WH , we can compute
the exclusion instance IWH

of H ∩V (G′) and I ′ in O(h(G) ·n) time. Recall that due
to Lemma 3.29, IWH

is a yes-instance of GLS WVC if and only if there is a good
swap for S ′ that avoids H ∩ V (G′). Let GWH

denote the graph of IWH
. Since GWH

is a subgraph of G and contains only vertices of V \H, GWH
has a maximum degree

of h(G). Moreover, note that k′ f k − |WH |. Consequently, IWH
can be solved

in O((k − |WH |)! · (h(G) − 1)k−|WH | · n) time due to Theorem 3.28. Note that this
dominates the running time to compute IWH

since |WH | < k. Afterwards, we answer
yes if and only if there is some considered swap WH ¦ H of size at most k − 1 such
that IWH

is a yes-instance of GLS WVC.
Hence, the running time of the described algorithm can be upper bounded by

O(n+m+ h(G)2)+O((h(G)− 1)k · k · n) +
min(k−1,h(G))∑

j=1

O(h(G)− 1)j/j2)·

(O(k2 + h(G) · n) +O((k − j)! · (h(G)− 1)k−j · n) +m)) time,

since due to Lemma 3.14, for each j g 1, H contains at most O((h(G) − 1)j/j2)
subsets of size at most j. Since m ∈ O(h(G) · n) and ∑k

j=1
1
j2
∈ O(1), we obtain the

stated running time.

3.4 Using Modular Decompositions

Next, we provide FPT-algorithms that use modular decompositions which, roughly
speaking, provide a hierarchical view of the different neighborhoods in a graph G.

3.4.1 Modular Decompositions

A modular decomposition of a graph G = (V,E) is a pair (T , ´) consisting of a rooted
tree T = (V ,A, x∗) with root x∗ ∈ V and a function ´ that maps each node x ∈ V
to a graph ´(x) [124]. If x is a leaf of T , then ´(x) contains a single vertex of V
and for each vertex v ∈ V , there is exactly one leaf ℓ of T such that the graph ´(ℓ)
consists only of v. If x is not a leaf node, then the vertex set of ´(x) is exactly the set
of child nodes of x in T . Moreover, let Vx denote the set of vertices of V contained

58

3.4. Using Modular Decompositions

in leaf nodes of the subtree rooted in x. Formally, Vx is defined as V (´(ℓ)) for leaf
nodes ℓ and recursively defined as

⋃
y∈V (´(x)) Vy for each non-leaf node x. Moreover,

we define Gx = (Vx, Ex) := G[Vx]. A modular decomposition has the property that
for each non-leaf node x and any pair of distinct nodes y ∈ V (´(x)) and z ∈ V (´(x)),
y and z are adjacent in ´(x) if and only if there is an edge in G between each pair
of vertices of Vy and Vz and y and z are not adjacent if and only if there is no edge
in G between any pair of vertices of Vy and Vz. Hence, it is impossible that there are
vertex pairs (v1, w1) ∈ Vy × Vz and (v2, w2) ∈ Vy × Vz such that v1 is adjacent to w1

and v2 is not adjacent to w2.

We call ´(x) the quotient graph of x. A quotient graph is prime if there is no
set A ¦ V (´(x)) with 2 f |A| < |V (´(x))| such that all vertices of A have the same
neighborhood in V (´(x)) \A. The width of a modular decomposition is the size of a
largest vertex set of any quotient graph and the modular-width of a graph G, denoted
by mw(G), is the minimal width of any modular decomposition of G.

3.4.2 Parameterization by Modular-Width

We now provide a dynamic programming algorithm over the modular decomposition
of G. The nodes of the decomposition are processed in a bottom-up manner. The
idea is to consider for a node x the possibilities of how a swap may interact with the
vertex sets that are represented by the vertices y of ´(x). We use the fact that any
valid swap of G must also correspond in the natural way to a valid swap of ´(x).
More precisely, if some vertex in the set represented by y goes to the independent set,
then the vertex cover must include the vertex set represented by z for all neighbors z
of y in ´(x).

Theorem 3.31. GLS WVC can be solved in O(mw(G)k ·k·(mw(G)+k)·n+m) time.

Proof. Let I = (G = (V,E), É, S, k, d) be an instance of GLS WVC. First, we
compute a modular decomposition (T = (V ,A, x∗), ´) of minimal width in O(n +
m) time [124]. Note that T has O(n) nodes. Next, we describe a dynamic program
on the modular decomposition (T , ´) to solve GLS WVC.

For each node x ∈ V in the modular decomposition, we have a dynamic pro-
gramming table Dx. The table Dx has entries of type Dx[k

′] for k′ ∈ [0, k]. Each
entry Dx[k

′] stores the maximal improvement ¶S(W) of a valid k′-swap W ¦ Vx
for S ∩ Vx in Gx.

Next, we describe how to fill the dynamic programming tables. Let ℓ be a leaf
node of T and let v be the unique vertex of V (´(ℓ)) = Vℓ. We fill the table Dℓ by

59

Chapter 3. Parameterized Local Search for Vertex Cover

setting

Dℓ[k
′] :=

{
0 v /∈ S (k′ = 0

É(v) v ∈ S ' k′ > 0

for each k′ ∈ [0, k].
To compute the entries for all remaining nodes x of T , we use an auxiliary

table QSx
. Let Sx be an independent set in ´(x) and let Sx(i) denote the ith vertex

of Sx according to some arbitrary but fixed ordering with i ∈ [1, |Sx|]. Moreover,
let V fi

x =
⋃i

j=1 VSx(j). Recall that Sx(j) is both a vertex of ´(x) and a child node
of x in T and that VSx(j) denotes the set of all vertices of G that are contained in
the subtree of T rooted in Sx(j). The dynamic programming table QSx

[i, k′] has
entries for i ∈ [1, |Sx|] and k′ ∈ [0, k] and stores the maximal improvement of a
valid k′-swap W for S ∩ V fi

x in G[V fi
x], such that for each j ∈ [1, i], at least one

vertex of S ∩ VSx(j) is contained in W . We set

QSx
[i, k′] :=

−∞ k′ < i,

DSx(1)[k
′] i = 1, and

max1fk′′fk′ DSx(i)[k
′′] +QSx

[i− 1, k′ − k′′] otherwise.

Since we are looking for a k′-swap W that contains for each j ∈ [1, i] at least one
vertex of S ∩ VSx(j), the value of the table is set to −∞ if k′ < i, since there is no
such swap of size at most k′ < i. If k′ g i, then the value of the table is determined
by finding the best way to swap k′′ vertices of VSx(i) and k

′ − k′′ vertices of V fi−1
x .

The entries for Dx can then be computed as follows:

Dx[k
′] := max

Sx¦V (´(x))

|W∗|fk′

Sx is independent

QSx
[1, k′ − |W ∗|]− É(W ∗)

where W ∗ :=
⋃

y∈Nx(Sx)
(Vy \ S). Since we are looking for a swap W where for

each y ∈ Sx, at least one vertex of S ∩ Vy is contained in W and thus leaves the
vertex cover, each vertex of W ∗ has to be added to obtain a vertex cover.

The maximal improvement of any valid k-swap for S in G can be found in Dx∗ [k],
where x∗ is the root of the modular decomposition. Moreover, the corresponding k-
swap can be found via traceback.

Next, we analyze the running time. For each non-leaf node x, and each indepen-
dent set Sx of size at most k in ´(x), there are O(k2) table entries in QSx

and each
of these entries can be computed in O(k) time. Recall that for a set of size x,

(
x
fk

)

denote the number of different subsets of size at most k.

60

3.5. Concluding Remarks

Since each quotient graph hasO(
(
mw(G)
fk

)
) many independent sets of size at most k,

all entries of all tables QSx
can be computed in O(

(
mw(G)
fk

)
· k3 · n) time, since the

modular decomposition has O(n) quotient graphs. For each node x, there are O(k)
table entries in Dx. We will show that we can compute each of them in O(k2 ·
(mw(G) + k)) time. To this end, we precompute for each node x the size |Vx \ S|
and the weight É(Vx \ S) to compute |W ∗| and É(W ∗) in O(k) time afterwards.
Since for all non-leaf nodes x, Vx \ S =

⋃
y∈V (´(x))(Vy \ S), we can compute |Vx \ S|

as
∑

y∈V (´(x)) |Vy \ S| and É(Vx \ S) as
∑

y∈V (´(x)) É(Vy \ S). This can be done

in O(mw(G) · n) time since the modular decomposition has O(n) quotient graphs.
Hence, for an independent set Sx of size at most k, we can compute |W ∗| and É(W ∗)
in O(k) time. Since we can enumerate all subsets Sx of size at most k of V (´(x))
in O(

(
mw(G)
fk

)
) time and check in O(mw(G) · k) time if Sx is independent in ´(x),

we can compute Dx[k
′] in O(

(
mw(G)
fk

)
· k2 · (k +mw(G))) time. Consequently, we can

compute all entries of the dynamic programming tables inO(
(
mw(G)
fk

)
·k3·(k+mw(G))·

n+m) time, which is O(mw(G)k · k · (mw(G)+ k) ·n+m) time due to Lemma 3.14.
Since the value of QSx

[1, k′] is only evaluated once during the whole computation
of this dynamic programming algorithm, we can remove the table QSx

after evalu-
ating QSx

[1, k′] for each k′. Consequently, this algorithm also only uses polynomial
space.

Note that with a slight modification of the dynamic programming algorithm, we
can improve the running time for the special case of GLS VC. Recall that I is a
yes-instance of GLS VC if and only if, there is a good swap W for I with |W ∩S| f
k+d
2
. Hence for GLS VC, it is sufficient in the computation of Dx[k

′] to only check
for independent sets Sx in ´(x) of size at most min(k′, k+d

2
). Thus, we obtain the

following.

Corollary 3.32. GLS VC can be solved in O(mw(G)
k+d
2 ·k·(mw(G)+k)·n+m) time.

3.5 Concluding Remarks

In this chapter, we analyzed the parameterized complexity for LS Vertex Cover
and the more general versions Gap LS Vertex Cover, LS Weighted Ver-
tex Cover, and Gap LS Weighted Vertex Cover. We showed that these
problems can be solved in ℓO(k) · nO(1) time for ℓ being (i) the treewidth, (ii) the
maximum degree, (iii) the h-index, and (iv) the modular-width of the input graph.
We complemented the running time upper-bounds by showing that for all considered

61

Chapter 3. Parameterized Local Search for Vertex Cover

parameter ℓ a running time of ℓΩ(k) · nO(1) time is necessary, under the assumption
that the ETH holds. These upper and lower bounds apply for both the strict and
the permissive version of the problems.

Open questions. There are numerous possibilities for future research. First, it
seems interesting to study further parameterized local search problems with the aim
of achieving FPT-algorithms whose running times grow strongly only with respect
to the operational parameter k. For example, we assume that some of the techniques
presented in this chapter can be generalized to local search versions of Hitting Set
and 0-1 Integer Linear Programming. This question could also be relevant
in other scenarios with operational parameters, for example in turbo-charging of
greedy algorithms [2, 39, 68]. Second, it is open to improve the running time for the
considered problems since our conditional lower bounds are not completely tight.
For example, for LS Vertex Cover parameterized by k and the h-index, it is open
whether a running time of O(hk/2 · n) is possible. Third, it would be interesting to
explore gap versions of further local search problems, both from a theoretical and
a practical perspective. In this context it would be interesting to explore whether
there are parameters ℓ for which the normal parameterized local search problem
admits an FPT-algorithm but the gap version is W[1]-hard. Furthermore, it would
be interesting to identify structural parameters ℓ where permissive local search has
an FPT-algorithm with running time ℓg(k) · nO(1) and strict local search does not.

Finally, it is open to further explore the concrete practical potential of our results
for Vertex Cover: Can our theoretical results lead to good implementations of
parameterized local search for Weighted Vertex Cover? An implementation of
the algorithm behind Corollary 3.26 yielded very good results as a post-processing for
state-of-the-art algorithms [164]. Still, it would be interesting to evaluate whether
for example the algorithm parameterized by the h-index and k presented in this
chapter perform similarly well for Weighted Vertex Cover. Moreover, can the
performance of the successful parameterized local search algorithm for unweighted
Vertex Cover with parameter (∆, k) [98] be improved by some of the techniques
presented in this chapter?

62

Chapter 4

Parameterized Local Search for
Max c-Cut

Graph coloring and its generalizations are among the most famous NP-hard opti-
mization problems [97] with numerous practical applications [94]. In one prominent
problem variant, we want to color the vertices of an edge-weighted graph with c col-
ors so that the sum of the weights of all edges that have endpoints with different
colors is maximized. This problem is known as Max c-Cut [62, 96] or Maximum
Colorable Subgraph [140]. Applications of Max c-Cut include data cluster-
ing [31, 55], computation of rankings [31], design of experimental studies [9], sam-
pling of public opinions in social networks [91], channel assignment in wireless net-
works [159], and module detection in genetic interaction data [114]. In addition,
Max c-Cut is closely related to the energy minimization problem in Hopfield neu-
ral networks [102, 169, 170]. An equivalent formulation of the problem is to ask for
a coloring that minimizes the weight sum of the edges whose endpoints receive the
same color; this formulation is known as Generalized Graph Coloring [168].
The main difference is that for instances of Generalized Graph Coloring, one
usually assumes that all edge weights are non-negative, whereas for Max c-Cut,
one usually also allows negative weights.

From an algorithmic viewpoint, even restricted cases of Max c-Cut are hard:
The special case c = 2 is the Max Cut problem which is NP-hard already for
unit weights [65, 97], even on graphs with maximum degree 3 [17]. Moreover, for
all c g 3 the Graph Coloring problem, where we ask for a coloring of the vertices
with c colors such that the endpoints of every edge receive different colors, is NP-
hard [97]. As a consequence, Max c-Cut is NP-hard for all c g 3, again even when
all edges have unit weight and where we want each edges to have endpoints of different

63

Chapter 4. Parameterized Local Search for Max c-Cut

color. While Max c-Cut admits polynomial-time constant factor approximation
algorithms [62], it does not admit polynomial-time approximation schemes unless P =
NP [140], even on graphs with bounded maximum degree [17].

Due to these hardness results, Max c-Cut is mostly solved using heuristic ap-
proaches [57, 114, 120, 178]. A popular heuristic for Max c-Cut is hill-climbing
local search with respect to the k-flip neighborhood for k ∈ {1, 2} [57, 114]. The 1-
flip neighborhood has received interest from a theoretical standpoint: For Max Cut
finding a 1-(flip)-optimal solution is PLS-complete on edge-weighted graphs [151] and
thus presumably not efficiently solvable in the worst case. This PLS-completeness
result for the 1-flip neighborhood was later extended to Generalized Graph Col-
oring, and thus to Max c-Cut, for all c g 2 [168]. For graphs where the absolute
values of all edge weights are constant, however, a simple hill-climbing algorithm
terminates after O(m) improvements, where m is the number of edges in the input
graph. This is due to the fact that each improvement made by the hill-climbing al-
gorithm increases the objective value of the solution by at least 1 and the maximum
possible objective value of any solution is O(m).

Again, to avoid being stuck in bad local optima, we aim to find efficient algorithms
to search the k-flip neighborhood for larger values of k. As noted by Kleinberg
and Tardos [102], a standard algorithm for searching the k-flip neighborhood takes
Θ(nk ·m) time where n is the number of vertices. This led Kleinberg and Tardos to
conclude that the k-flip neighborhood is impractical. In this chapter, we ask whether
we can do better than the brute-force Θ(nk ·m)-time algorithm or, in other words,
whether the dismissal of k-flip neighborhood may have been premature. So far, the
parameterized complexity of searching the k-flip neighborhood for Max c-Cut was
only considered by Fellows at al. [52]. They showed that on graphs of bounded local
treewidth, one can search the k-flip neighborhood for Max c-Cut in FPT-time.
Their algorithm implies that one can search the k-flip neighborhood for Max c-Cut
in 2∆

O(k) · nO(1) time.

Our results. We study LS Max c-Cut, where we want to decide whether
a given coloring has a better one in its k-flip neighborhood. First, we show that
LS Max c-Cut is presumably not solvable in f(k) · no(k) time for any computable
function f .

Afterwards, we present an algorithm with running time O((3e∆)k · c · k3 ·∆ · n),
where ∆ is the maximum degree of the input graph. The algorithm is based on two
main observations: First, we show that minimal improving flips are connected in the
input graph. This allows to enumerate candidate flips in O((e∆)k · k · n) time due
to Lemma 2.16. Second, we show that, given a set of k vertices to flip, we can deter-

64

mine an optimal way to flip their colors in O(3k · c ·k2+k ·∆) time. We then discuss
several ways to speed up the algorithm, for example by computing upper bounds for
the improvement of partial flips. We finally evaluate our algorithm experimentally
when it is applied as post-processing for a state-of-the-artMax c-Cut heuristic [120].
In this application, we take the solutions computed by the heuristic and improve them
by hill-climbing with the k-flip neighborhood for increasing values of k. We show
that, for a standard benchmark data set, a large fraction of the previously best so-
lutions can be improved by our algorithm, leading to new record solutions for these
instances. The post-processing is particularly successful for instances with c > 2 and
both positive and negative edge weights.

Formal problem definition. Let G = (V,E) be an undirected graph. In this
chapter, we may refer to a coloring of V as a coloring of G. Let Ç be a c-coloring
of G, we define the set E(Ç) of properly colored edges as E(Ç) := {{u, v} ∈ E |
Ç(u) ̸= Ç(v)}.

Recall that for an edge-weight function É : E → Q and an edge set E ′ ¦ E, we
let É(E ′) denote the total weight of all edges in E ′. LS Max c-Cut is now formally
defined as follows.

LS Max c-Cut
Input: A graph G = (V,E), c ∈ N, a weight function É : E → Q, a c-
coloring Ç, and k ∈ N.
Question: Is there a c-coloring Ç′ with dflip(Ç, Ç′) f k and É(E(Ç′)) >
É(E(Ç))?

The special case of LS Max c-Cut where c = 2 can alternatively be defined as
follows by using partitions instead of colorings.

LS Max Cut
Input: A graph G = (V,E), a weight function É : E → Q, a parti-
tion (A,B) of V , and k ∈ N.
Question: Is there a set S ¦ V of size at most k such that É(E(A,B)) <
É(E(A· S,B · S))?

While these problems are defined as decision problems, our algorithms solve the
search problem that returns an improving k-flip if it exists.

Let Ç and Ç′ be c-colorings of G. If É(E(Ç)) > É(E(Ç′)), we say that Ç is im-
proving over Ç′ (with respect to LS Max c-Cut). In this chapter, we call a c-
coloring Ç k-(flip-)optimal if Ç has no improving k-neighbor Ç′. We say that Ç′ is

65

Chapter 4. Parameterized Local Search for Max c-Cut

an inclusion-minimal improving k-flip for Ç, if Ç′ is an improving k-neighbor of Ç and
if there is no improving k-neighbor Ç̃ of Ç with Dflip(Ç, Ç̃) ª Dflip(Ç, Ç

′). Let (A,B)
be a partition of G. In the context of LS Max Cut, we call a vertex set S inclusion-
minimal improving k-flip for (A,B), if |S| f k, É(E(A· S,B · S)) > É(E(A,B)),
and if there is no vertex set S ′ ª S such that É(E(A· S ′, B · S ′)) > É(E(A,B)).

4.1 W[1]-hardness and a Tight ETH Lower Bound

for LS Max c-Cut and Related Problems

We first show our intractability result for LS Max Cut. More precisely, we show
that LS Max Cut is W[1]-hard when parameterized by k even on bipartite graphs
with unit weights. This implies that even on instances where an optimal partition can
be found in linear time, LS Max Cut presumably cannot be solved within f(k)·nO(1)

time for any computable function f . Afterwards, we extend the intractability results
even to the permissive version of LS Max c-Cut on general graphs. Finally, we
can then also derive new intractability results for local search versions for the related
partition problems Min Bisection, Max Bisection, and Max Sat.

To prove the intractability results for the strict version, we introduce the term of
blocked vertices in instances with unit weights. Intuitively, a vertex v is blocked for a
color class i if we can conclude that v does not move to i in any optimal k-neighbor of
the current solution just by considering the graph neighborhood of v. This concept
is formalized as follows.

Definition 4.1. Let G = (V,E) be a graph, let Ç be a c-coloring of G, and let k be
an integer. Moreover, let v be a vertex of V and let i ∈ [1, c]\{Ç(v)} be a color. The
vertex v is (i, k)-blocked in G with respect to Ç if v has at least 2k+1 more neighbors
of color i than of color Ç(v) with respect to Ç, that is, if |{w ∈ N(v) | Ç(w) = i}| g
|{w ∈ N(v) | Ç(w) = Ç(v)}|+ 2k − 1.

Note that a partition P := (B1, B2) can be interpreted as the 2-coloring ÇP

defined for each vertex v ∈ V by ÇP (v) := i, where i is the unique index of {1, 2}
such that v ∈ Bi. Hence, we may also say that a vertex v is (Bi, k)-blocked in G with
respect to (B1, B2), if v is (i, k)-blocked in G with respect to ÇP .

4.1.1 Hardness for the Strict Version of LS Max c-Cut

Lemma 4.2. Let G = (V,E) be a graph, let Ç be a c-coloring of G, let k be an integer.
Moreover, let v be a vertex in V which is (i, k)-blocked in G with respect to Ç. Then,
there is no inclusion-minimal improving k-neighbor Ç′ of Ç with Ç′(v) = i.

66

4.1. Lower Bound for LS Max c-Cut and Related Problems

Proof. Let Ç′ be a c-coloring of G with dflip(Ç, Ç
′) f k and Ç′(v) = i. Hence, v ∈

Dflip(Ç, Ç
′) and thus Dflip(Ç, Ç

′) contains at most k−1 neighbors of v. Consequently,
at most k−1 more neighbors of v receive color Ç(v) under Ç′ than under Ç. Similarly,
at most k − 1 more neighbors of v receive color i under Ç than under Ç′. Since v
is (i, k)-blocked in G with respect to Ç, this then implies that v has more neighbors of
color i than of color Ç(v) under Ç′. Let Ç∗ be the c-coloring of G that agrees with Ç′

on all vertices of V \ {v} and where Ç∗(v) := Ç(v). Note that E(Ç′) \ E(Ç∗) =
{{w, v} ∈ E | Ç′(w) = Ç(v)} and E(Ç∗) \ E(Ç′) = {{w, v} ∈ E | Ç′(w) = i}. This
implies that Ç∗ is a better c-coloring for G than Ç′, since

|E(Ç∗)| − |E(Ç′)| = |E(Ç∗) \ E(Ç′)| − |E(Ç′) \ E(Ç∗)| > 0.

Hence, Ç′ is not an inclusion-minimal improving k-neighbor of Ç, since Dflip(Ç, Ç
∗) =

Dflip(Ç, Ç
′) \ {v} ª Dflip(Ç, Ç

′).

The idea of blocking a vertex by its neighbors finds application in the construction
for the W[1]-hardness from the next theorem.

Theorem 4.3. LS Max Cut is W[1]-hard when parameterized by k on bipartite 2-
degenerate graphs with unit weights.

Proof. We reduce from Clique. Recall that Clique is W[1]-hard when parameter-
ized by the size k of the sought clique [35, 44].

Let I := (G = (V,E), k) be an instance of Clique. We construct an equivalent
instance I ′ := (G′ = (V ′, E ′), É′, A′, B′, k′) of LS Max Cut with É′ : E ′ → {1} as
follows. We start with an empty graph G′ and add each vertex of V to G′. Next,
for each edge e ∈ E, we add two vertices ue and we to G

′ and make both ue and we

adjacent to each endpoint of e in G′. Afterwards, we add a vertex v∗ to G′ and for
each edge e ∈ E, we add vertices xe and ye and edges {we, xe}, {we, ye}, and {xe, v∗}
to G′. Finally, we add a set Vz of |E|−2 ·

(
k
2

)
+1 vertices to G′ and make each vertex

of Vz adjacent to v∗.
In the following, for each ³ ∈ {u, w, x, y}, let V³ denote the set of all ³-vertices

in G′, that is, V³ := {³e | e ∈ E}. We set

B′ := Vw ∪ {v∗} ∪ Vz, A′ := V ′ \B′, and

k′ := 2 ·
(
k

2

)
+ k + 1.

To ensure that some vertices are blocked in the final graph G′, we add the fol-
lowing further vertices to A′ and B′: For each vertex v′ ∈ Vu ∪ Vy, we add a set

67

Chapter 4. Parameterized Local Search for Max c-Cut

A′
V Vu Vy Vx

B′
Vw v∗ Vz

Figure 4.1: The connections between the different vertex sets in G′. Two vertex sets X
and Y are adjacent in the figure if E(X,Y) ̸= ∅. Each vertex v in a vertex set with a
rectangular node is k′-blocked from the opposite part of the partition. The vertex set VΓ

is not shown.

of 2k′ + 2 vertices to B′ that are only adjacent to v′ and for each vertex v′ ∈ Vz, we
add a set of 2k′ + 2 vertices to A′ that are only adjacent to v′. Let VΓ be the set
of those additional vertices. Figure 4.1 shows a sketch of the vertex sets and their
connections in G′. Note that G′ is bipartite and 2-degenerate.

Note that each vertex in Vu ∪ Vy is contained in A′, has at most two neighbors
in A′, and at least 2k′ + 2 neighbors in B′. Moreover, each vertex in Vz is contained
in B′, has one neighbor in B′, and 2k′ + 2 neighbors in A′. Hence, each vertex
in Vu ∪ Vy is (B′, k′)-blocked and each vertex in Vz is (A′, k′)-blocked. Consequently,
due to Lemma 4.2, no inclusion-minimal improving k′-flip for (A′, B′) contains any
vertex of Vu ∪ Vy ∪ Vz. As a consequence, no inclusion-minimal improving k′-flip
for (A′, B′) contains any vertex of VΓ. In other words, only vertices in V , Vw, Vx,
and the vertex v∗ can flip their colors.

Before we show the correctness, we provide some intuition. By the above, intu-
itively, a clique S in the graph G then corresponds to a flip of vertex v∗, the vertices
of S, and the vertices we and xe for each edge e of the clique. The key mechanism
is that each inclusion-minimal improving flip has to contain v∗, so that edges be-
tween v∗ and Vz become properly colored. To compensate for the edges between Vx
and v∗ that are not properly colored after flipping v∗, for some edges e of G, the
corresponding vertices of Vx and Vw and both endpoints of e have to flip their color.
The size of Vz ensures that this has to be done for at least

(
k
2

)
such edges of G.

Since we only allow a flip of size k′, this then ensures that the edges of G whose
corresponding vertices flip their color belong to a clique of size k in G.

Next, we show that I is a yes-instance of Clique if and only if I ′ is a yes-instance
of LS Max Cut.

(⇒) Let S ¦ V be a clique of size k in G. Hence,
(
S
2

)
¦ E. We set S ′ := S ∪

68

4.1. Lower Bound for LS Max c-Cut and Related Problems

{we, xe | e ∈
(
S
2

)
}∪{v∗}. Note that S ′ has size k+2 ·

(
k
2

)
+1 = k′. Let C := E(A′, B′)

and let C ′ := E(A′ · S ′, B′ · S ′). It remains to show that C ′ contains more edges
than C. To this end, note that C and C ′ differ only on edges that have at least one
endpoint in S ′.

First, we discuss the edges incident with at least one vertex of S = S ′ ∩ V . For
each vertex v ∈ S and each vertex v′ ∈ NG(v) \ S, the edge {v, w{v,v′}} is contained
in C but not in C ′ and the edge {v, u{v,v′}} is contained in C ′ but not in C. For each
other neighbor v′ ∈ NG(v)∩S, the edge {v, u{v,v′}} is contained in C ′ but not in C and
the edge {v, w{v,v′}} is contained in both C and C ′. Next, we discuss the remaining

edges incident with some vertex of {we, xe | e ∈
(
S
2

)
}. For each edge e ∈

(
S
2

)
¦ E,

the edges {we, xe} and {xe, v∗} are contained in both C and C ′ and the edge {we, ye}
is contained in C but not in C ′. Finally, we discuss the remaining edges incident
with v∗. For each edge e ∈ E \

(
S
2

)
, the edge {v∗, xe} is contained in C but not in C ′

and for each vertex z ∈ Vz, the edge {v∗, z} is contained in C ′ but not in C. Hence,

C \ C ′ = {{v, w{v,v′}} | v ∈ S, v′ ∈ NG(v) \ S}

∪ {{we, ye} | e ∈
(
S

2

)
}

∪ {{v∗, xe} | e ∈ E \
(
S

2

)
}.

Furthermore, we have

C ′ \ C = {{v, u{v,v′}} | v ∈ S, v′ ∈ NG(v)} ∪ {{v∗, z} | z ∈ Vz}.

Since |Vz| = |E| − 2 ·
(
k
2

)
+ 1, we get

|C ′ \ C| − |C \ C ′| = |{{v, u{v,v′}} | v ∈ S, v′ ∈ NG(v)}|
− |{{v, w{v,v′}} | v ∈ S, v′ ∈ NG(v) \ S}|
+ |{{v∗, z} | z ∈ Vz}|

− |{{we, ye} | e ∈
(
S

2

)
}| − |{{v∗, xe} | e ∈ E \

(
S

2

)
}|

= 2 ·
(
k

2

)
+ |E| − 2 ·

(
k

2

)
+ 1− |E| = 1.

Consequently, C ′ contains exactly one edge more than C. Hence, I ′ is a yes-instance
of LS Max Cut.

(⇐) Let S ′ ¦ V ′ be an inclusion-minimal improving k′-flip for (A′, B′). Due
to Lemma 4.2, we can assume that S ′ ¦ V ∪ Vw ∪ Vx ∪ {v∗} since all other vertices

69

Chapter 4. Parameterized Local Search for Max c-Cut

of V ′ \VΓ are blocked from the opposite part of the partition and for each vertex x ∈
VΓ, the unique neighbor of x in G′ is thus not contained in S ′. By construction
of G′, each vertex v ∈ V is adjacent to |NG(v)| vertices of A′ and adjacent to |NG(v)|
vertices of B′. Since S ′ is inclusion-minimal and contains no vertex of {ue | e ∈ E},
for each vertex v ∈ S ′∩V , there is at least one edge e ∈ E incident with v in G such
that S ′ contains the vertex we, as otherwise, removing v from S ′ still results in an
even better partition than (A′ · S ′, B′ · S ′), that is,

|E(A′ · (S ′ \ {v}), B′ · (S ′ \ {v}))| g |E(A′ · S ′, B′ · S ′)| > |E(A′, B′)|.
Moreover, recall that B′ contains all vertices of Vw and each vertex we ∈ Vw is

adjacent to the four vertices {xe, ye} ∪ e of A′ and is adjacent to no vertex of B′.
Since S ′ is inclusion-minimal and contains no vertex of Vy, for each vertex we ∈
S ′ ∩ Vw, all three vertices of {xe} ∪ e are contained in S ′, as otherwise, removing we

from S ′ does not result in a worse partition than (A′ · S ′, B′ · S ′), that is,

|E(A′ · (S ′ \ {we}), B′ · (S ′ \ {we}))| g |E(A′ · S ′, B′ · S ′)| > |E(A′, B′)|.
Furthermore, A′ contains all vertices of Vx and each vertex xe ∈ Vx is adjacent to

the vertices we and v∗ in B′ and adjacent to no vertex in A′. Since S ′ is inclusion-
minimal, for each vertex xe ∈ S ′∩Vx, both we and v

∗ are contained in S ′, as otherwise,
removing xe from S ′ does not result in a worse partition than (A′·S ′, B′·S ′), that
is,

|E(A′ · (S ′ \ {xe}), B′ · (S ′ \ {xe}))| g |E(A′ · S ′, B′ · S ′)| > |E(A′, B′)|.
Note that the above statements imply that S ′ contains v∗. This is due to the facts
that

a) S ′ is non-empty,

b) S ′ contains only vertices of V ∪ Vw ∪ Vx ∪ {v∗},

c) if S ′ contains a vertex of V , then S ′ contains a vertex of Vw,

d) if S ′ contains a vertex of Vw, then S
′ contains a vertex of Vx, and

e) if S ′ contains a vertex of Vx, then S
′ contains the vertex v∗.

Recall that v∗ is adjacent to the |E| vertices Vx in A′ and to the |E| − 2 ·
(
k
2

)
+ 1

vertices Vz in B
′. Hence, since S ′ is inclusion-minimal and no vertex of Vz is contained

in S ′, S ′ contains at least
(
k
2

)
vertices of Vx, as otherwise,

|E(A′ · (S ′ \ {v∗}), B′ · (S ′ \ {v∗}))| g |E(A′ · S ′, B′ · S ′)| > |E(A′, B′)|.

70

4.1. Lower Bound for LS Max c-Cut and Related Problems

Concluding, S ′ contains v∗ and for at least
(
k
2

)
edges e ∈ E the vertices xe, we,

and the endpoints of e. Let S := S ′∩V . Since S ′ has size at most k′ = 2 ·
(
k
2

)
+k+1,

the above implies that S has size at most k. Since S ′ contains the endpoints of at
least

(
k
2

)
edges e ∈ E, we conclude that S is a clique of size k in G. Hence, I is a

yes-instance of Clique.

This implies that even on instances where an optimal solution can be found in
polynomial time, local optimality cannot be verified efficiently. This property was
was also shown for LS VC. Namely, LS VC was shown to be W[1]-hard with respect
to the search radius even on bipartite graphs [69].

Next, we describe how to adapt the above reduction can to prove W[1]-hardness
of LS Max c-Cut for each fixed c g 2 when parameterized by k.

Consider the instance I := (G,É, (A,B), k) of LS Max Cut that has been
constructed in the proof of Theorem 4.3 and let c > 2. For every vertex v of G, we
add further degree-one neighbors. More precisely, for every color i ∈ [3, c], the vertex
v receives additional neighbors of color i such that v is (i, k)-blocked. Let G′ be the
resulting graph.

Then, for any inclusion-minimal improving k-flip Ç′ for Ç of G′, we have S :=
Dflip(Ç, Ç

′) ¦ A∪B, Ç′(a) = 2 for each a ∈ A∩ S, and Ç′(b) = 1 for each b ∈ B ∩ S.
Hence, I is a yes-instance of LS Max Cut if and only if the instance I ′ is a yes-
instance of LS Max c-Cut. Since we only added degree-one vertices, the graph is
still bipartite and 2-degenerate.

Corollary 4.4. For every c g 2, LS Max c-Cut is W[1]-hard when parameterized
by k on bipartite 2-degenerate graphs with unit weights.

4.1.2 Hardness for the Permissive Version of LS Max c-Cut

Next, we present a running time lower bound for LS Max c-Cut based on the ETH.
This lower bound holds even for the permissive version of LS Max c-Cut.

Lemma 4.5. Even the permissive version of LS Max Cut does not admit an FPT-
algorithm when parameterized by k, unless FPT = W[1] and cannot be solved in
f(k) ·no(k) time for any computable function f , unless the ETH fails. More precisely,
this hardness holds even if there is an optimal solution in the k-flip neighborhood of
the initial solution.

Proof. We reduce from Independent Set. Independent Set is W[1]-hard when
parameterized by the size k of the sought independent set even if the size of a largest
independent set in the input graph is at most k [35, 44]. Furthermore, even under

71

Chapter 4. Parameterized Local Search for Max c-Cut

. . .

. . .

X

Y

. . .

v∗

V

. . .

. . .

X

Y

. . .

v∗

V

Figure 4.2: Two solution for the instance of LS Max Cut constructed in the proof
of Lemma 4.5. In both solutions, the parts of the respective partitions are indicated
by the color of the vertices. The left partition shows the initial solution and the right
partition shows an improving solution, if one exists. The flip between these partitions is
an independent set of size k in G together with the vertex v∗.

these restrictions, Independent Set cannot be solves in f(k) · no(k) time for any
computable function f , unless the ETH fails [35].

Let I := (G = (V,E), k) be an instance of Independent Set and let n := |V |
and m := |E|. We construct an equivalent instance I ′ := (G′ = (V ′, E ′), É′, A,B, k′)
of LS Max Cut with É′ : E ′ → {1} as follows. We initialize G′ as a copy of G.
Next, we add two vertex sets X and Y of size n3 each to G′. Additionally, we add a
vertex v∗ to G′. Next, we describe the edges incident with at least one newly added
vertex. We add edges to G′ such that v∗ is adjacent to each vertex of V and n−k+1
arbitrary vertices of X. Moreover, we add edges to G′ such that each vertex of X is
adjacent to each vertex of Y . Finally, we add edges to G′ such that each vertex v ∈ V
is adjacent with exactly |NG(v)| arbitrary vertices of X in G′. This completes the
construction of G′. It remains to define the initial partition (A,B) of V ′ and the
search radius k′. We set A := V ∪Y , B := X ∪{v∗}, and k′ := k+1. This completes
the construction of I ′. Note that each vertex of V has exactly one neighbor more
in B than in A. Moreover, v∗ has 2k − 1 more neighbors in A than in B.

Intuitively, the only way to improve over the partition (A,B) is to flip an inde-
pendent set in G of size k from A to B. Then, v∗ has exactly one neighbor more
in B than in A and flipping v∗ from B to A improves over the initial partition (A,B)
by exactly one edge. See Figure 4.2 for an illustration. Next, we show that this
reduction is correct.

(⇒) Let S be an independent set of size k in G. We set A′ := (A \ S) ∪ {v∗}
and B′ := V ′ \ A′ = (B ∪ S) \ {v∗} and show that (A′, B′) improves over (A,B).

72

4.1. Lower Bound for LS Max c-Cut and Related Problems

Note that E(A,B) = E(Y,X) ∪ E(V, {v∗}) ∪ E(V,X) which implies that

|E(A,B)| = |Y | · |X|+ |V |+
∑

v∈V
|NG(v)| = n6 + n+ 2m.

Moreover, note that

E(A′, B′) = E(Y,X) ∪ E({v∗}, S) ∪ E({v∗}, X) ∪ E(V \ S, S) ∪ E(V \ S,X).

Since S is an independent set in G and G′, for each vertex v ∈ S, V \ S contains
all neighbors of v in G. Consequently, |E(V \ S, S)| = ∑

v∈S |NG(v)|. Since S has
size k, the above implies that

|E(A′, B′)| = |Y | · |X|+ |S|+ n− k + 1 +
∑

v∈S
|NG(v)|+

∑

v∈V \S
|NG(v)|

= n6 + n+ 2m+ 1.

Hence, the partition (A′, B′) improves over the partition (A,B) which implies that I ′

is a yes-instance of LS Max Cut.
(⇐) Let (A′, B′) be an optimal partition of G′ and suppose that (A′, B′) improves

over (A,B). We show that I is a yes-instance of Independent Set. Due to the
first direction, this then implies that I ′ is a yes-instance of LS Max Cut which
further implies that the initial partition (A,B) is an optimal partition for G′ if and
only if (A,B) is k′-flip optimal. To show that I is a yes-instance of Independent
Set, we first analyze the structure of the optimal partition (A′, B′) for G′.

First, we show that all vertices of X are on the opposite part of the parti-
tion (A′, B′) than all vertices of Y .

Claim 1. A′ contains all vertices of Y and B′ contains all vertices of X, or A′

contains all vertices of X and B′ contains all vertices of Y .

Proof of Claim. We show that if neither of these statements holds, then E(A′, B′)
contains less edges than E(A,B). This would then contradict the fact that (A′, B′)
is an optimal partition. We distinguish two cases.

If all vertices ofX∪Y are on the same part of the partition (A′, B′), then E(A′, B′)
contains at most |NG′(V)|+ |NG′(v∗)| < n3 edges. Hence, E(A′, B′) contains strictly
less edges than E(A,B) which contradicts the fact that (A′, B′) is an optimal par-
tition. Otherwise, if not all vertices of X ∪ Y are on the same part of the parti-
tion (A′, B′) and not all vertices of X are on the opposite part of the partition than
all vertices of Y , then both A′ and B′ contain at least one vertex ofX each, or both A′

and B′ contain at least one vertex of Y each. In both cases, at least min(|X|, |Y |) =

73

Chapter 4. Parameterized Local Search for Max c-Cut

n3 edges of E(X, Y) are not contained in E(A′, B′). Hence, E(A′, B′) has size at
most |E|−n3. Again, since E contains at most |NG′(V)|+ |NG′(v∗)| < n3 edges out-
side of E(X, Y), this implies that E(A′, B′) contains strictly less edges than E(A,B).
This contradicts the fact that (A′, B′) is an optimal partition. Consequently, the
statement holds. ■

By Claim 1, we may assume without loss of generality that A′ contains all vertices
of Y and B′ contains all vertices of X. Next, we show that v∗ is contained in A′.
Assume towards a contradiction that v∗ is contained in B′. Hence, each vertex v ∈ V
has |NG(v)|+ 1 neighbors in B′. By construction, each vertex v ∈ V has exactly 2 ·
|NG(v)| + 1 neighbors in G′. Hence, each vertex of V has more neighbors in B′

than in A′. Consequently, A′ contains all vertices of V , since (A′, B′) is an optimal
partition for G′. This implies that A′ := Y ∪ V = A and B′ := X ∪ {v∗} = B which
contradicts the assumption that (A′, B′) improves over (A,B). Consequently, v∗ is
contained in A′ together with all vertices of Y . It remains to determine the partition
of the vertices of V into A′ and B′.

Let S := B′ ∩ V . We show that S is an independent set of size k in G. First,
assume towards a contradiction that S is not an independent set in G. Then, there
are two adjacent vertices u and w of V in B′. Hence, u has at least |NG(u)| + 1
neighbors in B′, since u is adjacent to |NG(u)| vertices of X. Since the degree
of u in G′ is 2 · |NG(u)| + 1, flipping vertex u from B′ to A′ would result in an
improving solution. This contradicts the fact that (A′, B′) is an optimal partition
of G′. Hence, S is an independent set in G. By assumption, the size of the largest
independent set in G is at most k. Hence, to show that S is an independent set
of size k, it suffices to show that S has size at least k. To this end, we analyze
the number of edges of E(A′, B′). Recall that A′ := (A \ S) ∪ {v∗} and B′ :=
(B ∪ S) \ {v∗}. Hence, analogously to the first direction of the correctness proof,
E(A′, B′) = E(Y,X)∪E({v∗}, S)∪E({v∗}, X)∪E(V \S, S)∪E(V \S,X). Since S
is an independent set, this implies that

|E(A′, B′)| = |Y | · |X|+ |S|+ n− k + 1 +
∑

v∈S
|NG(v)|+

∑

v∈V \S
|NG(v)|

= n6 + n− k + 1 + 2m+ |S|.

Since we assumed that the partition (A′, B′) improves over (A,B) and |E(A,B)| =
n6+n+2m, this implies that S has size at least k. Consequently, S is an independent
set of size k in G, which implies that I is a yes-instance of Independent Set.

This also implies that, if (A,B) is not an optimal partition for G′, then there is
an optimal partition for G′ with flip-distance exactly k′ from (A,B). Hence, the re-

74

4.1. Lower Bound for LS Max c-Cut and Related Problems

duction is correct. Recall that Independent Set is W[1]-hard when parameterized
by k and cannot be solved in f(k) · no(k) time for any computable function f , unless
the ETH fails. Since |V ′| ∈ O(n3) and k′ ∈ O(k), this implies that the permissive
version of LS Max Cut (i) does not admit an FPT-algorithm when parameterized
by k′, unless FPT = W[1] and (ii) cannot be solved in f(k′) · |V ′|o(k′) time for any
computable function f , unless the ETH fails.

These intractability results can be transferred to each larger constant value of c.

Theorem 4.6. For every c g 2, even the permissive version of LS Max c-Cut
does not admit an FPT-algorithm when parameterized by k, unless FPT = W[1] and
cannot be solved in f(k) · no(k) time for any computable function f , unless the ETH
fails. This holds even on graphs with unit weights.

Proof. Let I := (G = (V,E), É, A,B, k) be an instance of LS Max Cut with É(e) =
1 for each edge e ∈ E, such that there is an optimal partition (A′, B′) for G with flip-
distance at most k with (A,B) and let n := |V | and m := |E|. Due to Lemma 4.5,
even under these restrictions, LS Max Cut does not admit an FPT-algorithm when
parameterized by k, unless FPT = W[1] and cannot be solved in f(k) ·no(k) time for
any computable function f , unless the ETH fails.

Fix a constant c > 2. We describe how to obtain in polynomial time an equivalent
instance I ′ := (G′ := (V ′, E ′), c, É′, Ç, k) of LS Max c-Cut. We obtain the graph G′

by adding for each i ∈ [1, c] an independent set Xi of size n
2 to G and adding edges

such that each vertex of Xi is adjacent with each vertex of {v ∈ Xj | j ∈ [1, c] \ {i}}.
Additionally, for each i ∈ [3, c], we add edges between each vertex of Xi and each
vertex of V . This completes the construction of G′. Again, each edge receives weight
1 with respect to the weight function É′. Finally, we define the c-coloring Ç of G′.
For each i ∈ [1, c], we set Ç(v) := i for each vertex v ∈ Xi. Additionally, for each
vertex v ∈ A, we set Ç(v) := 1 and for each vertex w ∈ B, we set Ç(w) := 2. This
completes the construction of I ′.

Note that E ′(Ç) contains all edges of E ′ \ E and thus misses less than n2 edges
of G′ in total. Intuitively, this ensures that only vertices of V may flip their color and
only to the colors 1 or 2, since in each other c-coloring, at least n2 edges are missing.
In other words, the large independent sets Xi ensure that to improve over Ç, one can
only flip vertices of V from color 1 to 2 or vice versa. This is then improving if and
only if the corresponding flip on the LS Max Cut-instance I is improving.

Next, we show the correctness of the reduction.
(⇒) Let (A′, B′) be an optimal partition of G that improves over (A,B) and let S

be the flip between (A,B) and (A′, B′). By assumption, we know that S has size at

75

Chapter 4. Parameterized Local Search for Max c-Cut

most k. We define a c-coloring Ç∗ for G′ as follows: The colorings Ç and Ç∗ agree
on all vertices of V ′ \ S, for each vertex v ∈ A ∩ S, we set Ç∗(v) := 2, and for each
vertex w ∈ B∩S, we set Ç∗(w) := 1. Note thatDflip(Ç, Ç

∗) = S which implies that Ç∗

and Ç have flip-distance at most k. Moreover, note that A′ = {v ∈ V | Ç∗(v) = 1}
and B′ = {v ∈ V | Ç∗(v) = 2}. It remains to show that Ç∗ improves over Ç. To this
end, note that both E ′(Ç) and E ′(Ç∗) contain all edges of E ′ \E. Hence, Ç∗ improves
over Ç if and only if |E ′(Ç∗) ∩ E| > |E ′(Ç) ∩ E|. Note that E ′(Ç∗) ∩ E = E(A′, B′)
and E ′(Ç) ∩E = E(A,B). Hence, the assumption that (A′, B′) is a better partition
for G than (A,B) implies that Ç∗ improves over Ç. Consequently, I ′ is a yes-instance
of LS Max c-Cut.

(⇐) Let Ç∗ be an optimal c-coloring for G′ and assume that Ç∗ improves over Ç.
To show that there is a better partition for G than (A,B), we first prove that each
optimal c-coloring Ç∗ for G′ contains all edges of E ′ \ E.

Claim 2. It holds that E ′(Ç∗) contains all edges of E ′ \ E.

Proof of Claim. Assume towards a contradiction that E ′(Ç∗) does not contain all
edges of E ′ \E. Since E ′(Ç∗) does not contain all edges of E ′ \E, there is an i ∈ [1, c]
and a vertex x ∈ Xi, such that at least one edge incident with x is not contained
in E ′(Ç∗). We distinguish two cases.

Case 1: There is a vertex y ∈ Xi, such that each edge incident with y is contained
in E ′(Ç∗). Consider the c-coloring Ç′ for G′ obtained from Ç∗ by flipping the color of
vertex x to Ç∗(y). Since x and y have the exact same neighborhood by definition of G′

and are not adjacent, each edge incident with x is contained in E ′(Ç′). Consequently,
Ç′ is a better c-coloring for G′ than Ç∗. This contradicts the fact that Ç∗ is an
optimal c-coloring for G′.

Case 2: Each vertex of Xi is incident with at least one edge that is not contained
in E ′(Ç∗). Since Xi is an independent set in G′, this directly implies that E ′(Ç∗)
misses at least |Xi| = n2 edges of E ′. Hence, E(Ç∗) contains less edges than E ′(Ç)
and is thus not an optimal c-coloring for G′, a contradiction. ■

By the above, we know that Ç∗ contains all edges of E ′\E. Since G′−V is a com-
plete c-partite graph with c-partition (X1, . . . , Xc), there is a bijection Ã : [1, c] →
[1, c], such that for each i ∈ [1, c], each vertex of Xi receives color Ã(i) under Ç∗.
Moreover, since for each j ∈ [3, c], each vertex v ∈ V is adjacent with each ver-
tex of Xj, each vertex of V receives either color Ã(1) or color Ã(2) under Ç∗. For
simplicity, we assume in the following that Ã is the identity function, that is, for
each i ∈ [1, c], each vertex of Xi receives color i under Ç∗ and each vertex of V
receives either color 1 or color 2 under Ç∗. Let A′ := {v ∈ V | Ç∗(v) = 1} and

76

4.1. Lower Bound for LS Max c-Cut and Related Problems

let B′ := {v ∈ V | Ç∗(v) = 2}. Note that |E ′(Ç∗)| = |E ′ \ E| + |E(A′, B′)| and
that |E ′(Ç)| = |E ′ \E|+ |E(A,B)|. Hence, Ç∗ is a better c-coloring for G′ than Ç if
and only if (A′, B′) is a better partition of G than (A,B). Since Ç∗ improves over Ç,
this implies that (A,B) is not an optimal partition for G. By assumption there is
an optimal partition for G having flip-distance at most k with (A,B). Hence, I is a
yes-instance of LS Max Cut. By the first direction, this further implies that I ′ is
a yes-instance of LS Max c-Cut if Ç is not an optimal c-coloring for G′.

Note that this implies that there is an optimal c-coloring for G′ having flip-
distance at most k with Ç. Hence, the reduction is also correct for the permissive
version of LS Max c-Cut. Recall that LS Max Cut does not admit an FPT-
algorithm when parameterized by k, unless FPT = W[1] and cannot be solved in
f(k) · no(k) time for any computable function f , unless the ETH fails. Since |V ′| ∈
nO(1), this implies that even the permissive version of LS Max c-Cut does not
admit an FPT-algorithm when parameterized by k, unless FPT = W[1] and cannot
be solved in f(k) · |V ′|o(k) time for any computable function f , unless the ETH
fails.

4.1.3 Hardness for Related Partition Problems

Based on Lemma 4.5, we are also able to show hardness for a previously considered
local search version of Min Bisection and Max Bisection [52]. In both these
problems, the input is again an undirected graph G and the goal is to find a bal-
anced partition (X, Y) of the vertex set of G that minimizes (maximizes) the edges
in E(X, Y). Here, a partition (X, Y) is balanced if the size of X and the size of Y
differ by at most one. Due to the close relation to LS Max Cut, the proposed local
neighborhood for these problems is also the k-flip neighborhood. The corresponding
local search problems in which we ask for a better balanced partition of flip-distance
at most k are denoted by LS Min Bisection and LS Max Bisection, respectively.
It was shown that both these local search problems can be solved in 2O(k) ·nO(1) time
on restricted graph classes [52] but W[1]-hardness on general graphs was not shown
so far.

Corollary 4.7. LS Min Bisection and LS Max Bisection are W[1]-hard when
parameterized by k and cannot be solved in f(k) · no(k) time for any computable
function f , unless the ETH fails. This running time lower bound holds even for the
permissive version of both problems and both permissive versions do not admit FPT-
algorithms when parameterized by k, unless FPT = W[1].

Proof. First, we show the statement for LS Max Bisection. Afterwards, we discuss
how to obtain the similar intractability result for LS Min Bisection. Let I :=

77

Chapter 4. Parameterized Local Search for Max c-Cut

(G = (V,E), É, A,B, k) be an instance of LS Max Cut with É(e) = 1 for each
edge e ∈ E, such that there is an optimal partition (A′, B′) for G with flip-distance
at most k with (A,B) and let n := |V |. Due to Lemma 4.5, even under these
restrictions LS Max Cut is W[1]-hard when parameterized by k and cannot be
solved in f(k) · no(k) time for any computable function f , unless the ETH fails.

We obtain an equivalent instance I ′ := (G′, X, Y, k′) of LS Max Bisection, by
simply adding a large independent set to G. That is, we obtain the graph G′ =
(V ′, E ′) by adding a set Z of n + 2k isolated vertices to G, setting X := A ∪ ZA

and Y := B ∪ (Z \ ZA) for some arbitrary vertex set ZA ¦ Z of size |B| + k, and
setting k′ := 2k. Note that G and G′ have the exact same edge set and that X
and Y have the same size and contain at least k vertices of Z each. Intuitively, this
ensures that we can perform an improving k-flip on the vertices of V and afterwards
end back at a balanced partition by flipping at most k additional vertices of Z to
the smaller part of the resulting potentially not balanced partition.

Note that for each partition (X ′, Y ′) of G′, E ′(X ′, Y ′) = E(X ∩ V, Y ∩ V). This
directly implies that (X, Y) is an optimal balanced partition for G′ if (X ∩ V, Y ∩
V) = (A,B) is an optimal partition for G. Hence, I ′ is a no-instance of LS Max
Bisection if I is a no-instance of LS Max Cut, since by assumption, (A,B) is an
optimal partition for G if and only if I is a no-instance of LS Max Cut. It thus
remains to show that I ′ is a yes-instance of LS Max Bisection if I is a yes-instance
of LS Max Cut. By the above, this then implies that I ′ is a no-instance of LS
Max Bisection if and only if (X, Y) is an optimal balanced partition for G′.

Assume that I is a yes-instance of LS Max Cut. This implies that (A,B) is not
an optimal partition of G. Let (A′, B′) be an optimal partition of G. By assumption,

we can assume that (A′, B′) has flip-distance at most k with (A,B). Let X̂ := A′∪ZA

and Ŷ := B′ ∪ (Z \ ZA). Note that (X̂, Ŷ) has flip-distance at most k with (X, Y)

and is a better partition for G′ than (X, Y). Still, (X̂, Ŷ) might not be a balanced

partition. But since (X̂, Ŷ) has flip-distance at most k with (X, Y), the size of X̂ and

the size of Ŷ differ by at most k. Hence, we can obtain a balances partition (X ′, Y ′)
for G′ by flipping at most k vertices from Z from the larger part of the partition to
the smaller part. This is possible, since by construction both X and Y contain at
least k vertices of Z. Since (X ′, Y ′) is obtained from (X̂, Ŷ) by flipping only isolated
vertices, (X ′, Y ′) is also a better partition for G′ than (X, Y) and has flip-distance at
most 2k = k′ with (X, Y). Consequently, I ′ is a yes-instance of LS Max Bisection
if I is a yes-instance of LS Max Cut.

Hence, I ′ is a no-instance of LS Max Bisection if and only if (X, Y) is an
optimal balanced partition for G′. This implies that the reduction also works for the
permissive version of LS Max Bisection. Recall that LS Max Cut is W[1]-hard

78

4.1. Lower Bound for LS Max c-Cut and Related Problems

when parameterized by k and cannot be solved in f(k)·no(k) time for any computable
function f , unless the ETH fails. Since |V ′| ∈ nO(1) and k′ ∈ O(k), this implies that
(i) the strict version of LS Max Bisection is W[1]-hard when parameterized by k′,
(ii) the permissive version of LS Max Bisection does not admit an FPT-algorithm
when parameterized by k′, unless FPT = W[1], and (iii) both versions of LS Max
Bisection cannot be solved in f(k) · |V ′|o(k′) time for any computable function f ,
unless the ETH fails.

The reduction to LS Min Bisection works analogously by not considering the
graph G′ as the input graph, but the complement graph G′′ := (V ′, E ′′) of G′.
Consequently, for each balanced partitions (X ′, Y ′) of G′′, |E ′′(X ′, Y ′)| = |V ′|2/4 −
|E ′(X ′, Y ′)|. In other words, (X ′, Y ′) is a better partition for G′′ than (X, Y) if and
only if (X ′, Y ′) is a better partition for G′ than (X, Y). Hence, the intractability
results also hold for the strict and permissive versions of LS Min Bisection.

Additionally, based on the close relation of Max 2-SAT and Max Cut, we can
also transfer new hardness results to the strict and permissive version of local search
for Max SAT with respect to the k-flip neighborhood. This problem was considered
by Szeider [161] under the name of k-Flip Max Sat. Here, the input is a Boolean
formula F in CNF, an assignment Ä of the variables of F , and an integer k, and
we ask for an assignment Ä ′ of the variables of F for which dflip(Ä, Ä

′) f k and that
satisfies more clauses of F than Ä . Szeider [161] showed that (i) the strict version
of k-Flip Max Sat is W[1]-hard when parameterized by k even on formulas where
each clause has size two and (ii) the permissive version of k-Flip Max Sat does not
admit an FPT-algorithm when parameterized by k, unless FPT = W[1], even when
each clause has size at most three and the formula is either Horn or anti-Horn.1

Theorem 4.8. Even on formulas F where each clause has size two and contains
exactly one positive and one negative literal, both the strict and the permissive ver-
sions of k-Flip Max Sat cannot be solved in f(k) · |F |o(k) time for any computable
function f , unless the ETH fails, the strict version of k-Flip Max Sat is W[1]-hard
when parameterized by k, and the permissive version of k-Flip Max Sat does not
admit an FPT-algorithm when parameterized by k, unless FPT = W[1].

Proof. We present a reduction from LS Max 2-Cut, for which the desired in-
tractability results hold even for the permissive version due to Lemma 4.5. Let I :=
(G = (V,E), É, Ç, k) be an instance of LS Max Cut with É(e) = 1 for each
edge e ∈ E. We define a formula F as follows: The variables of F are exactly

1Here, a formula is Horn (anti-Horn), if each clause contains at most one positive (negative)
literal.

79

Chapter 4. Parameterized Local Search for Max c-Cut

the vertices of V and for each edge {u, v} ∈ E, F contains the clauses {u,¬v}
and {¬u, v}.

Let Ä : V → {1, 2} be a 2-coloring of V . We interpret Ä as an assignment
for F , where color 1 (2) represents the truth value “true” (“false”). Note that by
construction, for each edge {u, v} ∈ E, Ä satisfies at least one of the clauses {u,¬v}
and {¬u, v}. Moreover, Ä satisfies both clauses {u,¬v} and {¬u, v} if and only if
the edge {u, v} is properly colored under Ä . This implies that Ä satisfies |E|+ |E(Ä)|
clauses of F . Consequently, an assignment Ä ′ of F satisfies more clauses of F that
the 2-coloring Ç if and only if |E(Ä ′)| > |E(Ç)|. Hence, I is a yes-instance of LS
Max 2-Cut if and only if (F, Ç, k) is a yes-instance of k-Flip Max Sat.

Hence, in comparison to the hardness results presented by Szeider [161], Theo-
rem 4.8 provides a tight ETH lower bound as well as hardness for formulas that are
2-Sat, Horn and anti-Horn simultaneously.

4.2 Parameterized Algorithms for LS Max c-Cut

In this section, we complement the running time lower bound of Theorem 4.6 by
presenting an algorithm for LS Max c-Cut that runs in ∆O(k) · c · n time, where ∆
denotes the maximum degree of the input-graph. Our algorithm for LS Max c-
Cut follows a simple framework: Generate a collection of candidate sets S that may
improve the coloring if the vertices in S flip their colors. For each such candidate
set S, we only know that the colors of the vertices of S change, but we do not
yet know which new color the vertices receive. To answer this question, that is, to
determine whether there is any coloring of S that leads to an improving coloring, we
present an algorithm based on dynamic programming.

We first describe the subroutine that we use to find a best coloring for a given
candidate set S of vertices to flip.

Theorem 4.9. Let G = (V,E) be a graph, let É : E → Q be an edge-weight function,
let Ç be a c-coloring of G, and let S ¦ V be a set of size at most k. One can compute
in O(3k · c · k2 + k · ∆(G)) time a c-coloring Ç′ of G such that Dflip(Ç, Ç

′) ¦ S
and É(E(Ç′)) is maximal among all such colorings.

Proof. We use dynamic programming. Initially, we compute for each vertex v ∈ S
and each color i ∈ [1, c] the weight ¹iv of edges between v and vertices of V \S that do
not receive color i under Ç, that is, ¹iv := É({{v, w} ∈ E | w ∈ N(v) \ S, Ç(w) ̸= i}).
Moreover, we compute the weight ÉS of all properly colored edges of E(S,N [S])

80

4.2. Parameterized Algorithms for LS Max c-Cut

as ÉS := É({{u, v} ∈ E(S,N [S]) | Ç(u) ̸= Ç(v)}). This can be done in O(c · k + k ·
∆(G)) time.

The table T has entries of type T [S ′, c′] for each vertex set S ′ ¦ S and each
color c′ ∈ [1, c]. Each entry T [S ′, c′] stores the maximum total weights of properly
colored edges with at least one endpoint in S ′ and no endpoint in S \ S ′ such that
the following holds:

1. the vertices in S ′ have some color in [1, c′], and

2. every vertex v ∈ V \ S has color Ç(v).

We start to fill the dynamic programming table by setting T [S ′, 1] :=
∑

v∈S′ ¹1v
for each vertex set S ′ ¦ S.

For each vertex set S ′ ¦ S and each color c′ ∈ [2, c], we set

T [S ′, c′] := max
S′′¦S′

T [S ′ \ S ′′, c′ − 1] + É(E(S ′′, S ′ \ S ′′)) +
∑

v∈S′′

¹c
′

v .

Intuitively, to find the best way to assign colors of [1, c′] to the vertices of S ′, we
search for the best vertex set S ′′ ¦ S ′, assign color c′ to all vertices of S ′′, and find
the best way to assign the colors of [1, c′− 1] to the vertices of S ′ \S ′′. The maximal
improvement É(E(Ç′))−É(E(Ç)) for any c-coloring Ç′ with Dflip(Ç, Ç

′) ¦ S can then
be found by evaluating T [S, c] − ÉS: this term corresponds to the maximum total
weight of properly colored edges we get when distributing the vertices of S among all
color classes minus the original weights when every vertex of S sticks with its color
under Ç. The corresponding c-coloring can be found via traceback.

The formal correctness proof is straightforward and thus omitted. Hence, it
remains to show the running time. The dynamic programming table T has 2k · c
entries. Each of these entries can be computed in O(2|S′| · k2) time. Consequently,
all entries can be computed in O(∑k

i=0

(
k
i

)
· 2i · c · k2) = O(3k · c · k2) time in total.

Hence, the total running time is O(3k · c · k2 + k ·∆(G)).

For LS Max Cut, if we enforce that each vertex of S changes its color, the
situation is even simpler: When given a set S ¦ V of k vertices that must flip their
colors, the best possible improvement can be computed in O(k · ∆(G)) time, since
every vertex of S must replace its color with the unique other color.

Recall that the idea of our algorithms for LS Max Cut and LS Max c-Cut is
to iterate over possible candidate sets of vertices that may flip their colors. With the
next lemma we show that it suffices to consider those vertex sets that are connected
in the input graph. That is, we show that the input graph is a candidate support
graph (defined in Section 2.8).

81

Chapter 4. Parameterized Local Search for Max c-Cut

Lemma 4.10. Let I := (G = (V,E), c, É, Ç, k) be an instance of LS Max c-Cut.
Then, for every inclusion-minimal improving k-flip Ç′ for Ç, the vertex set Dflip(Ç, Ç

′)
is connected in G.

Proof. Let Ç′ be an inclusion-minimal improving k-flip for Ç. Let S ′ := Dflip(Ç, Ç
′)

be the vertices Ç and Ç′ do not agree on and let C denote the connected components
inG[S ′]. We show that if there are at least two connected components in C, then there
is an improving k-neighbor Ç̃ of Ç with Dflip(Ç, Ç̃) ª Dflip(Ç, Ç

′). For each connected
component C ∈ C, let E+

C := (E(C, V) ∩ E(Ç′)) \ E(Ç) denote the set of properly
colored edges in E(Ç′) \ E(Ç) that have at least one endpoint in C and let E−

C :=
(E(C, V) ∩ E(Ç)) \ E(Ç′) denote the set of properly colored edges in E(Ç) \ E(Ç′)
that have at least one endpoint in C. Note that E(Ç′) \ E(Ç) =

∑
C∈C E

+
C and

that E(Ç) \ E(Ç′) =
∑

C∈C E
−
C . Hence, the improvement of Ç′ over Ç is

É(E(Ç′))− É(E(Ç)) =
∑

C∈C
É(E+

C)−
∑

C∈C
É(E−

C) =
∑

C∈C
(É(E+

C)− É(E−
C))

Since Ç′ improves over Ç, this implies that there is at least one connected compo-
nent S ∈ C with É(E+

S) − É(E−
S) > 0. Let Ç̃ be the c-coloring of G that agrees

with Ç on all vertices of V \S and agrees with Ç′ on all vertices of S. Hence, Ç̃ is an
improving k-neighbor of Ç with Dflip(Ç, Ç̃) ª Dflip(Ç, Ç

′).

This implies that the input graph of each LS Max c-Cut-instance is a candidate
support graph. Hence, due to Theorem 2.18, we derive that LS Max c-Cut can
be solved in (e · ∆(G)k · (c − 1)k · |I|O(1) time, where the |I|O(1) factor is O(k3 · n).
Moreover, for c > 4, we can improve upon this running time: Due to Theorem 4.9,
we can determine whether there is a better coloring Ç′ with Dflip(Ç, Ç

′) ¦ S in
3|S| · c · |S|2 + |S| · ∆(G) time. Hence, Theorem 2.17 implies the following running
times for LS Max c-Cut.

Theorem 4.11. In general, LS Max c-Cut can be solved in O((3·e)k·(∆(G)−1)k+1·
c·k3·n) time. Moreover, LS Max Cut can be solved in O(ek·(∆(G)−1)k+1·k2·n) time
and LS Max 3-Cut can be solved in O((2 · e)k · (∆(G)− 1)k+1 · k2 · n) time.

Hill-Climbing Algorithm To obtain not only a single improvement of a given
coloring but a c-coloring with a total weight of properly colored edges as high as
possible, we introduce the following hill-climbing algorithm.

Given an initial coloring Ç, we set the initial value of k to 1. In each step, we
use the above-mentioned algorithm for LS Max c-Cut to search for an improving
coloring in the k-flip neighborhood of the current coloring. Whenever the algorithm

82

4.3. Speedup Strategies

finds an improving k-neighbor Ç′ for the current coloring Ç, the current coloring gets
replaced by Ç′ and k gets set back to one. If the current coloring is k-optimal, the
value of k is incremented and the algorithm continues to search for an improvement
in the new k-flip neighborhood. This is done until a given time limit is reached.

ILP Formulation. In our experiments, we also use the following ILP formulation
for Max c-Cut. For each vertex v ∈ V and each color i ∈ [1, c], we use a binary
variable xv,i which is equal to one if and only if Ç′(v) = i. We further use for
each edge e ∈ E a binary variable ye to indicate whether e is properly colored with
respect to Ç′. Thus, for each edge {u, v} ∈ E, the variable y{u, v} is set to one if
and only if for each color i ∈ [1, c], xu,i = 0 or xv,i = 0. This is ensured by the
constraint xu,i + xv,i + y{u,v}.

maximize
∑

e∈E ye · É(e) subject to
∑

i∈[1,c]
xv,i = 1 for each v ∈ V

xu,i + xv,i + y{u,v} f 2 for each {u, v} ∈ E
with É({u, v}) > 0

and each i ∈ [1, c]

xu,i +
∑

j∈[1,c]\{i}
xv,j − y{u,v} f 1 for each {u, v} ∈ E

with É({u, v}) < 0

and each i ∈ [1, c]

xv,i ∈ {0, 1} for each v ∈ V
and each i ∈ [1, c]

ye ∈ {0, 1} for each e ∈ E
Note that by adding the additional constraint

∑
v∈V xv,Ç(v) g |V | − k, the ILP

searches for a best c-coloring of the input graph having flip-distance at most k with
some initial c-coloring Ç. In other words, by adding this single constraint, the ILP
solves LS Max c-Cut instead of Max c-Cut.

4.3 Speedup Strategies

We now introduce several speedup strategies that we use in our implementation to
avoid enumerating all candidate sets.

83

Chapter 4. Parameterized Local Search for Max c-Cut

4.3.1 Upper Bounds

To prevent the algorithm from enumerating all possible connected subsets of size at
most k, we use upper bounds to determine for any given connected subset S ′ of size
smaller than k, if S ′ can possibly be extended to a set S of size k such that there is
an improving c-coloring Ç′ for G where S is exactly the set of vertices Ç and Ç′ do not
agree on. If there is no such possibility, we prevent our algorithm from enumerating
supersets of S ′. With the next definition we formalize this concept.

Definition 4.12. Let I := (G, c, É, Ç, k) be an instance of LS Max c-Cut and
let S ′ with |S ′| < k be a subset of vertices of G. A value b(I, S ′) is an upper bound
if for each c-coloring Ç′ of G, with S ′ ª Dflip(Ç, Ç

′) and dflip(Ç, Ç′) = k,

b(I, S ′) g É(E(Ç′)).

In our implementation, we use upper bounds as follows: Given a set S ′ we com-
pute the value b(I, S ′) and check if it is not larger than É(E(Ç)) for the current
coloring Ç. If this is the case, we abort the enumeration of supersets of S ′, otherwise,
we continue.

We introduce two upper bounds; one for c = 2 and one for c g 3. To describe
these upper bounds, we introduce the following notation: Given a vertex v and a
color i, we let Éi

v := É({{v, w} | w ∈ N(v), Ç(w) ̸= i}) denote the total weight
of properly colored edges incident with v if we change the color of v to i in in
the c-coloring Ç. Thus, the term Éi

v − ÉÇ(v)
v describes the improvement obtained by

changing only the color of v to i. Furthermore, let Émax := maxe∈E |É(e)| denote the
maximum absolute edge weight.

Upper Bound for c = 2. Let I be an instance of LS Max c-Cut with c = 2
and let S ′ be a vertex set of size less than k. Since c = 2, we let Ç(v) denote the
unique color distinct from Ç(v) for each vertex v. For a vertex set A ¦ V , let ÇA

denote the coloring where ÇA(v) := Ç(v) for all v /∈ A and ÇA(v) = Ç(v), otherwise.
Intuitively, ÇA is the coloring resulting from Ç when exactly the vertices in A change

their colors. For each vertex v ∈ V \ S ′, we define ³v := É
Ç(v)
v − ÉÇ(v)

v + ´v, where

´v :=
∑

e∈E(v,S′)∩E(Ç)

2 · É(e)−
∑

e∈E(v,S′)\E(Ç)

2 · É(e).

Intuitively, ³v−´v is an upper bound for the improvement obtained when we choose
to change only the color of v to Ç(v). The term ´v corresponds to the contribution of
the edges between v and the vertices of S ′. In the definition of ´v, we take into account

84

4.3. Speedup Strategies

the edges between v and S ′ that are falsely counted twice, once when extending ÇS′

with v and a second time in the term É
Ç(v)
v − ÉÇ(v)

v . Hence, ³v is the improvement
over the coloring ÇS′ obtained by changing only the color of v. Let Y ¦ V \ S ′ be
the k − |S ′| vertices from V \ S ′ with largest ³v-values. We define the upper bound
by

bc=2(I, S
′) := É(E(ÇS′)) +

∑

v∈Y
³v

︸ ︷︷ ︸
(1)

+2

(
k − |S ′|

2

)
Émax

︸ ︷︷ ︸
(2)

.

Recall that the overall goal is to find a set X such that changing the colors of S ′∪X
results in a better coloring. The summand (1) corresponds to an overestimation of all
weights of edges incident with exactly one vertex of X by fixing the falsely counted
edges between X and S ′ due to the included ´v summands. The summand (2)
corresponds to an overestimation of the weight of properly colored edges with both
endpoints in X. We next show that bc=2 is in fact an upper bound.

Proposition 4.13. If c = 2, then bc=2(I, S
′) is an upper bound.

Proof. Let Ç′ be a coloring with S ′ ª Dflip(Ç, Ç
′) and dflip(Ç, Ç′) = k, and let X :=

Dflip(Ç, Ç
′) \ S ′. We show that É(E(Ç′)) f bc=2(I, S

′). To this end, we consider the
coloring ÇS′ that results from Ç when exactly the vertices in S ′ change their colors
and analyze how É(E(Ç′)) differs from É(E(ÇS′)).

É(E(Ç′)) = É(E(ÇS′)) +
∑

v∈X
(ÉÇ(v)

v − ÉÇ(v)
v)

︸ ︷︷ ︸
(1)

+
∑

e∈E(X,S′)
e∈E(Ç)

2 · É(e)−
∑

e∈E(X,S′)
e ̸∈E(Ç)

2 · É(e)

︸ ︷︷ ︸
(2)

+
∑

e∈E(X)
e∈E(Ç)

2 · É(e)−
∑

e∈E(X)
e ̸∈E(Ç)

2 · É(e)

︸ ︷︷ ︸
(3)

By adding (1) to É(E(ÇS′)), we added the weight of all properly colored edges if
only v changes its color for every vertex v ∈ X. The difference between É(E(Ç′))

85

Chapter 4. Parameterized Local Search for Max c-Cut

and É(E(ÇS′))+ (1) then consists of all edge-weights that were falsely counted in (1)
since both endpoints were moved. To compensate this, the summand (2) and (3) need
to be added. Summand (2) corresponds to falsely counted edges with one endpoint
in X and one endpoint in S ′, while (3) corresponds to falsely counted edges with
both endpoints in X. Observe that every falsely counted edge weight was counted
for both of its endpoints within É(E(ÇS′)) + (1). Thus, each edge weight in (2)
and (3) needs to be multiplied by 2.

Note that (3) is upper bounded by 2 ·
(
k−|S′|

2

)
·Émax. Furthermore, note that (1)+

(2) =
∑

v∈X ³v. Recall that Y consists of the k − |S ′| vertices from V \ S ′ with
largest ³v-values. Hence, (1) + (2) f ∑

v∈Y ³v. This implies that É(E(Ç′)) f
bc=2(I, S

′). Consequently, bc=2(I, S
′) is an upper bound.

Upper Bound for c g 3. We next present an upper bound bcg3 that works for the
case where c g 3. Recall that the upper bound bc=2 relies on computing É(E(ÇS′)),
where ÇS′ is the coloring resulting from Ç when exactly the vertices in S ′ change
their colors. This was possible since for c = 2, there is only one coloring for which
the flip with Ç is exactly S ′. In case of c g 3, each vertex in S ′ has c− 1 g 2 options
to change its color. Our upper bound bcg3 consequently contains a summand b(S ′)
that overestimates the edge weights when only the vertices in S ′ change their colors.

To specify b(S ′), we introduce the following notation: Given a vertex v ∈ S ′ and
a color i, we let

¹iv := É({{v, w} | w ∈ N(v) \ S ′, Ç(w) ̸= i}).

Analogously to Éi
v, the value ¹

i
v describes the weight of properly colored edges when

changing the color of v to i, but excludes all edges inside S ′. We define the term

b(S ′) := É(E(Ç)) +

(|S ′|
2

)
· Émax −

∑

e∈E(S′)
e∈E(Ç)

É(e)

+
∑

v∈S′

(
max
i ̸=Ç(v)

¹iv − ¹Ç(v)v

)
.

As mentioned above, for bcg3 the summand b(S ′) replaces the summand É(E(ÇS′))

which was used for bc=2. Intuitively, the sum
∑

v∈S′(maxi ̸=Ç(v) ¹
i
v − ¹Ç(v)v) is an over-

estimation of the improvement for properly colored edges with exactly one endpoint
in S ′, the term

(|S′|
2

)
· Émax overestimates the properly colored edges inside S ′, and

the remaining terms overestimate the properly colored edges outside S ′.

86

4.3. Speedup Strategies

Analogously to bc=2, for each vertex v ∈ V \ S ′, we define a value ³v by ³v :=

maxi ̸=Ç(v)(É
i
v − ÉÇ(v)

v) + ´v with

´v :=
∑

e∈E(v,S′)

2 · |É(e)|.

Again, let Y ¦ V \ S ′ be the k − |S ′| vertices with biggest ³v-values of V \ S ′. We
define the upper bound by

bcg3(I, S
′) := b(S ′) +

∑

v∈Y
³v + 2

(
k − |S ′|

2

)
· Émax

and show that it is in fact an upper bound.

Proposition 4.14. If c g 3, then bcg3(I, S
′) is an upper bound.

Proof. Let Ç′ be a coloring with S ′ ª Dflip(Ç, Ç
′) and dflip(Ç, Ç′) = k, and let X :=

Dflip(Ç, Ç
′) \ S ′. We show that É(E(Ç′)) f bcg3(I, S

′). To this end, let ÇS′ denote
the coloring that agrees with Ç on all vertices of V \ S ′ and that agrees with Ç′ on
all vertices of S ′. To show É(E(Ç′)) f bcg3(I, S

′) we analyze how É(E(Ç′)) differs
from É(E(ÇS′)).

É(E(Ç′)) f É(E(ÇS′)) +
∑

v∈X
(ÉÇ′(v)

v − ÉÇ(v)
v)

︸ ︷︷ ︸
(1)

+
∑

e∈E(S′, X)

2 · |É(e)|
︸ ︷︷ ︸

(2)

+
∑

e∈E(X)

2 · |É(e)|
︸ ︷︷ ︸

(3)

By adding (1) to É(E(ÇS′)), we added the weight of all properly colored edges
if only v changes its color for every vertex v ∈ X. The difference between É(E(Ç′))
and É(E(ÇS′))+ (1) then consists of all edge-weights that were falsely counted in (1)
since both endpoints were moved. To compensate this, the summand (2) and (3)
were added. Summand (2) overestimates the weight of falsely counted edges with
one endpoint in X and one endpoint in S ′, while (3) overestimates the weight of
falsely counted edges with both endpoints in X. Observe that every falsely counted
edge weight may be counted for both of its endpoints within É(E(Ç|S′))+ (1). Thus,
each edge weight in (2) and (3) needs to be multiplied by 2.

87

Chapter 4. Parameterized Local Search for Max c-Cut

Note that (1)+(2) f∑
v∈X ³v f

∑
v∈Y ³v and that (3) f 2

(
k−|S′|

2

)
·Émax. There-

fore, it remains to show that É(E(ÇS′)) f b(S ′). To this end, note that É(E(ÇS′))
can be expressed by the sum of É(E(Ç)), improvement of the weight of properly

colored edges inside S ′ between Ç and ÇS′ , and
∑

v∈S′(¹
Ç′(v)
v − ¹Ç(v)v):

É(E(ÇS′)) = É(E(Ç)) +
∑

e∈E(S′)
e∈E(ÇS′)

É(e)−
∑

e∈E(S′)
e∈E(Ç)

É(e)

+
∑

v∈S′

(¹Ç
′(v)

v − ¹Ç(v)v).

Since
(|S′|

2

)
· Émax is at least as big as the sum of the weights of properly edges

inside S ′ under ÇS′ , we conclude É(E(ÇS′)) f b(S ′). Hence, bcg3 is an upper bound.

4.3.2 Prevention of Redundant Flips

We introduce further speed-up techniques that we used in our implementation of
the hill-climbing algorithm. Roughly speaking, the idea behind these speed-up tech-
niques is to exclude vertices that are not contained in an improving flip Dflip(Ç, Ç

′)
of any k-neighbor Ç′ of Ç. To this end, we introduce for each considered value of k
an auxiliary vertex set Vk containing all remaining vertices that are potentially part
of an improving flip of a k-neighbor of Ç. For each value of k, the set Vk is initialized
once with V , when we search for the first time for an improving k-neighbor.

It is easy to see that all vertices x that are (i, k)-blocked for all i ̸= Ç(x) can be
removed from Vk if each edge of G has weight 1. This also holds for general instances
when considering an extension of the definition of (i, k)-blocked vertices for arbitrary
weight functions. Moreover, whenever our algorithm has verified that a vertex v is
in no improving k-flip Dflip(Ç, Ç

′), then we may remove v from Vk.

Recall that we set the initial value of k to one and increment k if the current
coloring Ç is k-optimal. If at any time our algorithm replaces the current coloring Ç
by a better coloring Ç′, we set k back to one and continue by searching for an im-
proving k-neighbor of the new coloring Ç′, where k again is incremented if necessary.
Now, for each value of k′ that was already considered for a previous coloring, we
only consider the remaining vertices of Vk′ together with vertices that have a small
distance to the flip between Ç′ and the last previously encountered (k′ − 1)-optimal
coloring. This idea is formalized by the next lemma.

88

4.3. Speedup Strategies

Lemma 4.15. Let G = (V,E) be a graph, let É : E → Q be an edge-weight function,
and let k be an integer. Moreover, let Ç and Ç′ be (k − 1)-optimal c-colorings of G
and let v be a vertex within distance at least k + 1 to each vertex of Dflip(Ç, Ç

′).
If there is no improving k-neighbor Ç̂ of Ç with v ∈ Dflip(Ç, Ç̂), then there is no
improving k-neighbor Ç̃ of Ç′ with v ∈ Dflip(Ç

′, Ç̃).

Proof. We prove the lemma by contraposition. Let Ç̃ be an improving k-neighbor
of Ç′ with v ∈ Dflip(Ç

′, Ç̃). We show that there is an improving k-neighbor Ç̂ of Ç
with v ∈ Dflip(Ç, Ç̂).

The c-coloring Ç̂ agrees with Ç̃ on all vertices of Dflip(Ç
′, Ç̃) and agrees with Ç on

all other vertices of V . Hence, Dflip(Ç, Ç̂) contains the vertex v. Moreover, Ç̂ and Ç
disagree on at most dflip(Ç

′, Ç̃) f k positions which implies that Ç̂ is a k-neighbor
of Ç. It remains to show that Ç̂ improves over Ç. To this end, we analyze the
edge set X ¦ E of all edges with at least one endpoint in Dflip(Ç

′, Ç̃). Consider the
following claim about properly colored edges.

Claim 3. It holds that

a) E(Ç̃) \X = E(Ç′) \X and E(Ç̂) \X = E(Ç) \X ,

b) E(Ç̃) ∩X = E(Ç̂) ∩X and E(Ç) ∩X = E(Ç′) ∩X.

Proof of Claim. a) Let e be an edge of E \X. Note that both endpoints of e are
elements of V \Dflip(Ç

′, Ç̃). Thus, the endpoints of e have distinct colors under Ç̃ if
and only if they have distinct colors under Ç′. Consequently, E(Ç̃) \X = E(Ç′) \X.
Furthermore, by definition of Ç̂, Dflip(Ç, Ç̂) = Dflip(Ç

′, Ç̃), which implies that E(Ç̂) \
X = E(Ç) \X.

b) Since Ç′ is (k − 1)-optimal and Ç̃ is an improving k-neighbor of Ç′, the
set Dflip(Ç

′, Ç̃) contains exactly k vertices. Thus, we may assume by Lemma 4.10
that Dflip(Ç

′, Ç̃) is connected. Consequently, each vertex of Dflip(Ç
′, Ç̃) has distance

at most k − 1 from v, since v is contained in Dflip(Ç
′, Ç̃).

Let e be an edge of X. Since each vertex of Dflip(Ç
′, Ç̃) has distance at most k−1

from v, both endpoints of e have distance at most k from v. Together with the fact
that v has distance at least k+1 from Dflip(Ç, Ç

′), this implies that no endpoint of e is
contained inDflip(Ç, Ç

′). Hence, Ç and Ç′ agree on both endpoints of e. Consequently,
the edge e is properly colored under Ç if and only if e is properly colored under Ç′.
This then implies that E(Ç) ∩X = E(Ç′) ∩X.

By the definition of Ç̂ and the fact that Ç and Ç′ agree on the endpoints of each
edge of X, Ç̂ and Ç̃ agree on the endpoints of each edge of X. This then implies
that E(Ç̃) ∩X = E(Ç̂) ∩X. ■

89

Chapter 4. Parameterized Local Search for Max c-Cut

We next use Claim 3 to show that Ç̂ is an improving neighbor of Ç. Since Ç̃ is an
improving neighbor of Ç′ we have É(E(Ç̃)) > É(E(Ç′)), which implies

É(E(Ç̃) ∩X) + É(E(Ç̃) \X) > É(E(Ç′) ∩X) + É(E(Ç′) \X).

Together with Claim 3 a), we then have É(E(Ç̃)∩X) > É(E(Ç′)∩X). Moreover, due
to Claim 3 b), we have É(E(Ç̂)∩X) > É(E(Ç)∩X). Finally, since E(Ç̂)\X = E(Ç)\X
by Claim 3 a), we may add the weights of all edges in E(Ç̂) \ X to the left side of
the inequality and the weight of all edges in E(Ç) \X to the right side. We end up
with the inequality É(E(Ç̂)) > É(E(Ç)) which implies that Ç̂ improves over Ç.

We next describe how we exploit Lemma 4.15 in our implementation: We start
with a coloring Ç and search for improving k-neighbors of Ç for increasing values of k
starting with k = 1. Whenever we find an improving neighbor Ç′ of Ç we continue
by searching for an improving neighbor Ç′′ of Ç′ starting with k = 1 again. We
use Lemma 4.15 as follows: if we want to find an improving k-neighbor for a (k− 1)-
optimal coloring Ç′, we take the last previously encountered (k−1)-optimal coloring Ç
and add only the vertices to Vk that have distance at most k from Dflip(Ç, Ç

′), instead
of setting Vk back to V . This is correct since every vertex which is not in Vk, is not
part of any improving k-flip of Ç and therefore according to Lemma 4.15, the only
vertices outside of Vk that can possibly be in an improving k-flip of Ç′ are those with
distance at most k from Dflip(Ç, Ç

′).
Next, we provide a further technique to identify vertices that can be removed

from Vk. The idea behind this technique can be explained as follows: if a vertex
can be excluded from Vk, then all equivalent vertices can also be excluded, where
equivalence is defined as follows.

Definition 4.16. Let G = (V,E) be a graph, let É : E → Q be an edge-weight
function. Two vertices v and w of G are weighted twins if N(v) \ {w} = N(w) \ {v}
and É({v, x}) = É({w, x}) for each x ∈ N(v) \ {w}.

Lemma 4.17. Let G = (V,E) be a graph, let É : E → Q be an edge-weight function,
and let k be an integer. Moreover, let Ç be a c-coloring of G and let v and w
be weighted twins in G with Ç(v) = Ç(w). If there is no improving k-neighbor Ç′

of Ç with v ∈ Dflip(Ç, Ç
′), then there is no improving k-neighbor Ç̃ of Ç with w ∈

Dflip(Ç, Ç̃).

Proof. Assume towards a contradiction that there is an improving k-neighbor Ç̃ of Ç
with w ∈ Dflip(Ç, Ç̃). By assumption, v /∈ Dflip(Ç, Ç̃). Let Ç′ be the c-coloring that
agrees with Ç̃ on V \ {v, w} and where Ç′(v) := Ç̃(w) and Ç′(w) := Ç̃(v) = Ç(v).

90

4.4. Implementation and Experimental Results

Recall that É({v, x}) = É({w, x}) for each x ∈ N(v)∩N(w) and that N(v) \ {w} =
N(w) \ {v}. For each x ∈ N(v) ∩ N(w), let Ex := {{v, x}, {w, x}}. Note that
since Ç̃(v) ̸= Ç̃(w), at least one edge of Ex is contained in E(Ç̃). If both edges
of Ex are contained in E(Ç̃), then Ç′(x) = Ç̃(x) ̸∈ {Ç′(v), Ç′(w)} and thus both
edges of Ex are contained in E(Ç′). If only one edge of Ex is contained in E(Ç̃),
then E(Ç′) contains exactly the other edge of Ex since Ç′(v) = Ç̃(w), Ç′(w) = Ç̃(v),
and Ç′(x) = Ç̃(x). Since the weight of both edges of Ex are the same for each x ∈
N(v) ∩ N(w), we have É(E(Ç′)) = É(E(Ç̃)). Hence, Ç′ is an improving k-neighbor
of Ç with v ∈ Dflip(Ç, Ç

′), a contradiction.

Consequently, when our algorithm removes a vertex v from Vk for some k because
no improving k-neighbor Ç′ of Ç contains v, then it also removes all weighted twins
of v with the same color as v from Vk.

4.4 Implementation and Experimental Results

Our hill-climbing algorithm (LS) is implemented in JAVA/Kotlin and uses the graph
library JGraphT. To enumerate all connected candidate sets, we use a JAVA imple-
mentation of a polynomial-delay algorithm for enumerating all connected induced
subgraphs of a given size [108].

We used the graphs from the G-set benchmark2, an established benchmark data
set for Max c-Cut with c ∈ {2, 3, 4} (and thus also for Max Cut) [15, 57, 120,
155,171,178]. The data set consists of 71 graphs with vertex-count between 800 and
20,000 and a density between 0.02% and 6%.

As starting solutions, we used the solutions computed by the MOH algorithm
of Ma and Hao [120] for each graph of the G-set and each c ∈ {2, 3, 4}. For c = 3
and c = 4, these are the best known solutions for all graphs of the G-set. MOH
is designed to quickly improve substantially on starting solutions but after a while
progress stalls (we provide more details on this below). In contrast, our approach
makes steady progress but is not as fast as MOH concerning the initial improvements,
as preliminary experiments showed. Hence, we focus on evaluating the performance
of LS as a post-processing for MOH by trying to improve their solutions quickly.

For one graph (g23) and each c ∈ {2, 3, 4}, there is a large gap between the
value of the published coloring and the stated value of the corresponding coloring
(for example, for c = 3, the published coloring has a value of 13 275 whereas it
is stated that the coloring has a value of 17 168). To not exploit this gap in our

2https://web.stanford.edu/~yyye/yyye/Gset/

91

Chapter 4. Parameterized Local Search for Max c-Cut

Table 4.1: The graphs from the G-set for which LS or ILP found an improved coloring,
or for which we verified that MOH colorings are optimal (for c = 3). MOH shows the value
of the published solutions of [120], LS and ILP show the best solution of our hill-climbing
algorithm and any of the two ILP-runs, respectively. The best coloring is bold. Finally,
UB shows the better upper bound computed during the two ILP-runs. For empty entries,
no improved coloring was found. For bold UB entries, some found solution matches this
upper bound, verifying its optimality.

data |V | |E| MOH LS ILP UB
g11 800 1 600 669 — 671 671

g12 800 1 600 660 661 663 663

g13 800 1 600 686 687 688 688

g15 800 4 661 3 984 3 985 3 985 4 442
g24 2 000 19 990 17 162 17 163 — 19989
g25 2 000 19 990 17 163 17 164 — 19989
g26 2 000 19 990 17 154 17 155 — 19989
g27 2 000 19 990 4 020 4 021 — 9840
g28 2 000 19 990 3 973 3 975 — 9822
g31 2 000 19 990 4 003 4 005 — 9776
g32 2 000 4 000 1 653 1658 1 666 1 668
g33 2 000 4 000 1 625 1628 1 636 1 640
g34 2 000 4 000 1 607 1609 1 616 1 617
g35 2 000 11 778 10 046 10 048 — 11711
g37 2 000 11 785 10 052 10 053 10 053 11 691
g40 2 000 11 766 2 870 2 871 — 5471
g41 2 000 11 785 2 887 2 888 — 5452
g48 3 000 6 000 6 000 — — 6 000

g49 3 000 6 000 6 000 — — 6 000

g50 3 000 6 000 6 000 — — 6 000

g55 5 000 12 498 12 427 12 429 12 432 12 498
g56 5 000 12 498 4 755 4 757 — 6157
g57 5 000 10 000 4 080 4092 4 103 4 154
g59 5 000 29 570 7 274 7 276 — 14673
g61 7 000 17 148 6 858 6 861 — 8728
g62 7 000 14 000 5 686 5 710 5 706 5 981
g63 7 000 41 459 35 315 35 318 — 41420
g64 7 000 41 459 10 429 10 437 — 20713
g65 8 000 16 000 6 489 6 512 6 535 6 711
g66 9 000 18 000 7 414 7 442 7 443 7 843
g67 10 000 20 000 8 088 8 116 8 141 9 080
g70 10 000 9 999 9 999 — — 9 999

g72 10 000 20 000 8 190 8 224 8 244 9 166
g77 14 000 28 000 11 579 11 632 11 619 13 101
g81 20 000 40 000 16 326 16 392 16 374 18 337

evaluation, we only considered the remaining 70 graphs. These 70 graphs are of two
types: 34 graphs are unit graphs (where each edge has weight 1) and 36 graphs are
signed graphs (where each edge has either weight 1 or -1). For each of these graphs,
we ran experiments for each c ∈ {2, 3, 4} with a time limit of 30 minutes and the
published MOH solution as initial solution. In addition to LS, for each instance
we ran standard ILP-formulations for Max c-Cut (again for 30 minutes) using the
Gurobi solver version 9.5, once without starting solution and once with the MOH
solution as starting solution. Each run of an ILP provides both a best found solution
and an upper bound on the maximum value of any c-coloring for the given instance.
Each experiment was performed on a single thread of an Intel(R) Xeon(R) Silver
4116 CPU with 2.1 GHz, 24 CPUs and 128 GB RAM.

The ILP upper bounds verified the optimality of 22 MOH solutions. Thus, of

92

4.4. Implementation and Experimental Results

Table 4.2: The number of instances where LS or ILP found improved solutions. Column
‘improvable’ shows how many best known MOH colorings [120] might be suboptimal (as
they do not meet the ILP upper bounds). Columns LS and ILP show how many of these
solutions where improved by the respective approaches. Columns I1, I2, and I3 show for
how many instances the first improvement was found by LS within 10 seconds, between 10
and 60 seconds, and after more than 60 seconds, respectively.

improvable I1 I2 I3 LS ILP
unit c = 2 31 2 1 0 3 2
unit c = 3 30 8 0 0 8 3
unit c = 4 28 5 3 1 9 4

signed c = 2 29 1 1 0 2 6
signed c = 3 36 19 2 1 22 14
signed c = 4 34 20 5 0 25 14

sum 188 55 12 2 69 43

the 210 instances, only 188 instances are interesting in the sense that LS or the ILP
can find an improved solution. The upper bounds also verified the optimality of 8
further improved solutions found by LS or ILP.

In total, the ILP found better colorings than the MOH coloring for 43 of the
188 instances. In comparison, our hill-climbing algorithm was able to improve on
the MOH solutions for 69 instances of the 188 instances. Table 4.1 gives the results
for c = 3, showing those instances where the MOH coloring was verified to be optimal
by the ILP or where LS or the ILP found an improved coloring. The full overview
for c ∈ {2, 3, 4} is shown in Tables 4.3 to 4.5.

Over all c ∈ {2, 3, 4}, on 35 instances, both LS and the ILP found improved
colorings compared to the MOH coloring. For c > 2, both approaches find new
record colorings. More precisely, for 23 instances, only the ILP found a new record
coloring; for 6 instances, both approaches found a new record coloring, and for 38
instances only LS found a new record coloring. Thus, LS finds improvements also
for very hard instances on which MOH provided the best known solutions so far.

The MOH solutions were obtained within a time limit of 30, 120, and 240 minutes
for small, medium, and large instances, respectively. Each such run was repeated at
least 10 times. The average time MOH took to find the best solution was 33% of the
respective time limit. Hence, on average, after MOH found their best solution, in the
remaining time (at least 20 minutes), MOH did not find any better solution. For all
instances where LS was able to improve on the MOH solution, the average time to
find the first improving flip was 15.17 seconds. Table 4.2 shows an overview on the

93

Chapter 4. Parameterized Local Search for Max c-Cut

Table 4.3: The solutions of the best found c-coloring for any of the G-set graphs for c = 2.
The column MOH shows the value of the published solutions of Ma and Hao [120].

data n m MOH LS ILP UB ILP1 UB1 ILP2 UB2

g1 800 19176 11624 — — 16188 — 16188 — 16225
g2 800 19176 11620 — — 15915 — 15915 — 16254
g3 800 19176 11622 — — 15766 — 15766 — 16058
g4 800 19176 11646 — — 16059 — 16217 — 16059
g5 800 19176 11631 — — 16182 — 16182 — 16220
g6 800 19176 2178 — — 6387 — 6627 — 6387
g7 800 19176 2006 — — 6225 — 6339 — 6225
g8 800 19176 2005 — — 6209 — 6209 — 6215
g9 800 19176 2054 — — 6106 — 6106 — 6379
g10 800 19176 2000 — — 6315 — 6315 — 6322
g11 800 1600 564 — — 564 — 564 — 564

g12 800 1600 556 — — 556 — 556 — 556

g13 800 1600 582 — — 582 — 582 — 582

g14 800 4694 3064 — — 3158 — 3158 — 3158
g15 800 4661 3050 — — 3139 — 3148 — 3139
g16 800 4672 3052 — — 3144 — 3144 — 3148
g17 800 4667 3047 — — 3144 — 3144 — 3153
g18 800 4694 992 — — 1137 — 1140 — 1137
g19 800 4661 906 — — 1044 — 1046 — 1044
g20 800 4672 941 — — 1069 — 1074 — 1069
g21 800 4667 931 — — 1072 — 1074 — 1072
g22 2000 19990 13359 — — 17677 — 17888 — 17677
g24 2000 19990 13337 — — 17905 — 17905 — 18070
g25 2000 19990 13340 — — 17993 — 17993 — 18049
g26 2000 19990 13328 — — 17744 — 18236 — 17744
g27 2000 19990 3341 — — 8273 — 8394 — 8273
g28 2000 19990 3298 — — 7505 — 8194 — 7505
g29 2000 19990 3405 — — 7594 — 7594 — 8382
g30 2000 19990 3413 — — 8033 — 8033 — 8354
g31 2000 19990 3310 — — 7688 — 8253 — 7688
g32 2000 4000 1410 — — 1410 — 1410 — 1410

g33 2000 4000 1382 — — 1382 — 1382 — 1382

g34 2000 4000 1384 — — 1384 — 1384 — 1384

g35 2000 11778 7687 — — 8985 — 9242 — 8985
g36 2000 11766 7680 — — 9125 — 9199 — 9125
g37 2000 11785 7691 — — 9056 — 9056 — 9265
g38 2000 11779 7688 — — 8923 — 8923 — 9130
g39 2000 11778 2408 — — 3214 — 3254 — 3214
g40 2000 11766 2400 — — 3157 — 3157 — 3218
g41 2000 11785 2405 — — 3196 — 3196 — 3199
g42 2000 11779 2481 — — 3228 — 3228 — 3229
g43 1000 9990 6660 — — 8055 — 8264 — 8055
g44 1000 9990 6650 — — 8228 — 8228 — 8287
g45 1000 9990 6654 — — 8146 — 8182 — 8146
g46 1000 9990 6649 — — 8148 — 8168 — 8148
g47 1000 9990 6657 — — 8075 — 8146 — 8075
g48 3000 6000 6000 — — 6000 — 6000 — 6000

g49 3000 6000 6000 — — 6000 — 6000 — 6000

g50 3000 6000 5880 — — 5880 — 5880 — 5880

g51 1000 5909 3848 — — 3992 — 4160 — 3992
g52 1000 5916 3851 — — 4095 — 4111 — 4095
g53 1000 5914 3850 — — 3971 — 3971 — 4090
g54 1000 5916 3852 — — 4073 — 4073 — 4082
g55 5000 12498 10299 — — 11692 — 11692 — 11755
g56 5000 12498 4016 — — 5378 — 5378 — 5418
g57 5000 10000 3494 — — 3494 — 3494 — 3494

g58 5000 29570 19289 19290 19290 24833 — 24833 19290 25197
g59 5000 29570 6086 — — 10372 — 10372 — 10577
g60 7000 17148 14190 — — 16528 — 16547 — 16528
g61 7000 17148 5797 — — 8144 — 8144 — 8199
g62 7000 14000 4868 4870 4872 4872 4872 4872 4872 4872

g63 7000 41459 27033 27037 — 35046 — 35046 — 35703
g64 7000 41459 8747 8748 — 15137 — 15137 — 15929
g65 8000 16000 5560 — 5562 5568 — 5568 5562 5568
g66 9000 18000 6360 — 6364 6368 6364 6368 6364 6369
g67 10000 20000 6942 — 6948 6952 — 6957 6948 6952
g70 10000 9999 9544 9551 9575 9714 — 9714 9575 9723
g72 10000 20000 6998 — 7004 7013 7004 7013 7002 7014
g77 14000 28000 9928 — — 9948 — 9948 — 9951
g81 20000 40000 14036 — 14044 14078 — 14078 14044 14080

94

4.4. Implementation and Experimental Results

Table 4.4: The solutions of the best found c-coloring for any of the G-set graphs for c = 3.

data n m MOH LS ILP UB ILP1 UB1 ILP2 UB2

g1 800 19176 15165 — — 19148 — 19148 — 19159
g2 800 19176 15172 — — 19160 — 19160 — 19160
g3 800 19176 15173 — — 19134 — 19134 — 19158
g4 800 19176 15184 — — 19117 — 19135 — 19117
g5 800 19176 15193 — — 19146 — 19146 — 19164
g6 800 19176 2632 — — 9441 — 9453 — 9441
g7 800 19176 2409 — — 9242 — 9253 — 9242
g8 800 19176 2428 — — 9228 — 9228 — 9230
g9 800 19176 2478 — — 9261 — 9275 — 9261
g10 800 19176 2407 — — 9233 — 9233 — 9267
g11 800 1600 669 — 671 671 671 671 671 674
g12 800 1600 660 661 663 663 663 663 663 663

g13 800 1600 686 687 688 688 688 688 688 688

g14 800 4694 4012 — — 4497 — 4497 — 4510
g15 800 4661 3984 3985 3985 4442 — 4442 3985 4474
g16 800 4672 3990 — — 4458 — 4465 — 4458
g17 800 4667 3983 — — 4413 — 4413 — 4457
g18 800 4694 1207 — — 1962 — 1962 — 1991
g19 800 4661 1081 — — 1833 — 1859 — 1833
g20 800 4672 1122 — — 1888 — 1888 — 1889
g21 800 4667 1109 — — 1827 — 1827 — 1875
g22 2000 19990 17167 — — 19989 — 19989 — 19989
g24 2000 19990 17162 17163 — 19989 — 19989 — 19989
g25 2000 19990 17163 17164 — 19989 — 19989 — 19989
g26 2000 19990 17154 17155 — 19989 — 19990 — 19989
g27 2000 19990 4020 4021 — 9840 — 9841 — 9840
g28 2000 19990 3973 3975 — 9822 — 9827 — 9822
g29 2000 19990 4106 — — 9947 — 9948 — 9947
g30 2000 19990 4117 — — 9929 — 9929 — 9933
g31 2000 19990 4003 4005 — 9776 — 9861 — 9776
g32 2000 4000 1653 1658 1666 1668 1666 1668 1664 1670
g33 2000 4000 1625 1628 1636 1640 1636 1640 1636 1640
g34 2000 4000 1607 1609 1616 1617 1616 1617 1615 1618
g35 2000 11778 10046 10048 — 11711 — 11711 — 11714
g36 2000 11766 10039 — — 11702 — 11702 — 11703
g37 2000 11785 10052 10053 10053 11691 — 11753 10053 11691
g38 2000 11779 10040 — — 11703 — 11745 — 11703
g39 2000 11778 2903 — — 5457 — 5457 — 5551
g40 2000 11766 2870 2871 — 5471 — 5471 — 5471
g41 2000 11785 2887 2888 — 5452 — 5472 — 5452
g42 2000 11779 2980 — — 5551 — 5567 — 5551
g43 1000 9990 8573 — — 9985 — 9985 — 9988
g44 1000 9990 8571 — — 9957 — 9957 — 9980
g45 1000 9990 8566 — — 9983 — 9983 — 9986
g46 1000 9990 8568 — — 9983 — 9985 — 9983
g47 1000 9990 8572 — — 9966 — 9966 — 9983
g48 3000 6000 6000 — — 6000 — 6000 — 6000

g49 3000 6000 6000 — — 6000 — 6000 — 6000

g50 3000 6000 6000 — — 6000 — 6000 — 6000

g51 1000 5909 5037 — — 5708 — 5712 — 5708
g52 1000 5916 5040 — — 5703 — 5703 — 5726
g53 1000 5914 5039 — — 5694 — 5694 — 5746
g54 1000 5916 5036 — — 5667 — 5667 — 5682
g55 5000 12498 12427 12429 12432 12498 — 12498 12432 12498
g56 5000 12498 4755 4757 — 6157 — 6157 — 6176
g57 5000 10000 4080 4092 4103 4154 — 4154 4103 4176
g58 5000 29570 25195 — — 29556 — 29556 — 29560
g59 5000 29570 7274 7276 — 14673 — 14673 — 14678
g60 7000 17148 17075 — — 17148 — 17148 — 17148
g61 7000 17148 6858 6861 — 8728 — 8728 — 8735
g62 7000 14000 5686 5710 5706 5981 — 6033 5706 5981
g63 7000 41459 35315 35318 — 41420 — 41420 — 41435
g64 7000 41459 10429 10437 — 20713 — 20747 — 20713
g65 8000 16000 6489 6512 6535 6711 — 6711 6535 6970
g66 9000 18000 7414 7442 7443 7843 — 7843 7443 8246
g67 10000 20000 8088 8116 8141 9080 — 9089 8141 9080
g70 10000 9999 9999 — — 9999 — 9999 — 9999

g72 10000 20000 8190 8224 8244 9166 — 9243 8244 9166
g77 14000 28000 11579 11632 11619 13101 — 13101 11619 13104
g81 20000 40000 16326 16392 16374 18337 — 18515 16374 18337

95

Chapter 4. Parameterized Local Search for Max c-Cut

Table 4.5: The solutions of the best found c-coloring for any of the G-set graphs for c = 4.

data n m MOH LS ILP UB ILP1 UB1 ILP2 UB2

g1 800 19176 16803 — — 19176 — 19176 — 19176
g2 800 19176 16809 — — 19176 — 19176 — 19176
g3 800 19176 16806 — — 19176 — 19176 — 19176
g4 800 19176 16814 — — 19176 — 19176 — 19176
g5 800 19176 16816 — — 19176 — 19176 — 19176
g6 800 19176 2751 — — 9544 — 9544 — 9583
g7 800 19176 2515 — — 9343 — 9430 — 9343
g8 800 19176 2525 — — 9397 — 9423 — 9397
g9 800 19176 2585 — — 9410 — 9410 — 9477
g10 800 19176 2510 — — 9380 — 9429 — 9380
g11 800 1600 677 — — 677 — 677 — 677

g12 800 1600 664 — 665 665 665 665 665 665

g13 800 1600 690 — — 690 — 690 — 690

g14 800 4694 4440 — — 4670 — 4671 — 4670
g15 800 4661 4406 — — 4622 — 4622 — 4644
g16 800 4672 4415 — — 4630 — 4635 — 4630
g17 800 4667 4411 — — 4625 — 4636 — 4625
g18 800 4694 1261 1262 1262 2122 — 2140 1262 2122
g19 800 4661 1121 — — 2045 — 2050 — 2045
g20 800 4672 1168 — — 2049 — 2049 — 2074
g21 800 4667 1155 — — 2023 — 2052 — 2023
g22 2000 19990 18776 — — 19990 — 19990 — 19990
g24 2000 19990 18769 18772 — 19990 — 19990 — 19990
g25 2000 19990 18775 18776 — 19990 — 19990 — 19990
g26 2000 19990 18767 18770 — 19990 — 19990 — 19990
g27 2000 19990 4201 4202 — 9928 — 9951 — 9928
g28 2000 19990 4150 4157 — 9888 — 9888 — 9919
g29 2000 19990 4293 4294 — 10010 — 10022 — 10010
g30 2000 19990 4305 4308 — 10019 — 10019 — 10024
g31 2000 19990 4171 4176 — 9910 — 9914 — 9910
g32 2000 4000 1669 1671 1679 1679 1679 1679 1679 1679

g33 2000 4000 1638 1640 1644 1644 1644 1644 1644 1644

g34 2000 4000 1616 1617 1623 1623 1623 1623 1623 1625
g35 2000 11778 11111 — — 11775 — 11776 — 11775
g36 2000 11766 11108 — 11109 11763 — 11763 11109 11764
g37 2000 11785 11117 11118 — 11785 — 11785 — 11785
g38 2000 11779 11108 11109 — 11778 — 11778 — 11778
g39 2000 11778 3006 3007 — 5736 — 5794 — 5736
g40 2000 11766 2976 2978 — 5665 — 5669 — 5665
g41 2000 11785 2983 2986 2984 5751 — 5751 2984 5758
g42 2000 11779 3092 3095 — 5787 — 5800 — 5787
g43 1000 9990 9376 9377 9377 9990 — 9990 9377 9990
g44 1000 9990 9379 — — 9990 — 9990 — 9990
g45 1000 9990 9376 9377 9377 9990 — 9990 9377 9990
g46 1000 9990 9378 — — 9990 — 9990 — 9990
g47 1000 9990 9381 — — 9990 — 9990 — 9990
g48 3000 6000 6000 — — 6000 — 6000 — 6000

g49 3000 6000 6000 — — 6000 — 6000 — 6000

g50 3000 6000 6000 — — 6000 — 6000 — 6000

g51 1000 5909 5571 5572 5572 5871 — 5881 5572 5871
g52 1000 5916 5584 — — 5891 — 5891 — 5891
g53 1000 5914 5574 — — 5887 — 5887 — 5888
g54 1000 5916 5579 — — 5889 — 5889 — 5889
g55 5000 12498 12498 — — 12498 — 12498 — 12498

g56 5000 12498 4931 4935 — 6213 — 6213 — 6213
g57 5000 10000 4112 4132 4145 4220 4141 4305 4145 4220
g58 5000 29570 27885 — — 29569 — 29569 — 29570
g59 5000 29570 7539 7546 — 14731 — 14731 — 14731
g60 7000 17148 17148 — — 17148 — 17148 — 17148

g61 7000 17148 7110 7114 — 8748 — 8751 — 8748
g62 7000 14000 5743 5758 5788 6534 5774 6534 5788 6541
g63 7000 41459 39083 39089 — 41459 — 41459 — 41459
g64 7000 41459 10814 10819 — 20775 — 20775 — 20792
g65 8000 16000 6534 6561 6579 7256 6573 7256 6579 7349
g66 9000 18000 7474 7495 7522 8497 7505 8497 7522 8500
g67 10000 20000 8155 8185 8220 9299 — 9299 8220 9303
g70 10000 9999 9999 — — 9999 — 9999 — 9999

g72 10000 20000 8264 8296 8337 9357 — 9357 8337 9376
g77 14000 28000 11674 11712 11691 13296 — 13296 11691 13455
g81 20000 40000 16470 16525 16485 19088 — 19088 16485 19580

96

4.4. Implementation and Experimental Results

Table 4.6: For each value of k, the number of instances for which an improving flip of
size exactly k was found.

k 2 3 4 5 6 7 8 9 10 11 12 13
unit c = 2 0 0 0 2 0 0 0 0 0 0 0 1
unit c = 3 3 1 3 0 0 1 0 0 0 0 0 0
unit c = 4 2 0 3 3 1 0 0 0 0 0 0 0

signed c = 2 0 0 1 0 0 1 0 0 0 0 0 0
signed c = 3 0 4 0 2 3 1 1 8 3 0 0 0
signed c = 4 1 2 4 3 6 5 4 0 0 0 0 0

sum 6 7 11 10 10 8 5 8 3 0 0 1

Table 4.7: For each value of k, the number of instances for which the first improving flip
that was found had size exactly k.

k 2 3 4 5 6 7 8 9 10
unit c = 2 1 0 0 2 0 0 0 0 0
unit c = 3 4 3 1 0 0 0 0 0 0
unit c = 4 5 0 1 2 1 0 0 0 0

signed c = 2 0 0 1 0 0 1 0 0 0
signed c = 3 7 10 1 3 0 0 0 0 1
signed c = 4 3 13 5 2 2 0 0 0 0

sum 20 26 9 9 3 1 0 0 1

number of improved instances and the time when LS found the first improvement.
It is also interesting to see for which value of k the first improvement was found
(in other words, the smallest value k such that the MOH solutions are not k-flip
optimal). Table 4.7 shows for how many instances which value of k was the smallest
to obtain an improvement. On average, this value of k was 3.39. Hence, it is indeed
helpful to consider larger values of k than the commonly used values of 1 or 2.

We summarize our main experimental findings as follows. First, parameterized lo-
cal search can be used successfully as a post-processing for state-of-the-art heuristics
for Max c-Cut, in many cases leading to new record solutions for c > 2 (see Ta-
bles 4.4 and 4.5). Second, the number of instances where an improvement was found
is larger for LS than for the ILP approaches. Third, to find improved solutions, it is
frequently necessary to explore k-flip neighborhoods for larger values of k (see Ta-
bles 4.6 and 4.7). Finally, this can be done within an acceptable amount of time by
using our algorithm for LS Max c-Cut and our speed-up strategies.

97

Chapter 4. Parameterized Local Search for Max c-Cut

4.5 Concluding Remarks

In this chapter we analyzed LS Max c-Cut from both a theoretical and practical
point of view. Form a negative point of view, we showed that both the strict and
the permissive version of LS Max c-Cut cannot be solved in f(k) · no(k) time for
any computable function f , unless the ETH fails. From a positive point of view, we
presented an algorithm that solves these problems in ∆O(k) · nO(1) time. Moreover,
we implemented this algorithm and evaluated its performance as a post-processing
for a state-of-the-art heuristic for Max c-Cut. Our experimental findings indicate
that parameterized local search might be a promising technique in the design of
local search algorithms and that its usefulness should be explored for further hard
problems, in particular as post-processing for state-of-the-art heuristics to improve
already good solutions.

Open questions. Our results in this chapter leave several questions open and
give raise to new research directions. From a practical point of view, it would be
interesting to consider a combined implementation of the MoH algorithm with our
hill-climbing algorithm based on the k-flip neighborhood. In such a combined imple-
mentation, one could for example consider two different time limits t1 and t2: First,
until time limit t1 is reached, we let the MoH-algorithm run. Afterwards, we take
the best found solution by MoH as starting solution for our hill-climbing algorithm
which we then run until time limit t2 is reached. It would be interesting to ana-
lyze the final solution quality with respect to these two time limits. In other words,
it would be interesting to analyze when switching from MoH to our hill-climbing
algorithm is promising. Such an approach could also be considered with respect
to combinations of other state-of-the-art heuristics for Max c-Cut. For example
for c = 2, that is, for Max Cut, one could consider analyzing the usefulness of
our hill-climbing algorithm as a post-processing algorithm for algorithms like TS-
UBQP [103] or TSHEA [177].

Regarding the practical evaluation of parameterized local search algorithms, we
believe that some of the techniques introduced in this chapter might find successful
applications also for other problems. In particular, the technique we introduced to
prevent redundantly checking candidates (see Lemma 4.15) seems promising: We
can ignore candidates that contain a vertex v for which no vertex of distance O(k)
has changed since the last time we verified that v is not contained in any improving
candidate. This technique was already successfully adapted in a local search solver
for Weighted Vertex Cover [164]3 and we believe that it might find successful

3This bachelor’s thesis was co-supervised by me.

98

4.5. Concluding Remarks

application for problems like Max SAT [161] or Hitting Set. It seems possible
to generalize or adapt the concept of candidate support graphs to formalize this
technique for a large class of local search problems. In particular for Max SAT this
seems possible, since flipping the truth value of a variable v only has impact on other
variables that share a clause with v.

From a theoretical point of view, one could ask for a smaller parameter in the
basis of the worst-case running time. For example, one may ask whether we can
replace the maximum degree in the basis by the h-index of the input graph, that
is, if we can solve Max c-Cut in hO(k) · nO(1) time. In the aim of developing an
algorithm with such a running time, one could for example branch into all possible
ways to flip up to k high-degree vertices. For each such branch, one then needs
to find a coloring that improves over the initial coloring that only flips low-degree
vertices. This would then necessitate solving a gap-version of Max c-Cut similar
to the one introduced for LS Vertex Cover in Chapter 3.

Based on the W[1]-hardness results for LS Min Bisection and LS Max Bi-
section with respect to the search radius k, one might also consider revisiting the
parameterized complexity of these problems with respect to k plus some additional
parameter ℓ. So far, the only known algorithm for LS Min Bisection and LS
Max Bisection run in FPT-time with respect to k on graphs on bounded local
treewidth [52]. These algorithms imply that LS Min Bisection and LS Max Bi-

section can be solved in 2∆
O(k) ·nO(1) time, but the existence of algorithms for these

problems that run in ∆O(k) · nO(1) time are open. Based on the restriction that each
part of the partition is equally-sized in any solution of these problems, the input
graph is not a candidate support graph for these local search problems. In other
words, one might need to consider candidates that are not connected in the input
graph to achieve a better solution. One might also look into the complexity of local
search for the even more general Graph Partitioning problem [7]. Here, Graph
Partitioning asks for an r-coloring of the vertex set of a graph, such that the total
number of properly colored edges is minimized, under the restriction that each color
may be assigned to at most c · +n

r
, vertices. Hence, Min Bisection is the special

case of Graph Partitioning where r = 2 and c = 1. Graph Partitioning has
applications in parallel computing, where the goal is to distribute computation units
(the vertices) across r processors so that as few communications (the edges of the
graph) as possible are required between different processors [147]. Hence, improving
over currently best heuristics for Graph Partitioning is highly important. Can
hill-climbing algorithms based on scalable neighborhoods achieve this?

99

Chapter 4. Parameterized Local Search for Max c-Cut

100

Chapter 5

Graph Clustering Problems under
the Lens of Parameterized Local
Search

Graph-based data clustering is a fundamental task with numerous applications [150].
Within this broad setting, we focus on the approach of modifying an input graph into
a cluster graph (that is, a disjoint union of cliques) with as few edge modifications
as possible. Herein, edges may be deleted or inserted, leading to the well-known
Cluster Editing or Correlation Clustering problems [12, 14, 153]. More-
over, Cluster Deletion is the problem version where only edge deletions are
allowed [153].

Cluster Deletion and Cluster Editing are highly relevant in practice,
with application areas ranging from bioinformatics [14] to data mining [12] and psy-
chology [163]. Unfortunately, Cluster Deletion and Cluster Editing are NP-
hard [111,153]. Therefore, efforts have been made to circumvent this hardness. One
prominent approach is parameterized algorithms [20, 34, 53, 75, 81, 117]. Given the
amount of research on parameterized algorithms and the practical relevance, it is no
surprise thatCluster Editing was selected as the problem for the sixth installment
of the parameterized implementation challenge PACE 2021 [99]. The results revealed
the strength of local search for Cluster Editing: The top ten submissions in the
heuristic track all involve local search. Moreover, the top three submissions always
returned a solution less than 1.001 times larger than the optimal solution, that is, the
relative error is below 10−3. This is in stark contrast to the best-known theoretical
polynomial-time approximation having an approximation factor of 2.06 [32].

In this chapter we complement the results of the PACE 2021 heuristic track with

101

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

a theoretical study of the local search problems associated with Cluster Editing
and Cluster Deletion. More precisely, we study the following question: Can
we improve a given clustering of the input graph G by moving at most k vertices
to different clusters? Here, a clustering can be viewed as an equivalence relation
“which vertices will end up in the same cluster?” or, equivalently, a partition of the
vertex set of G. Many local search algorithms submitted to PACE 2021 try to move
vertices between clusters to improve their solution [13,19,70,99,160]. For Cluster
Editing, we are free to move any vertex in any cluster (inserting missing edges
within a cluster and deleting edges between clusters) while for Cluster Deletion
we have to ensure that there are no missing edges within any cluster we create. The
respective local search versions of the problems are called LS Cluster Editing
and LS Cluster Deletion (see Section 5.1 for precise problem definitions).

Related work. Dörnfelder et al. [43] showed the W[1]-hardness of a local search
version of Cluster Editing with a different local neighborhood: they search for
a better solution by modifying at most k edges in the given solution. Recently, Luo
et al. [119] considered the closely related Dynamic Cluster Editing problem, in
which a given clustering C for a graph G has to be adapted while the graph G changes
dynamically, keeping the modification distance between successive clusterings low.
In this setting, the main question is whether minor changes to C are sufficient to pro-
duce a good clustering for the (slightly) changed new graph. Hence, the old graph G
is actually irrelevant for the computational problem, there are only minor technical
differences to LS Cluster Editing. Luo et al. [119] measure the distance to C
by the number of vertices moving to a different cluster (they call this “matching
distance”)—the same measure we use. Luo et al. analyzed the parameterized com-
plexity of Dynamic Cluster Editing with respect to the solution size r (number
of edges to modify in G) and the number k of changes allowed to be done to the given
solution: They obtained W[1]-hardness for each of the parameters k and r individu-
ally and fixed-parameter tractability with respect to the combined parameter k + r.

Our results. We consider the number k of vertices allowed to be moved to
different clusters, since this number can be expected to be small. In fact, k assumes
mostly one-digit values in PACE 2021 local search submissions. Again, this scalable
neighborhood has a size of nO(k), that is, LS Cluster Deletion and LS Cluster
Editing admit trivial XP-algorithms when parameterized by k. In contrast, we show
that LS Cluster Deletion and LS Cluster Editing are—like many other local
search problems—W[1]-hard with respect to the search radius k. To cope with this
hardness, we try to combine k with different structural parameters ℓ. If a parameter

102

5.1. Problem-Specific Notation

combination k + ℓ allows for fixed-parameter tractability, then we aim for running
times of the form ℓO(k) ·nO(1). Thus, the resulting algorithms are expected to be very
efficient in practice, which is particularly important since local search subroutines
are called excessively in the solvers (see for example the PACE 2021 solvers [99]).

More precisely, we combine k with the maximum degree ∆, the maximum size of
any clique in the given solution, or the cluster vertex deletion number cvd, that is,
the number of vertices to remove to obtain a cluster graph.

In Section 5.2, we present some basic observations about both considered prob-
lems and derive algorithms for both problems that run in (3 · e)k ·∆2k · nO(1) time.
Intuitively, these algorithms are obtained by the observation that one can find a
better solution by only moving vertex sets that are connected in the second power
of the input graph.

In Section 5.3, we complement these algorithms with running time lower bounds
for the strict version of LS Cluster Editing and the strict and the permissive
version of LS Cluster Deletion. In particular, we show that the strict and the
permissive version of LS Cluster Deletion do not admit an FPT-algorithm with
respect to the sum of k and the maximum cluster size, unless FPT = W[1]. For the
strict version of LS Cluster Editing, we show W[1]-hardness (i) with respect to
the sum of k, the maximum cluster size, and the degeneracy of the input graph G and
(ii) with respect to k in the restricted case that the given clustering consists of only
two clusters. The employed reductions also show that neither LS Cluster Editing
nor LS Cluster Deletion can be solved in f(k) · no(k) time unless the ETH fails.
This shows that in the above-mentioned algorithms the O(k) in the exponent cannot
be replaced by o(k).

In Section 5.4, we present algorithms for the permissive versions of both LS
Cluster Deletion and LS Cluster Editing that run in (cvd ·k)O(k) ·nO(1) time.
As an intermediate result, we obtain an algorithm solving Cluster Deletion in
cvdcvd ·nO(1) time.

5.1 Problem-Specific Notation

Let G = (V,E) be a graph. A partition C of V is called a clustering of G. Each vertex
set C of C is called a cluster. For a clustering C, we denote by Cl(C) := ⋃

C∈C
(
C
2

)
the

edges inside the clusters of C. We say that C is a proper clustering of G, if Cl(C) ¦ E.
Let Ç : V → N be a coloring of V . We say that color i ∈ N is used by Ç if there

is at least one vertex v ∈ V with Ç(v) = i. For a coloring Ç, let CÇ denote the
clustering of G where for each color i used by Ç, Ç−1(i) = {v′ ∈ V | Ç(v′) = i}
is a cluster of CÇ. We call Ç a cluster-coloring of CÇ and we call CÇ the clustering

103

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

G C C ′
1-move

C ′′
1-move

2-move

Figure 5.1: A graph G, three clusterings C, C′, and C′′ of G, and the move-distance
between these clusterings. The blue polygons indicate the individual clusters of these
three clusterings. The red edges indicate the necessary edge modifications to obtain the
corresponding cluster graph form G. Dashed red edges are edges of G that have to be
removed and solid red edges are edges that have to be added to G to obtain the respective
clusterings.

of Ç. Note that each clustering has infinitely many cluster-colorings and that all
these cluster-colorings are isomorphic. Here, two colorings Ç and Ç′ are isomorphic
if there is a bijection f : N→ N such that Ç = f ◦ Ç′.

Next, we define the considered scalable neighborhood for clusterings of a given
graph, namely, the k-move neighborhood. This neighborhood is defined over the flip-
distance between the respective cluster-colorings. To better illustrate the connection
between the k-move neighborhood and the flip-distance between colorings, we may
denote the flip-distance between two colorings in this chapter as the move-distance.

Let Ç and Ç′ be colorings of V . We denote by DMove(Ç, Ç
′) := {v ∈ V |

Ç(v) ̸= Ç′(v)} the vertices that receive different colors under Ç and Ç′. Moreover,
we let dmove(Ç, Ç

′) := |DMove(Ç, Ç
′)| denote the move-distance between the color-

ings Ç and Ç′. Note that Dflip(Ç, Ç
′) = DMove(Ç, Ç

′) and dflip(Ç, Ç
′) = dmove(Ç, Ç

′).
Let k ∈ N. Two colorings Ç and Ç′ are k-move neighbors if dmove(Ç, Ç

′) f k. Analo-
gously, two clusterings C and C ′ are k-move neighbors if there is a cluster-coloring Ç
of C and a cluster-coloring Ç′ of C ′ such that Ç and Ç′ are k-move neighbors. We also
denote by dmove(C, C ′) the smallest integer k such that C and C ′ are k-move neighbors.
An example of k-move neighbors is depicted in Figure 5.1. Note that dmove(C, C ′) can
be computed in polynomial time [119].

For a clustering C we define cost(C) := |Cl(C) · E|. Note that costG(C) =

104

5.2. Basic Observations

∑
C∈C costG(C), where costG(S) := |

(
S
2

)
\EG(S)|+ |EG(S,V \S)|

2
for each vertex set S ¦

V . That is, costG(S) counts the number of edges that are missing to make S a clique
plus the number of edges that need to be deleted to make S a connected component.
The number of edge deletion incident with some vertex of S is further divided by 2
because we account for these edge deletions for both endpoints each such deleted
edge. A clustering C ′ is improving over a clustering C, if costG(C ′) < costG(C). If the
graph G is clear from the context, we may omit the subscript. In this chapter, we
may also call a coloring Ç improving over a coloring Ç′, if CÇ is improving over CÇ′ .
An alternative evaluation of the quality of a clustering is the sum of values of the
individual clusters. Here, for each vertex set S ¦ V the value of cluster S is defined
by val(S) := 2 · |E(S)| − |

(
S
2

)
|.

Observation 5.1. Let C and C ′ be clusterings of a graph G. Then cost(C)−cost(C ′) =
−∑

C∈C val(C) +
∑

C′∈C′ val(C).

Hence, finding a clustering C of G that minimizes cost(C) is equivalent to finding
a clustering C of G that maximizes

∑
C∈C val(C).

We now formally define the considered problems in this chapter.

LS Cluster Deletion
Input: An undirected graph G = (V,E), k ∈ N, and a proper cluster-
ing C of G.
Question: Is there an improving k-move neighbor C ′ of C for G such
that C ′ is a proper clustering of G?

LS Cluster Editing
Input: An undirected graph G = (V,E), k ∈ N, and a clustering C of G.
Question: Is there an improving k-move neighbor C ′ of C for G?

Observation 5.2. Let G be a graph, let k ∈ N, and let C and C ′ be clusterings of G
with dmove(C, C ′) f k. Then, |C ∩ C ′| g |C| − 2k.

5.2 Basic Observations

In this section, we observe several properties of the structure of improving solutions
that we will use to present our algorithmic contributions. First, we show that the
second power of the input graph is a candidate support graph for LS Cluster
Deletion and for LS Cluster Editing. This then implies the existence of an

105

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

algorithm to enumerate a sufficient candidate collection for both problems in (e ·
∆(G)2)k · nO(1) due to Lemma 2.16.

To this end, we show in following that a given clustering can trivially be improved
over by moving a single vertex, if the clustering contains at least one cluster of
diameter larger than 2. As we can check this case in polynomial time, we will then
assume that in any given clustering in our instance of LS Cluster Editing, all
clusters have diameter at most two. Note that for LS Cluster Deletion, the
input clustering is proper and thus always fulfills this property.

Observation 5.3. Let G be a graph and let C be a clustering of G. If there is a
cluster C ∈ C, such that G[C] has diameter at least three, then there is an improving
1-move neighbor C ′ of C.

Proof. Let u, v ∈ C be two vertices of distance at least three in G. Thus, we
have N(u) ∩ N(v) = ∅. Assume without loss of generality that |N(v) ∩ C| f
|N(u) ∩ C|.

We show that C ′ := (C\{C})∪{C\{v}, {v}} is an improving 1-move neighbor of C.
Clearly, C ′ is a 1-move neighbor of C as only v moves to a previously empty cluster.
Moreover, this move costs |N(v)∩C| edge deletions but saves at least |N(u)∩C|+1
many edge insertions. Since |N(v)∩C| f |N(u)∩C|, it follows that C ′ is improving
over C.

Next, we show that for LS Cluster Deletion and for LS Cluster Editing,
G2 is a candidate-support graph. Here, G2 is the second power of G, that is, the
graph on the vertex set of G, where two distinct vertices of G2 are adjacent if and
only if these vertices have distance at most two in G.

Lemma 5.4. Let G = (V,E) be a graph, let Ç be a coloring of V , and let k g 1
be an integer. If there is an improving coloring Ç′ of V with dmove(Ç, Ç

′) f k, then
there is an improving coloring Ç∗ of V with dmove(Ç, Ç

∗) f k, such that DMove(Ç, Ç
∗)

is a connected vertex set in G2. Moreover, if CÇ and CÇ′ are proper clusterings of G,
then CÇ∗ is a proper clustering of G.

Proof. For each color i, let Vi := Ç−1(i) denote all vertices of V receiving color i
under Ç. First, we show that if G[Vi] has diameter more than two for some color i
used by Ç, then the statement holds. Let i be a color used by Ç, such that G[Vi]
has diameter at least three. Then due to Observation 5.3, there is a coloring Ç′ of V
with dmove(Ç, Ç

′) = 1 and where CÇ′ is improving over CÇ. Hence, the statement
holds, since DMove(Ç, Ç

′) contains a single vertex which implies that G2[DMove(Ç, Ç
′)]

is connected.

106

5.2. Basic Observations

Thus, in the following, assume that for each color i used by Ç, G[Vi] has diameter
at most two. Next, we show an even stronger property about the structure of the
clusters Vi.

Claim 4. Let i be a color used by Ç and let S ¦ Vi be a set of vertices of size
at most k such that less than |Vi\S|

2
vertices of Vi \ S have neighbors in S. Then,

there is a coloring Ç′ of V with dmove(Ç, Ç
′) f k, such that CÇ′ improves over CÇ

and G2[DMove(Ç, Ç
′)] is connected.

Proof of Claim. Consider the coloring Ç′ of V that agrees with Ç on all vertices
of V \ S and that assigns color j to each vertex of S, where j is a color not used
by Ç. Hence, CÇ′ = (CÇ \{Vi})∪{S, Vi \S}. This implies that the improvement of CÇ′

over CÇ is

(|S| · |Vi \ S| − |E(S, Vi \ S)|)− |E(S, Vi \ S)| = |S| · |Vi \ S| − 2 · |E(S, Vi \ S)|,

that is, the number of non-edges between vertices of S and Vi \ S minus the number

of edges between vertices of S and Vi \ S. Since less than |Vi\S|
2

vertices of Vi \ S
have neighbors in S, E(S, Vi \ S) has size less than |S|·|Vi\S|

2
. Consequently, CÇ′

improves over CÇ, since |S| · |Vi \ S| − 2 · |E(S, Vi \ S)| is strictly positive. Moreover,
dmove(Ç, Ç

′) = |S| f k and G2[S] is connected, since Vi has diameter at most two
in G. ■

Note that Claim 4 implies that we can assume in the following that for each color i
used by Ç and each subset S ¦ Vi, at least |Vi\S|

2
vertices of Vi \ S have neighbors

in S.
In the following, for each coloring Ç̂ of V , we denote by qÇ̂ the number of colors

used by Ç̂ that are not used by Ç. Let Ç′ be a coloring of V with dmove(Ç, Ç
′) f k and

where CÇ′ is improving over CÇ, such that qÇ′ is maximized over all colorings Ç̂ of V
with dmove(Ç, Ç̂) f k and where CÇ̂ is improving over CÇ. For each color i, let V ′

i :=
Ç′−1(i), let V +

i := V ′
i \ Vi denote the vertices moved to color i, let V −

i := Vi \ V ′
i

denote the vertices moved out of color i, and let V ◦
i := Vi ∩ V ′

i denote the vertices
receiving color i under both Ç and Ç′.

Claim 5. For each color i, G2[V +
i ∪ V −

i] is connected.

Proof of Claim. Note that for each color i, G2[V −
i] is connected, since by assumption,

G[Vi] has diameter at most two, if i is used by Ç and V −
i is empty, otherwise. Next,

we show that there is no color i, such that V ◦
i is empty and V +

i and V −
i are non-

empty. Assume towards a contradiction that this is not the case and let i be a
color with V ◦

i = ∅, V +
i ̸= ∅, and V −

i ̸= ∅. Hence, each vertex receiving color i
under Ç′ is contained in V +

i ¦ DMove(Ç, Ç
′). We define a coloring Ç′′ of V as follows:

107

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

The colorings Ç′ and Ç′′ agree on all vertices of V \ V +
i , and Ç′′ assigns color j

to all vertices of V +
i , where j is an arbitrary color used by neither Ç nor Ç′. Note

that V ′
i = Ç′′−1(j), which implies that CÇ′ = CÇ′′ . Consequently, CÇ′′ improves over CÇ

and dmove(Ç, Ç
′′) f k, since each vertex of V +

i is contained in DMove(Ç, Ç
′). Moreover,

since j is a color not used by Ç and color i is used by Ç, qÇ′′ > qÇ′ . This contradicts
the fact that Ç′ maximizes qÇ′ among all colorings Ç̂ of V with dmove(Ç, Ç̂) f k and
where CÇ̂ is improving over CÇ.

Hence, we can assume in the following, that for each color i, V ◦
i is non-empty

if both V +
i and V −

i are non-empty. To prove that for each color i, G2[V +
i ∪ V −

i] is
connected, it is thus sufficient to show the following.

1. For each color i, G2[V +
i] is connected and

2. for each color i, where all of the sets V +
i , V ◦

i , and V
−
i are non-empty, there is

a vertex v ∈ V ◦
i , such that v has at least one neighbor in both V +

i and V −
i .

First, we show Item 1. Assume towards a contradiction that there is a color i, such
that G2[V +

i] is not connected. Since G2[V +
i] is not connected, there are two vertices u

and v of V +
i that have distance at least three in G. Then by the proof of Observa-

tion 5.3, there is some vertex w ∈ {u, v}, such that one can obtain a clustering C ′′
that improves over CÇ′ by moving in CÇ′ the vertex w into a new cluster containing
only this vertex. Hence, there is a coloring Ç′′ of V with DMove(Ç

′, Ç′′) = {w} and
where Ç′′ is a cluster-coloring of C ′′. Note that this implies that dmove(Ç, Ç

′′) f k,
since w ∈ DMove(Ç, Ç

′). Moreover, we can assume without loss of generality that the
color Ç′′(w) is not used by Ç. Hence, qÇ′′ > qÇ′ , a contradiction. Consequently, for
each color i, G2[V +

i] is connected.
Second, we show Item 2. Let i be a color for which all the sets V +

i , V ◦
i , and V

−
i

are non-empty. We show that there is a vertex of V ◦
i which has a neighbor in V +

i

and a neighbor in V −
i . Recall that for each subset S ¦ Vi of size at most k, at

least |Vi\S|
2

vertices of Vi \S have neighbors in S. This holds in particular for S = V −
i

and Vi \ S = V ◦
i , since V

−
i ¦ DMove(Ç, Ç

′) has size at most k. Hence, at least
|V ◦

i |
2

vertices of V ◦
i have neighbors in V −

i .
To show that there is a vertex of V ◦

i which has a neighbor in V +
i and a neighbor

in V −
i , it thus suffices to show that more than

|V ◦
i |
2

vertices of V ◦
i have neighbors in V +

i .
Assume towards a contradiction that this is not the case. We show that there is a
coloring Ç′′ of V such that dmove(Ç, Ç

′′) f k, CÇ′′ improves over CÇ, and qÇ′′ > qÇ′ .
Consider the coloring Ç′′ of V that agrees with Ç′ on all vertices of V \ V +

i and that
assigns color j to each vertex of V +

i , where j is a color not used by Ç or Ç′. Hence,
CÇ′′ = (CÇ′ \ {V +

i ∪ V ◦
i }) ∪ {V +

i , V
◦
i }. This implies that the improvement of CÇ′′

108

5.2. Basic Observations

over CÇ′ is (|V +
i | · |V ◦

i | − |E(V +
i , V

◦
i)|)− |E(V +

i , V
◦
i)| = |V +

i | · |V ◦
i | − 2 · |E(V +

i , V
◦
i)|,

that is, the number of non-edges between vertices of V +
i and V ◦

i minus the number

of edges between vertices of V +
i and V ◦

i . Since at most
|V ◦

i |
2

vertices of V ◦
i have

neighbors in V +
i , E(V +

i , V
◦
i) has size at most

|V +
i |·|V ◦

i |
2

. Consequently, CÇ′ does not
improve over CÇ′′ , since |V +

i | · |V ◦
i | − 2 · |E(V +

i , V
◦
i)| is non-negative. This implies

that CÇ′′ improves over CÇ. Moreover, dmove(Ç, Ç
′′) f k, since DMove(Ç

′, Ç′′) = V +
i ¦

DMove(Ç, Ç
′). Finally, qÇ′′ > qÇ′ , since j is a color not used by Ç or Ç′, a contradiction.

Hence, more than
|V ◦

i |
2

vertices of V ◦
i have neighbors in V +

i and at least
|V ◦

i |
2

vertices
of V ◦

i have neighbors in V −
i . This implies that there is at least one vertex of V ◦

i

which has neighbors in both V +
i and V −

i . ■

Based on Claim 5, we are finally ready to prove that there is a coloring Ç∗ of V
with dmove(Ç, Ç

∗) f k and where CÇ∗ improves over CÇ, such thatDMove(Ç, Ç
∗) is a con-

nected vertex set in G2. Let S denote the connected components of G2[DMove(Ç, Ç
′)].

For each connected component S ∈ S, we denote by XS := {Ç(v), Ç′(v) | v ∈ S}
the set of all colors affected by moving the vertices of S. Due to Claim 5, for each
pair of distinct connected components S and S ′ of S, XS and XS′ are disjoint. In
the following, we show that it is sufficient to move only the vertices of a single con-
nected component of S to obtain a coloring Ç∗ for which CÇ∗ improves over CÇ. Note
that Vi = V ′

i for each color i ∈ N \ ∪S∈SS, which implies that cost(Vi) = cost(V ′
i).

Hence, the improvement of CÇ′ over CÇ is

cost(CÇ)− cost(CÇ′) =
∑

i∈N
cost(Vi)−

∑

i∈N
cost(V ′

i)

=
∑

i∈N
cost(Vi)− cost(V ′

i)

=
∑

S∈S

∑

i∈S
cost(Vi)− cost(V ′

i).

Since this improvement is positive, there is at least one connected component S ∈ S,
such that

∑
i∈S cost(Vi) − cost(V ′

i) > 0. Let Ç∗ be the coloring of V that agrees
with Ç on all vertices of V \ S and that agrees with Ç′ on all vertices of S. For each
color i, let V ∗

i := Ç∗−1(i). Note that V ∗
i = Vi for each color i ∈ N\S and V ∗

i = V ′
i for

each color i ∈ S. Hence, the improvement of CÇ∗ over CÇ is

cost(CÇ)− cost(CÇ∗) =
∑

i∈N
cost(Vi)−

∑

i∈N
cost(V ∗

i) =
∑

i∈N
cost(Vi)− cost(V ∗

i)

=
∑

i∈S
cost(Vi)− cost(V ∗

i) =
∑

i∈S
cost(Vi)− cost(V ′

i).

109

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

This improvement is positive by the choice of S. Since DMove(Ç, Ç
∗) = S has size at

most k and is connected in G2, the statement follows.
Note that if CÇ and CÇ′ are proper clusterings of G, then all describe clustering

that improves over CÇ are also proper. Hence, if CÇ and CÇ′ are proper clusterings
of G, then CÇ∗ is a proper clustering of G.

This implies that G2 is a candidate support graph for both LS Cluster Dele-
tion and LS Cluster Editing. Hence, Theorem 2.17 implies that we can search
the k-move neighborhood in FPT-time with respect to k and ∆(G), if we can deter-
mine efficiently for any given vertex set S of size at most k, whether there is a better
clustering one can obtain by moving only vertices of S.

In the following, we show that the latter task can be solved in time 3|S| ·nO(1). To
present our algorithm, we first define the notion of extensions of partial clusterings.

Let G = (V,E) be a graph and let C be a clustering of G. Moreover, let S ¦ V
and let CS be a clustering of G[S]. We say that C extends CS if for each cluster C ∈ CS
there is a cluster C ′ ∈ C with C ′ ∩ S = C.

Lemma 5.5. Let G = (V,E) be a graph, let Ç be a coloring of V , and let S ¦ V
be a vertex set. One can find a best coloring Ç′ of V fulfilling DMove(Ç, Ç

′) ¦ S and
find a best coloring Ç′′ of V fulfilling DMove(Ç, Ç

′′) ¦ S and for which CÇ′′ is a proper
clustering of G (if one exists) in time 3|S| · nO(1).

Proof. We describe a dynamic program solving this task.
Let CV \S be the unique clustering of G[V \S] that is extended by CÇ. Fix an arbi-

trary ordering of the clusters of CV \S and let Ci denote the ith cluster of CV \S accord-
ing to this ordering. The dynamic programming table T has entries of type T [X, i]
with X ¦ S and i ∈ [0, |CV \S|]. For X ¦ S and i ∈ [0, |CV \S|], let V i

X denote the
union of X and the first i clusters of CV \S. The entry T [X, i] stores the maximum
value of any clustering of G[V i

X] that extends {Cj | 1 f j f i}.
To compute an entry T [X, i], we iterate over all subsets X ′ of X and check for

the best way to distribute the vertices of X \X ′ among the first i−1 clusters of CV \S,
while moving all vertices of X ′ to cluster Ci.

Formally, for each X ¦ S, we set T [X, 0] := OPT(X), where OPT(X) denotes
the maximum value of any clustering of G[X]. For each i ∈ [1, |CV \S|] and each
X ¦ S, we set

T [X, i] := max
X′¦X

T [X \X ′, i− 1] + val(Ci ∪Xi).

Note that to evaluate all base cases T [X] of the dynamic programming table T ,
we have to compute for each X ¦ S, the optimal values of any clustering of G[X].

110

5.3. Running Time Lower Bounds

To this end, we describe an additional dynamic programming table D that fulfills
D[X] = OPT(X) for each X ¢ S. Next, we describe how to compute the entries
of the dynamic programming table D. Essentially, this dynamic programming table
works the same way as the table T , except that we do not move the vertices of X ′

into already existing clusters. Formally, we set D[∅] = 0 and for each X ¦ S, we set

D[X] := max
X′¦X
X′ ̸=∅

D[X \X ′] + val(X ′).

The maximum value of any sought clustering can then be found in T [X, |CV \S|].
A corresponding clustering (and thus a sought coloring) can be found via traceback.
Moreover, when searching only for a proper clustering, one has to only consider
subsets X ′ ¦ X during the evaluation of the recurrence of T (D) for which Ci ∪X ′

(X ′) is a clique in G.
The formal correctness proof is straightforward and thus omitted. It remains

to show the running time. For each X ¦ S and each i ∈ [0, |CV \S|], the recur-
rence for T [X, i] and D[X] can both be evaluated in 2|X| · nO(1) time. Since for
each j ∈ [0, |S|], there are exactly

(|S|
j

)
size-j subsets of S, all entries of both dy-

namic programming tables can be evaluated in
∑|S|

j=0

(|S|
j

)
·2j ·nO(1) = 3|S| ·nO(1) total

time.

Based on Theorem 2.17, we thus achieve an algorithm that runs in time (3 · e)k ·
∆2k · nO(1) for both LS Cluster Deletion and LS Cluster Editing, since for
both problems, G2 is a candidate support graph that has a maximum degree of ∆2.

Theorem 5.6. LS Cluster Editing and LS Cluster Deletion can be solved
in (3 · e)k ·∆2k · nO(1) time.

We remark that an algorithm solving LS Cluster Editing or LS Cluster
Deletion in f(∆) · nO(1) time is unlikely: Setting k := n and applying this al-
gorithm repeatedly until no improvement is found would solve Cluster Editing
or Cluster Deletion in f(∆) · nO(1) time; this is unlikely as both problems are
NP-hard for constant maximum degree [109].

5.3 Running Time Lower Bounds

In this section we present several hardness results for LS Cluster Deletion
and LS Cluster Editing.

111

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

5.3.1 A Lower Bound for LS Cluster Deletion

We start by presenting our hardness result for LS Cluster Deletion that also
hold for the permissive version.

Theorem 5.7. LS Cluster Deletion is

• W[1]-hard when parameterized by k+ℓ, where ℓ := maxC∈C |C| denotes the size
of the largest cluster in C, and

• cannot be solved in f(k+ ℓ) ·no(k+ℓ) time for any computable function f , unless
the ETH fails.

All of this holds even if the k-move neighborhood of C contains an optimal proper
clustering C∗.

Proof. We present a polynomial time reduction from Multicolored Clique. Re-
call that Multicolored Clique is W[1]-hard when parameterized by the size of
the sought clique [35].

Let I := (G = (V,E), k) be an instance of Multicolored Clique and let Vk
be the largest part of the k-partition (V1, . . . , Vk) of G. We define an instance I ′ :=
(G′ := (V ′, E ′), k′, C) of LS Cluster Deletion as follows: Initialize G′ as a copy
of G. Then for each i ∈ [1, k − 1], do the following:

• add a vertex xi to G
′ and

• for each vertex v ∈ Vi, add a vertex setKv of size z := 2k toG′ and turnKv∪{v}
and Kv ∪ {xi} into cliques in G′.

Let X := {xi | 1 f i f k − 1}. Finally, add two additional adjacent vertices a and b
to G′ and make X ∪ {a} a clique in G′. This completes the construction of G′. We
complete the construction of I ′ by setting k′ := 2k − 1 and

C := {X ∪ {a}, {b}} ∪
⋃

v∈V \Vk

{Kv ∪ {v}} ∪
⋃

v∈Vk

{{v}}.

Note that by construction, C is a proper clustering of G′ and |Cl(C)| = |V \Vk|·
(
z+1
2

)
+(

k
2

)
. For k = 4, an example of the initial clustering and an improving clustering (if

one exists) is depicted in Figure 5.2.
Next, we show that there is a clique of size k in G if and only if there is a

clustering C ′ of G′ that improves over C. We further show that each clustering C ′
of G′ that improves over C is a k′-move neighbor of C.

112

5.3. Running Time Lower Bounds

V4

x1 x2 x3

a b

V1 V2 V3

a)

x1 x2 x3

V4

a b

V1 V2 V3

b)

Figure 5.2: Two solutions for the instance of LS Cluster Deletion constructed in
the proof of Theorem 5.7 for k = 4. In both solutions, the clouds indicate the cliques Kv

for each vertex v ∈ V \ Vk and squared black vertices represent clusters only containing
a single vertex. a) shows the initial solution. b) shows an improving solution, if one
exists. Such an improving solution only exists, if there is a clique of size k in the graph of
the Multicolored Clique instance. This clique is indicated by the gray cluster in the
lower clustering.

113

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

(⇒) Let S be a clique of size k in G. Since (V1, . . . , Vk) is a k-partition of G, for
each i ∈ [1, k], S contains exactly one vertex of Vi. For each i ∈ [1, k], let vi be that
unique vertex of Vi ∩ S. We set

C ′ := {S, {a, b}} ∪
⋃

i∈[1,k−1]

{Kvi ∪ {xi}} ∪
⋃

v∈V \(Vk∪S)
{Kv ∪ {v}} ∪

⋃

v∈Vk\{vk}
{{v}}.

Note that by construction, C ′ is a proper clustering of G′ and |Cl(C ′)| =
(
k
2

)
+ |X| ·(

z+1
2

)
+ |V \ (Vk ∪S)| ·

(
z+1
2

)
+1 = |V \Vk| ·

(
z+1
2

)
+
(
k
2

)
+1 = |Cl(C)|+1 by definition

of C ′. Hence, C ′ is improving over C. Moreover, C ′ and C are k′-move neighbors.
(⇐) Let C ′ be a best proper clustering of G′ and suppose that C ′ improves over C.

Before we show that there is a clique of size k in G, we prove some properties of the
clustering C ′.

First, we show that for each vertex v ∈ V \Vk, there is a cluster C ′
v in C ′ withKv ¦

C ′
v. Suppose that there are at least two clusters C ′

v and C ′′
v in C ′ with Kv ∩ C ′

v ̸= ∅
and Kv ∩ C ′′

v ̸= ∅ and suppose that |C ′
v| g |C ′′

v | . Let v′ be an arbitrary vertex
of C ′′

v ∩Kv. Recall that by construction of G′, v′ has the same closed neighborhood as
any other vertex of Kv. Since C ′ is a proper clustering of G′, each vertex of C ′

v is part
of the closed neighborhood of v′. Hence, the clustering C ′′ := (C \ {C ′

v, C
′′
v }) ∪ {C ′

v ∪
{v′}, C ′′

v \ {v′}} is a proper clustering of G′ and improves over C ′. Since C ′ is a best
proper clustering of G′, no such two clusters exist and thus for each vertex v ∈ V \Vk,
there is a cluster C ′

v in C ′ with Kv ¦ C ′
v.

Next, we show that for each i ∈ [1, k−1] and each vertex v ∈ Vi, the cluster C ′
v is

eitherKv∪{v} orKv∪{xi}. Suppose that this is not the case and let i ∈ [1, k−1] and
let v be a vertex of Vi such that C ′

v /∈ {Kv ∪ {v}, Kv ∪ {xi}}. Note that this implies
that C ′

v = Kv. Furthermore, let C ′′ be the cluster of C ′ that contains v. Since C ′ is a
proper clustering of G′ and v has only neighbors in V ∪Kv, the cluster C

′′ is a clique
in G. Moreover, since G is k-partite, this implies that C ′′ has size at most k. Hence,
the clustering C ′′ := (C \{C ′

v, C
′′})∪{Kv ∪{v}, C ′′ \{v}} is a proper clustering of G′

and improves over C ′, since C ′
v has size 2k > k. Since C ′ is a best proper clustering

of G′, this implies that for each i ∈ [1, k − 1] and each vertex v ∈ Vi, the cluster C ′
v

is either Kv ∪ {v} or Kv ∪ {xi}.
Note that this implies that for each i ∈ [1, k−1], there is at most one vertex vi ∈ Vi

for which C ′
vi
̸= Kv ∪ {vi}. Intuitively, if such a vertex vi moves out of its cluster

from C, then the vertex xi has to move into the original cluster of vi.
Let S ′ ¦ V ′ be a minimal set of vertices that have to move to obtain C ′ from C.

Moreover, let S := S ′ ∩ (V \ Vk). By the above, for each i ∈ [1, k − 1], S contains
at most one vertex of Vi. Recall that each vertex of Vk has neighbors only in V \ Vk
and can thus only be in a cluster of C ′ with a (potentially empty) subset of vertices

114

5.3. Running Time Lower Bounds

of S. Hence, S ′ contains no vertex of Vk. In the following, we show that there is a
vertex vk ∈ Vk such that S ∪ {vk} is a clique of size k in G.

To this end, we analyze the number of edges in the clusters CS ¦ C ′ that con-
tain vertices of S ∪ Vk and have size at least two, and the number of edges in the
clusters CX ¦ C ′ that have size at least two and contain only vertices of X ∪ {a, b}.
By the above, each cluster C of CS contains only vertices of S ∪ Vk and C contains
at most one vertex of Vk, since Vk is an independent set in G′. Note that this im-
plies that each cluster of CS contains at least one vertex of S. Furthermore, note
that Cl(C ′) = ⋃

v∈V \Vk

(
C′

v

2

)
∪ Cl(CS) ∪ Cl(CX). Since for each vertex v ∈ V \ Vk, C ′

v

has size z + 1, |Cl(C ′)| = |V \ Vk| ·
(
z+1
2

)
+ |Cl(CS)|+ |Cl(CX)|. Moreover, since C ′ is

improving over C, |Cl(C ′)|− |Cl(C)| = |Cl(CS)|+ |Cl(CX)|−
(
k
2

)
g 1. In the following,

we show that |Cl(CS)|+ |Cl(CX)| f
(
k
2

)
+1 and that |Cl(CS)|+ |Cl(CX)| f

(
k
2

)
if there

is no vertex vk ∈ Vk such that S ∪ {vk} is a clique of size k in G. To this end, we
analyze the size of Cl(CS) and the size of Cl(CX) separately.

First, we show that if CS has size at least two, then |Cl(CS)| <
(|S|+1

2

)
. This follows

inductively by the fact that each cluster of CS has size at least two and contains at
most one vertex of Vk, and for each i g 2 and each j g 2,

(
i
2

)
+

(
j
2

)
<

(
i+j−1

2

)
.

Hence, Cl(CS) has size at least
(|S|+1

2

)
if and only if there is a vertex vk ∈ Vk such

that CS = {S ∪ {vk}}. Moreover, this implies that |Cl(CS)| f
(|S|+1

2

)
.

Second, we bound the size of Cl(CX). Since for each i ∈ [1, k − 1], if there is a
vertex vi ∈ Vi ∩ S, then the vertex xi moves to the cluster containing all vertices
of Kvi , that is, xi is not contained in any cluster of CX . Hence, at most k − 1− |S|
vertices of X are contained in clusters of CX . Since b is adjacent only to a, this
implies that |Cl(CX)| f

(
k−|S|

2

)
+ 1.

Finally, we show that for some vertex vk ∈ Vk, S ∪ {vk} is a clique of size k in G.
Assume that |S| < k−1. Hence, by the above |Cl(CS)|+ |Cl(CX)| f

(|S|+1
2

)
+
(
k−|S|

2

)
+

1 <
(
k
2

)
+ 1 and thus |Cl(CS)| + |Cl(CX)| f

(
k
2

)
. Since |Cl(C ′)| > |Cl(C)|, this is not

possible.

Consequently, |S| = k − 1. Hence, by the above |Cl(CS)| + |Cl(CX)| f
(|S|+1

2

)
+(

k−|S|
2

)
+ 1 =

(
k
2

)
+ 1. Hence, |Cl(C ′)| f |Cl(C)| + 1. Since C ′ improves over C,

|Cl(CS)| + |Cl(CX)| =
(
k
2

)
+ 1. As shown before, |Cl(CS)| + |Cl(CX)| =

(
k
2

)
+ 1 only

if CS consists of a single cluster C ′ := S ∪{vk} for some vertex vk ∈ Vk. Hence, there
is a clique of size k in G and I is a yes-instance of Multicolored Clique.

Moreover, note that this implies that C ′ is a k′-move neighbor of C, since only
the k−1 vertices of S, the k−1 vertices of X, and either a or b changed their cluster.

This completes the correctness of the reduction. Next we discuss the implications
for lower bounds. Let ℓ := maxC∈C |C|. Recall that ℓ = 2k + 1 since z = 2k.

115

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

Since Multicolored Clique is W[1]-hard when parameterized by k and cannot
be solved in f(k) ·no(k) time for any computable function f , unless the ETH fails [35],
this implies that LS Cluster Deletion is W[1]-hard when parameterized by k′+ℓ
and cannot be solved in f(k′ + ℓ) · |V ′|o(k′+ℓ) time for any computable function f ,
unless the ETH fails, since |V ′| ∈ nO(k).

Note that due to the last property of Theorem 5.7, the permissive version of LS
Cluster Deletion shares the same ETH-based lower bound and does not admit
an FPT-algorithm with respect to k + ℓ, unless FPT = W[1].

5.3.2 Auxiliary Lower Bounds for Densest-k-Subgraph

In the remainder of the section, we present our hardness results for LS Cluster
Editing. These are obtained by reductions from restricted instances of Densest-
k-Subgraph, which is defined as follows:

Densest-k-Subgraph
Input: A undirected graph G = (V,E), k ∈ N, and d ∈ N.
Question: Is there a size-k subset S ¦ V such that |E(S)| g

(
k
2

)
− d?

Hence, we first show that Densest-k-Subgraph provides these hardness re-
sults on the desired restricted instances. In the following, we denote by ¶(G) the
degeneracy of G.

Theorem 5.8. Even if d = k−1
2
, Densest-k-Subgraph is W[1]-hard when param-

eterized by k+¶(G) and cannot be solved in f(k) ·no(k) time for any computable func-
tion f , unless the ETH fails. This holds even on instances where |E(S)| <

(
k−1
2

)
− k−1

4

for each vertex set S of size k − 1.

The proof of Theorem 5.8 is based on three different reductions that use the
following fact.

Fact 5.9.
(
a+b
2

)
=

(
a
2

)
+ a · b+

(
b
2

)
.

We now present our first step to prove Theorem 5.8, namely the W[1]-hardness
of Densest-k-Subgraph when parameterized by k plus the degeneracy of G.

Lemma 5.10. Even if d = k, Densest-k-Subgraph is W[1]-hard when parame-
terized by k+ ¶(G). This holds even on instances where |E(S)| <

(
k−1
2

)
− k

2
for each

vertex set S of size k − 1.

116

5.3. Running Time Lower Bounds

Proof. We present a parameterized reduction from Multicolored Clique.

Let I = (G = (V,E), k) be an instance of Multicolored Clique with k > 4.
Moreover letG′ = (V ′, E ′) be the graph obtained by subdividing each edge ofG. Note
thatG′ is a 2-degenerate bipartite graph. Now, I is a yes-instance of Multicolored
Clique if and only if I ′ := (G′, k′ :=

(
k
2

)
+ k, d′ :=

(
k′

2

)
− 2 ·

(
k
2

)
) is a yes-instance

of Densest-k-Subgraph. We define an instance I ′′ = (G′′ = (V ′′, E ′′), k′′, d′′)
of Densest-k-Subgraph as follows: We initialize G′′ as G′ and add a clique K∗ of
size k∗ :=

(
k′

2

)
− 2 ·

(
k
2

)
− k′ to G′′, such that each vertex of V is adjacent to each

vertex of K∗. Finally, we set k′′ := k′ + k∗ and d′′ := k′′.

We next show that I ′ is a yes-instance of Densest-k-Subgraph if and only if I ′′

is a yes-instance of Densest-k-Subgraph.

(⇒) Let S ′ ¦ V ′ be a vertex set of size k′ such that |EG′(S ′)| g 2 ·
(
k
2

)
. We

set S ′′ := S ′ ∪ K∗ and show that |EG′′(S ′′)| g
(
k′′

2

)
− k′′. Since each vertex of K∗

is adjacent to each other vertex in S ′′, there are
(
k∗

2

)
+ k∗ · k′ edges incident with

vertices of K∗ in S ′′. Additionally, EG′′(S ′′) contains exactly the edges of EG′(S ′).
Hence,

|EG′′(S ′′)| =
(
k∗

2

)
+ k∗ · k′ + |EG′(S ′)|

g
(
k∗

2

)
+ k∗ · k′ +

(
k′

2

)
−

((
k′

2

)
− 2 ·

(
k

2

))

Fact 5.9
=

(
k∗ + k′

2

)
−

((
k′

2

)
− 2 ·

(
k

2

)
− k′ + k′

)

=

(
k′′

2

)
− (k∗ + k′) =

(
k′′

2

)
− d′′.

Hence, I ′′ is a yes-instance of Densest-k-Subgraph.

(⇐) Let S ′′ ¦ V ′′ be a vertex set of size k′′ such that |EG′′(S ′′)| g
(
k′′

2

)
− d′′. We

can assume without loss of generality that S ′′ contains all vertices of K∗ since each
of these vertices is adjacent to each other vertex of G′′. We set S ′ := S ′′ \ K∗ and
show that |EG′(S ′)| g 2 ·

(
k
2

)
. Since each vertex of K∗ is adjacent to each other vertex

in S ′′, there are
(
k∗

2

)
+ k∗ · k′ edges incident with vertices of K∗ in S ′′. Additionally,

117

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

EG′′(S ′′) contains exactly the edges of EG′(S ′). Hence,

|EG′(S ′)| = |EG′′(S ′′)| −
((

k∗

2

)
+ k∗ · k′

)
g

(
k′′

2

)
− d′′ −

((
k∗

2

)
+ k∗ · k′

)

Fact 5.9
=

(
k∗

2

)
+ k∗ · k′ +

(
k′

2

)
− d′′ −

((
k∗

2

)
+ k∗ · k′

)
=

(
k′

2

)
− d′′

=

(
k′

2

)
− (k∗ + k′) =

(
k′

2

)
−

((
k′

2

)
− 2 ·

(
k

2

)
− k′ + k′

)
= 2 ·

(
k

2

)
.

Hence, I ′ is a yes-instance of Densest-k-Subgraph.
Instance restrictions. By construction, G′ is 2-degenerate. Since G′′ consists

ofG′ and k∗ ∈ O(k4) additional vertices, it follows that the degeneracy ofG′′ isO(k4).
It remains to show that |EG′′(S ′′)| <

(
k′′−1

2

)
− k′′

2
for each vertex set S ′′ ¦ V ′′ of

size k − 1. Let S ′′ ¦ V ′′ be any vertex set of size k′′ − 1 that maximizes |EG′′(S ′′)|.
Hence, we can assume that S ′′ contains all vertices of K∗. Let S ′ := S ′′ \K∗. Hence,
S ′ has size k′ − 1. Since G′ is 2-degenerate, |EG′(S ′)| f 2 · (k′ − 1) < k2 + k.

Hence, |EG′′(S ′′)| f
(
k∗

2

)
+ k∗ · (k′ − 1) + |EG′(S ′)| <

(
k∗

2

)
+ k∗ · (k′ − 1) + k2 + k.

We show that this is smaller than
(
k′′−1

2

)
− k′′

2
. Since

(
k′′ − 1

2

)
− k′′

2
=

(
k∗ + (k′ − 1)

2

)
− k∗ + k′

2

=

(
k∗

2

)
+ k∗ · (k′ − 1) +

(
k′ − 1

2

)
−

(
k′

2

)
− 2 ·

(
k
2

)

2
,

it remains to show that k2 + k <
(
k′−1
2

)
− (k

′

2)−2·(k2)
2

. This is the case if and only if

0 < 2 ·
(
k′ − 1

2

)
−

(
k′

2

)
+ 2 ·

(
k

2

)
− 2k2 − 2k

=

(
k′ − 1

2

)
+

((
k′ − 1

2

)
−

(
k′

2

))
+ 2 ·

(
k

2

)
− 2k2 − 2k

=

(
k′ − 1

2

)
− (k′ − 1) + 2 ·

(
k

2

)
− 2k2 − 2k

=

((k+1
2

)
− 1

2

)
−

((
k + 1

2

)
− 1− 2 ·

(
k

2

)
+ 2k2 + 2k

)
.

This inequality holds, since k > 4. Consequently, |EG′′(S ′′)| <
(
k′′−1

2

)
− k′′

2
for each

vertex set S ′′ ¦ V ′′ of size k − 1, which proves the statement.

118

5.3. Running Time Lower Bounds

Next, we present our second step to prove Theorem 5.8, namely an extension of
the previous theorem to cases where d = k−1

2
.

Lemma 5.11. Even if d = k−1
2
, Densest-k-Subgraph is W[1]-hard when parame-

terized by k+ ¶(G). This holds even on instances where k is odd and where |E(S)| <(
k−1
2

)
− k−1

4
for each vertex set S of size k − 1.

Proof. We present a parameterized reduction fromDensest-k-Subgraph. Let I :=
(G := (V,E), k, d) be an instance of Densest-k-Subgraph with the restrictions
described in Lemma 5.10, that is, d = k and |E(S)| <

(
k−1
2

)
− k

2
for each vertex

set S ¦ V of size k−1. We define an instance I ′ := (G′ = (V ′, E ′), k′, d′) of Densest-
k-Subgraph where d′ = k′−1

2
as follows: We obtain G′ by adding a clique K∗ of

size k∗ := k + 1 to G such that each vertex of V is adjacent to each vertex of K∗.
Finally, we set k′ := k + k∗ = 2k + 1 and d′ := k′−1

2
= d. Next, we show that I is a

yes-instance of Densest-k-Subgraph if and only if I ′ is a yes-instance of Densest-
k-Subgraph.

(⇒) Let S be a vertex set of size k in G such that |EG(S)| g
(
k
2

)
− d. We

set S ′ := S ∪K∗ and show that |EG′(S ′)| g
(
k′

2

)
− d′ =

(
k′

2

)
− d. Since each vertex

of K∗ is adjacent to each other vertex of S ′, |EG′(S ′)| =
(
k∗

2

)
+ k∗ · k + |EG(S)| g(

k∗

2

)
+k∗ ·k+

(
k
2

)
−d =

(
k∗+k
2

)
−d =

(
k′

2

)
−d′. Hence, I ′ is a yes-instance of Densest-

k-Subgraph.
(⇐) Let S ′ be a vertex set of size k′ in G′ such that |EG′(S ′)| g

(
k′

2

)
− d′. We

can assume that S ′ contains all vertices of K∗, since each vertex of K∗ is adjacent
to each other vertex of V ′. We set S := S ′ \K∗ and show that |EG(S)| g

(
k
2

)
− d =(

k
2

)
− d′. Since each vertex of K∗ is adjacent to each other vertex of S ′, |EG(S)| =

|EG′(S ′)| −
(
k∗

2

)
− k∗ · k g

(
k′

2

)
− d′ −

(
k∗

2

)
− k∗ · k =

(
k+k∗

2

)
− d′ −

(
k∗

2

)
− k∗ · k =(

k∗

2

)
+ k∗ · k+

(
k
2

)
− d′ −

(
k∗

2

)
− k∗ · k =

(
k
2

)
− d′ =

(
k
2

)
− d. Hence, I is a yes-instance

of Densest-k-Subgraph.
Parameter bounds and instance restrictions. Recall that Densest-k-

Subgraph is W[1]-hard when parameterized by k+¶(G) even if d = k (Lemma 5.10).
Since we only added k + 1 additional vertices to G and no edges between vertices
of V to obtain G′, ¶(G′) f ¶(G)+k+1. Hence, Densest-k-Subgraph is W[1]-hard
when parameterized by k′ + ¶(G′) even if d′ = k′−1

2
.

Finally, we show that |EG′(S ′)| <
(
k′−1
2

)
− k′−1

4
for each vertex set S ′ ¦ V ′ of

size k′ − 1. Let S ′ ¦ V ′ be any vertex set of size k′ − 1 that maximizes |EG′(S ′)|.
Hence, we can assume that S ′ contains all vertices of K∗. Let S := S ′ \K∗. Hence, S
has size k−1. Thus, |EG′(S ′)| =

(
k∗

2

)
+k∗ ·(k−1)+|EG(S)|. We show that |EG′(S ′)| <(

k′−1
2

)
− k′−1

4
=

(
k′−1
2

)
− k

2
. By assumption, |EG(S)| <

(
k−1
2

)
− k

2
. Hence, it remains to

119

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

show that
(
k∗

2

)
+k∗ · (k−1)+

(
k−1
2

)
− k

2
f

(
k′−1
2

)
− k

2
. Since

(
k∗

2

)
+k∗ · (k−1)+

(
k−1
2

)
=(

k∗+(k−1)
2

)
=

(
k′−1
2

)
, the inequality holds.

To prove Theorem 5.8, it thus remains to show that Densest-k-Subgraph has
the desired ETH-based running time lower bound on these restricted instances. To
prove this, we make use of the following fact.

Observation 5.12. Let x ∈ N, let G = (V,E) be an x-partite graph with x-
partition (V1, . . . , Vx), and let S be a vertex set of size y with x f y f 2x. Then,
|E(S)| f

(
y
2

)
− (y − x). Moreover, if |E(S)| =

(
y
2

)
− (y − x), then for each i ∈ [1, x],

|Vi∩S| ∈ {1, 2} and for each vertex vi ∈ Vi∩S, vi is adjacent to each vertex of S \Vi.
We are now ready to present the third and final step to prove Theorem 5.8.

Lemma 5.13. Densest-k-Subgraph cannot be solved in f(k) · no(k) time for any
computable function f , unless the ETH fails. This holds even if d = k−1

2
on instances

where k is odd and where |E(S)| <
(
k−1
2

)
− k−1

4
for each vertex set S of size k − 1.

Proof. We present a polynomial time reduction from Multicolored Clique [35].
Let I := (G := (V,E), k) be an instance of Multicolored Clique with k > 1
and let (V1, . . . , Vk) be the k-partition of G. We define an instance I ′ := (G′ =
(V ′, E ′), k′, d′) of Densest-k-Subgraph where d′ = k′−1

2
as follows: We obtain G′

by adding a cliqueK∗ := {v∗i | 1 f i f k} to G such that each vertex v∗i is adjacent to
each vertex of V \Vi. Additionally, we add a vertex v∗ to G′ which is adjacent to each
other vertex. Finally, we set k′ := 2k+1 and d′ := k′−1

2
= k. Note that G′ is (k+1)-

partite with (k+1)-partition (V ′
1 , . . . , V

′
k+1), where V

′
k+1 := {v∗} and V ′

i := Vi ∪{v∗i }
for each i ∈ [1, k]. Next, we show that I is a yes-instance of Multicolored Clique
if and only if I ′ is a yes-instance of Densest-k-Subgraph.

(⇒) Let S be a clique of size k in G. We set S ′ := S ∪ K∗ ∪ {v∗} and show
that |EG′(S ′)| g

(
k′

2

)
− d′ =

(
k′

2

)
− k. Since S is a clique of size k in G and G is k-

partite, S contains for each i ∈ [1, k] exactly one vertex vi of Vi. Moreover, since v∗ is
adjacent to each other vertex in S ′ and since for each i ∈ [1, k], v∗i is adjacent to each
other vertex of S ′ besides vi, |EG′(S ′)| = |EG′(K∗ ∪ {v∗})| + |EG′(K∗ ∪ {v∗}, S)| +
|EG(S)| =

(
k+1
2

)
+ k · (k + 1) − k + |EG(S)|. Since S is a clique of size k in G,

|EG′(S ′)| =
(
k+1
2

)
+ k · (k + 1) − k +

(
k
2

)
=

(
(k+1)+k

2

)
− k =

(
k′

2

)
− d′. Hence, I ′ is a

yes-instance of Densest-k-Subgraph.
(⇐) Let S ′ be a vertex set of size k′ in G′ such that |EG′(S ′)| g

(
k′

2

)
− d′ =(

2k+1
2

)
−k. Since G′ is (k+1)-partite and S ′ has size 2k+1, due to Observation 5.12,

|EG′(S ′)| f
(
2k+1
2

)
− k. Hence, |EG′(S ′)| =

(
2k+1
2

)
− k and thus, due to Observa-

tion 5.12, for each i ∈ [1, k + 1], |S ∩ V ′
i | ∈ {1, 2} and each vertex of V ′

i ∩ S ′ is

120

5.3. Running Time Lower Bounds

adjacent to each vertex of S ′ \ V ′
i . Since S

′ has size 2k + 1 and V ′
k+1 = {v∗}, S ′ con-

tains for each i ∈ [1, k] at least one vertex vi of Vi. Let S := {vi | 1 f i f k}. Since S
is a subset of S ′, by the above, S is a clique in G′ and thus also a clique in G. Hence,
I is a yes-instance of Multicolored Clique.

Parameter bounds and instance restrictions. Recall that Multicolored
Clique cannot be solved in f(k) · no(k) time for any computable function f , unless
the ETH fails [35]. Since k′ ∈ O(k) and |V ′| ∈ nO(1), this implies that Densest-k-
Subgraph cannot be solved in f(k) · |V ′|o(k) time for any computable function f ,
unless the ETH fails.

Finally, we show that |EG′(S ′)| <
(
k′−1
2

)
− k′−1

4
for each vertex set S ′ ¦ V ′ of

size k′ − 1. Recall that G′ is (k + 1)-partite, S ′ has size k′ − 1 = 2k, and k > 1.
Hence, due to Observation 5.12, |EG′(S ′)| f

(
2k
2

)
−(k−1) <

(
2k
2

)
− k

2
=

(
k′

2

)
− k′−1

4
.

Now, Theorem 5.8 follows from Lemmas 5.11 and 5.13.

5.3.3 Lower Bounds for LS Cluster Editing

Based on these hardness results for Densest-k-Subgraph, we are now able to
analyze the parameterized complexity of LS Cluster Editing for the parameter
combination of k plus the size of the largest cluster of the initial clustering C.

Theorem 5.14. LS Cluster Editing is W[1]-hard when parameterized by k+ℓ+
¶(G), where ℓ := maxC∈C |C|. Moreover, unless the ETH fails, there is no computable
function f for which LS Cluster Editing can be solved in f(k + ℓ) · no(k+ℓ) time.

Proof. We present a parameterized reduction from Densest-k-Subgraph with
the restrictions listed in Theorem 5.8. Let I = (G = (V,E), k, d) be an instance
of Densest-k-Subgraph, where k is odd and d = k−1

2
such that |E(S)| <

(
k−1
2

)
−

k−1
4

for each vertex set S of size k−1. We define an instance I ′ := (G′ := (V ′, E ′), k, C)
of LS Cluster Editing with maxC∈C |C| ∈ O(k) as follows: We initialize G′ as G
and add for each vertex v ∈ V a set Kv of 7k+

k−3
2

vertices to G′ such that {v}∪Kv

is a clique in G′. Additionally, we add a clique K∗ of size 7k to G′ and add edges
to G′, such that each vertex of V is adjacent to each vertex of K∗. Finally, we
set C := {K∗}∪{{v}∪Kv | v ∈ V }. Note that by definition of C, each cluster C ∈ C
is a clique in G′, that is, C is a proper clustering of G′. The correctness proof is based
on the following claim.

Claim 6. Let C ′ := {K∗ ∪ S} ∪ {{Kv} | v ∈ S} ∪ {{v} ∪ Kv | v ∈ V \ S} be a
clustering of G′ for some vertex set S ¦ V . The improvement of C ′ over C is 2 ·
|EG(S)| −

(|S|
2

)
− |S| · k−3

2
.

121

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

Proof of Claim. We only have to consider the edges incident with at least one
vertex of S in Cl(C) and Cl(C ′). Let F := Cl(C) and let F ′ := Cl(C ′). Note that
the symmetric difference between F and F ′ are the edges of F · F ′ = {{v, x} | v ∈
S, x ∈ Kv∪K∗}∪

(
S
2

)
. More precisely, F \F ′ = {{v, x} | v ∈ S, x ∈ Kv} and F ′\F =

{{v, x} | v ∈ S, x ∈ K∗}∪
(
S
2

)
. By construction, all edges of F·F ′ exist in G′, except

for the edges of
(
S
2

)
\EG′(S) =

(
S
2

)
\EG(S). Hence, the improvement of C ′ over C is

∑
v∈S(|K∗| − |Kv|) + |EG′(S)| −

((|S|
2

)
− |EG′(S)|

)
= 2 · |EG(S)| −

(|S|
2

)
− |S| · k−3

2
.

This completes the proof. ■

Next, we show that I is a yes-instance of Densest-k-Subgraph if and only if I ′

is a yes-instance of LS Cluster Editing.
(⇒) Let S be a set of size k in G such that |EG(S)| g

(
k
2

)
− d. We set C ′ :=

{K∗ ∪ S} ∪ {{Kv} | v ∈ S} ∪ {{v} ∪ Kv | v ∈ V \ S}. Note that dmove(C, C ′) = k.
We show that C ′ is improving over C. Due to Claim 6 and since |EG(S)| g

(
k
2

)
− d

and d = k−1
2
, the improvement of C ′ over C is at least

(
k

2

)
− 2d− k · k − 3

2
=

(
k

2

)
− k + 1− k · k − 3

2
=

(
k

2

)
− k · k − 1

2
+ 1 = 1.

Hence, I ′ is a yes-instance of LS Cluster Editing.
(⇐) Suppose that I ′ is a yes-instance of LS Cluster Editing. Let C ′ be the

best clustering of G′ with dmove(C, C ′) f k. Since I ′ is a yes-instance of LS Cluster
Editing, C ′ ̸= C. We make some observations about the potential moves between C
and C ′. The goal is to show that there is a set S ¦ V of size at most k such
that C ′ = {K∗ ∪ S} ∪ {Kv | v ∈ S} ∪ {{v} ∪Kv | v ∈ V \ S}. To this end, we show
some intermediate results.

First, we show that for each vertex v ∈ V there is a cluster C ∈ C ′ with Kv ¦ C.
Suppose that this is not the case. Hence, there is a vertex v ∈ V and at least two
clusters C1 and C2 in C ′ containing vertices of Kv. Since Kv has size more than k,
at least one vertex of Kv is not moved. Assume without loss of generality that C1

contains this vertex. Hence, each vertex of C2 ∩ Kv moved to C2. Thus, C2 ∩ Kv

contains at most k vertices. Let x be an arbitrary vertex of C2 ∩Kv. Since Kv has
size more than 4k, C1 contains at least 3k vertices of Kv and at most k vertices
of V ′ \ Kv. By definition of Kv, the closed neighborhood of x is exactly Kv ∪ {v}.
Hence, x has at most k neighbors in C2, at least 3k neighbors in C1 and at most
k non-neighbors in C1. Consequently, not moving x to C2 yields a better clustering.
Since C ′ is the best clustering with dmove(C, C ′) f k, this is not possible.

Next, we show that there is a cluster C in C ′ with K∗ ¦ C. Suppose instead that
there are at least two clusters C1 and C2 in C ′ containing vertices of K∗. Since K∗

122

5.3. Running Time Lower Bounds

has size more than k, at least one vertex of K∗ is not moved. Assume without loss
of generality that C1 contains this vertex. Hence, each vertex of C2 ∩ K∗ moved
to C2. Thus, C2 ∩ K∗ contains at most k vertices. Let x be an arbitrary vertex
of C2 ∩K∗. Since K∗ has size more than 4k, C1 contains at least 3k vertices of K∗

and at most k vertices of V ′ \ K∗. By definition of K∗, the closed neighborhood
of x is exactly K∗ ∪ V . Hence, since each cluster in C contains at most one vertex
of V , x has at most k+1 neighbors in C2, at least 3k neighbors in C1 and at most k
non-neighbors in C1. Consequently, not moving x to C2 yields a better clustering.
Since C ′ is the best clustering with dmove(C, C ′) f k, this is not possible.

The above two paragraphs imply that only vertices of V moved to obtain C ′
from C. Next, we show that for each vertex v ∈ V , the cluster C of C ′ that contains v
either contains all vertices of K∗ or all vertices of Kv. Suppose that this is not the
case and let v be a vertex of V such that the cluster C ∈ C ′ with v ∈ C is not a
superset of K∗ and not a superset of Kv. Since v is only adjacent to at most one
vertex in each cluster of C \ {K∗, Kv ∪{v}}, v has at most k neighbors in C. Let K ′

v

be the cluster of C ′ containing all vertices of Kv. Since Kv has size more than 3k,
K ′

v contains at most k non-neighbors of v and at least 3k neighbors of v. Hence,
not moving v from K ′

v to C yields a better clustering. Since C ′ is the best clustering
with dmove(C, C ′) f k, this is not possible.

Summarizing, there is a nonempty vertex set S of size at most k such that C ′ =
{K∗ ∪ S} ∪ {Kv | v ∈ S} ∪ {{v} ∪Kv | v ∈ V \ S}. More precisely, the vertices of S
are exactly the vertices that are moved to obtain C ′ from C.

It remains to show that S has size k and that EG(S) = EG′(S) contains at
least

(
k
2

)
− d edges, that is, |EG(S)| g

(
k
2

)
− d.

Claim 7. S has size k.

Proof of Claim. Due to Claim 6 and since C ′ is improving over C, 2 · |EG(S)| g
|S| · k−3

2
+
(|S|

2

)
+ 1.

If |S| < k−1, then 2 · |EG(S)| f 2 ·
(|S|

2

)
< |S| · k−3

2
+
(|S|

2

)
+1. Since 2 · |EG(S)| g

|S| · k−3
2

+
(|S|

2

)
+ 1, we conclude |S| g k − 1.

Assume towards a contradiction that S has size exactly k − 1. By assumption,
|EG(S)| <

(
k−1
2

)
− k−1

4
= (k − 1) · (k−2

2
− 1

4
) = (k − 1) · 2k−5

4
. Hence, (k − 1) · 2k−5

2
>

2 · |EG(S)| g |S| · k−3
2

+
(|S|

2

)
+ 1 = (k − 1) · k−3

2
+
(
(k−1)

2

)
+ 1 = (k − 1) · 2k−5

2
+ 1, a

contradiction.
Consequently, S contains exactly k vertices since to obtain C ′ from C, each vertex

of S moved and dmove(C, C ′) f k. ■

Finally, we show that |EG(S)| g
(
k
2

)
− d. By Claim 6, 2 · |EG(S)| g |S| · k−3

2
+(|S|

2

)
+ 1 = 2k2−4k

2
+ 1 = k2 − k − (k − 1). Thus |EG(S)| g k2−k

2
− k−1

2
=

(
k
2

)
− d.

123

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

Hence, I is a yes-instance of Densest-k-Subgraph.
Parameter bounds. Recall that the size ℓ := maxC∈C |C| of the largest cluster

in C is O(k).
Due to Lemma 5.13, Densest-k-Subgraph cannot be solved in f(k) ·no(k) time

for any computable function f , unless the ETH fails. This implies that LS Cluster
Deletion cannot be solved in f(k+ℓ)·|V ′|o(k+ℓ) time for any computable function f ,
unless the ETH fails, since |V ′| ∈ nO(1).

Next, we analyze the degeneracy of G′. Since each vertex of Kv for some ver-
tex v ∈ V has only neighbors in Kv ∪ {v}, each such vertex has degree O(k) in G′.
Furthermore, each vertex of V has only |Kv| + |K∗| ∈ O(k) additional neighbors
in G′. Hence, ¶(G′) ∈ O(k + ¶(G)). Consequently, LS Cluster Editing is W[1]-
hard when parameterized by k + ℓ + ¶(G′), since due to Theorem 5.8, Densest-k-
Subgraph is W[1]-hard when parameterized by k + ¶(G).

Next, we show that even when the initial clustering consists only of two clusters,
LS Cluster Editing remains W[1]-hard when parameterized by k.

Theorem 5.15. Even when the initial clustering consists of only two clusters, LS
Cluster Editing is W[1]-hard when parameterized by k and cannot be solved in
f(k) · no(k) time for any computable function f , unless the ETH fails.

The prove Theorem 5.15, we first show the following auxiliary result.

Lemma 5.16. Even if d = k−1
4
, Densest-k-Subgraph is W[1]-hard when param-

eterized by k and cannot be solved in f(k) ·no(k) time for any computable function f ,
unless the ETH fails. This holds even if there is an integer r such that each ver-
tex v ∈ V has degree either 1 or r.

Proof. We show this statement in two steps. In the first step, we reduce from Mul-
ticolored Clique to Densest-k-Subgraph where d = k−1

4
. Afterwards, we

construct an equivalent instance where each vertex has degree either 1 or r.
The first reduction is similar to the one in the proof of Lemma 5.13. Let I :=

(G := (V,E), k) be an instance of Multicolored Clique where (V1, . . . , Vk) is
the k-partition of G. We define an instance I ′ := (G′ = (V ′, E ′), k′, d′) of Densest-
k-Subgraph where d′ = k′−1

4
as follows: We obtain G′ by adding a clique K∗ :=

{v∗i | 1 f i f k} to G such that for each i ∈ [1, k], v∗i is adjacent to each vertex

of V \Vi. Additionally, we add a clique K̃ of size 2k+1 to G′ and add edges such that

each vertex of G′ is adjacent to each vertex of K̃. Finally, we set k′ := 4k+1 and d′ :=
k′−1
4

= k. Note thatG′ is (3k+1)-partite with (3k+1)-partition (V ′
1 , . . . , V

′
3k+1), where

for each i ∈ [1, k], V ′
i := Vi ∪ {v∗i } and where for each i ∈ [k + 1, 3k + 1], V ′

i consists

124

5.3. Running Time Lower Bounds

of a single vertex of K̃. Next, we show that I is a yes-instance of Multicolored
Clique if and only if I ′ is a yes-instance of Densest-k-Subgraph.

(⇒) Let S be a clique of size k in G. We set S ′ := S ∪ K∗ ∪ K̃ and show
that |EG′(S ′)| g

(
k′

2

)
− d′ =

(
k′

2

)
− k. Since S is a clique of size k and G is k-partite,

S contains exactly one vertex vi from Vi for each i ∈ [1, k]. Moreover, since each

vertex of K̃ is adjacent to each other vertex in S ′ and since for each i ∈ [1, k], v∗i is

adjacent to each other vertex of S ′ besides vi, |EG′(S ′)| = |EG′(K∗∪ K̃)|+ |EG′(K∗∪
K̃, S)| + |EG(S)| =

(
3k+1
2

)
+ k · (3k + 1)− k + |EG(S)|. Since S is a clique of size k

in G, |EG′(S ′)| =
(
3k+1
2

)
+ k · (3k + 1)− k +

(
k
2

)
=

(
(3k+1)+k

2

)
− k =

(
k′

2

)
− d′. Hence,

I ′ is a yes-instance of Densest-k-Subgraph.
(⇐) Let S ′ be a vertex set of size k′ in G′ such that |EG′(S ′)| g

(
k′

2

)
− d′ =(

4k+1
2

)
−k. Since G′ is (3k+1)-partite and S ′ has size 4k+1, |EG′(S ′)| f

(
4k+1
2

)
−k due

to Observation 5.12. Hence, |EG′(S ′)| =
(
4k+1
2

)
−k and thus, due to Observation 5.12,

for each i ∈ [1, 3k+1], |S∩V ′
i | ∈ {1, 2} and each vertex of V ′

i ∩S ′ is adjacent to each
vertex of S ′\V ′

i . Since S
′ has size 4k+1 and V ′

i has size one for each i ∈ [k+1, 3k+1],
S ′ contains at least one vertex vi of Vi. Let S := {vi | 1 f i f k}. Since S is a subset
of S ′, by the above, S is a clique in G′ and thus also a clique in G. Hence, I is a
yes-instance of Multicolored Clique.

To obtain the further restriction that each vertex v ∈ V has degree either 1 or r,
we construct an equivalent instance I ′′ := (G′′ = (V ′′, E ′′), k′, d′) of Densest-k-
Subgraph as follows. Let n′ := |V ′|. Note that each vertex in G′ has degree at
most n′ − 1. We obtain G′′ by adding for each vertex v ∈ V ′, n′ − 1− |NG′(v)| new
vertices Xv to G′. Additionally, we add edges such that v is the unique neighbor
of each vertex of Xv in G′′ for each vertex v ∈ V ′. Hence, each vertex of V ′ has
degree n′ − 1 in G′′ and each vertex of V ′′ \ V ′ has degree one in G. It remains to
show that I ′ and I ′′ are equivalent. To this end, note that for each set S ′ ¦ V ′,
|EG′(S ′)| = |EG′′(S ′)|. Hence, if I ′ is a yes-instance of Densest-k-Subgraph,
then I ′′ is a yes-instance of Densest-k-Subgraph. Let S ′′ ¦ V ′′ of size k such
that |EG′′(S ′′)| g

(
k′

2

)
− d′ =

(
k′

2

)
− k′−1

4
. It suffices to show that S ′′ ¦ V ′. Since each

vertex of V ′′ \ V ′ has degree one in G′′, |EG′′(S ′′)| f
(
k′

2

)
− (k′ − 2) if S ′′ contains

at least one vertex of V ′′ \ V ′. By the fact that k′ = 4k + 1 g 5, k′ − 2 > k′−1
4

.
Hence, S ′′ ¦ V ′ and thus, I ′ is a yes-instance of Densest-k-Subgraph if I ′′ is a
yes-instance of Densest-k-Subgraph.

We are now able to prove Theorem 5.15.

Proof of Theorem 5.15. We present a parameter-preserving polynomial-time reduc-
tion from Densest-k-Subgraph. Hence, due to Lemma 5.16, the W[1]-hardness

125

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

YX

S

X

V
S

Y YXX

V \ S

Y

S

Figure 5.3: Two solutions for the instance of LS Cluster Editing constructed in the
proof of Theorem 5.15. Left the initial solution. Right an improving solution in the k-move
neighborhood, if one exists. Such an improving solution only exists if there is a vertex set S
of size exactly k in G for which E(S) contains sufficiently many edges.

when parameterized by k and the ETH-based lower bound then directly translate
to LS Cluster Editing.

Let I := (G := (V,E), k, d) be an instance of Densest-k-Subgraph with d =
k−1
4

such that V = V1 ∪ Vr such that each vertex of V1 has degree exactly 1 and
each vertex of Vr has degree exactly r for some integer r. Due to Lemma 5.16,
Densest-k-Subgraph has the required lower bounds even on such restricted in-
stances. Moreover, let k g 3. Next we define an instance I ′ := (G′ := (V ′, E ′), C, k)
of LS Cluster Editing with |C| = 2 and show that I is a yes-instance of Densest-
k-Subgraph if and only if I ′ is a yes-instance of LS Cluster Editing.

Let n := |V |. We obtain G′ by adding two cliques X and Y to G. The clique X
has size x := n5 + n − 2r + k − 1 and we make each vertex of X adjacent to each
vertex of V . The clique Y has size y := n5 = x − (n − 2r + k − 1) and we make
each vertex of Y adjacent to each vertex of Vr. Finally, we define the clustering C
as C := {X ∪ V, Y }. This completes the construction of I ′. An example of the
initial clustering and an improving clustering (if one exists) is depicted in Figure 5.3.
Intuitively, one can only improve over C by moving a subset S ¦ V of size k into the
cluster containing all vertices of Y . Further, this is only improving if E(S) contains
at least

(
k
2

)
− d edges.

Before we show that I is a yes-instance of Densest-k-Subgraph if and only
if I ′ is a yes-instance of LS Cluster Editing, we first discuss the improvement on
the cost of an above describes clustering over the initial clustering.

Claim 8. Let S ¦ Vr and let C ′ := {X ∪ V \ S, Y ∪ S} be a clustering of G′. Then,
cost(C)− cost(C ′) = 4 · |E(S)| − |S| · (k − 2)− 2

(|S|
2

)
.

126

5.3. Running Time Lower Bounds

Proof of Claim. Recall that each vertex of Vr (i) has exactly r neighbors in G,
(ii) exactly n− r− 1 non-neighbors in G, and (iii) is adjacent to each vertex of X ∪
Y . Hence, by moving a single vertex of Vr from cluster X ∪ V to cluster Y , the
improvement over C is −x+ y − r+ (n− r− 1) = y − x+ n− 2r− 1 = −(k − 2) by
definition of x and y. Hence, by moving a set S of vertices of Vr from cluster X ∪ V
to Y gives an improvement over C of −|S| · (k − 2). In this way, we incorrectly
charged edge deletions costs for each edge {u, v} of E(S) for each of the endpoints u
and v. Similarly, we incorrectly did not charge edge insertion costs for each non-
edge {u, v} of

(
S
2

)
\ E(S) for each of the endpoints u and v. Hence, we obtain the

correct improvement by −|S| · (k− 2)+ 2 · |E(S)| − 2 · (
(|S|

2

)
− |E(S)|) = 4 · |E(S)| −

|S| · (k − 2)− 2
(|S|

2

)
. ■

Next, we show that I is a yes-instance of Densest-k-Subgraph if and only if I ′

is a yes-instance of LS Cluster Editing.
(⇒) Let S be a set of k vertices of V such that E(S) contains at least

(
k
2

)
− d =(

k
2

)
− k−1

4
edges. Recall that k g 3. Hence, S contains no vertex of V1, since each

vertex of S has at least k − 1− k−1
4
> 1 neighbors in S.

Consider the clustering C ′ := {X∪V \S, Y ∪S} of G′. Note that dmove(C, C ′) f k.
Since S ¦ Vr, Claim 8 implies that the improvement of C ′ over C is 4 · |E(S)| − |S| ·
(k−2)−2

(|S|
2

)
g 4(

(
k
2

)
− k−1

4
)−k · (k−2)−2

(
k
2

)
= 2 ·

(
k
2

)
− (k−1)− (k · (k−1)−k) =

k · (k−1)− (k−1)− (k · (k−1)−k) = 1. Hence, C ′ is an improving k-move neighbor
of C and thus I ′ is a yes-instance of LS Cluster Editing.

(⇐) Let C ′ be a k-move neighbor of C of maximum improvement over C. Suppose
that C ′ improves over C. In the following, we first show that C ′ has size 2. Afterwards,
we show that C ′ = {X ∪ V \ S, Y ∪ S} for some vertex set S ¦ V . Finally, we show
that S has size k and that E(S) contains at least

(
k
2

)
− d =

(
k
2

)
− k−1

4
edges.

To show that C ′ contains exactly two clusters, we first show that C ′ contains a
cluster Y ′ with Y ¦ Y ′. Let Y ′ be a cluster of C ′ containing the most vertices of Y .
Since dmove(C, C ′) f k, Y ′ contains at least y − k > k2 vertices of Y ′. Suppose that
there is a vertex v of Y such that v is not contained in the cluster Y ′ and let Cv be
the cluster of C ′ containing v. Note that this implies that v is one of the vertices that
moves to a different cluster. By construction, v has at most |Vr| neighbors outside
of Y . Hence, Cv contains at most |Vr| + k f n + k neighbors of v and Y ′ contains
at least y− k neighbors of v and at most k non-neighbors of v. Since y− k > n+ k,
the clustering C ′′ obtained from C ′ by removing v from Cv and adding this vertex
back to cluster Y ′ is improving over C ′ and has even fewer move-distance from C.
Moreover, since C ′ is a k-move neighbor of C of maximum improvement over C, no
such vertex v of Y exists and thus Y ′ contains all vertices of Y . Similarly, there is a
cluster X ′ of C ′ with X ¦ X ′. Note that these two clusters X ′ and Y ′ are distinct

127

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

since C ′ is a k-move neighbor of C.
Next, we show that each vertex v of V is contained in either cluster X ′ or in

cluster Y ′. Suppose that this is not the case. Hence, there is a vertex v of V which
is contained in a cluster Cv of C ′ distinct from X ′ and Y ′. Since dmove(C, C ′) f k,
Cv has size at most k. Note that v is adjacent to at least |X ′ ∩X| = x vertices of X ′

and non-adjacent to at most |X ′ \X| f n+k vertices of X ′. Hence, the clustering C ′′
obtained from C ′ by removing v from Cv and adding this vertex back to cluster X is
improving over C ′ and has even fewer move-distance from C. Consequently, since C ′
is a k-move neighbor of C of maximum improvement over C, no such vertex v exists.
This then implies, that each vertex of V is either contained in cluster X ′ or contained
in cluster Y ′. Hence, C ′ = {X ′, Y ′}. Moreover, since X ¦ X ′ and Y ¦ Y ′, there is a
vertex set S ¦ V such that X ′ = X \ S and Y ′ = Y ∪ S.

It remains to show that S has size exactly k and that E(S) contains at least
(
k
2

)
−d

edges. Note that S has size at most k since C ′ is a k-move neighbor of C. Ideally, we
want to apply Claim 8. Since Claim 8 requires that S contains only vertices of Vr,
we first have to show that each vertex of V1 is contained in the cluster X ′. Since each
vertex of V1 is adjacent to each vertex of X and non-adjacent to each vertex of Y , it
is always better not to move a vertex of V1. Hence, S contains only vertices of Vr.

Due to Claim 8, the improvement of C ′ over C is 4 · |E(S)| − |S| · (k− 2)− 2
(|S|

2

)
.

Since C ′ is improving over C, we get 4·|E(S)| > |S|·(k−2)+2
(|S|

2

)
which is equivalent

to |E(S)| > 1
2
· |S| · k−2

2
+ 1

2
·
(|S|

2

)
. We consider two cases.

Case 1: |S| < k. If |S| = k − 1, then the inequality reads as |E(S)| > 1
2
· (k −

1) · k−2
2

+ 1
2
·
(
k−1
2

)
=

(
k−1
2

)
=

(|S|
2

)
which is impossible. For smaller vertex sets S, the

right side of the inequality even exceeds
(|S|

2

)
.

Case 2: |S| = k. Hence, the inequality reads as |E(S)| > 1
2
· k · k−2

2
+ 1

2
·
(
k
2

)
=

1
2
· k · (k−1

2
− 1

2
) + 1

2
·
(
k
2

)
=

(
k
2

)
− k

4
. This then implies |E(S)| g

(
k
2

)
− k−1

4
.

Hence S has size k and E(S) contains at least
(
k
2

)
− k−1

4
edges. Consequently, I

is a yes-instance of Densest-k-Subgraph.
Parameter bounds. Recall that due to Lemma 5.16, Densest-k-Subgraph

is W[1]-hard when parameterized by k and cannot be solved in f(k) · no(k) time for
any computable function f , unless the ETH fails. Hence, the above reduction shows
that, even if the initial clustering has size two, LS Cluster Deletion is W[1]-
hard when parameterized by k and cannot be solved in f(k) · |V ′|o(k) time for any
computable function f , unless the ETH fails, since |V ′| ∈ nO(k).

Consequently, due to Theorems 5.14 and 5.15, LS Cluster Editing is W[1]-
hard when parameterized by the two arguably most natural parameter combina-
tions k +maxC∈C |C| and k + |C|.

128

5.4. Algorithms for Permissive Problem variants

5.4 Algorithms for Permissive Problem variants

In this section, we present our algorithms for the permissive versions of the considered
local search problems.

Parameterization by cluster vertex deletion number and k. In the re-
mainder of the section we provide two algorithms exploiting small modulators to
cluster graphs—one for LS Cluster Deletion in Section 5.4.1 and one for LS
Cluster Editing in Section 5.4.2. For both algorithms, we use the following no-
tation. We say that a vertex set M ¦ V is a (cluster) modulator of G if G[V \M]
is a cluster graph. Let B be the collection of connected components of G[V \M].
We call each clique B ∈ B a bag. We denote by cvd(G) the cluster vertex dele-
tion number, that is, the size of a smallest cluster modulator of G. If the graph G
is clear from the context, we may simply write cvd. An example of a graph G
with a cluster modulator M is depicted in Figure 5.4. We may say that a vertex
set M ¦ V is a 2-approximate cluster modulator of G if M is a cluster modulator
of G with |M | f 2 · cvd(G). While it is NP-hard to find a cluster modulator of
minimum size [115], a 2-approximate cluster modulator can be found in polynomial
time [8].

5.4.1 An Algorithm for LS Cluster Deletion

Lemma 5.17. Let G = (V,E) be a graph and let M be a cluster modulator of G.
Moreover, let CM be a given proper clustering of G[M]. In 3|CM | ·nO(1) time, one can
find a best clustering C of G among all proper clusterings C ′ of G that extend CM .

Proof. For each clustering C of G that extends CM , the edges between vertices of M
in Cl(C) and Cl(CM) are equal. Consequently, the task can be reformulated as fol-
lows: find a clustering of G that maximizes the number of edges having at least
one endpoint in V \M among all proper clusterings of G that extend CM . In the
following, we describe a dynamic program solving this reformulated task.

Fix an arbitrary ordering of the bags and let Bi denote the ith bag of B according
to this ordering. The dynamic programming table T has entries of type T [X, i]
with X ¦ CM and i ∈ [0, |B|]. For X ¦ CM and i ∈ [0, |B|], let VX denote the
union of all clusters of X and let V i

X denote the union of VX and the first i bags.
The entry T [X, i] stores the maximal number of edges having at least one endpoint
in V i

X \M of any proper clustering of G[V i
X] that extends X. Intuitively, this entry

129

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

· · ·
B1 B2 B3 B|B|

B

M

Figure 5.4: An example of a graph G with cluster modulator M and bags B and a proper
clustering CM of G[M] used as input for the algorithm behind Lemma 5.17. The clouds
indicate the bags of B, that is, the maximal cliques of G−M , and the colored rectangles
indicate the clusters of CM . Intuitively, the algorithm behind Lemma 5.17 finds an optimal
way to distribute the vertices of all bags among the clusters of CM .

stores the best way to distribute the vertices of the first i bags among the clusters
of X.

To compute an entry T [X, i], we iterate over all subsets X ′ of X and check for the
best way to distribute the vertices of the first i−1 bags among the clusters of X ′ and
the best way to distribute the vertices of the ith bag among the clusters of X \X ′.

Formally, for each X ¦ CM , we set T [X, 0] := 0 and for each i ∈ [1, |B|], we set

T [X, i] := max
X′¦X

T [X ′, i− 1] + gain
X\X′

i .

Here, gain
X\X′

i is the number of edges having at least one endpoint in bag Bi of the
best way to distribute the vertices of Bi among the clusters of X\X ′. This recurrence
is correct because no cluster C in any proper clustering C of G can contain vertices
of two distinct bags.

In the following, we describe how to compute the value gainY
i for each i ∈ [1, |B|]

and each Y ¦ CM . Note that computing these values is NP-hard, since Cluster
Deletion is NP-hard even on unipolar graphs [24, 110], that is, graphs G where
for some vertex set S, G[S] is a clique and G − S is a cluster graph. Hence, the
algorithm we present take exponential time.

130

5.4. Algorithms for Permissive Problem variants

Claim 9. In 3|CM | · nO(1) time, the values gainY
i can be computed for all i ∈ [1, |B|]

and all Y ¦ CM .

Proof of Claim. The computation of this value relies on the following observation:
Let C be a best proper clustering of G[VY ∪ Bi] that extends Y . Moreover, let C
be a largest cluster of C. Then C contains all vertices of Bi that are adjacent to all
vertices of C ∩M . This is true, since if there would be a cluster C ′ in C containing
a vertex v of {v ∈ Bi | C ¦ N(v)}, then C ′ := (C \ {C,C ′}) ∪ {C ∪ {v}, C ′ \ {v}} is
a proper clustering of G that improves over C. The properties of C ′ hold since C is
a largest cluster of C and Bi is a clique in G.

Hence, to solve this intermediate task, we can branch which cluster C of Y ∪{∅}
will be extended to be the largest cluster in C, add all vertices of Bi to C that may
fit into this cluster and solve the task recursively.

This can also be done by a dynamic program. We introduce the dynamic pro-
gramming table Di with entries of type Di[Y, Z] with Y ¦ CM and Z ¦ Y .

For each set Z ¦ Y , we let RemainZ
Y := Bi \

⋃
C∈Y \Z{v ∈ Bi | C ¦ N(v)} denote

the set of vertices of Bi that do not fit in any cluster of Y \ Z. The entry Di[Y, Z]
stores the maximal number of edges having at least one endpoint in RemainZ

Y of any
proper clustering of G[RemainZ

Y ∪
⋃

C∈Y C] that extends Z.

For each Y ¦ CM , we set Di[Y, ∅] :=
(|Remain∅

Y
|

2

)
and for each non-empty Z ¦ Y ,

we set

Di[Y, Z] := max

((|RemainZ
Y |

2

)
,max
C∈Z

(|FitC |
2

)
+ |FitC | · |C|+Di[Y, Z \ {C}]

)
,

where FitC := {v ∈ RemainZ
Y | C ¦ N(v)} denotes the set of vertices of RemainZ

Y

that fit into the cluster C.
This recurrence is correct by the above observation: In each optimal proper

clustering CiZ of G[RemainZ
Y ∪

⋃
C∈Y C] that extends Z, there is a largest cluster C ′ ∈

CiZ that contains all vertices of FitC′∩M .
Finally, for each Y ¦ CM , we set gainY

i := Di[Y, Y]. Since for each i ∈ [1, |B|], the
table Di contains 3

|CM | entries and each such entry can be computed in nO(1) time,
the values gainY

i can be computed for all i ∈ [1, |B|] and all Y ¦ CM in the stated
running time.

Moreover, note that a corresponding clustering can be computed via traceback
in the same asymptotic running time. ■

Let C∗ be any best clustering of G among all proper clusterings of G that ex-
tend CM . Then, the number of edges of Cl(C∗) having at least one endpoint in any
bag is stored in T [CM , |B|]. Moreover, a corresponding clustering can be found via
traceback.

131

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

Since for each i ∈ [0, |B|] and each X ¦ CM , the table entry T [X, i] can be
computed in 2|X| · nO(1) time and there are 2|CM | choices for X, each table entry of T
can be computed in time

∑|CM |
i=1

(|CM |
i

)
· 2i · nO(1) ¦ 3|CM | · nO(1).

Based on Lemma 5.17 we can obtain the following FPT-algorithm for Cluster
Deletion when parameterized by cvd: First, compute a minimum cluster modula-
tor M of G in 1.811cvd · nO(1) time [162]. Second, iterate over all possible clusterings
of G[M] and apply the algorithm behind Lemma 5.17. This implies a running time
of 3cvd ·Bcvd ·nO(1), where Bcvd is the cvd-th Bell number which denotes the number
of partitions of a set of size cvd. Since for each n ∈ N, Bn < (n

ln(n+1)
)n [16], this

implies the following.

Theorem 5.18. Cluster Deletion can be solved in cvdcvd ·nO(1) time.

Next, we use Lemma 5.17 to obtain a permissive algorithm for LS Cluster
Deletion when parameterized by cvd and k.

Theorem 5.19. Let G be a graph and let M be a given cluster modulator of G.
Moreover, let C be a proper clustering of G and let k ∈ N. In |M |2k ·

(|M |
k

)
· kk · 34k ·

nO(1) time, one can find a proper clustering C ′ of G which is at least as good as a
best proper clustering C∗ of G with dmove(C, C∗) f k.

Proof. Let C∗ be a clustering of G that maximizes |Cl(C∗)| among all proper cluster-
ings C ′′ of G with dmove(C, C ′′) f k. Moreover, letM := {C ∈ C | C ∩M ̸= ∅} and
M∗ := {C ∈ C∗ | C ∩M ̸= ∅} denote the sets of clusters intersecting M , of C and
C∗, respectively.

Let CM := {C ∩M | C ∈ M} denote the clusters of M restricted to the ver-
tices of M . Similarly, let C∗M := {C ∩M | C ∈ M∗}. Note that dmove(C, C∗) f k
implies dmove(CM , C∗M) f k. Hence, to find a proper clustering C ′ of G that is at
least as good as C∗, it suffices to enumerate all proper clusterings C ′M of G[M]
with dmove(CM , C ′M) f k (which includes C∗M) and to compute, for each such clus-
tering C ′M , any best proper clustering of G that extends C ′M . As the latter task can
be done in 3|C

′
M | · nO(1) time by Lemma 5.17, it remains to describe how one can

enumerate all such proper clusterings C ′M of G[M].
This can be done in

(|M |
k

)
· (|M| + k)k · nO(1) time by iterating over all possible

subsetsM ′ ¦M of size k and iterating over all possible ways to move these k vertices
into any of the clusters ofM (including the clusters where these vertices came from)
or opening a new cluster.

Hence, this algorithm runs in
(|M |

k

)
· (|M| + k)k · 3|M|+k · nO(1) time. Note that

this is not the desired running time since |M| occurs in the exponent of the running
time and might be much larger than k.

132

5.4. Algorithms for Permissive Problem variants

To obtain the desired running time, we perform some initial branching if |M| >
2k. The idea behind this initial branching relies on Observation 5.2. Intuitively,
Observation 5.2 states that at least |M| − 2k clusters are identical in M∗ and M
since at most k vertices were moved to obtainM∗ fromM. That is, |M ∩M∗| g
|M| − 2k. In other words, there is a subset M′ ¦ M of size at most 2k such
that M\M′ ¦ M ∩M∗. This implies that all edge deletions having at least one
endpoint in any cluster of M \M′ are identical in Cl(C) and Cl(C∗). Hence, by
applying for each subsetM′ ¦M of size at most 2k the above described algorithm
on the graph G[V \∪C∈M\M′C], we find a proper clustering of G which is at least as
good as C∗. This initial branching can be done in |M|2k · nO(1) ¦ |M |2k · nO(1) time.

Since for each such branching-instance, there are at most 2k clusters containing
vertices of M , the total running time evaluates to |M |2k ·

(|M |
k

)
· (3k)k · 33k · nO(1) =

|M |2k ·
(|M |

k

)
· kk · 34k · nO(1) time.

Since a 2-approximate cluster modulator can be found in polynomial time [8],
Theorem 5.19 implies the following:

Theorem 5.20. The permissive version of LS Cluster Deletion can be solved
in (kk + 2O(k) · cvd3k) · nO(1) time.

Proof. Let I := (G = (V,E), k, C) be an instance of LS Cluster Deletion.
First, check in 1.811k · nO(1) time, whether G has a cluster modulator of size at
most k [162]. If this is the case, one can find an optimal proper clustering C ′ of G in
time cvdcvd ·nO(1) ¦ kk ·nO(1) due to Theorem 5.18. Otherwise, k < cvd. In this case,
we compute a 2-approximate cluster modulator M in polynomial time [8] and find
a proper clustering C ′ of G which is at least as good as a best proper clustering C∗
of G with dmove(C, C∗) f k in time |M |2k ·

(|M |
k

)
· kk · 34k · nO(1) due to Theorem 5.19.

Since k < cvd f |M |, we get that
(|M |

k

)
· kk f |M |k · kk

k!
f |M |k · 2O(k) due to

Stirling’s approximation. Hence, the running time of the case k < cvd evaluates to
2O(k) · |M |3k ·nO(1) ¦ 2O(k) · (2 · cvd)3k ·nO(1) = 2O(k) · cvd3k ·nO(1) time. In both cases,
the running time is upper-bounded by (kk + 2O(k) · cvd3k) · nO(1) time.

Note that this running time is essentially optimal with respect to the presented
ETH based lower bound from Theorem 5.7.

5.4.2 An Algorithm for LS Cluster Editing

In this subsection, we present a permissive algorithm for LS Cluster Editing with
a running time similar to the one for LS Cluster Deletion presented in Theo-
rem 5.20.

133

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

Theorem 5.21. Let G = (V,E) be a graph, let C be a clustering of G, and let k ∈ N.
In 2O(k) · kk · cvd3k ·nO(1) time, one can find a clustering that improves over C or
correctly output that there is no clustering C ′ of G with dmove(C, C ′) f k that improves
over C.

To give a better intuition for the following algorithm, we switch to the interpreta-
tion of LS Cluster Editing where the initial solution is a cluster coloring ÇC of C.
That is, if the given coloring ÇC can be improved within the k-move neighborhood,
then we need to find any coloring Ç∗ improving over ÇC. This coloring Ç∗ is not
required to be in the k-move neighborhood of ÇC.

Let I := (G = (V,E), k, ÇC) be an instance of LS Cluster Editing, let M
be a cluster modulator of G. Let ³ ∈ N be a color used by ÇC. We say that ³ is
a modulator color if Ç−1

C (³) ∩M ̸= ∅. Otherwise, we say that ³ is a bag color. In
the remainder of this section, we denote by colMod and colBag the set of modulator
colors and bag colors of ÇC, respectively. Note that these color sets are defined with
respect to the initial coloring ÇC of the LS Cluster Editing-instance I. Recall
that each bag B ∈ B is a clique in G and a connected component of G[V \M]. Fix
an arbitrary ordering of the bags and let Bi denote the ith bag of B according to
this ordering.

We first observe that we can improve the initial coloring in polynomial time if at
least one of the following cases applies.

Observation 5.22. If there is a bag color ³ such that vertices of two distinct bags
receive color ³ under ÇC, then one can find a coloring Ç′ of V in polynomial time
that improves over ÇC.

Recall that Observation 5.3 states that a clustering is not 1-optimal if there is
a cluster of diameter larger than 2. Hence, Observation 5.22 is directly implied
by Observation 5.3.

Observation 5.23. If there is a bag B ∈ B such that two vertices of B receive
distinct bag colors under ÇC, then one can find a coloring Ç′ of V that improves
over ÇC in polynomial time.

Intuitively, this observation holds, since one can improve over ÇC by moving all
vertices of B that receive a bag color under ÇC to a joined color. Since all these
vertices of B are pairwise adjacent, this new coloring then uses fewer edge deletions
and the same number of edge insertions.

Hence, we assume in the following, that for each bag color ³ ∈ colBag, Ç
−1
C (³)

contains only vertices of a single bag and that for each bag Bi ∈ B, there is at most
one bag color ³i ∈ colBag with Ç−1

C (³i) ¦ Bi.

134

5.4. Algorithms for Permissive Problem variants

ÇC Ç′

Çtemp Çint

Figure 5.5: An example of the different types of considered colorings: The initial clus-
tering χC , a 3-move neighbor χ′ of χC , the intermediate coloring χint for χ′, and a quasi-
intermediate template coloring χtemp for χ′. The upper two vertices represent the consid-
ered cluster modulator. Gray and green are the modulator colors, blue, white, and red are
the bag colors, and brown is the unique moving color of χtemp. The bottom two colorings
are the only pairwise non-isomorphic colorings beside χtemp and χint that can be achieved
by applying a template recolor-function to χtemp. Recoloring the moving color brown to
green is not possible by a template recolor-function, since green is a modulator color.

Moreover, we assume that colMod has size O(k). In the final algorithm we use an
initial branching—similar to the one used in the algorithm behind Theorem 5.19—to
ensure that this assumption is fulfilled.

Let Ç′ be a coloring of V and let Çint be the coloring that agrees with ÇC on all
vertices of V \M and with Ç′ on all vertices of M . We call Çint the intermediate
coloring for Ç′. The idea behind this definition is the following.

Observation 5.24. Let Ç′ be a coloring of V and let Çint be the intermediate coloring
for Ç′. It holds that dmove(ÇC, Çint) + dmove(Çint, Ç

′) = dmove(ÇC, Ç′).

Suppose that there is an improving k-move neighbor Ç′ of ÇC. Due to Observa-
tion 5.24, to find a coloring of V that improves over ÇC, it is sufficient to do the
following: Iterate over all colorings Çint with dmove(ÇC, Çint) f k that agree with ÇC
on all vertices of V \M . For each such coloring Çint check whether there is a color-
ing Ç′ that improves over ÇC with dmove(Çint, Ç

′) f k − dmove(ÇC, Çint) such that Çint

and Ç′ agree on all vertices of M , that is, where Çint is the intermediate coloring
for Ç′. Unfortunately, such an approach exceeds the desired running time for our

135

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

ÇC Çtemp Çint Ç′
vertices of M move template recolor-function vertices of V \M move

brute-force by Lemma 5.25 dynamic programm behind Lemma 5.26

Figure 5.6: An overview over the four different kinds of considered colorings. For the
initial coloring χC and an improving coloring χ′ with dmove(χC , χ′) f k, there is a template
coloring χtemp and an intermediate coloring χint such that there is a template recolor-
function between χtemp and χint. To find a coloring at least as good as χ′, we first iterate
over all possible choices of the template coloring χtemp and afterwards search for the best
coloring for which χtemp is quasi-intermediate. This is done by a dynamic program that
simultaneously finds the best template recolor-function and the best way to distribute the
bag vertices by using at most k moves.

algorithm since there are nO(k) possibilities for the colorings Çint because there may
be up to Θ(n) bag colors and each vertex of M may receive any color. To obtain
the desired running time, we instead only iterate over “template colorings”. Here, a
coloring Çtemp of V is a template coloring if

• dmove(ÇC, Çtemp) f k,

• Çtemp agrees with ÇC on all vertices of V \M , and

• no vertex of M receives a bag color under Çtemp.

For a template coloring Çtemp, let colMove denote the colors of N \ (colMod ∪ colBag)
that are used by Çtemp. We call the colors of colMove the moving colors of Çtemp. Note
that only vertices of M may receive a moving color under Çtemp and that there are
at most k moving colors.

Figure 5.5 depicts an example for the types of colorings used in this algorithm,
and Figure 5.6 illustrates how we use these colorings to find a coloring that improves
over ÇC, if an improving coloring exists in the k-move neighborhood of ÇC.

The idea behind template colorings is that a template coloring Çtemp may repre-
sent intermediate colorings for many colorings Ç′ in the following way: For a color-
ing Ç′ of V , we say that a template coloring Çtemp is quasi-intermediate for Ç′ if there
is a “template recolor-function” f : N→ N such that f ◦Çtemp is the intermediate col-
oring for Ç′. Herein, a function f : N→ N is a template recolor-function if f preserves
identity on all colors of N \ colMove and where f |colMove

maps each color of colMove to
some color of N \ colMod injectively. Essentially, this means that each of the mov-
ing colors of Çtemp may be identified with any bag color. Informally, this is due to

136

5.4. Algorithms for Permissive Problem variants

the fact that each vertex that receives a moving color under Çtemp already changed
its color and we may move all vertices of that moving color together to any bag
color while preserving the move-distance to ÇC. Note that, for each coloring Ç′ of V
with dmove(ÇC, Ç′) f k, there is a template coloring Çtemp which is quasi-intermediate
for Ç′. In contrast to intermediate colorings, we can enumerate a maximal set X of
pairwise non-isomorphic template colorings in the desired running time.

Lemma 5.25. One can compute a maximal set X of pairwise non-isomorphic tem-
plate colorings in time (|colMod|+ k)k · |M |k · nO(1).

Proof. Recall that for each template coloring Çtemp, dmove(ÇC, Çtemp) f k. Moreover,
by the definition of a template coloring, DMove(ÇC, Çtemp) ¦ M . Hence, to obtain a
maximal set X of pairwise non-isomorphic template colorings, consider all possible
subsets of M of size at most k and consider all possible ways of assigning colors
of colMod ∪ A to these at most k vertices, where A is an arbitrary set of k colors
from N\(colMod∪colBag). Note that this can be done in the stated running time.

In order to find a coloring Ç∗ of V that improves over ÇC (provided that there is
such a coloring in the k-move neighborhood of ÇC), it suffices to do the following: For
each template coloring Çtemp in a maximal set of pairwise non-isomorphic template
colorings, find the best coloring Ç′ in the k-move neighborhood of ÇC such that Çtemp

is quasi-intermediate for Ç′. In the following, we show that the latter task can be
done in 2O(|colMod|+k) · nO(1) time for each individual template coloring.

Lemma 5.26. Let Çtemp be a template coloring. In 2O(|colMod|+k) ·nO(1) time, one can
find a coloring of V that improves over ÇC, or correctly output that the k-move neigh-
borhood of ÇC does not contain a coloring Ç′ that improves over ÇC and where Çtemp

is quasi-intermediate for Ç′.

Before we provide the proof of Lemma 5.26, we introduce some notation on
functions we use to describe our algorithm. For x ∈ N and y ∈ N, we denote
by id[x 7→y] the function that preserves identity on N \ {x} and where id[x 7→y](x) := y.
For functions É̂ : A → Z and É̃ : B → Z with A ¦ B, we denote by É̂ − É̃ the
function É̄ : A→ Z, where for each a ∈ A, É̄(a) := É̂(a)− É̃(a). Similarly, we denote
by É̂ + É̃ the function É̄ : A→ Z, where for each a ∈ A, É̄(a) := É̂(a) + É̃(a).

Proof. Let colMove be the set of moving colors of Çtemp. Suppose that Çtemp is quasi-
intermediate for some coloring Ç′ of V with dmove(ÇC, Ç′) f k that improves over ÇC.
Hence, there is a template recolor-function fint such that Çint := fint ◦ Çtemp is the
intermediate coloring for Ç′.

137

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

In the following, we describe an algorithm that finds a coloring Ç∗ which is at
least as good as Ç′ such that Çtemp is quasi-intermediate for Ç∗. The main idea of
this algorithm relies on the following fact: Since dmove(ÇC, Ç′) f k, at most k bag
vertices may change their color. Hence, for each vertex set A ¦ V \M :

∑

i∈N

∣∣ |A ∩ Ç′−1
(i)| − |A ∩ ÇC

−1(i)|
∣∣ f 2k, (5.1)

∑

i∈N

(
|A ∩ Ç′−1

(i)| − |A ∩ ÇC
−1(i)|

)
= 0. (5.2)

In the following, we define functions that describe these properties. Let V ′ ¦ V \M
be a set of vertices and let È be a coloring of V with È = f ◦Çtemp for some template
recolor-function f . Moreover, let X ¦ N be a set of colors with V ′ ¦ È−1(X), that
is, a set of colors that contains at least those colors that are assigned to the vertices
of V ′ by È. A resize function for V ′ and È is a function É : X → Z satisfying

∑

i∈X
|É(i)| f 2k,

∑

i∈X
É(i) = 0, and |V ′ ∩ È−1(i)|+ É(i) g 0 for each i ∈ X.

A coloring È̂ of V fits É and È if (a) for each color i ∈ X, |V ′ ∩ È−1(i)| + É(i) =

|V ′∩È̂−1(i)| and (b) È is the intermediate coloring for È̂. Further, É is called a (È, È̂)-
fitting resize function in this case. Intuitively, É(i) denotes the change between È

and È̂ in the number of vertices of V ′ that receive color i. Hence, the last condition of
a resize function describes that one cannot decrease the number of vertices of V ′ in a
cluster by more than the number of vertices of V ′ currently in that cluster. Note that
for any coloring Ç∗ for which Çtemp is quasi-intermediate, there is a unique template
recolor-function f ∗ and that for each vertex set V ′ ¦ V \M , all (f ∗◦Çtemp, Ç

∗)-fitting
resize functions for V ′ and f ∗ ◦ Çtemp agree on their non-zero entries.

Recall that dmove(ÇC, Ç′) f k. Thus, there is a (Çint, Ç
′)-fitting resize func-

tion É′ : N→ Z for V \M and Çint. Moreover, for each i ∈ [1, |B|] there is a (Çint, Ç
′)-

fitting resize function É′
i : N → Z for Bi and Çint such that É′(³) =

∑
i∈[1,|B|] É

′
i(³)

for each color ³ ∈ N. The motivation behind fitting resize functions is the follow-
ing: For a given template recolor-function f and a given resize function Éi for Bi

and f ◦ Çtemp, one can find in polynomial time a coloring È of V that minimizes
the required number of edge-modifications with one endpoint in Bi and the other
endpoint in Bi ∪M among all colorings È of V that fit Éi and f ◦ Çtemp. In the
following, we show how this can be done.

Claim 10. Let È be a coloring of V with È = f ◦ Çtemp for some template recolor-
function f , let Bi ∈ B be a bag, and let X ¦ N be a set of O(n) colors such

138

5.4. Algorithms for Permissive Problem variants

that Bi ¦ È−1(X). Moreover, let É̃i : X → Z be a resize function for Bi and È. In
nO(1) time, one can compute the minimum number of required edge-modifications
with one endpoint in Bi and the other in Bi ∪M among all colorings È̃ of V that
fit É̃i and È.

Proof of Claim. For each color ³ ∈ X, let n³ := |Bi ∩ È−1(³)| + É̃i(³) denote the

number of vertices in Bi receiving color ³ in any coloring È̃ fulfilling the restrictions
of the claim. Recall that each vertex of Bi receives a color of X under È and that É̃i

is a resize function for Bi and È. Hence,
∑

³∈X n³ = |Bi|.
The task is to find a coloring È̃ of V that has a minimum number of edge-

modifications with one endpoint in Bi and the other endpoint in Bi∪M , such that È̃
and È agree on all vertices of M and for each color ³ ∈ X,

|Bi ∩ È̃−1(³)| = |Bi ∩ È−1(³)|+ É̃i(³) = n³.

Note that, based on the last condition, the number of edge-modifications having both
endpoints in Bi is equal for all colorings È̃ fulfilling all these conditions. The number
of edge-modifications having both endpoints in Bi is

1
2
·∑³∈X n³ · (|Bi| − n³).

Hence, in the following, we only have to determine the minimum number of
edge-modifications having one endpoint in Bi and the other endpoint in M of any
sought coloring È̃. We show that this can be done by finding a minimum-weight
perfect matching in an auxiliary bipartite graph, which can be done in polynomial
time [112].

We define an auxiliary weighted complete bipartite graph G′ = (V ′, E ′) with
bipartition (Bi, VX), where VX := ∪³∈XV³ and, for each color ³ ∈ X, V³ is an
arbitrary vertex set of size n³. Note that |VX | =

∑
³∈X n³ = |Bi| since É̃i is a resize

function for Bi and È. It remains to define the edge-weights of G′. For each color ³ ∈
X, each vertex u³ ∈ V³, and each vertex v ∈ Bi, we set the weight of the edge {v, u³}
to |(È−1(³) ∩M) \ NG(v)| + |(M \ È−1(³)) ∩ NG(v)|, that is, the number of non-
neighbors of v in M that receive color ³ under È plus the number of neighbors of v
in M that do not receive color ³ under È.

Note that the edge weights are set up such that a minimum-weight perfect match-
ing in G′ has weight equal to the minimum number of edge-modifications having one
endpoint in Bi and one endpoint in M of any sought coloring È̃ of V . ■

In the following, let colM := colMod ∪ colMove. Note that for a template recolor-
function f ∗, an (f ∗ ◦Çtemp, Ç

∗)-fitting resize function É∗ for V \M and f ∗ ◦Çtemp may
need a domain of size Θ(n) since there might be Θ(n) bag colors. Hence, the number
of (f ∗ ◦ Çtemp, Ç

∗)-fitting resize function É∗ for V \ M and f ∗ ◦ Çtemp may exceed
our desired running time. In other words, we cannot iterate over all (f ∗ ◦ Çtemp, Ç

∗)-
fitting resize function É∗ for V \ M and f ∗ ◦ Çtemp in the desired running time.

139

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

Hence, to obtain our desired running time, we want to iterate only over all possible
functions É : colM → Z such that there is a coloring Ç∗ of V for which there is a
template recolor-function f ∗ and an (f ∗◦Çtemp, Ç

∗)-fitting resize function É∗ for V \M
and f ∗ ◦ Çtemp that fulfill É = É∗ ◦ f ∗|colM . That is, we only want to know how the
colors of colM are resized. For each such function É, we then compute the best such
coloring Ç∗. Since checking whether such a function É fulfills the desired properties
is not trivial, we instead iterate over the set of functions

WX := {É : X → Z |
∑

i∈X
|É(i)| f 2k}

for X = colM. Note that WcolM contains all functions É described above, since each
of them is a restriction of a resize function and, thus, fulfills

∑
i∈colM |É(i)| f 2k.

Using a stars-and-bars type argument, one can show that WcolM can be computed in
the desired running time [89, Observation 14].

Claim 11. Let X be a finite set. The collection WX := {É : X → Z |∑i∈X |É(i)| f
2k} can be computed in 2|X| · 32k · (|X|+ k)O(1) time.

Hence, it remains to show how to compute, for a function É ∈ WcolM , the mini-
mum number of required edge-modifications of any coloring Ç∗ such that there is a
template recolor-function f ∗ and an (f ∗◦Çtemp, Ç

∗)-fitting resize function É∗ for V \M
and f ∗ ◦ Çtemp that fulfill É = É∗ ◦ f ∗|colM , or to verify that no such functions exist.
To this end, we describe a dynamic program.

The dynamic program if the template recolor-function is known. To
develop a better understanding of the algorithm for the general task, we first show
how to solve this task if the template recolor-function f ∗ is known. Let col∗M :=
{f ∗(³) | ³ ∈ colM} = colMod ∪ {f ∗(³) | ³ ∈ colMove} denote the set of colors that are
assigned to modulator vertices by ÇC or f ∗ ◦ Çtemp. Thus, the task is to find a best
coloring Ç∗ of V such that

• Çint := f ∗ ◦ Çtemp is the intermediate coloring for Ç∗ and

• there is a (Çint, Ç
∗)-fitting resize function É∗ for V \ M and Çint that ful-

fills É∗ ◦ f ∗|col∗M ∈ Wcol∗M
.

The dynamic programming table D has entries of type D[i, É] with i ∈ [0, |B|]
and É ∈ Wcol∗M

.
For each i ∈ [0, |B|], let Vfi denote the union of the first i bags. Recall that due

to Observation 5.22 and Observation 5.23, for each bag Bi ∈ B, there is at most one

140

5.4. Algorithms for Permissive Problem variants

bag color ³i with Ç
−1
C (³i) ¦ Bi. If such a bag color ³i exists for Bi, then we assume

for simplicity that ³i = i and, otherwise, we assume that i is not used by Çtemp.

Each entry D[i, É] stores the minimum cost of any coloring Ç∗ of Vfi ∪M , such
that

• Çint|Vfi∪M and Ç∗ agree on all vertices of M and

• there is a (Çint|Vfi∪M , Ç∗)-fitting resize function1 É∗
fi for Vfi and Çint|Vfi∪M

that fulfills É = É∗
fi

∣∣
col∗M

.

For the base case i = 0 we set

D[0, É] :=

{
|(E · Cl(CÇint

)) ∩
(
M
2

)
| if É(³) = 0 for each color ³ ∈ col∗M, and

∞ otherwise.

This correct since Çint and Ç
∗ agree on all vertices of M . If there is a color ³ ∈ col∗M

with É(³) ̸= 0, setting the entry to ∞ is correct since É is required to be the
restriction of a resize function for Vf0 = ∅ and Çint, and for each resize function É∗

f0

for Vf0 = ∅ and f ∗ ◦ Çtemp, and each color ³ ∈ N, we have É∗
f0(³) = 0.

To compute an entry of the dynamic programming table for i > 0, we have to
consider four types of edge modifications:

(a) Those having both endpoints in Vfi−1 ∪M ,

(b) those having one endpoint in Bi and the other endpoint in M ,

(c) those having both endpoints in Bi, and

(d) those having one endpoint in Bi and the other endpoint in Vfi−1.

To provide the recurrence for the dynamic programming table, we observe that
we can assume that for each bag Bi ∈ B, Ç∗ uses at most one color auxi distinct
from i with Ç∗−1(auxi) ¦ Bi. Essentially, this follows by the same observations that
lead to Observations 5.22 and 5.23: (i) it is never optimal to introduce a new color ³
which is only assigned to bag vertices and vertices of different bags receive that color
and (ii) it is never optimal to introduce more than one new color per bag B ∈ B that
is assigned to only vertices of B.

1This is a slight abuse of notation, since resize functions are formally only defined for colorings
of V .

141

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

Observation 5.27. Let Ç∗ be a best coloring of V for which f ∗ ◦ Çtemp is the in-
termediate coloring such that there is an (f ∗ ◦ Çtemp, Ç

∗)-fitting resize function É∗

for V \M and f ∗◦Çtemp. Then, for each i ∈ [1, |B|], there is at most one color auxi ∈
N \ (col∗M ∪ colMove ∪ colBag) with Ç

∗−1(auxi)∩Bi ̸= ∅. Moreover, if such a color auxi
exists, then Ç∗−1(auxi) ¦ Bi.

We now set

D[i, É] := min
Éi : col

∗
M∪{i, auxi}→Z

Éi is a resize function for Bi and Çint{
D[i− 1, É − Éi] + reqÇint, Éi

Bi
+

∑

³∈col∗M

(|Bi ∩ Ç−1
int(³)|+ Éi(³)) · (|Vfi−1 ∩ Ç−1

int(³)|+ É(³)− Éi(³))

}
. (5.3)

Here, reqÇint, Éi

Bi
denotes the minimum number of edge-modifications of Type (b)

and Type (c) for the resize function Éi. Due to Claim 10, this value can be computed
in polynomial time. Further, in the recurrence, D[i− 1, É − Éi] stores the minimum
number of edge-modifications of Type (a).2 Finally, the last line of Equation (5.3)
denotes the required number of edge-modifications of Type (d). Since no two vertices
in different bags are adjacent and since we are looking for a coloring Ç∗ where for
each color ³ ∈ col∗M, Éi(³) additional vertices of Bi receive color ³ and É(³)−Éi(³)
additional vertices of Vfi−1 receive color ³, we have to insert all (|Bi ∩ Ç−1

int(³)| +
Éi(³)) · (|Vfi−1 ∩ Ç−1

int(³)|+ É(³)− Éi(³)) edges between these vertices.
Finally, the minimum number of edge-modifications of any sought coloring is

stored in maxÉ∈Wcol∗
M
D[|B|, É]. Moreover, a corresponding coloring can be computed

via traceback.

The actual dynamic program (where the template recolor-function is
unknown). Based on the dynamic program for D (the case where the template
recolor-function is known), we will now describe the actual dynamic program that
finds the best coloring Ç∗ of V for which there is a template recolor-function f ∗ such
that f ∗ ◦ Çtemp is the intermediate coloring for Ç∗ and for which there is an (f ∗ ◦
Çtemp, Ç

∗)-fitting resize function É∗ fulfilling É∗ ◦ f ∗|colM ∈ WcolM .

2Recall that the domain of ω−ωi is col
∗

M
. Still, ω−ωi might not be a function ofWcol∗

M
. In this

case, D[i−1, ω−ωi] is not an entry of the dynamic programming table and we evaluateD[i−1, ω−ωi]
as ∞.

142

5.4. Algorithms for Permissive Problem variants

In contrast to the previous dynamic program, we encounter the more complicated
task of additionally finding the template recolor-function f ∗. Hence, we also have
to track the colors S of colMove that may still be recolored to some bag color by f ∗

while additionally ensuring that f ∗|colMove
is injective. To this end, in contrast to

the previous dynamic programming table D, our new dynamic programming table T
has an additional dimension that keeps track of the moving colors S ¦ colMove that
may be recolored to some bag color of [1, i] by f ∗. Moreover, to calculate all edge-
modifications of Type (d) correctly while the value of f ∗(³) is not yet determined for
moving colors ³ ∈ S, the dynamic programming table T has an additional dimension
storing some cost function c : colM → Z. Intuitively, c(³) stores the number of
vertices of (V \M) \Vfi, that is, the number of vertices of the last |B|− i bags, that
were assigned the same color as ³ under f ∗. Hence, when fixing the value of f ∗(³)
for some color ³ ∈ S, we can account for the edge-modifications of Type (d) between
vertices of Ç∗−1(f ∗(³)) and vertices of (V \M)\Vfi—that we were not able to account
for earlier—by charging additional costs of c(³)·Ç∗−1(f ∗(³)). Note that by the above
intuition, c is the restriction of a resize function for (V \M) \ Vfi and f ∗ ◦ Çtemp,
which implies that it suffices to consider functions c that fulfill c ∈ WcolM .

Each entry T [i, S, É, c] stores the minimum value of cost(CÇ∗) +
∑

³∈S c(³) ·
Ç∗−1(f ∗(³)) of any coloring Ç∗ of Vfi ∪ M for which there is a template recolor-
function f ∗ such that

• there is an (f ∗ ◦Çtemp, Ç
∗)-fitting resize function É∗

fi for Vfi and f
∗ ◦Çtemp that

fulfills É = É∗
fi ◦ f ∗∣∣

colM
,

• colors of S may be recolored to bag colors of [1, i], that is, for each color ³ ∈ S,
f ∗(³) ∈ {³} ∪ [1, i], and

• no color of colMove \ S is recolored to a bag color of [1, i], that is, for each
color ³ ∈ colMove \ S, f ∗(³) /∈ [1, i].

For the base case i = 0, analogously to the base case of D, we set for each S ¦
colMove and each c ∈ WcolM

T [0, S, É, c] :=

{
|(E · Cl(CÇtemp)) ∩

(
M
2

)
| if É(³) = 0 for each ³ ∈ colM, and

∞ otherwise.

Again, for an entry of the dynamic programming table for i > 0, we have to
consider the four types of edge-modifications (a)–(d).

To compute an entry T [i, S, É, c] for some i > 0, we consider two cases. In the
first case, no color of S is recolored to color i under f ∗ and we follow the recurrence

143

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

for D. We set

T id[i, S, É, c] := min
Éi : colM∪{i, auxi}→Z

Éi is a resize function for Bi and Çtemp{
T [i− 1, S, É − Éi, c+ Éi] + req

Çtemp, Éi

Bi
+

∑

³∈colM

(|Bi ∩ Ç−1
temp(³)|+ Éi(³)) · (|Vfi−1 ∩ Ç−1

temp(³)|+ É(³)− Éi(³))

}
.

(5.4)

Here, again, req
Çtemp, Éi

Bi
denotes the minimum number of edge-modifications of

Type (b) and Type (c) for the resize function Éi. Intuitively, the last line of
Equation (5.4) resembles the required number of edge-modifications of Type (d).
Note that the last line of Equation (5.4) reads as follows for colors ³ ∈ colMove:
Éi(³) · (É(³)−Éi(³)). Hence, unfortunately, in contrast to the recurrence for D, this
line does not necessarily cover all edge-modifications of Type (d): since we do not
know the function f ∗, for each moving color ³ ∈ S, we cannot account for all edge-
modifications incident with vertices of Vfi−1 that receive color f

∗(³) under f ∗◦Çtemp.
Hence, we have to account for all these edge-modifications, when we determine f ∗(³)
for a given color ³ ∈ S. This is done by increasing for each color ³ ∈ colM the
value of the additional costs of ³ according to the cost function by Éi(³). Hence,
T [i−1, S, É−Éi, c+Éi] stores the minimum number of edge-modifications of Type (a)
plus

∑

³∈S
c(³) · Ç∗−1(f ∗(³)) +

∑

³∈S
Éi(³) · Ç∗−1(f ∗(³)).

Here, the latter sum represents the number of edge-modifications with one endpoint
in Bi and the other endpoint in Ç∗−1(f ∗(³)). In other words, T [i− 1, S, É − Éi, c +
Éi] and the last line of Equation (5.4) account for the minimum number of edge-
modifications of Type (a) and Type (d) plus the additional cost of

∑
³∈S c(³) ·

Ç∗−1(f ∗(³)). Similar to the computation of the dynamic programming table D,
if É − Éi /∈ WcolM or c + Éi /∈ WcolM , then T [i − 1, S, É − Éi, c + Éi] is not an entry
of the dynamic programming table and we instead evaluate T [i− 1, S, É−Éi, c+Éi]
as ∞.

Next, we present the recurrence for the case, where some color of S receives color i

144

5.4. Algorithms for Permissive Problem variants

under f ∗. For the second case, we now set

Tmove[i, S, É, c] := min
´∈S

min
Éi : colM∪{auxi}→Z

Éi◦id[i 7→´] is a resize function for Bi and id[´ 7→i]◦Çtemp{
T [i− 1, S \ {´}, É − Éi, c+ Éi] + req

id[´ 7→i]◦Çtemp, Éi◦id[i 7→´]

Bi
+

∑

³∈colM

(|Bi ∩ Ç−1
temp(³)|+ Éi(³)) · (|Vfi−1 ∩ Ç−1

temp(³)|+ É(³)− Éi(³))+

|Ç−1
temp(i)| · c(´)

}
(5.5)

Note that this recurrence is nearly identical to the one for T id[i, S, É, c] except
for two main aspects: First, we take the best color ´ ∈ S to be recolored to i by f ∗.
Second, in the last line of Equation (5.5), we account for the additional costs charged
by the cost function c, since we now determine the value f ∗(´).3

To combine these two cases, we set

T [i, S, É, c] :=

{
T id[i, S, É, c] i /∈ colBag (S = ∅ and

min(T id[i, S, É, c], Tmove[i, S, É, c]) otherwise.

Finally, the minimum number of edge-modifications of any sought coloring is
exactly minÉ∈WcolM

T [|B|, colMove, É,0], where 0 is the function of WcolM that assigns
value 0 to each color of colM. Moreover, a corresponding coloring can be computed via
traceback. Hence, if there is a coloring Ç′ of V with dmove(ÇC, Ç′) f k that improves
over ÇC where Çtemp is quasi-intermediate for Ç′, then, for some function É ∈ WcolM ,
T [|B|, colMove, É,0] < cost(ÇC).

It remains to prove that the presented algorithm has the stated running time.
The table T has |B| · 2|colMove| · |WcolM | · |WcolM | f 2|colMove| · 4|colMod|+|colMove| · 92k ·
nO(1) entries. Each such entry T [i, S, É, c] can be computed in |WcolM∪{i,auxi}| ·
nO(1) f 2|colMod|+|colMove| · 32k ·nO(1) time, since each resize function for Bi is contained
in WcolM∪{i,auxi}. Hence the total running time evaluates to 2O(|colMod|+|colMove|+k) ·
nO(1) time. Recall that Çtemp is a template coloring, so dmove(ÇC, Çtemp) f k and,
thus, |colMove| f k. Consequently, we obtain the stated running time of 2O(|colMod|+k) ·
nO(1) time.

We now conclude our permissive algorithm for LS Cluster Editing. That
is, we now prove Theorem 5.21. As we can switch between clusterings and cluster
colorings in polynomial time, the following statement is equivalent to Theorem 5.21.

3Again, if ω − ωi /∈ WcolM
or c + ωi /∈ WcolM

, T [i − 1, S, ω − ωi, c + ωi] is not an entry of the
dynamic programming table and we instead evaluate T [i− 1, S, ω − ωi, c+ ωi] as ∞.

145

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

Theorem 5.28. Let G = (V,E) be a graph, let ÇC be a coloring of V , and let k ∈ N.
In 2O(k) · kk · cvd3k ·nO(1) time, one can find a coloring Ç∗ that improves over ÇC
or correctly output that there is no coloring in the k-move neighborhood of ÇC that
improves over ÇC.

Proof. First, we compute a 2-approximate cluster modulator M of G in polynomial
time [8]. Let B be the collection of bags of G[V \M], let colMod and colBag be the
modulator colors and bag colors of ÇC, respectively. If the condition of Observa-
tion 5.22 or Observation 5.23 applies, then we find a coloring Ç∗ of V that improves
over ÇC in polynomial time. Hence, assume in the following that this is not the case.

As mentioned at the beginning of this section, we perform an initial branching
step to ensure that the coloring ÇC uses at most 2k modulator colors. Let Ç′ be the
best coloring in the k-move neighborhood of ÇC. Assume that Ç′ improves over ÇC.
Since dmove(ÇC, Ç′) f k, Observation 5.2 implies that there is a subset S ¦ colMod of
size at least |colMod|−2k such that for each modulator color ³ ∈ S, Ç−1

C (³) = Ç′−1(³).
Hence, to find a coloring that improves over ÇC it is sufficient to branch into all
subsets S ¦ colMod of size at least |colMod| − 2k and ask for a coloring Ç̂′ of V̂ :=

V \ (∪³∈SÇ
−1
C (³)) that improves over Ç̂ := ÇC|V̂ with respect to the subgraph G[V̂].

Note that this branching takes |colMod|2k · nO(1) f |M |2k · nO(1) time and in each
branching case, the corresponding coloring has at most 2k modulator colors.

Hence, in the following, we assume that colMod has size at most 2k. Next, we
iterate over a maximal set X of pairwise non-isomorphic template colorings and
compute for each such template coloring Çtemp a coloring Ç∗ which is at least as
good as a best coloring Ç′′ in the k-move neighborhood of ÇC where Çtemp is quasi-
intermediate for Ç′′. The latter task can be done in 2O(|colMod|+k) · nO(1) time due
to Lemma 5.26 for each template coloring Çtemp ∈ X . Due to Lemma 5.25, X can be
computed in (|colMod|+k)k · |M |k ·nO(1) time and has size (|colMod|+k)k · |M |k ·nO(1).

This algorithm is correct, since there is a template coloring Ç′
temp such that Ç′

temp

is quasi-intermediate for Ç′. Thus, in this way, we will find a coloring at least as
good as Ç′.

The whole algorithm runs in |M |2k · (|colMod|+k)k · |M |k ·2O(|colMod|+k) ·nO(1) time.
Since we ensured with the initial branching, that colMod has size at most 2k, this
results in a running time of 2O(k) · kk · |M |3k · nO(1) time. Finally, since M is a
2-approximate cluster modulator, |M | f 2 · cvd(G). Hence, we obtain the stated
running time of 2O(k) · kk · cvd(G)3k · nO(1) time.

146

5.5. Concluding Remarks

5.5 Concluding Remarks

In this chapter, we analyzed the parameterized complexity for LS Cluster Editing
and LS Cluster Deletion. We showed that both problems are W[1]-hard when
parameterized by k plus the largest cluster of the initial clustering (see Section 5.3
and Theorem 5.14). Moreover, we showed—similar to the previous chapters—that
both problems cannot be solved in f(k) · no(k) time for any computable function f ,
unless the ETH fails. This running time lower bound also holds for the permissive
version of LS Cluster Deletion. Positively, we present algorithms for both
problems that run in (3 · e)k · ∆2k · nO(1) time (see Theorem 5.6). Additionally,
we presented algorithms for the permissive versions of both problems that run in
(cvd ·k)O(k) ·nO(1) time, where cvd denotes the cluster vertex deletion number of the
input graph (see Theorems 5.20 and 5.28).

Open questions. From a theoretical point, we leave two questions open with
respect to the considered problems. First, does LS Cluster Deletion admit an
FPT-algorithm with respect to k if the initial clustering contains only a constant
number |C| of clusters? If this is the case, one might look into the combined pa-
rameter k+ |C| for LS Cluster Deletion. Note that this parameter combination
is not of interest for LS Cluster Editing, since we showed that LS Cluster
Editing is W[1]-hard when parameterized by k even if the initial clustering con-
tains only two clusters. Second, can we show lower bounds for the permissive variant
of LS Cluster Editing? So far, all of our negative results only hold for the strict
version of LS Cluster Editing. In particular, the question is open, whether the
permissive version of LS Cluster Editing admits the same nΩ(k) running time
lower bound as the permissive local search problems considered in Chapters 3 and 4.

It is also possible to think of further ways to improve upon our results. For
example, again the question arises whether we can solve the considered problems in
hO(k) · nO(1) time. Alternatively, one could consider other parameters smaller than
the maximum degree. For example, can we solve LS Cluster Editing and LS
Cluster Deletion in ℓO(k) · nO(1) time for ℓ being the maximum number of edge
deletions incident with any vertex with respect to the initial clustering?

Another direction is to generalize our results to related or more general problems.
For example, one could consider weighted versions of LS Cluster Editing and LS
Cluster Deletion. Here, we are given an additional weight function É :

(
V
2

)
→ R.

This weight function assigns a positive weight to each edge of the input graph and
a negative weight to each non-edge, and the goal is to find a clustering C that
maximizes the total weight of Cl(C). Alternatively, one can look into the complexity

147

Chapter 5. Graph Clustering under the Lens of Parameterized Local Search

of local search versions of related problems like Modularity Clustering [25,130]
or k-Means Clustering [45]. (Note that the k in k-Means Clustering is not
the search radius but the maximum number of clusters in any valid solution to this
problem.)

Finally, it would be interesting to see if our algorithmic ideas can be used to im-
prove the local-search-based heuristics for Cluster Deletion or Cluster Edit-
ing. In particular, it would be interesting to analyze whether an implementation
of the FPT-algorithms for ∆ + k (see Theorem 5.6) can be used as a successful
post-processing step for state-of-the-art heuristics.

148

Chapter 6

On the Complexity of
Parameterized Local Search for
the Maximum Parsimony Problem

Maximum Parsimony is one of the most popular methods for inferring phylogenetic
(evolutionary) trees from sequences of morphological or molecular characters (for
example the base pairs of DNA sequences) [54]. A common strategy to attack this
notoriously hard problem is to perform a local search over the phylogenetic tree
space. In this chapter, we analyze the complexity of local search for Maximum
Parsimony with respect to several natural scalable local neighborhoods. Given
sequences of characters for n taxa, Maximum Parsimony aims to reconstruct a
phylogenetic tree T whose n leaves are labeled bijectively by the n taxa and that
has the minimum parsimony score over all such trees. The parsimony score is the
number of character state changes along the tree edges that are necessary when
extending the sequences for the leaves of T to all internal vertices of T . An example
of the parsimony score of a fixed tree is depicted in Figure 6.1. Note that for each
character c, this score is at least sc − 1, where sc denotes the number of different
character states. A phylogenetic tree is called perfect if it achieves score sc − 1 for
each character c. Such a perfect phylogeny does not always exists. For any given
binary tree, the parsimony score can be computed in polynomial time using Fitch’s
algorithm [58] or Sankoff’s algorithm [148].

From an algorithmic point of view, the Maximum Parsimony problem is no-
toriously hard: It is NP-complete even for binary characters [61]. Moreover, the
current best running time is Ω((2n− 3)!!) [28], where !! denotes the double factorial.
That is, (2n− 3)!! = 1 · 3 · . . . · (2n− 5) · (2n− 3). The associated algorithm generates

149

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

Figure 6.1: An example of the parsimony score of a given tree. The leaves of the trees
are the taxa that are each assigned with a single character which can be either black or
white. The parsimony score of the depicted tree is 5, since five edges have endpoints of
different color.

all possible binary phylogenetic trees on n leaves in a bottom-up fashion. Hence, the
best known algorithm is essentially a brute-force-method. This running time bound
is impractical when n > 15. Better running times are possible when the instance has
a near-perfect phylogeny and the maximum number of different character states s is
small. Here, the running time is measured also in terms of the excess q over the score
of a perfect phylogeny. In the general case, Maximum Parsimony can be solved
in nmO(q)2O(q2s2) time [56], where m is the length of the character sequences. Later,
the running time was improved to O(21q + 8qnm2) for the special case of binary
characters and the practical usefulness of the improved algorithm was demonstrated
for q f 10 [156]. In the worst case, however, q can be essentially as large as m.
Moreover, Maximum Parsimony is NP-hard even for q = 0 when the number of
different character states is unbounded [22].

Given the above-described hardness of Maximum Parsimony, solving this prob-
lem exactly is currently impossible for many real-world datasets due to prohibitively
high running times. Consequently, heuristic approaches, in particular hill-climbing
local search algorithms, play an important role in computing good, but not necessar-
ily optimal, solutions [6,63,64,71–74,132,143]. As the local neighborhood, one usually
considers all trees that can be obtained by one or few rearrangement operations. The
most well-known rearrangement operations on trees that are also considered in local
search approaches for Maximum Parsimony [3] are nearest neighbor interchange
(NNI), subtree prune and regraft (SPR), and tree bisection and reconnection (TBR)
which are all formally defined in Section 6.1. Each of these operations deletes an
edge of a tree and then reconnects the resulting two subtrees. Depending on the op-
eration, the reconnection is more or less restrictive, with SPR being a generalization
of NNI and TBR being a generalization of SPR. For such a rearrangement opera-
tion ◦, we can then define a distance between two trees T and T ′ with respect to ◦
as the minimum number of consecutive ◦-operations needed to transform T into T ′.

150

These distance measures then define scalable local neighborhoods for phylogenetic
trees. The set of all trees that can be obtained by one operation is called the NNI,
SPR, or TBR neighborhood, respectively. More generally, we say that a tree T ′ is
in the k-neighborhood with respect to NNI, SPR, or TBR of another tree T , if the
distance from T to T ′ is at most k with respect to NNI, SPR, or TBR operations,
respectively.

In addition to NNI, SPR, and TBR, the k-ECR operation has also been con-
sidered in the literature (see for example the works by Ganapathy et al. [63, 64]).
This latter operation first contracts up to k edges and then refines the resulting
tree arbitrarily. The k-ECR neighborhood contains all trees that can be obtained
from a starting tree by applying one k-ECR operation. The 1-ECR neighborhood
is exactly the NNI neighborhood, but the 2-ECR neighborhood strictly contains the
set of trees reachable by two NNI moves [64]. The k-ECR neighborhood appeared
earlier implicitly under the term sectorial search [74]. Moreover, it was observed
that two binary phylogenetic trees are one k-ECR operation apart if and only if
their Robinson-Foulds-distance is at most 2k [63]. A restricted version of the k-ECR
neighborhood where the contracted edges must form a subtree (called the k-sECR
neighborhood) was considered by Sankoff et al. [149]. They found that for larger
values of k, the k-sECR neighborhood gives better results than the 1-ECR neighbor-
hood or, equivalently, the NNI neighborhood. Guo et al. [85] found that exploring
the k-ECR neighborhood is too costly and thus proposed a restriction of this neigh-
borhood which already leads to very good local optima. Their approach contracts k
edges and then refines the resulting tree by using neighbor joining, a fast distance-
based method to reconstruct phylogenetic trees. To summarize, local search is an
important paradigm for designing heuristics for Maximum Parsimony, and it has
been noted that larger neighborhoods, such as the k-ECR neighborhood, give better
results at the cost of higher running times. So far, there is, however, no study on
how hard exploring larger neighborhoods actually is.

As in the previous chapters, we again ask whether one can find algorithms that
search the k-neighborhoods, with respect to the described distance measures, faster
than |I|O(k) time. Recall that a running time of f(k) · |I|O(1) would be desirable since
the explosion in the running time would then depend only on k and not on |I|.

Our results. In Section 6.1, we provide the problem-specific notation for this
chapter. Afterwards, in Section 6.2, we provide new insights in the relation between
the different considered distance measures. In Section 6.3, we show that even when
all characters are binary, searching the k-ECR neighborhood is W[1]-hard with re-
spect to k. The reduction that establishes this result also shows that, under the ETH,

151

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

a running time of |I|Ω(k) is necessary. Moreover, the reduction implies hardness for
searching the k-neighborhood with respect to NNI, SPR, and TBR. In a nutshell,
our results show that one cannot gain a substantial speed-up over the brute-force
algorithm when trying to search these large neighborhoods. In Section 6.4, we then
lift the negative results to the permissive version of local search for all these dis-
tance measures. We then establish that nO(k) · m time is sufficient to search the
k-neighborhoods with respect to any of NNI, SPR, TBR, and k-ECR, giving tight
upper and lower bounds for running times that grow strongly with respect to k only.
Finally, we observe in Section 6.5 that the k-sECR neighborhood of Sankoff [149]
can be searched in kO(k) · |I|O(1) time, making it possible to consider much larger
values of k than for the other neighborhoods. Let us remark that, while we for-
mally study the decision problem that asks for the existence of a better tree in
the k-neighborhood, our hardness results and algorithms also apply to the problem
of finding a best tree in the k-neighborhood.

6.1 Problem-Specific Notation

In this section, we formally define the concepts used in this chapter. This includes
phylogenetic trees, the parsimony score, the considered distance measures on phylo-
genetic trees, and the local search problem we analyze with respect to these distance
measures.

Phylogenetic trees. Throughout this chapter, X denotes a non-empty finite
set of taxa. An (unrooted phylogenetic) X-tree T is a tree with leaf-set X and where
no vertex has degree 2. If all non-leaf vertices of T have degree three, then T is
called binary. Furthermore, if an edge e is incident with a leaf of T , then e is called
a pendant edge and, otherwise, an internal edge. For two disjoint sets of taxa A
and B, we say that A|B is a split of an X-tree T if there is an edge e in T such that
the deletion of e results in two subtrees where one has leaf set A and the other has
leaf set B. The set of all splits of T is denoted by Σ(T). Furthermore, we say that
an X-tree T ′ is a refinement of T if Σ(T) ¦ Σ(T ′). Additionally, if T ′ is binary, then
T ′ is a binary refinement of T . We say that two X-trees T and T ′ are isomorphic
if Σ(T) = Σ(T ′). Equivalently, two X-trees T and T ′ are isomorphic if there is a
bijection φ between the vertices of T and the vertices of T ′ such that φ(x) = x for
each taxon x ∈ X, and for all distinct vertices u and v of T , {u, v} is an edge of T
if and only if {φ(u), φ(v)} is an edge of T ′.

Now, let T be an X-tree and let V ′ be a subset of the vertices of T . Then

152

6.1. Problem-Specific Notation

T (V ′) denotes the minimal subtree of T containing all vertices in V ′. Moreover, the
restriction of T to a subset of taxa A ¦ X, denoted by T |A, is the A-tree obtained
from T (A) by suppressing every degree-2 vertex. Let A be a non-empty and proper
subset of X and let T be a binary X-tree. If A|(X \ A) is a split of T , then the
subtree T (A) is a pendant A-tree. Moreover, the pseudo-root of T (A) is the unique
vertex of degree 2 in T (A) if |A| > 1 and the unique vertex of T (A), otherwise.

Maximum parsimony. A character1 c on X is a function c : X → C. If
|C| = 2, then c is called a binary character. Intuitively, C can be thought of as the
underlying alphabet and each element in the alphabet is a character state. Let T be
an X-tree with vertex set V , and let c be a character on X whose set of character
states is C. An extension c∗ of c to V is a function c∗ : V → C such that c∗(x) = c(x)
for each taxon x ∈ X. Let c∗ be an extension of c. A mutation edge of c∗ in T is an
edge {u, v} in T such that c∗(u) ̸= c∗(v) and we let scorec∗(T) denote the number
of mutation edges of c∗ in T . Then the parsimony score of c on T , denoted by
scorec(T), is obtained by minimizing scorec∗(T) over all possible extensions c∗ of c.
An extension c∗ that minimizes scorec∗(T) is called an optimal extension of c in T .
Moreover the maximum parsimony score of c, denoted by MP(c), is the parsimony
score of c minimized over all binary X-trees.

Now let S = (c1, c2, . . . , cm) be a sequence of characters on X. Then the par-
simony score of S on an X-tree T is defined as scoreS(T) =

∑m
i=1 scoreci(T) and,

similarly, the maximum parsimony score of S, denoted by MP(S), is the parsimony
score of S minimized over all binary X-trees.

We may abuse notation by writing c ∈ S if the character c is contained in the
sequence S.

Observation 6.1. Let T be a binary X-tree, let c be a character, and let c∗ be an
optimal extension of c on T . If there is a split A|B of T such that c(a) = c(a′) for
each pair of taxa a and a′ of A, then c∗(v) = c(a) for each vertex v of T (A).

SPR and TBR. Let T be a binary X-tree. Let e = {u, v} be an edge of T ,
and let T1 and T2 be the two trees obtained from T by deleting e and suppressing u
if its degree is 2. Without loss of generality, we may assume that T2 contains v. If T1
contains at least one edge, subdivide an edge of T1 with a new vertex u′; otherwise,
set u′ to be the single isolated vertex of T1. Finally, obtain a binary X-tree T ′ by
adding the new edge {u′, v}. We say that T ′ has been obtained from T by a single

1Characters as defined here are not elements of some alphabet but functions that assign an
element of some alphabet to each taxon.

153

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

subtree prune and regraft (SPR) operation. We next define a generalization of the
SPR operation. Again, let e be an edge of T , and let T1 and T2 be the two trees
obtained from T by deleting e and suppressing any resulting degree-2 vertices. For
each i ∈ {1, 2}, if Ti has at least one edge, subdivide an edge in Ti with a new vertex
vi and, otherwise, set vi to be the single vertex of Ti. Obtain a binary X-tree T ′ by
adding the new edge {v1, v2}. We say that T ′ has been obtained from T by a single
tree bisection and reconnection (TBR) operation.

NNI, k-ECR, and k-sECR. Let T be a binary X-tree. Let e = {u, v} be an
edge of T and let e′ = {v, w} be an internal edge of T that is adjacent to e. Let T ′ be
a binary X-tree obtained from T by deleting e, suppressing v, subdividing an edge
that is incident with w with a new vertex v′, and joining u and v′ via a new edge. We
say that T ′ has been obtained from T by a single nearest neighbor interchange (NNI)
operation. Equivalently, if T ′ is a binary refinement of the tree obtained from T by
contracting e′ and T ′ is non-isomorphic to T , then T ′ is obtained from T by a single
NNI operation.

Now let T be a binary X-tree, and let k be a positive integer. Let T ′ be a binary
refinement of a tree obtained from T by contracting k (distinct) internal edges E ′.
If T ′ and T are non-isomorphic, then we say that T ′ is a single k-edge contract and
refine (k-ECR) operation [63] apart from T and that E ′ is a contraction set for T
and T ′. Note that an NNI operation is a 1-ECR operation and vice versa. We denote
the restricted version of a k-ECR operation that requires the k contracted edges to
form a subtree of T as k-sECR [149].

Distance measures. Let T and T ′ be binary X-trees. For each operation Θ ∈
{NNI, SPR,TBR}, the distance dΘ(T, T

′) is defined as the minimum number of Θ
operations to transform T into T ′ [3]. The distance dECR(T, T

′) is defined as the
smallest number k such that T and T ′ are one k-ECR operation apart. Analogously,
the distance dsECR(T, T

′) is defined as the smallest number k such that T and T ′ are
one k-sECR operation apart.

Another famous distance measure between X-trees is dRF, the Robinson-Foulds-
distance [145]. This distance measure is define by dRF(T, T

′) := |Σ(T) · Σ(T ′)| for
any two phylogeneticX-trees T and T ′. It was shown that for binary phylogeneticX-
trees T and T ′, dRF(T, T

′) = 2 · dECR(T, T
′) [63].

Considered problems. In this chapter, we consider for each distance mea-
sure d ∈ {dNNI, dSPR, dTBR, dECR, dRF, dsECR} the parameterized complexity of the
following problem.

154

6.2. Properties of the Considered Distance Measures

d-LS Maximum Parsimony
Input: A set of taxa X, a binary X-tree T , a sequence of characters S,
and k ∈ N.
Question: Does there exist a binary X-tree T ′ with d(T, T ′) f k and
scoreS(T

′) < scoreS(T)?

6.2 Properties of the Considered Distance Mea-

sures

In this section, we analyze the relation of the different distance measures.

Observation 6.2 ([3,144]). The distance measures dNNI, dSPR, and dTBR are metrics.

Since dRF is a metric [145] and for any two phylogenetic X-trees T and T ′,
dRF(T, T

′) = 2 · dECR(T, T
′), we conclude the following.

Observation 6.3. The distance measure dECR is a metric.

Note that the distance measure dsECR is not a metric, since dsECR does not fulfill
the triangle inequality.

For any two binaryX-trees T and T ′, dNNI(T, T
′) g dSPR(T, T

′) g dTBR(T, T
′) [3].

In the following, we show that dNNI(T, T
′) g dECR(T, T

′) and that dECR(T, T
′) g

dTBR(T, T
′). We start by showing that dNNI(T, T

′) g dECR(T, T
′).

Lemma 6.4. Let T and T ′ be binary X-trees. Then, dNNI(T, T
′) g dECR(T, T

′).

Proof. We show this statement by induction over dNNI(T, T
′). For the base case,

consider dNNI(T, T
′) f 1. Since dNNI(T, T

′) = 0 implies that T is equal to T ′,
dECR(T, T

′) = 0 if dNNI(T, T
′) = 0. Moreover, since the NNI operations are exactly

the 1-ECR operations, dECR(T, T
′) = 1 if dNNI(T, T

′) = 1.
For the inductive step, suppose that dNNI(T, T

′) > 1 and that the statement

holds for each pair of binary X-trees T̂ and T̃ with dNNI(T̂ , T̃) < dNNI(T, T
′).

Since dNNI(T, T
′) > 1, by definition of dNNI, there is an X-tree T̄ with dNNI(T, T̄) =

dNNI(T, T
′) − 1 and dNNI(T̄ , T

′) = 1. Hence, based on the induction hypothesis,
dECR(T, T̄) f dNNI(T, T

′)− 1 and dECR(T̄ , T
′) f 1. Due to Observation 6.3, the tri-

angle inequality implies dECR(T, T
′) f dECR(T, T̄) + dECR(T̄ , T

′) f dNNI(T, T
′).

Hence, to show that dNNI(T, T
′) g dECR(T, T

′) g dSPR(T, T
′) g dTBR(T, T

′) for
any two binary X-trees T and T ′, it remains to show that dECR(T, T

′) g dSPR(T, T
′).

To this end, we first observe the following connection between dsECR and dECR.

155

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

Observation 6.5. Let T and T ′ be distinct binary X-trees and let k > 0 be an
integer. If dECR(T, T

′) = k, then there is a binary X-tree T̃ with dsECR(T̃ , T
′) > 0

such that dECR(T, T
′) = dECR(T, T̃) + dsECR(T̃ , T

′).

The idea behind Observation 6.5 is to consider the connected components of T
induced by the contraction set S between T and T ′. If S forms a subtree of T , then S
is connected and dsECR(T, T

′) = dECR(T, T
′). Hence, the statement holds for T̃ = T ′.

Otherwise, let S̃ be an inclusion-maximal subset of S, such that S̃ forms a subtree
of T . Since S̃ is inclusion-maximal, we can obtain T ′ from T in two steps: First, we
can obtain an intermediate X-tree T̃ from T by an sECR operation with contraction
set S̃. Second, we can obtain T ′ from T̃ by an ECR operation with contraction
set S \ S̃.

Before we show that dECR(T, T
′) g dSPR(T, T

′), we first show the statement
for dsECR, that is, we show that dsECR(T, T

′) g dSPR(T, T
′).

Lemma 6.6. Let T and T ′ be binary X-trees. Then, dsECR(T, T
′) g dSPR(T, T

′).

Proof. Let k = dsECR(T, T
′). Hence, there is a set S of k internal edges in T such

that T ′ can be obtained by an sECR operation with contraction set S. Let V ′ be
the vertices of T incident with some edge of S and let V ∗ be the neighbors of V ′

in T that are not incident with any edge of S. Recall that by definition of sECR
operations, the edges of S induce a subtree of T . Hence, T (V ∗) is a binary V ∗-tree
having the set S as internal edges. For each vertex v of V ∗, let Tv denote the pendant
subtree of T with pseudo-root v obtained by removing the edge between v and the
unique neighbor of v in V ′. Since T ′ can be obtained by an sECR operation with
contraction set S, T ′ contains a subtree T ′

v isomorphic to Tv for each vertex v of V ∗.
Hence, dSPR(T, T

′) = dSPR(TS, T
′
S), where TS is obtained from T by replacing Tv by

the auxiliary taxa v for each vertex v of V ∗ and where T ′
S is obtained from T ′ by

replacing T ′
v by the auxiliary taxa v for each vertex v of V ∗ [3]. Note that TS = T (V ∗).

Hence, it remains to show that dSPR(TS, T
′
S) f k. Since T is binary and the

edges of S induce a subtree of T , |V ∗| = |S| + 3. Moreover, since for each set

of taxa X ′ and each two binary X ′-trees T̃ and T̂ , dSPR(T̃ , T̂) f |X ′| − 3 [3], we
conclude dSPR(TS, T

′
S) f |V ∗| − 3 = |S| = k. Consequently, dSPR(T, T

′) f k =
dsECR(T, T

′).

Due to Observation 6.5 and Lemma 6.6, we are now ready to prove that the SPR-
distance between two binary X-trees is never larger than the ECR-distance between
these binary X-trees.

Lemma 6.7. Let T and T ′ be binary X-trees. Then, dECR(T, T
′) g dSPR(T, T

′).

156

6.3. Hardness of Local Search for the Maximum Parsimony Problem

Proof. We show this statement by induction over dECR(T, T
′). For the base case,

consider dECR(T, T
′) f 1. Since dECR(T, T

′) = 0 implies that T is isomorphic to T ′,
dSPR(T, T

′) = 0 if dECR(T, T
′) = 0. Moreover, since the 1-ECR operations are exactly

the NNI operations and each NNI operation is an SPR operation, dSPR(T, T
′) = 1

if dECR(T, T
′) = 1.

For the inductive step, suppose that dECR(T, T
′) > 1 and that the statement

holds for each pair of binary X-trees T̂ and T̃ with dECR(T̂ , T̃) < dECR(T, T
′).

Due to Observation 6.5, there is a binary X-tree T̃ with dsECR(T̃ , T
′) > 0 such

that dECR(T, T
′) = dECR(T, T̃) + dsECR(T̃ , T

′). Moreover, Lemma 6.6 now implies

that dsECR(T̃ , T
′) g dSPR(T̃ , T

′). Hence, if T̃ is isomorphic to T , then dECR(T, T
′) =

dsECR(T̃ , T
′) g dSPR(T̃ , T

′) and the statement holds. Otherwise, that is, if T̃ is

non-isomorphic to T , then dECR(T, T̃) > 0. Since dsECR(T̃ , T
′) > 0, dECR(T, T̃) <

dECR(T, T
′). Hence, by the induction hypothesis, dSPR(T, T̃) f dECR(T, T̃). Since

the distance measure dSPR is a metric, we conclude

dSPR(T, T
′) f dSPR(T, T̃) + dSPR(T̃ , T

′)

f dECR(T, T̃) + dsECR(T̃ , T
′) = dECR(T, T

′).

Hence, the statement holds.

Consequently, dECR is a metric, upper bounded by dNNI and lower bounded
by dTBR. Moreover, due to the relation between dECR and dRF, we obtain the follow-
ing relation between the considered distance measures.

Theorem 6.8. Let T and T ′ be binary X-trees. Then, dNNI(T, T
′) g dECR(T, T

′) =
1
2
· dRF(T, T

′) g dSPR(T, T
′) g dTBR(T, T

′).

6.3 Hardness of Local Search for the Maximum

Parsimony Problem

In this section, we establish our running time lower bounds for d-LS Maximum
Parsimony.

Theorem 6.9. For each distance measure d ∈ {dNNI, dECR, dRF, dSPR, dTBR} and
even if each character is binary, d-LS Maximum Parsimony

• is NP-complete,

• W[1]-hard when parameterized by k, and

157

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

• cannot be solved in f(k) · |I|o(k) time for any computable function f , unless the
ETH fails.

We reduce from Clique. Recall that Clique is NP-hard [97], W[1]-hard when
parameterized by k [44], and cannot be solved in f(k)·|I|o(k) time for any computable
function f , unless the ETH fails [33, 35].

Let I = (G = (V,E), k) be an instance of Clique and let d be any distance
measure from {dNNI, dECR, dSPR, dTBR}. We describe how to construct an equivalent
instance I ′ = (X, T = (V ′, E ′), S, k′) of d-LS Maximum Parsimony in polynomial
time where k′ := k if d ∈ {dSPR, dTBR} and k′ := 2k if d ∈ {dNNI, dECR}.

Definition of X and T . We start with an empty taxa set X and add for each
vertex v ∈ V , a set Xv consisting of the eight taxa

in0
v, in

1
v, in

0

v, in
1

v, out
0
v, out

1
v, out

0
v, and out1v

to X. Additionally, we add a taxon x∗ to X. This completes the definition of X.
Next, we define the binary X-tree T = (V ′, E ′). Since X contains 8 · |V | + 1

taxa and each internal vertex of T has three neighbors, T ′ has 16 · |V | vertices
and 2 · |X|−3 = 16 · |V |−1 edges. By definition, V ′ is a superset of X. Additionally,
for each vertex v ∈ V , the set V ′ contains the seven vertices

inv, inv, outv, outv, r
in
v , r

mid
v , and routv .

The subtree Tv := T (Xv) is depicted in Figure 6.2a.
Moreover, V ′ contains |V | − 1 additional vertices qi with i ∈ [2, |V |]. Fix some

arbitrary ordering of the vertices of V and let V (i) denote the ith vertex of V
according to that ordering. The vertex q2 is adjacent to routV (1), r

out
V (2), and q3. For

each i ∈ [3, |V | − 1], the vertex qi is adjacent to qi−1, qi+1, and r
out
V (i). Finally, q|V | is

adjacent to q|V |−1, r
out
V (|V |), and x

∗. See Figure 6.2b for an illustration. This completes
the definition of T .

Intuition. The idea of the reduction is as follows: Some of the characters that
we define in the following will ensure that each binary X-tree T ′ that improves
over T contains a pendant subtree T ′(Xv) for each vertex v ∈ V . Further characters
will ensure that there are only two non-isomorphic options for T ′(Xv) which are
depicted in Figure 6.2a and Figure 6.3. Intuitively, these two choices then function
as a selection gadget for selecting vertex v as a vertex of the sought clique K. The
budget k′ bounds how many such vertices can be selected. Finally, further characters
will ensure that T ′ improves over T only if E(K) contains at least

(
k
2

)
edges.

158

6.3. Hardness of Local Search for the Maximum Parsimony Problem

in0
v in1

v

inv

in
0

v in
1

v

inv

out
0
vout

1
v

outv

out0vout
1
v

outv

rinv

rmid
v

routv

(a) For a vertex v ∈ V , the pendant Xv-tree Tv. The
bold edges are the only edges of Tv that are not in R.

q2

q3

q|V |

x∗

TV (1) TV (2)

TV (3)

TV (|V |)

(b) The subtree of T connecting the
pendant trees Tv for each vertex v ∈ V .

Figure 6.2: The construction of the X-tree T .

Definition of the characters of S. Next, we define the characters of S which
are all binary characters whose character states are 0 and 1. We obtain S by concate-
nating two sequences of characters, SG and SR, which we describe in the following.

First, we describe the characters of SG. An overview of the characters is given
in Table 6.1. We initialize SG as the empty sequence.

For each edge e ∈ E, we add a character ce to SG. Let e be an edge of E. We
set ce(x

∗) := 1. Let v be a vertex of V . If v is an endpoint of e, we set ce(x) := 1

for each taxon x ∈ {in0
v, in

1
v, in

0

v, in
1

v} and we set ce(x) := 0 for each taxon x ∈
{out0v, out

1
v, out

0
v, out

1
v}. Otherwise, if v is not an endpoint of e, we set ce(x) := 1

for each taxon x ∈ {in1
v, in

1

v, out
1
v, out

1
v} and we set ce(x) := 0 for each taxon x ∈

{in0
v, in

0

v, out
0
v, out

0
v}. Let SE denote the sequence of characters ce for each edge e ∈ E.

Next, we define a character cmal. We set cmal(x
∗) := 1. For each vertex v ∈ V ,

we set cmal(out
0
v) = cmal(out

1
v) := 1 and we set cmal(x) := 0 for each taxon x ∈

Xv \{out0v, out1v}. We add a sequence Smal of
(
k
2

)
−1 copies of cmal to SG. Intuitively,

in a binary X-tree T ′, if both endpoints of an edge e ∈ E are in the selected set K,
then the parsimony score of ce in T

′ is exactly the parsimony score of ce in T minus
one. Moreover, if T ′ is non-isomorphic to T , then the parsimony score of Smal in T

′

is exactly the parsimony score of Smal in T plus |Smal|. Hence, the characters of Smal

act as a hurdle to ensure that E(K) contains at least |Smal|+ 1 =
(
k
2

)
edges.

Finally, for each vertex v ∈ V , we define four characters cv,in, cv,out, cv,ri, and cv,ro.
For each taxon x of X \ Xv, we set cv,in(x) := cv,out(x) := cv,ri(x) := cv,ro(x) := 1.
Now, let x be a taxon of Xv.

• If x is in {in0
v, in

1
v}, then we set cv,in(x) := 1, cv,out(x) := 0, cv,ri(x) := 1,

and cv,ro(x) := 0.

159

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

• If x is in {in0

v, in
1

v}, then we set cv,in(x) := 1, cv,out(x) := 0, cv,ri(x) := 0,
and cv,ro(x) := 0.

• If x is in {out0v, out
1
v}, then we set cv,in(x) := 0, cv,out(x) := 1, cv,ri(x) := 0,

and cv,ro(x) := 0.

• If x is in {out0v, out1v}, then we set cv,in(x) := 0, cv,out(x) := 1, cv,ri(x) := 0,
and cv,ro(x) := 1.

Let ´ := 2·|X|·(|E|+
(
k
2

)
). Note that ´ is larger than scoreSE

(T ′)+scoreSmal
(T ′) of any

binaryX-tree T ′, since such a tree T ′ contains less than 2·|X| edges and |SE|+|Smal| =
|E|+

(
k
2

)
− 1. For each vertex v ∈ V , we extend SG by

• a sequence Sv,in of ´ copies of cv,in,

• a sequence Sv,out of ´ copies of cv,out,

• a sequence Sv,ri of 2´ copies of cv,ri, and

• a sequence Sv,ro of 2´ copies of cv,ro.

Let Sv denote the combined sequences of Sv,in, Sv,out, Sv,ri, and Sv,ro. Intuitively, for
each binaryX-tree T ′ that improves over T and contains T ′(Xv) as a pendant subtree,
the characters of Sv ensure that T ′(Xv) is isomorphic to either the pendant tree
depicted in Figure 6.2a or the pendant tree depicted in Figure 6.3. These two choices
then function as a selection gadget for the vertices of the sought clique in G. This
completes the construction of SG. Note that SG contains exactly |E|+

(
k
2

)
−1+6´ ·|V |

characters.
Next, we describe the sequence of characters SR. Let ³ := 2 · |X| · |SG|. Note

that ³ is larger than scoreSG
(T̃) of any binary X-tree T̃ , since such a tree T̃ contains

less than 2 · |X| edges. Let R := E ′ \ {{rinv , rmid
v }, {rmid

v , routv } | v ∈ V }. For each
edge e of R, we define a character ceR. Let A|B be the split of T induced by e. For
each taxon x ∈ A, we set ceR(x) := 0 and for each taxon x ∈ B, we set ceR(x) := 1. We
add as sequence Se

R of ³ copies of ceR to SR. Intuitively, the characters of SR ensure
that each binary X-tree T ′ that improves over T , shares the split that is induced
by e in T for each edge e of R. This implies that T ′(Xv) is a pendant subtree of T ′

for each vertex v ∈ V .
Finally, S is obtained by concatenating SG and SR.

Properties of binary X-trees. Before we show the correctness of the reduc-
tion, we first make some observations about binary X-trees with the characters of
the construction.

160

6.3. Hardness of Local Search for the Maximum Parsimony Problem

Table 6.1: An overview of the characters of SG.

in0
v in1

v in
0

v in
1

v out
0
v out

1
v out0v out1v x∗

ce ∈ SE, v ∈ e 1 1 1 1 0 0 0 0 1
ce ∈ SE, v /∈ e 0 1 0 1 0 1 0 1 1
cmal 0 0 0 0 0 0 1 1 1
cv,in 1 1 1 1 0 0 0 0 1
cv,out 0 0 0 0 1 1 1 1 1
cv,ri 1 1 0 0 0 0 0 0 1
cv,ro 0 0 0 0 0 0 1 1 1
c ∈ Sw, w ̸= v 1 1 1 1 1 1 1 1 1

Note that for each binary X-tree T ′ and each edge e of R, scorece
R
(T ′) g 1.

Definition 6.10. Let T ′ be a binary X-tree. We say that T ′ is split-consistent for T
and R if for each edge e of R, the split of T induced by e is also a split of T ′.

In preparation for the next observation, note that if a binaryX-tree T ′ is not split-
consistent for T and R, then there is some edge e of R such that scorece

R
(T ′) g 2

and thus scoreSe
R
(T ′) g 2 · ³. Hence, scoreS(T

′) g scoreSR
(T ′) g ³ · (|R| + 1).

Since ³ > scoreSG
(T), this implies scoreS(T

′) > scoreS(T). Hence, we conclude the
following.

Observation 6.11. Let T ′ be a binary X-tree. a) If scoreS(T
′) f scoreS(T),

then T ′ is split-consistent for T and R. b) If T ′ is split-consistent for T and R,
then scoreSR

(T ′) = ³ · |R|.
To determine whether I ′ is a yes-instance of d-LS Maximum Parsimony, we

analyze the structure of binary X-trees T ′ with scoreS(T
′) f scoreS(T). Due to Ob-

servation 6.11, we only need to consider binary X-trees that are split-consistent for T
and R in the following.

Let v be a vertex of V and let T ′ be a binary X-tree which is split-consistent for T
and R. Since there is an edge ev in T such that ev induces the split Xv|(X \Xv) in T
and ev is contained in R, Xv|(X \ Xv) is a split in T ′. Hence, T ′(Xv) is a pendant
tree. Moreover, since all edges incident with inv are in R, we can assume that inv is
the common neighbor of in0

v and in1
v in T ′. Similarly, we may assume that inv is the

common neighbor of in
0

v and in
1

v in T
′, outv is the common neighbor of out

0
v and out

1
v

in T ′, and outv is the common neighbor of out0v and out1v in T ′.

Definition 6.12. Let T ′ be a binary X-tree which is split-consistent for T and R,
let v be a vertex of V , and let r be the pseudo-root of the pendant tree T ′(Xv).

161

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

in0
v in1

v

inv

in
0

v in
1

v

inv

out
0
vout

1
v

outv

out0vout
1
v

outv

Figure 6.3: An in-rooting of Tv.

We say that T ′(Xv) is an in-rooting of Tv if inv is adjacent to r, inv has distance 2
to r, and both outv and outv have distance 3 to r. Similarly, we say that T ′(Xv) is
an out-rooting of Tv if outv is adjacent to r, outv has distance 2 to r, and both inv

and inv have distance 3 to r.

Figure 6.2a shows an out-rooting of Tv and Figure 6.3 shows an in-rooting of Tv.
Note that for each vertex v of V , there is a unique in-rooting of Tv with respect

to isomorphism. Similarly, there is a unique out-rooting of Tv with respect to iso-
morphism. Note that for each vertex v ∈ V , Tv is an out-rooting of Tv. We call
a binary X-tree T ′ well-rooted if T ′ is split-consistent for T and R and if for each
vertex v ∈ V , T ′(Xv) is either an in-rooting or an out-rooting of Tv. Note that T
is well-rooted.

Lemma 6.13. Let T ′ be a binary X-tree which is split-consistent for T and R
and let v be a vertex of V . If T ′(Xv) is an in-rooting or an out-rooting of Tv,
then scoreSv

(T ′) = 9´. Otherwise, scoreSv
(T ′) g 10´.

Proof. Let T ′
v := T ′(Xv). Recall that T ′

v is a pendant tree in T ′. Let r′ be the
pseudo-root of T ′

v and let q be the unique neighbor of r′ outside of T ′
v in T ′.

In the following, consider the sequence Ŝ of characters containing one copy of
both cv,in and cv,out, and two copies of both cv,ri and cv,ro. Note that Sv consists of ´

copies of Ŝ. Hence, it remains to show that, if T ′
v is either an in-rooting of Tv or an

out-rooting of Tv, then scoreŜ(T
′) = 9 and scoreŜ(T

′) g 10, otherwise.
Recall Observation 6.1: If all taxa X ′ of a pendant subtree T (X ′) receive the same

image according to a given character c, then for each optimal extension c∗ of c, each
vertex of T (X) receives the same label under c∗. Note that inv is the common neigh-
bor of both in0

v and in1
v in T ′. Moreover, since c(in0

v) = c(in1
v) for each character c

162

6.3. Hardness of Local Search for the Maximum Parsimony Problem

score = 10

outout q in in

score = 12

out in q out in

score = 12

out in q out in

score = 11

q outout in in

score = 12

q in outout in

score = 10

q in outout in

score = 9

q outout in in

score = 12

q in outout in

score = 10

q in outout in

score = 10

q out in out in

score = 12

q out in out in

score = 9

q in in outout

score = 10

q out in out in

score = 12

q out in out in

score = 11

q in in outout

Figure 6.4: The 15 potential pairwise non-isomorphic subtrees and their corresponding
scores described in the proof of Lemma 6.13. In each tree, the pseudo-root of T ′(Xv) is
highlighted by the black vertex.

of Ŝ, Observation 6.1 implies that c∗(inv) = c(in0
v) = c(in1

v). Similarly, for each char-

acter c of Ŝ, c∗(inv) = c(in
0

v) = c(in
1

v), c
∗(outv) = c(out

0
v) = c(out

1
v), and c

∗(outv) =
c(out0v) = c(out1v). Finally, since the edge {r′, q} induces the split Xv|(X \Xv) in T

′

and for each character c of Ŝ and each taxon x ∈ X \Xv, c(x) = 1, Observation 6.1

implies c∗(q) = 1. As a consequence, for each character c of Ŝ, each mutation edge

of c∗ is an edge of the subtree T̂ := T ′({inv, inv, outv, outv, q}). Since both T̂ and Ŝ
have constant size, we omit the proof of the scores of the 15 different non-isomorphic
potential trees T̂ . Instead, each such tree together with the corresponding score is
depicted in Figure 6.4.

Next, we describe for a given well-rooted binary X-tree T ′ the maximum parsi-
mony scores of T ′ with respect to the characters of SE and Smal. The idea is that
in a well-rooted binary X-tree T ′, for each edge e = {u, v} ∈ E where T ′(Xu) is an
in-rooting of Tu and where T ′(Xv) is an in-rooting of Tv, the parsimony score of the
character ce in T

′ is exactly the parsimony score of the character ce in T minus one.
Moreover, if for at least one vertex v ∈ V , T ′(Xv) is an in-rooting of Tv, then the
parsimony score of the characters of Smal in T

′ is exactly the parsimony score of the
characters of Smal in T plus

(
k
2

)
− 1.

Lemma 6.14. Let T ′ be a well-rooted binary X-tree.

a) Let e = {u, v} be an edge of E. If T ′(Xu) is an in-rooting of Tu and T ′(Xv) is

163

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

an in-rooting of Tv, then scorece(T
′) = 4(|V |− 2)+2. Otherwise, scorece(T

′) =
4(|V | − 2) + 3.

b) If there is at least one vertex w ∈ V such that T ′(Xw) is an in-rooting of Tw,
then scorecmal

(T ′) = |V | + 1. Otherwise, that is, if T ′ is isomorphic to T ,
then scorecmal

(T ′) = |V |.

Proof. For each vertex w of V , let T ′
w := T ′(Xw). Let Vin be those vertices w of V ,

where T ′
w is an in-rooting of Tw and let Vout = V \ Vin be those vertices w of V ,

where T ′
w is an out-rooting of Tw. For each vertex w ∈ Vin, let rinw be the name of the

pseudo-root of T ′
w, let r

mid
w and inw be the neighbors of rinw , and let routw and inw be

the neighbors of rmid
w . Analogously, for each vertex w ∈ Vout, let routw be the name of

the pseudo-root of T ′
w, let r

mid
w and outw be the neighbors of routw , and let rinw and outw

be the neighbors of rmid
w . Recall that since T ′ is well-rooted, for each vertex w ∈ V ,

inw is adjacent to both in0
w and in1

w, inw is adjacent to both in
0

w and in
1

w, outw is

adjacent to both out
0
w and out

1
w, and outw is adjacent to both out0w and out1w.

First, we show statement a). Let ce be a character for some edge e = {u, v} of E.
For each vertex w ∈ V \ {u, v},

• let Pinw be the unique path between in0
w and in1

w in T ′,

• let Pinw
be the unique path between in

0

w and in
1

w in T ′,

• let Poutw
be the unique path between out

0
w and out

1
w in T ′, and

• let Poutw be the unique path between out0w and out1w in T ′.

Note that each of these four paths only contains two edges and that these four paths
are pairwise edge-disjoint. Let Pw := {Pinw , Pinw

, Poutw
, Poutw}. Let P ′ be a path

in Pw and let w0 and w1 be the terminals of P ′. Since by definition ce(w
0) ̸= ce(w

1),
for each extension c∗e of ce in T

′, at least one edge of P ′ is a mutation edge of c∗e. Note
that each path in Pw is edge-disjoint with each path in Pw′ for distinct vertices w

and w′ of V \ {u, v}. Moreover, let Pu be the path between in
0

u and out
0
u in T ′ and

let Pv be the path between in
0

v and out
0
v in T

′. Note that Pu and Pv are edge-disjoint
and that both are edge-disjoint with each path Pw ∈ Pw for each vertex w ∈ V \{u, v}.
Since ce(in

0

u) = 0 and ce(out
0
u) = 1, for each extension c∗e of ce in T ′, at least one

edge of Pu is a mutation edge of c∗e. Similarly, since ce(in
0

v) = 0 and ce(out
0
v) = 1, for

each extension c∗e of ce in T
′, at least one edge of Pv is a mutation edge of c∗e. Hence,

scorece(T
′) g 4(|V | − 2) + 2.

164

6.3. Hardness of Local Search for the Maximum Parsimony Problem

Case 1: T ′
u is an in-rooting of Tu and T ′

v is an in-rooting of Tv. We define an
extension c∗e of ce in T ′, such that scorec∗e(T

′) = 4(|V | − 2) + 2. This extension is
depicted in Figure 6.5. We set c∗e(outu) := c∗e(outu) := c∗e(r

out
u) := 0 and c∗e(outv) :=

c∗e(outv) := c∗e(r
out
v) := 0. For each remaining internal vertex v′ of T ′, we set c∗e(v

′) :=
1. Hence, the edge set

{{routu , rmid
u }, {routv , rmid

v }}
∪ {{in0

w, inw}, {in
0

w, inw}, {out
0
w, outw}, {out0w, outw} | w ∈ V \ {u, v}}

contains the mutation edges of c∗e in T ′. Consequently, scorec∗e(T
′) = 4(|V | − 2) + 2

which implies scorece(T
′) = 4(|V | − 2) + 2.

Case 2: T ′
u is an out-rooting of Tu or T ′

v is an out-rooting of Tv. Assume with-
out loss of generality that T ′

v is an out-rooting of Tv. Let P ∗
x be the unique path

between out0v and x∗ in T ′. Since ce(out
0
v) = 0 and ce(x

∗) = 1, for each exten-
sion c∗e of ce in T ′, at least one edge of P ∗

x is a mutation edge of c∗e. Note that P ∗
x

is edge-disjoint with Pu and edge-disjoint with each path Pw ∈ Pw for each ver-
tex w ∈ V \{u, v}. Moreover, since T ′

v is an out-rooting of Tv, P
∗
x is also edge-disjoint

with Pv. Hence, scorece(T
′) g 4(|V | − 2) + 3. We define an extension c∗e of ce in T

′,
such that scorec∗e(T

′) = 4(|V | − 2) + 3. To this end, we distinguish whether T ′
u is an

in-rooting of Tu or an out-rooting of Tu. For both cases, the corresponding extension
is depicted in Figure 6.5.

Case 2.1: T ′
u is an in-rooting of Tu. We set c∗e(outu) := c∗e(outu) := c∗e(r

out
u) := 0

and c∗e(outv) := c∗e(outv) := 0. For each remaining internal vertex v′ of T ′, we
set c∗e(v

′) := 1. Hence, the edge set

{{routu , rmid
u }, {rmid

v , outv}, {routv , outv}}
∪ {{in0

w, inw}, {in
0

w, inw}, {out
0
w, outw}, {out0w, outw} | w ∈ V \ {u, v}}

contains the mutation edges of c∗e in T ′.
Case 2.2: T ′

u is an out-rooting of Tu. We set c∗e(inu) := c∗e(inu) := c∗e(r
in
u) := 1

and c∗e(inv) := c∗e(inv) := c∗e(r
in
v) := 1. For each remaining internal vertex v′ of T ′, we

set c∗e(v
′) := 0. Let qn denote the unique neighbor of x∗ in T ′. Hence, the edge set

{{rinu , rmid
u }, {rinv , rmid

v }, {x∗, qn}}
∪ {{in1

w, inw}, {in
1

w, inw}, {out
1
w, outw}, {out1w, outw} | w ∈ V \ {u, v}}

contains the mutation edges of c∗e in T ′.
Hence, in both cases scorec∗e(T

′) = 4(|V | − 2) + 3 which implies scorece(T
′) =

4(|V | − 2) + 3.

165

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

Case 1

Case 2.1

Case 2.2

T ′(Xu) T ′(Xv)

x∗

x∗

x∗

Figure 6.5: An optimal extension of c{u,v} for each of the three cases in the proof
of Lemma 6.14 for any well-rooted binary X-tree T ′. White vertices receive label 0 and
black vertices receive label 1 under these extensions. The mutation edges inside the de-
picted subtrees are highlighted in red. Case 1 shows the extension if T ′(Xu) is an in-rooting
of Tu and T ′(Xv) is an in-rooting of Tv. Case 2.1 shows the extension if T ′(Xu) is an in-
rooting of Tu and T ′(Xv) is an out-rooting of Tv. Finally, Case 2.2 shows the extension
if T ′(Xu) is an out-rooting of Tu and T ′(Xv) is an out-rooting of Tv. For each other ver-
tex w ∈ V \ {u, v}, the non-depicted subtree T ′(Xw) contains exactly four mutation edges,
each incident with a leaf. Note that the extension for Case 1 has exactly one mutation
edge less than both other extensions.

Next, we show statement b). Consider the character cmal. For each vertex v ∈
V , let Pv be the unique path between out

0
v and out0v in T ′. Since cmal(out

0
v) = 0

and cmal(out
0
v) = 1, for each extension c∗mal of cmal in T

′ at least one edge of Pv is a
mutation edge of c∗mal. Note that the paths Pv and Pw are edge-disjoint for distinct
vertices v and w of V . Hence, scorecmal

(T ′) g |V |.
Case 1: There is some vertex v ∈ V such that T ′

v is an in-rooting of Tv. Let P
∗
x

be the unique path between in0
v and x∗ in T ′. Since cmal(in

0
v) = 0 and cmal(x

∗) =
1, for each extension c∗mal of cmal in T ′, at least one edge of P ∗

x is a mutation
edge of c∗mal. Note that P ∗

x is edge-disjoint with Pw for each vertex w ∈ V dis-
tinct from v. Moreover, since T ′

v is an in-rooting of Tv, P
∗
x is also edge-disjoint

166

6.3. Hardness of Local Search for the Maximum Parsimony Problem

Case 1

Case 2

T ′(Xv), out-rooting of Tv
v ∈ V

T ′(Xv), in-rooting of Tv
v ∈ V

x∗

x∗

Figure 6.6: An optimal extension of cmal for each of the two cases in the proof
of Lemma 6.14 for any well-rooted binary X-tree T ′. White vertices receive label 0 and
black vertices receive label 1 under these extensions. The mutation edges inside the de-
picted subtrees are highlighted in red. Case 1 shows the extension if there is at least one
vertex v ∈ V , such that T ′(Xv) is an in-rooting of Tv. Case 2 shows the extension if for
each vertex v ∈ V , T ′(Xv) is an out-rooting of Tv. Note that the extension for Case 1 has
exactly one mutation edge more than the extension of Case 2.

with Pv. Hence, scorecmal
(T ′) g |V | + 1. We define an extension c∗mal of cmal in T

′,
such that scorec∗mal

(T ′) = |V | + 1. This extension is depicted in Figure 6.6. We
set c∗mal(outw) := 1, for each vertex w ∈ V . For each remaining internal vertex v′

of T ′, we set c∗mal(v
′) := 0. Let qn denote the unique neighbor of x∗ in T ′. Hence,

the edge set {{qn, x∗}} ∪ {{outv, routv } | v ∈ V } contains the mutation edges of c∗mal

in T ′. Consequently, scorec∗mal
(T ′) = |V |+ 1 which implies scorecmal

(T ′) = |V |+ 1.

Case 2: For each vertex v ∈ V , T ′
v is an out-rooting of Tv. Hence, T

′ is isomorphic
to T . We define an extension c∗mal of cmal in T

′, such that scorec∗mal
(T ′) = |V |. This

extension is depicted in Figure 6.6. We set c∗mal(inv) := c∗mal(inv) := c∗mal(outv) :=
c∗mal(r

in
v) := c∗mal(r

mid
v) := 0, for each vertex v ∈ V . For each remaining internal

vertex v′ of T ′, we set c∗mal(v
′) = 1. Hence, the edge set {{rmid

v , routv } | v ∈ V }
contains the mutation edges of c∗mal in T

′. Consequently, scorec∗mal
(T ′) = |V | which

implies that scorecmal
(T ′) = |V |.

167

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

inv inv outv outv inv inv outv outv inv inv outv outv

Figure 6.7: Two consecutive NNI operation that transform an out-rooting into an in-
rooting.

The score of improving X-trees with respect to S. Since T is well-rooted,
and for each vertex v ∈ V , Tv is an out-rooting of Tv, Observation 6.11, Lemma 6.13,
and Lemma 6.14 imply the following.

Corollary 6.15. scoreS(T) = |E| · (4(|V |−2)+3)+(
(
k
2

)
−1) · |V |+ |V | ·9´+ |R| ·³.

Note that by definition, ´ = 2(8|V | + 1) · (|E| +
(
k
2

)
) > |E| · (4(|V | − 2) + 3) +

(
(
k
2

)
− 1) · |V |. Hence, scoreS(T) < ´ · (9|V |+ 1) + |R| · ³.

Corollary 6.16. Let T ′ be a binary X-tree with scoreS(T
′) < scoreS(T). Then, T ′

is well-rooted.

Proof. Due to Observation 6.11, T ′ is split-consistent for T and R and scoreSR
(T ′) =

|R| ·³. Assume towards a contradiction that there is a vertex v ∈ V such that T ′(Xv)
is neither an in-rooting of Tv nor an out-rooting of Tv. Hence, Lemma 6.13 im-
plies scoreSv

(T ′) g 10´ and scoreSw
(T ′) g 9´ for each vertex w ∈ V \ {v}. Conse-

quently, scoreS(T
′) g 10´+(|V |−1) ·9´+ |R| ·³ = ´ ·(9|V |+1)+ |R| ·³ > scoreS(T),

a contradiction.

Distances between well-rooted binary X-trees. Next, we describe for each
distance measure d ∈ {dNNI, dECR, dSPR, dTBR} the distance between T and any
other well-rooted binary X-tree T ′.

Lemma 6.17. Let T ′ be a binary and well-rooted X-tree. Moreover, let K be the
set of vertices of V such that T ′(Xv) is an in-rooting of Tv for each vertex v ∈ K
and T ′(Xw) is an out-rooting of Tw for each vertex w ∈ V \K. Then, dNNI(T, T

′) =
dECR(T, T

′) = 2 · |K| and dSPR(T, T ′) = dTBR(T, T
′) = |K|.

Proof. First, we show that dNNI(T, T
′) = dECR(T, T

′) = 2 · |K|. To this end, we
show that dNNI(T, T

′) f 2 · |K| and that dECR(T, T
′) g 2 · |K|. Since dNNI(T, T

′) g
dECR(T, T

′) due to Lemma 6.4, this then implies dNNI(T, T
′) = dECR(T, T

′) = 2 · |K|.

168

6.3. Hardness of Local Search for the Maximum Parsimony Problem

To show that dNNI(T, T
′) f 2 · |K|, we prove the following: Let T̃ be a well-rooted

binary X-tree and let v be a vertex such that T̃ (Xv) is an out-rooting of Tv. Then,

dNNI(T̃ , T̂) f 2, where T̂ is a well-rooted binary X-tree with T̃ (X \Xv) = T̂ (X \Xv)

and where T̂ (Xv) is an in-rooting of Tv. To show the claim, we describe two con-

secutive NNI operations transforming T̃ into T̂ . See Figure 6.7 for an illustration of
these NNI operations. Let routv be name of the pseudo-root of the pendant tree T̃ (Xv),

let routv be the name of the common neighbor of rmid
v and outv in T̃ , and let rmid

v be

the name of the common neighbor of rinv and outv in T̃ . Moreover, let q be the unique

neighbor of routv outside of T̃ (Xv) in T̃ . We obtain the well-rooted binary X-tree T̂

from T̃ in two steps: First, we remove the edges {q, routv } and {outv, rmid
v } and add the

edges {outv, routv } and {q, rmid
v }. Second, we remove the edges {q, rmid

v } and {inv, r
in
v }

and add the edges {inv, r
mid
v } and {q, rinv }. Since this can be done by two consecutive

NNI operations and T̃ (X \Xv) = T̂ (X \Xv), we conclude dNNI(T̃ , T̂) f 2. Since dNNI

is a metric one can then show via induction over any arbitrary ordering of the vertices
of K, that dNNI(T, T

′) f 2 · |K|.
It remains to show that dECR(T, T

′) g 2 · |K|. Let Ẽ be a subset of the inter-
nal edges of T , such that T ′ can be obtained from T by an ECR operation with
contraction set Ẽ. We show that |Ẽ| g 2 · |K|. Let v be a vertex of K. Re-
call that Tv is an out-rooting of Tv and that T ′

v is an in-rooting of Tv. Hence, the

edge {routv , rmid
v } induces the split A|B in T with A := {in0

v, in
1
v, in

0

v, in
1

v, out
0
v, out

1
v}

and B := X \A. Since A|B is not a split of T ′, the edge {routv , rmid
v } is contained in Ẽ.

Moreover, the edge {rmid
v , rinv } induces the split A|B in T with A := {in0

v, in
1
v, in

0

v, in
1

v}
and B := X \A. Since A|B is not a split of T ′, the edge {rmid

v , rinv } is contained in Ẽ.

Hence, for each vertex v of V , Ẽ contains at least two edges of T (Xv). Consequently,

|Ẽ| g 2 · |K| which implies dECR(T, T
′) g 2 · |K|.

Second, we show that dSPR(T, T
′) = dTBR(T, T

′) = |K|. Similar to the first
part of the proof, we show that dSPR(T, T

′) f |K| and that dTBR(T, T
′) g |K|.

Since dSPR(T, T
′) g dTBR(T, T

′) [3] this then implies dSPR(T, T
′) = dTBR(T, T

′) =
|K|.

To show that dSPR(T, T
′) f |K|, we prove the following: Let T̃ be a well-rooted

binary X-tree and let v be a vertex such that T̃ (Xv) is an out-rooting of Tv. Then,

dSPR(T̃ , T̂) f 1, where T̂ is a well-rooted binary X-tree with T̃ (X \Xv) = T̂ (X \Xv)

and where T̂ (Xv) is an in-rooting of Tv.

To show this claim, we describe an SPR operation transforming T̃ into T̂ . See Fig-
ure 6.8 for an illustration of this SPR operation. Let routv be the name of the pseudo-

root of the pendant tree T̃ (Xv) and let q be the name of the unique neighbor of routv

169

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

inv inv outv outv

q

inv inv outv outv

q

inv inv outv outv

q

Figure 6.8: A transformation of an out-rooting into an in-rooting by a single SPR oper-
ation. Firstly, the bold edge is removed and the triangular vertex is suppressed. Secondly,
the unique internal edge incident with inv is subdivided by the rectangular vertex. Finally,
the rectangular vertex is joined with q by a new edge.

outside of T̃ (Xv) in T̃ . Moreover, let rinv be the name of the common neighbor of inv

and inv in T̃ . We obtain the well-rooted binary X-tree T̂ from T̃ by: removing the
edge {routv , q}, suppressing the vertex routv , subdividing the edge {inv, r

in
v } by a ver-

tex q′, and adding the edge {q, q′}. Since this can be done by a single SPR operation

and T̃ (X \ Xv) = T̂ (X \ Xv), we conclude dSPR(T̃ , T̂) f 1. Since dSPR is a metric,
one can then show via induction over any arbitrary ordering of the vertices of K,
that dSPR(T, T

′) f |K|.
It remains to show that dTBR(T, T

′) g |K|.
Let B be an agreement forest for T and T ′, that is, a partition of X such that for

each B ∈ B, T |B is isomorphic to T ′|B and for each pair of distinct B ∈ B and B′ ∈ B,
T (B) is vertex disjoint with T (B′), and T ′(B) is vertex disjoint with T ′(B′). We show
that |B| g |K| + 1 which implies dTBR(T, T

′) g |K| [3]. To this end, we first show
that for each vertex v ∈ K, there is some B ∈ B with B ¦ Xv.

Assume towards a contradiction, that for some vertex v ∈ K there is no B ∈ B
with B ¦ Xv. Let xv be an arbitrary taxon of Xv. Since B is a partition of X, there
is some Bv ∈ B with xv ∈ Bv. By assumption, since Bv is not a subset of Xv, Bv \Xv

is non-empty. In the following, we distinguish whether Bv is a proper superset of Xv.

Case 1: Bv is a proper superset of Xv. Since Xv is a subset of Bv and Bv \Xv is
non-empty, T (Xv) is a subgraph of T |Bv

and T ′(Xv) is a subgraph of T ′|Bv
. Moreover,

since T ′(Xv) is an in-rooting of Tv, T (Xv) is non-isomorphic to T ′(Xv). Thus, T |Bv

is non-isomorphic to T ′|Bv
. Hence, B is not an agreement forest for T and T ′, a

contradiction.

Case 2: Bv is not a proper superset of Xv. Hence, there is a taxon x′v in Xv \Bv.
Since B is a partition of X, there is some B′

v ∈ B with x′v ∈ B′
v. By assumption, B′

v is
not a subset of Xv. Hence, B

′
v \Xv is non-empty. Since each path in T between any

170

6.3. Hardness of Local Search for the Maximum Parsimony Problem

taxon of Xv and any taxon of X \Xv contains the vertex routv , T (Bv) and T (B
′
v) are

not vertex-disjoint. Hence, B is not an agreement forest for T and T ′, a contradiction.
Consequently, for each vertex v ∈ K, there is some B ∈ B with B ¦ Xv.

Moreover, since B is a partition of X, there is some B ∈ B with x∗ ∈ B. Hence,
|B| g |K|+ 1 and thus dTBR(T, T

′) g |K|.

Correctness. Finally, we are able to show that I is a yes-instance of Clique
if and only if I ′ is a yes-instance of d-LS Maximum Parsimony with appropriate
distance bounds.

Lemma 6.18. The following statements are equivalent:

1. There is a clique of size k in G.

2. There is a binary X-tree T ′ with scoreS(T
′) < scoreS(T) and dSPR(T, T

′) f k.

3. There is a binary X-tree T ′ with scoreS(T
′) < scoreS(T) and dTBR(T, T

′) f k.

4. There is a binary X-tree T ′ with scoreS(T
′) < scoreS(T) and dNNI(T, T

′) f 2k.

5. There is a binary X-tree T ′ with scoreS(T
′) < scoreS(T) and dECR(T, T

′) f 2k.

Proof. First, we show that Item 1 implies each of the Items 2 to 5. Let K ¦ V be
a clique of size k in G. Further, let T ′ be a well-rooted binary X-tree such that for
each vertex v ∈ K, T ′(Xv) is an in-rooting of Tv, and for each vertex v ∈ V \ K,
T ′(Xv) is an out-rooting of Tv. Due to Lemma 6.17, dSPR(T, T

′) = dTBR(T, T
′) = k

and dNNI(T, T
′) = dECR(T, T

′) = 2k. It remains to show that scoreS(T
′) < scoreS(T).

Since T ′ is well-rooted, due to Observation 6.11, scoreSR
(T ′) = |R| · ³ and due

to Lemma 6.13, for each vertex v ∈ V , scoreSv
(T ′) = 9´. Moreover, since K is

non-empty, we obtain by Lemma 6.14, that scoreSmal
(T ′) = (

(
k
2

)
− 1) · (|V | + 1).

Since K is a clique in G, |E(K)| =
(
k
2

)
. Finally, by Lemma 6.14, for each edge e

of E(K), scorece(T
′) = 4(|V |−2)+2, and for each edge e of E \E(K), scorece(T

′) =
4(|V | − 2) + 3. We conclude

scoreS(T
′) = |E| · (4(|V | − 2) + 3)−

(
k

2

)
+

((
k

2

)
− 1

)
· (|V |+ 1)

+ |V | · 9´ + |R| · ³

= |E| · (4(|V | − 2) + 3) +

((
k

2

)
− 1

)
· |V |+ |V | · 9´ + |R| · ³− 1

= scoreS(T)− 1,

171

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

due to Corollary 6.15. Hence, T ′ is a binary X-tree with scoreS(T
′) < scoreS(T),

dSPR(T, T
′) = dTBR(T, T

′) = k, and dNNI(T, T
′) = dECR(T, T

′) = 2k.
Second, we show that each of the Items 2 to 5 implies Item 1. Let T ′ be a

binary X-tree with a) scoreS(T
′) < scoreS(T) and b) dSPR(T, T

′) f k, dTBR(T, T
′) f

k, dNNI(T, T
′) f 2k, or dECR(T, T

′) f 2k. Since scoreS(T
′) < scoreS(T), T

′ is well-
rooted due to Corollary 6.16, that is, for each vertex v ∈ V , T ′

v := T ′(Xv) is either
an in-rooting of Tv or an out-rooting of Tv. Let K ¦ V be the set of all vertices v
of V where T ′

v is an in-rooting of Tv. We show that K is a clique of size k in G.
Since dSPR(T, T

′) f k, dTBR(T, T
′) f k, dNNI(T, T

′) f 2k, or dECR(T, T
′) f 2k,

Lemma 6.17 implies that K has size at most k. Moreover, since T ′ is well-rooted,
due to Observation 6.11, scoreSR

(T ′) = |R| · ³ and due to Lemma 6.13, for each
vertex v ∈ V , scoreSv

(T ′) = 9´. Moreover, since scoreS(T
′) < scoreS(T), T

′ is not
isomorphic to T , which implies that K is nonempty. Hence due to Lemma 6.14,
scoreSmal

(T ′) = (
(
k
2

)
− 1) · (|V | + 1). Finally, by Lemma 6.14, for each edge e ∈

E \ E(K), scorece(T
′) = 4(|V | − 2) + 3, and for each edge e ∈ E(K), scorece(T

′) =
4(|V | − 2) + 2. Consequently, scoreS(T)− scoreS(T

′) = |E(K)| − (
(
k
2

)
− 1).

Since scoreS(T
′) < scoreS(T), we have |E(K)| g

(
k
2

)
, which implies that K is a

size-k clique in G.

Since k′ = k if d ∈ {dSPR, dTBR} and k′ = 2k if d ∈ {dNNI, dECR}, Lemma 6.18
implies that I is a yes-instance of Clique if and only if I ′ is a yes-instance of d-LS
Maximum Parsimony. This completes the proof of Theorem 6.9.

6.4 An Adaptation for the Permissive Version

In this section, we describe how to extend the previously described reduction to also
work for the permissive version of d-LS Maximum Parsimony.

Theorem 6.19. For each distance measure d ∈ {dNNI, dECR, dRF, dSPR, dTBR} and
even if each character is binary, the permissive version of d-LS Maximum Parsi-
mony

• is NP-complete,

• does not admit an FPT-algorithm when parameterized by k, unless FPT =
W[1], and

• cannot be solved in f(k) · |I|o(k) time for any computable function f , unless the
ETH fails.

172

6.4. An Adaptation for the Permissive Version

Table 6.2: An overview of the characters of Smcc for some vertex v ∈ Vi.

in0
v in1

v in
0

v in
1

v out
0
v out

1
v out0v out1v x∗0 x∗1

cv,mcc 1 1 1 1 0 0 0 1 0 1
cu,mcc, u ∈ Vi \ {v} 0 0 0 0 1 1 0 1 0 1
cw,mcc, w ∈ V \ Vi 0 1 0 1 0 1 0 1 0 1

Proof. Instead of reducing from Clique, we reduce from Multicolored Clique,
which preserves the same required lower bound results as Clique. Here, the differ-
ence is that we are additionally given a k-partition (V1, . . . , Vk) of the vertex set V
and search for a clique containing for each i ∈ [1, k] exactly one vertex of Vi.

Hence, the only additional difficulty for the reduction is to ensure that for each i ∈
[1, k], exactly one vertex of Vi is selected. To this end, we introduce new characters
for each vertex of V that ensure that a binary X-tree T ′ is not improving over T ,
if for some i ∈ [1, k], there are distinct vertices v and w of Vi, such that T ′(Xv) is
an in-rooting of Tv and T ′(Xw) is an in-rooting of Tw. We do this by introducing
new characters Smcc and increasing the values of ´ and ³ to ensure that, again, each
binary X-tree that improves over T is well-rooted.

First, we replace the taxon x∗ by two new taxa x∗0 and x∗1. Abusing notation, we
call the resulting set of taxa X as well. In the initial binary X-tree T , we make both
these new taxa adjacent with the new internal vertex x∗. For each already defined
character c, we set c(x∗0) := c(x∗1) := 1. Hence, the score of each optimal extension of
each already defined character c remains the same. Next, we describe the new charac-
ters of Smcc. For each i ∈ [1, k] and each vertex v ∈ Vi, we define a character cv,mcc as
follows. We set cv,mcc(x

∗
0) := 0 and cv,mcc(x

∗
1) := 1. Moreover, we set cv,mcc(x) := 1 for

each taxon x ∈ {in0
v, in

1
v, in

0

v, in
1

v}, cv,mcc(out
0
v) := cv,mcc(out

1
v) := 0, cv,mcc(out

0
v) := 0,

and cv,mcc(out
1
v) := 1. For each vertex u ∈ Vi \ {v}, we set cv,mcc(x) := 0 for each

taxon x ∈ {in0
u, in

1
u, in

0

u, in
1

u}, cv,mcc(out
0
u) := cv,mcc(out

1
u) := 1, cv,mcc(out

0
u) := 0,

and cv,mcc(out
1
u) := 1. Finally, for each vertex w ∈ V \ Vi, we set cv,mcc(x) := 1 for

each taxon x ∈ {in1
w, in

1

w, out
1
w, out

1
w} and we set cv,mcc(x) := 0 for each taxon x ∈

{in0
w, in

0

w, out
0
w, out

0
w}. These new characters are depicted in Table 6.2.

The meaning of all relevant character sequences is recalled in Table 6.3.

Let µ := 2 · |X| · (|E|+
(
k
2

)
). Note that µ is larger than scoreSE

(T ′)+scoreSmal
(T ′)

of any binary X-tree T ′, since such a tree T ′ contains less than 2·|X| edges and |SE|+
|Smal| = |E| +

(
k
2

)
− 1. We now add for each vertex v ∈ V a sequence Sv,mcc of µ

copies of cv,mcc to S. Let Smcc be the combined sequence of the sequences Sv,mcc

for all vertices v ∈ V . Moreover, include the sequence Smcc in the sequence SG.

173

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

Table 6.3: An overview over the different character sequences and the properties these
character sequences ensure for any better binary X-tree T ′. Here, SV denotes the combined
sequence of the character sequences Sv for each vertex v ∈ V . The last column indicates
the improvement of T ′ over T with respect to the individual character sequences.

Characters S Purpose Improvement
SR Ensures that for each vertex v ∈ V , 0

T ′(Xv) is a pendant subtree of T ′.
SV Ensures that T ′ is well-rooted. 0

SE Ensures that there are many edges in G
(
k
2

)

between the selected vertices in T ′.

Smal Acts as a hurdle for the required number of −
(
k
2

)
+ 1

edges between selected vertices in T ′ in G.
Smcc Ensures that at most one vertex 0

per color class is selected in T ′.

Additionally, we set the value of ´ to 2 · |X| · (|E|+
(
k
2

)
+ |Smcc|) and the value of ³

to 2 · |X| · |SG|. Note that ´ is larger than scoreSE
(T ′)+scoreSmal

(T ′) of any binary X-
tree T ′, since such a tree T ′ contains less than 2·|X| edges and |SE|+|Smal|+|Smcc| =
|E|+

(
k
2

)
−1+ |V | ·µ. Similarly, ³ is larger than scoreSG

(T ′) of any binary X-tree T ′,
since such a tree T ′ contains less than 2 · |X| edges.

Intuitively, the large value ³, again, ensures that only split-consistent binary X-
trees may improve over T . Moreover, the large value of ´ further ensures that
only well-rooted binary X-trees may improve over T . With the newly added charac-
ters of Smcc we now want to further ensure that only well-rooted binary X-trees T ′

may improve over T , where for each i ∈ [1, k], there is at most one vertex v ∈ Vi,
such that T ′(Xv) is an in-rooting of v. We show that this is true by analyzing the
score of Smcc for well-rooted binary X-trees.

Claim 12. Let T ′ be a well-rooted binary X-tree and let v be a vertex of Vi.

a) If T ′(Xv) is an out-rooting of Tv, then scorecv,mcc(T
′) = 2 · |Vi|+4 · |V \ Vi|+1.

b) If T ′(Xv) is an in-rooting of Tv and for each vertex w ∈ Vi \ {v}, T ′(Xw) is an
out-rooting of Tw, then scorecv,mcc(T

′) = 2 · |Vi|+ 4 · |V \ Vi|+ 1.

c) If T ′(Xv) is an in-rooting of Tv and for some vertex w ∈ Vi \ {v}, T ′(Xw) is an
in-rooting of Tw, then scorecv,mcc(T

′) g 2 · |Vi|+ 4 · |V \ Vi|+ 2.

174

6.4. An Adaptation for the Permissive Version

Proof of Claim. For each vertex w of V , let T ′
w := T ′(Xw). Let Vin be those

vertices w of V , where T ′
w is an in-rooting of Tw and let Vout = V \ Vin be those

vertices w of V , where T ′
w is an out-rooting of Tw. For each vertex w ∈ Vin, let rinw

be the name of the pseudo-root of T ′
w, let r

mid
w and inw be the neighbors of rinw , and

let routw and inw be the neighbors of rmid
w . Analogously, for each vertex w ∈ Vout,

let routw be the name of the pseudo-root of T ′
w, let r

mid
w and outw be the neighbors

of routw , and let rinw and outw be the neighbors of rmid
w . Recall that since T ′ is well-

rooted, for each vertex w ∈ V , inw is adjacent to both in0
w and in1

w, inw is adjacent

to both in
0

w and in
1

w, outw is adjacent to both out
0
w and out

1
w, and outw is adjacent

to both out0w and out1w.

In all three cases, to prove the lower bound for scorecv,mcc(T
′), we present a col-

lection of pairwise edge-disjoint paths in T ′, for which each path contains at least
one mutation edge.

For each vertex w ∈ V , let Poutw be the unique path between out0w and out1w in T ′.
Moreover, for each vertex w ∈ V \ Vi,

• let Pinw be the unique path between in0
w and in1

w in T ′,

• let Pinw
be the unique path between in

0

w and in
1

w in T ′, and

• let Poutw
be the unique path between out

0
w and out

1
w in T ′.

Additionally, let Px∗ be the unique path between x∗0 and x∗1 in T ′. Let P be the
collection of all these paths, that is,

P := {Px∗} ∪
⋃

w∈V
{Poutw} ∪

⋃

w∈V \Vi

{Pinw , Pinw
, Poutw

}.

Note that each path of P contains exactly two edges and all paths of P are pairwise
edge-disjoint.

Moreover, for each vertex w ∈ Vi, let Pmid,w be the unique path between in
1

w

and out
1
w in T ′ and let PVi

denote the collection of all these paths, that is, PVi
:=

{Pmid,w | w ∈ Vi}. Note that each path of PVi
is edge-disjoint with each path of P

and all paths of PVi
are pairwise edge-disjoint.

Let P ′ be a path in P ∪ PVi
and let w0 and w1 be the terminals of P ′. Since by

definition cv,mcc(w
0) ̸= cv,mcc(w

1), for each extension c∗v,mcc of cv,mcc in T
′, at least one

edge of P ′ is a mutation edge of c∗v,mcc. Consequently, for each extension c∗v,mcc of cv,mcc

in T ′, scorec∗v,mcc
(T ′) g |P∪PVi

| = 2·|Vi|+4·|V \Vi|+1 which implies scorecv,mcc(T
′) g

2 · |Vi|+ 4 · |V \ Vi|+ 1.

175

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

Hence, to prove the claim, for statements a) and b), it remains to show that there
is an extension c∗v,mcc of cv,mcc in T

′ with scorec∗e(T
′) f 2 · |Vi| + 4 · |V \ Vi| + 1, and

for statement c) it is sufficient to present a path P in T ′ which is edge-disjoint with
each path of P ∪ PVi

and containing at least one mutation edge.
We start by showing statement c). Hence, we know that T ′

v is an in-rooting of Tv
and that there is some vertex w ∈ Vi \ {v}, such that T ′

w is an in-rooting of Tw.
Let P be the unique path between in0

v and in0
w in T ′. By definition, cv,mcc(in

0
v) =

1 ̸= 0 = cv,mcc(in
0
w). Hence, for each extension of cv,mcc in T

′, P contains at least one
mutation edge. To show that for each extension c∗v,mcc of cv,mcc in T ′, scorec∗e(T

′) g
2 · |Vi| + 4 · |V \ Vi| + 2, it thus remains to show that P is edge-disjoint with each
path of P ∪ PVi

. By that fact that T ′
v is an in-rooting of Tv and T ′

w is an in-rooting
of Tw, this is the case.

Next, we show statement a). Hence, we assume that T ′
v is an out-rooting of Tv. We

define an extension c∗v,mcc of cv,mcc in T
′ with scorec∗e(T

′) f 2 · |Vi|+4 · |V \Vi|+1. This

extension is illustrated in Figure 6.9. We set c∗v,mcc(inv) := c∗v,mcc(inv) := c∗v,mcc(r
in
v) :=

1. Moreover, for each vertex w ∈ Vi\{v}, we set c∗v,mcc(outw) = 1. For each remaining
internal vertex v′ of T ′, we set c∗v,mcc(v

′) := 0. Hence, the edge set

{{rinv , rmid
v }, {x∗1, x∗}} ∪ {{inw, r

out
w } | w ∈ Vi ∩ Vin}

∪ {{inw, r
mid
w } | w ∈ Vi ∩ Vout, w ̸= v}

∪ {{out1w, outw} | w ∈ V }
∪ {{in1

w, inw}, {in
1

w, inw}, {out
1
w, outw} | w ∈ V \ Vi}

contains the mutation edges of c∗v,mcc in T
′. Consequently, scorec∗v,mcc

(T ′) = 2 · |Vi|+
4 · |V \ Vi| + 1 which implies scorecv,mcc(T

′) = 2 · |Vi| + 4 · |V \ Vi| + 1 by the above
lower bound for scorecv,mcc(T

′).
Finally, we show statement b). Hence, we assume that T ′

v is an in-rooting of Tv
and that for each vertex w ∈ Vi \ {v}, T ′

w is an out-rooting of Tw. We define an
extension c∗v,mcc of cv,mcc in T ′ with scorec∗e(T

′) f 2 · |Vi| + 4 · |V \ Vi| + 1. This
extension is illustrated in Figure 6.9. We set c∗v,mcc(outv) := 0. Moreover, for each

vertex w ∈ Vi \ {v}, we set c∗v,mcc(inv) := c∗v,mcc(inv) := c∗v,mcc(r
in
v) := 0. For each

remaining internal vertex v′ of T ′, we set c∗v,mcc(v
′) := 1. Hence, the edge set

{{outv, routv }, {x∗0, x∗}} ∪ {{rinw , rmid
w } | w ∈ Vi \ {v}} ∪ {{out0w, outw} | w ∈ V }

∪ {{in0
w, inw}, {in

0

w, inw}, {out
0
w, outw} | w ∈ V \ Vi}

contains the mutation edges of c∗v,mcc in T
′. Consequently, scorec∗v,mcc

(T ′) = 2 · |Vi|+
4 · |V \ Vi| + 1 which implies scorecv,mcc(T

′) = 2 · |Vi| + 4 · |V \ Vi| + 1 by the above
lower bound for scorecv,mcc(T

′). ■

176

6.4. An Adaptation for the Permissive Version

Case a)

Case b)

T ′(Xv)
T ′(Xw), w ∈ Vi \ {v}

T ′(Xw) is an out-rooting

T ′(Xw), w ∈ Vi \ {v}
T ′(Xw) is an in-rooting

Figure 6.9: An optimal extension of cv,mcc for the cases a) and b) of Claim 12 for
any well-rooted binary X-tree T ′, where v is a vertex of Vi. White vertices receive state
0 and black vertices receive state 1 under these extensions. The mutation edges inside
the depicted subtrees are highlighted in red. Note that each depicted subtree contains
exactly two mutation edges under these extensions. All non-depicted internal vertices
of T ′ receive label 0 in case a) and label 1 in case b). Hence, the depicted subtrees include
all mutation edges that are not incident with a leaf of T ′. Note that in case b), there is no
vertex w ∈ Vi \ {v}, such that T ′(Xw) is an in-rooting of Tw.

Since T is well-rooted and for each vertex w ∈ V , Tw is an out-rooting of Tw,
this implies that T achieves the minimum possible score for all characters of Smcc of
any well-rooted binary X-tree. Hence, a binary X-tree T ′ can only improve over T
if T ′ is well-rooted and for each i ∈ [1, k], there is at most one vertex v ∈ Vi, such
that T ′(Xv) is an in-rooting of Xv. This holds, since i) T achieves the minimum
possible total score for all characters of S besides Smal and SE, ii) the value of µ is
larger than the total possible score of the characters of Smal and SE of any binary X-
tree, and iii) S contains µ copies of cv,mcc for each vertex v ∈ V .

Note that this further implies that if there is a binary X-tree T ′ improving over T ,
then T ′ is well-rooted and there is a set K ¦ V of size at most k such that for each
vertex v ∈ K, T ′(Xv) is an in-rooting of Tv. Due to Lemma 6.17, this implies that
each binary X-tree T ′ improving over T has distance at most k′ with T with respect
to the considered distance measure d. This then implies that both the permissive and
the strict version on the constructed instance of d-LS Maximum Parsimony are
equivalent. Hence, to show that the hardness results also transfer to the permissive

177

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

version of d-LS Maximum Parsimony, it thus remains to show that this modified
instance of d-LS Maximum Parsimony is still a yes-instance if and only if the initial
instance of Clique is a yes-instance. This follows from the proof of Lemma 6.18.

6.5 Essentially Tight Brute-Force Algorithms

We now show that simple brute-force algorithms for d-LS Maximum Parsimony
for each distance measure d ∈ {dNNI, dECR, dSPR, dTBR} essentially match the lower
bounds shown in Theorem 6.9. First, consider the distance measures dNNI, dSPR,
and dTBR.

Observation 6.20. Let T be a binary X-tree, let d ∈ {dNNI, dSPR, dTBR} be a dis-
tance measure, and let k be an integer. One can enumerate all binary X-trees T ′

with d(T, T ′) f k in |X|O(k) time.

The correctness of Observation 6.20 can be seen as follows: there are |X|O(1)

many binary X-trees T ′ such that d(T, T ′) = 1 [3], all these trees can be enumerated
in |X|O(1) time, and for each binary X-tree T ′ with d(T, T ′) > 0, there is a binary X-

tree T̂ with d(T̂ , T ′) = 1 and d(T, T ′) = d(T, T̂) + 1.

Enumerating trees of small sECR-distance. Furthermore, we may enu-
merate all binary X-trees T ′ with dsECR(T, T

′) f k as follows: First, we enumerate
all subtrees of T with at most k edges. Second, for each connected subtree Ts of T
with at most k edges, we enumerate all binary refinements of T after contracting
all edges of Ts in T . In Lemma 6.21, we show that the first step can be done in
O(4k · k−0.5 · |X|) time. In Lemma 6.22, we show that both steps can be performed
in O((2k + 1)!! · 4k · k

√
k · |X|2) time where (2k + 1)!! := 1 · 3 · . . . · (2k + 1).

Lemma 6.21. For every binary X-tree T and every integer k, all connected subtrees
of T with at most k edges can be enumerated in O(4k · k−0.5 · |X|) time.

Proof. Let n := |X|. Let Cℓ be the ℓth Catalan number. For any fixed vertex v
of T , there are at most 3

2ℓ+1

(
2ℓ+1
ℓ−1

)
= Cℓ+1 − Cℓ subtrees of T with ℓ vertices that

178

6.5. Essentially Tight Brute-Force Algorithms

contain v [123]. Thus, there are at most

n · (k + 1) · 3

2k + 3
·
(
2k + 3

k

)
= n · 3 · (2k + 2)!

(k + 2)! · k! ·
k + 1

k + 3

f n · 3 · (2k + 2)!

(k + 1)! · (k + 1)!
= n · 3 ·

(
2k + 2

k + 1

)
= n · (k + 1) · Ck+1

f n · (k + 1) · 4k+1

(k + 2) ·
√
Ã · (k + 2)

∈ O
(
4k · k−0.5 · n

)

subtrees of T that contain at most k edges. Note that the last two inequalities holds,
since for each integer ℓ, Cℓ = 3

ℓ+1

(
2ℓ
ℓ

)
f 4ℓ

(ℓ+1)·
√
Ãℓ
.

For a given integer ℓ and a tree T , all subtrees of T with at most ℓ edges can be
enumerated in O(³) time, where ³ is the number of subtrees of T with ℓ edges [172].
It follows that all subtrees of T that contain at most k edges can be enumerated in
O(4k · k−0.5 · n) time.

Based on the algorithm behind Lemma 6.21, we now present an enumeration
algorithm for all binary X-trees that have sECR-distance at most k with some given
binary X-tree T .

Lemma 6.22. For a given binary X-tree T and an integer k, there are O((2k +
1)!! · 4k · k−0.5 · |X|) binary X-trees T ′ with dsECR(T, T

′) f k. Moreover, all these
binary X-tree can be enumerated in O((2k + 1)!! · 4k · k ·

√
k · |X|2) time.

Proof. The algorithm works as follows: Enumerate all subtrees of T with at most k
edges that do not contain a pendant edge of T . For each of these subtrees Ts =
(Vs, Es), compute the neighborhood V ∗ of the vertices of Vs in T outside of Ts.
Let TC be the tree obtained from contracting the whole subtree Ts in T into a single
vertex v̄. Observe that the neighborhood of v̄ in TC is exactly V ∗. Iterate over each
binary refinement of TC and return the resulting X-trees.

We show that the algorithm is correct. By definition of sECR operations, the fact
that we considered all subtrees Ts of T with at most k edges, and the fact that we
considered for each such subtree Ts all binary refinements of the tree obtained from T
by contracting the edges of Ts, the algorithm enumerates exactly those binary X-
trees T ′ with dsECR(T, T

′) f k.
It remains to show that the algorithm runs in the stated running time. By

Lemma 6.21, the O(4k · k−0.5 · |X|) subtrees of T with at most k edges can be
enumerated in O(4k ·k−0.5 · |X|) time. For each subtree Ts of T with at most k edges,
the set of vertices V ∗ and the tree TC can be computed in O(|X|) time.

179

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

Note that TC(V
∗) is a star with |V ∗| = k + 3 leaves, and that each binary

refinement of TC(V
∗) is a binary V ∗-tree and vice versa. Hence, there are (2k + 1)!!

possible binary refinements of TC(V
∗) [149, 152] and all these binary refinements

of TC(V
∗) can be enumerated in O((2k + 1)!! · k2) time [28, 30]. Overall, for a given

binary X-tree T the O((2k+1)!!·4k ·k−0.5 ·|X|) binary X-trees T ′ with dsECR(T, T
′) f

k can be enumerated in O((2k + 1)!! · 4k · k
√
k · |X|2) time.

Hence, we obtain the following due to the fact that the parsimony score of a
given X-tree can be computed in O(|X| · |S|) time [58].

Theorem 6.23. dsECR-LS Maximum Parsimony can be solved in O((2k + 1)!! ·
4k · k

√
k · |X|2 · |S|) = 2O(k·log k) · |X|2 · |S| time.

Enumerating trees of small ECR-distance. Finally, we describe how to
enumerate all binary X-trees T ′ with dECR(T, T

′) f k.

Lemma 6.24. Let T be a binary X-tree and let k be an integer. One can enumerate
all binary X-trees T ′ with dECR(T, T

′) f k in |X|O(k) time.

Proof. We show this statement by induction over k.
Base case. Consider k = 0. Hence, T is the unique binary X-tree T ′ that

fulfills dECR(T, T
′) = 0. Hence, the statement holds for k = 0.

Inductive step. For the inductive step, suppose that for each binary X-tree T̃
and for each k′ < k, one can compute all binary X-trees T ′ with dECR(T̃ , T

′) f k′

in |X|O(k′) time. Note that this implies that for each k′ < k there are |X|O(k′)

binary X-trees T ′ with dECR(T̃ , T
′) = k′. For each i < k, let Ti be the collection

of all binary X-trees T̃ with dECR(T, T̃) = i and let T<k be the collection of all

binary X-trees T̃ with dECR(T, T̃) < k, that is, T<k = ∪k−1
i=0 Ti. Moreover, let TsECR

be the collection of all binary X-trees T̃ with dsECR(T, T̃) = k. Note that T<k can be
computed in |X|O(k−1) time and TsECR can be computed in kO(k) · |X|O(1) time due
to Lemma 6.22. Let

T ′
k := TsECR ∪

k−1⋃

i=1

⋃

T̃∈Ti

{T ′ | dECR(T̃ , T
′) f k − i}.

Recall that by the induction hypothesis, for each i < k, Ti has size |X|O(i) and for

each binary X-tree T̃ ∈ Ti the collection {T ′ | dECR(T̃ , T
′) f k− i} can be computed

in |X|O(k−i) time. Hence, T ′
k can be computed in |X|O(k) time. We set T := T ′

k ∪T<k

and show that T contains exactly the binary X-trees T ′ with dECR(T, T
′) f k.

180

6.5. Essentially Tight Brute-Force Algorithms

Assume towards a contradiction that this is not the case.
Case 1: There is a binary X-tree T ′ with dECR(T, T

′) f k such that T ′ is

not in T . By definition, T<k contains all binary X-trees T̃ with dECR(T, T̃) < k.
Consequently, dECR(T, T

′) = k. Hence, due to Observation 6.5, there is a binary X-

tree T̃ with dsECR(T̃ , T
′) > 0 such that dECR(T, T

′) = dECR(T, T̃) + dsECR(T̃ , T
′).

Let i := dECR(T, T̃).

Note that i f k − 1. If i = 0, then T is isomorphic to T̃ and thus dsECR(T, T
′) =

dsECR(T̃ , T
′) = k. Hence, T ′ is contained in TsECR, a contradiction. Otherwise,

if i > 0, then T̃ is contained in Ti. Moreover, since dsECR(T̃ , T
′) = dECR(T, T

′) −
dECR(T, T̃) = k − i and dsECR(T̃ , T

′) g dECR(T̃ , T
′), we have dECR(T̃ , T

′) f k − i
which implies that T ′ is contained in T , a contradiction.

Case 2: There is a binary X-tree T ′ with dECR(T, T
′) > k such that T ′ is

contained in T . Hence, T ′ is contained in T ′
k \TsECR. That is, there is some i with 1 f

i f k and a binary X-tree T̃ in Ti such that dECR(T̃ , T
′) f k − i. Since dECR is a

metric, due to the triangle inequality, dECR(T, T
′) f dECR(T, T̃) + dECR(T̃ , T

′) f k,
a contradiction.

Since T can be computed in |X|O(k) time, the statement holds.

Since for any two binary X-trees T and T ′, 2 · dECR(T, T
′) = dRF(T, T

′), we also
obtain the following result for enumerating all binary X-trees of small Robinson-
Foulds-distance.

Corollary 6.25. Let T be a binary X-tree and let k be an integer. One can enu-
merate all binary X-trees T ′ with dRF(T, T

′) f k in |X|O(k) time.

Due to Observation 6.20, Lemma 6.24, and Corollary 6.25, we conclude the fol-
lowing.

Theorem 6.26. For each distance measure d ∈ {dNNI, dECR, dRF, dSPR, dTBR}, d-LS
Maximum Parsimony can be solved in |X|O(k) · |S| time.

Proof. Let d be a distance measure of {dNNI, dECR, dRF, dSPR, dTBR} and let I =
(X, T, d, S, k) be an instance of d-LS Maximum Parsimony. Due to Observa-
tion 6.20, Lemma 6.24, and Corollary 6.25, we can compute the collection T of all
binary X-trees T ′ with d(T, T ′) f k in |X|O(k) time. We compute scoreS(T

′) for each
binary X-tree T ′ ∈ T and answer yes if and only if there is a binary X-tree T ′ ∈ T
with scoreS(T

′) < scoreS(T). By definition of T , the algorithm is correct. Moreover,
the algorithm runs in |X|O(k) · |S| time, since T has size at most |X|O(k) and for each
binary X-tree T ′ of T , one can compute scoreS(T

′) in O(|X| · |S|) time [58].

181

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

6.6 Concluding Remarks

In this chapter, we analyzed the parameterized complexity of searching for a bet-
ter solution in the scalable k-neighborhood of a phylogenetic tree T for Maximum
Parsimony with respect to the distance measures dNNI, dSPR, dTBR, dECR, dRF,
and dsECR. For the first five distance measures, we showed that finding algorithms
that run significantly faster than a trivial brute-force algorithm with running time
|I|O(k) are impossible, unless the ETH fails. This implies that there is a large algorith-
mic difference between finding a better or even a best solution of distance at most k
and the question whether two given phylogenetic trees have distance at most k. This
is the case, since the latter task was shown to be solvable in f(k) · |I|O(1) time for
the distance measures dSPR [174], dTBR [86], and dRF [145] (and thus also for dECR).
With respect to the last distance measure dsECR, we developed an FPT-algorithm
that searches the k-sECR neighborhood in kO(k) · |I|O(1) time.

Open questions. A clear goal for future research would be to improve the
running time of the algorithm for the k-sECR neighborhood. At first, this seems
promising since the current bottleneck is the enumeration of the binary refinements
of the tree obtained after contracting k edges. However, an algorithm for dsECR-
LS Maximum Parsimony running in 2o(k·log k) · |I|O(1) time would imply an algo-
rithm for Maximum Parsimony running in 2o(|X|·log |X|) ·|I|O(1) time: when applying
the dsECR-LS Maximum Parsimony algorithm with k := |X|−3, locally optimal so-
lution are also globally optimal. This is due to the fact that the dsECR-LS Maximum
Parsimony-distance is at most |X| − 3 between any two binary X-trees, since each
binary X-tree has exactly |X| − 3 internal edges. Hence, a more immediate question
is whether Maximum Parsimony can be solved in 2o(|X|·log |X|) · |I|O(1) time.

A further goal would be to find other distance measures for which d-LS Max-
imum Parsimony can be solved in time f(k) · |I|O(1). An example of a distance
measure on phylogenetic trees one might look into is the quartet distance [26, 51].
The quartet topologies induced by a binary X-tree T is the set containing, for each
set X ′ ¦ X of size exactly 4, the binary X ′-tree obtained from suppressing each
degree-2 vertex in T (X ′). Then, for two phylogenetic X-trees T and T ′, the quartet
distance between T and T ′ is the number of quartet topologies induced by exactly
one of T and T ′ [51]. In our reductions, the distance between the initial X-tree
and any improving X-tree is Ω(n). Hence, our presented lower bounds can not be
derived directly for the quartet distance. This leaves open whether one can search
for a better X-tree of quartet distance at most k in time f(k) · |I|O(1).

Furthermore, it is open whether better running times are possible when searching

182

6.6. Concluding Remarks

the neighborhood not for a better tree, but for a perfect phylogeny, that is, for a
tree where for each character the parsimony score equals the number of character
states minus one. A related question was considered by Szeider [161] in context
of local search for SAT. For k-Flip Sat they considered as input a formula F in
CNF together with an assignment Ä of the variables of F and asked whether there
is an assignment for F that satisfies all clauses and that can be obtained from Ä
by flipping the truth values of at most k variables. In contrast to k-Flip Max
Sat (the problem, where one only asks for an assignment that satisfies more clauses
than Ä), they showed that k-Flip Sat is FPT with respect to k plus the maximum
number of literals per clause [161]. This shows that one might be able to exploit the
structural properties of “perfect” solutions algorithmically, when only searching for
such “perfect” solutions.

A different question, more related to the approaches we aimed for in Chap-
ters 3–5, is to analyze whether we can find additional structural parameters ℓ for
which we can solve d-LS Maximum Parsimony in ℓO(k) · |I|O(1) time for any d ∈
{dNNI, dSPR, dTBR, dECR, dRF}. Note that our algorithms presented in Section 6.5
achieve such running times for ℓ being the number of taxa. It would be interesting
to analyze whether we can find smaller parameters or even unrelated parameters
for which such algorithms are possible. For example, once can consider ℓ being the
number of taxa one has to remove from X to obtain a perfect phylogeny [76]. This
parameter is clearly smaller than |X|. Another example is to consider ℓ being a pa-
rameter upper bounded by the number of characters |S|. In a first step, one can aim
to find algorithms that run in |S|O(k) · |I|O(1) time. If such algorithms are possible,
one can consider as parameter ℓ for example the number of bad characters in T , that
is, the characters for which T is not a perfect phylogeny [76].

Finally, one can also ask for the complexity of finding a locally optimal solution
with respect to scalable k-neighborhood defined over the distance measures dNNI,
dSPR, dTBR, and dECR for small constant values of k. Since each phylogenetic tree
contains Θ(|X|) edges, and each such edge can contribute at most 1 to the parsimony
score of each character of S, the parsimony score of any phylogenetic tree is upper-
bounded byO(|X|·|S|). Hence, a locally optimal solution can be found in polynomial
time, since a better tree of constant distance from a current tree can be found in
polynomial time, if it exists (see Theorem 6.26). So, this question is more interesting
in the context of a weighted version of Maximum Parsimony. In our opinion, such a
weighted version is well-motivated, for example by the following consideration. Based
on the fact that a huge bottleneck in real data for many biological problems is the
enormously large amount of character data (for example, mammal genomes usually
range from 1.4 · 109 to 3.7 · 109 base pairs [142]), considering a version of Maximum

183

Chapter 6. Parameterized Local Search for the Maximum Parsimony Problem

Parsimony with a compressed representation of the characters might be desirable.
For example, if two characters c and c′ are isomorphic (that is, if there is a bisection Ã,
such that c(x) = Ã(c′(x)) for each taxon x ∈ X), the parsimony scores of these
characters are identical with respect to every fixed phylogenetic tree. Hence, instead
of storing each character of S explicitly, it suffices to only store all pairwise non-
isomorphic characters S ′ of S and store for each character c of S ′ some additional
weight Éc that denotes the number of characters of S which are isomorphic to c.
These weights Éc can then be encoded in binary, which might provide a significant
compression of the input size in comparison to the unweighted encoding of Maximum
Parsimony. Now, the maximal possible parsimony score of any tree is upper-
bounded by O(|X| · ∑c∈S′ Éc). Due to the binary encoding of Éc, this value is
not necessarily polynomial in the total input size. Consequently, in such a weighted
setting, it is not guaranteed that a locally optimal solution can be found in polynomial
time. To analyze whether this is still possible in polynomial time, one might consider
analyzing whether this weighted version of Maximum Parsimony is PLS-hard with
respect to the k-neighborhoods dNNI, dSPR, dTBR, and dECR for small constant values
of k.

184

Chapter 7

The Complexity of Finding
k-Swap-Optimal Solutions for
Subset Optimization Problems

In this chapter, we consider Question 2 which asks about the total running time
to find a locally optimal solution. For a large class of subset-weight optimization
problems, we analyze the complexity of finding locally optimal solutions for instances
of these problems with respect to the k-swap neighborhood for constant values of k.
For example, we analyze this question for Weighted Independent Set and the
more general Weighted Π Subgraph.

Recall that the complexity class PLS (formally defined in Section 2.7) introduced
by Johnson et al. [95] is designed to study the difficulty of computing locally optimal
solutions. This class contains all local search problems for which one can compute
some starting solution and search the local neighborhood of a feasible solution S in
polynomial time. Thus, the local search problems in PLS are exactly those that have
a hill-climbing algorithm where each step only takes polynomial time.

To give evidence that for some local search problems in PLS it may be hard to
compute locally optimal solutions, Johnson et al. [95] introduced PLS-reductions and
showed that there are PLS-complete problems. These problems are as hard as any
problem in PLS and none of them is known to be solvable in polynomial time. Fur-
ther evidence against polynomial-time algorithms for PLS-complete problems arises
from cryptographic assumptions: Daskalakis and Papadimitriou introduced the class
CLS [37] which is a subclass of PLS. Now under the existence of one-way permuta-
tions and an indistinguishability obfuscation assumption, there are problems in CLS,
and thus in PLS, that do not admit polynomial-time algorithms [92].

185

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

Related work. PLS-completeness has been shown for many local search prob-
lems [46, 47, 95, 121, 125, 151, 154]. The initial PLS-complete problem is called Flip,
where the input is a Boolean circuit with m input variables and n output variables.
The solutions are the bit-vectors of length m and the objective is to find an input
that has a lexicographically smallest output. The neighborhood of a vector of the
input variables is obtained by flipping one input bit [95]. Another prominent PLS-
complete problem is Max Cut with the flip neighborhood, where the neighbors
of a partition (A,B) are the partitions that can be obtained by moving one vertex
from A to B or vice versa [151]. Max Cut with the flip neighborhood is PLS-
complete on graphs with maximum degree 5 [47] and polynomial-time solvable on
3-regular graphs [141]. The complexity on graphs with maximum degree 4 remains
open [47]. Johnson et al. [95] already considered the Weighted Independent
Set problem and argued that one can show PLS-completeness for a neighborhood
that is inspired by the famous Kernighan-Lin algorithm for Max Cut [100]. More-
over, Johnson et al. [95] specifically called for the study of simpler neighborhoods
for Weighted Independent Set. Schäffer and Yannakakis [151] argued that
Weighted Independent Set is PLS-complete for a 2-step neighborhood which
consists of an addition of a vertex v to the independent set S and a removal of all
its neighbors from S in the first step and a (maximal) series of improving vertex
additions in the second step. Note that the first step is not necessarily improving.
Further studies have shown PLS-completeness for Weighted Independent Dom-
inating Set with a k-swap neighborhood with constant but unspecified k [101] and
for Weighted Max-Π-Subgraph with hereditary properties Π and the above-
described 2-step-neighborhood [154]. We are the first to analyze the complexity of
Weighted Independent Set with respect to the k-swap neighborhoods for k f 3.

From a practical point of view, local search has been shown to give very good
results for WIS [41, 116, 133]. For example, the iterated local search heuristic called
ILS-VND [133]. The neighborhood used in this heuristic allows (i) swaps that remove
one vertex from the independent set and add up to two vertices to the independent set
and (ii) swaps that add one vertex to the independent set and remove all its neighbors
from the independent set. Note that this second operation may swap ∆(G) + 1
vertices simultaneously. Later, another heuristic called METAMIS was shown to
outperform ILS-VND [41]. METAMIS also has a local search step which allows the
swaps of ILS-VND and in addition also the swaps that remove two vertices from the
independent set and add a fixed number of vertices to the independent set. To our
knowledge, METAMIS presents the state-of-the-art for Weighted Independent
Set heuristics. Hence, local search with (restricted) k-swap neighborhoods is a
crucial ingredient for currently leading heuristics forWeighted Independent Set.

186

7.1. Hardness of Finding 7-Optimal Independent Sets

Our results. We provide a complexity analysis for Weighted Independent
Set with the k-swap neighborhood, denoted Weighted Independent Set/k-
swap. Our main result is the PLS-completeness of Weighted Independent
Set/3-swap on graphs of constant maximum degree.1 We first show in Section 7.1
that Weighted Independent Set/7-swap is PLS-complete on graphs of maxi-
mum degree at most 6. Then, in Section 7.2, we extend the constructed instance
of Weighted Independent Set/7-swap to obtain PLS-completeness even for
Weighted Independent Set/3-swap on graphs of constant maximum degree.

Afterwards, we use the PLS-completeness for Weighted Independent Set/3-
swap on graphs of constant maximum degree to show PLS-completeness for further
problems: In Section 7.3, we consider Weighted Π Subgraph/3-swap where the
input is a graph G and the aim is to find a maximum-weight vertex set S such that
the subgraph of G induced by S fulfills the property Π. We show PLS-completeness
for Weighted Π Subgraph/3-swap for any polynomial-time decidable graph prop-
erty Π that is closed under vertex deletion and under taking the disjoint union of
graphs. In Section 7.4, we show PLS-completeness for Weighted Dominating
Set/3-swap.

Finally, in Section 7.5, we show that if we allow all 3-swaps except either (i) the
swaps that remove two vertices and add one or (ii) the swaps that remove one vertex
and add two, we can find locally optimal solutions for Weighted Independent
Set andWeighted Dominating Set in polynomial time. This implies that locally
optimal solution for these problems can be found in polynomial time with respect
to 2-swaps. Our algorithms are actually more general in two ways: First, they work
for more general neighborhoods where either (i) all swaps that add up to k vertices
and remove at most one vertex are allowed or (ii) all swaps that remove up to k
vertices and add at most one vertex are allowed. Second, the algorithms can be
applied to a more general type of subset-weight optimization problems that include
the above-mentioned Weighted Π Subgraph and Weighted Deletion to Π
problems.

7.1 Hardness of Finding 7-Optimal Independent

Sets

To prove the PLS-completeness of Weighted Independent Set/3-swap on graphs
of constant maximum degree, we first show PLS-completeness for Weighted Inde-
pendent Set/7-swap and use the obtained graph as a starting point in a subsequent

1Our proof gives a degree bound of 3140.

187

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

vB

vA

uB

uA

wB

wAxu,v

xv,u

xw,v

xv,w

Figure 7.1: An example for the vertices and edges added to G′ for a vertex v ∈ V with two
neighbors u and w in G in the reduction from Max Cut/flip to Weighted Independent
Set/7-swap.

reduction to Weighted Independent Set/3-swap.

Theorem 7.1. Weighted Independent Set/7-swap is PLS-complete on graphs
of maximum degree 6.

As mentioned above,Weighted Independent Set/k-swap is contained in PLS
for each constant value of k. Hence, we only have to show that Weighted Inde-
pendent Set/7-swap is PLS-hard.

Construction. We present a PLS-reduction from Max Cut/flip to Weighted
Independent Set/7-swap. Let I = (G = (V,E), É) be an instance of Max
Cut/flip where G has maximum degree 5. Even under these restrictions, Max
Cut/flip is PLS-complete [47]. We describe how to construct an instance I ′ = (G′ =
(V ′, E ′), É′) of Weighted Independent Set/7-swap in polynomial time and pro-
vide a polynomial-time computable solution-mapper f from I ′ to I that preserves
local optimality.

We start with an empty graph G′ and add, for each vertex v ∈ V , two new
adjacent vertices vA and vB to G′. Next, for each edge {u, v} ∈ E, we add two new
vertices xu,v and xv,u to G′ and make xu,v adjacent to uB and vA and xv,u adjacent
to uA and vB. This completes the construction of G′; Figure 7.1 shows an example.
Note that G′ has a maximum degree of six. In the following, let VA := {vA | v ∈ V }
and VB := {vB | v ∈ V }. For each vertex v ∈ V , the vertices vA and vB will
determine for each independent set S of G′ whether vertex v is contained in A or B
for (A,B) = f(S). Intuitively, sinceG has maximum degree 5, a swap of vertex v ∈ V
in G can then be simulated by a 7-swap in G′ that swaps vA and vB and all vertices
corresponding to edges incident with vertex v in G.

Next, we define the weight function É′ : V ′ → N. Let Z :=
∑

e∈E É(e) denote the
total weight of all edges. We set for each vertex v ∈ V , É′(vA) := É′(vB) := 16 · Z

188

7.1. Hardness of Finding 7-Optimal Independent Sets

and for each edge {u, v} ∈ E, we set É′(xu,v) := É′(xv,u) := 8 ·É({u, v}). In principle,
the factors of 8 can be omitted but they will come in handy later when we present
the PLS-reduction to Weighted Independent Set/3-swap.

This completes the construction of I ′. It remains to define the solution-mapper f .
For an independent set S, we define f(S) to be the partition (A,B) of G where A :=
{v ∈ V | vA ∈ S} and B := V \ A. Recall that for vertex v ∈ V , the vertices vA
and vB are adjacent in G′.

Correctness. To show the correctness of the reduction, we first analyze the struc-
ture of 7-optimal independent sets in G′. To this end, we define a notion of nice
independent sets in G′ and show that all 7-optimal independent sets in G′ are nice.
Afterwards, to show that the solution-mapper f preserves local optimality, it thus
remains to show that for each nice 7-optimal independent sets S, f(S) is flip optimal.
Informally, an independent set S is nice, if it corresponds to a partition of V based
on the contained vertices of {vA, vB | v ∈ V }. Recall that if some vertex v of V is
contained in A for f(S) = (A,B), then vB is not contained in S.

Definition 7.2. Let S be an independent set in G′ and let A := {v ∈ V | vA ∈ S}
and let B := {v ∈ V | vB ∈ S}. We call S nice if (A,B) is a partition of G and for
each edge {u, v} ∈ E with (u, v) ∈ A× B, S contains xu,v.

Lemma 7.3. If an independent set S in G is not nice, then S is not 7-optimal in G′.

Proof. Let S be an independent set in G′ which is not nice and let A := {v ∈ V |
vA ∈ S} and let B := {v ∈ V | vB ∈ S}. We now show that S is not 7-optimal.

First, assume A ∪ B ̸= V . Then, there is some vertex v ∈ V with vA /∈ S
and vB /∈ S. Let Xv

S := NG′(vA)∩ S denote the set of neighbors of vA in the current
independent set S. Since vB /∈ S, the weight É′(Xv

S) is at most 8 · Z < É′(vA).
Hence, W := Xv

S ∪ {vA} is an improving swap for S in G′. Moreover, W has size at
most 6 because G has maximum degree 5 which implies that Xv

S has size at most 5.
Second, assume A ∪ B = V and there is some edge {u, v} ∈ E with (u, v) ∈ A × B
where xu,v /∈ S. By construction, the vertex xu,v is adjacent to exactly the two
vertices uB and vA. Since uA ∈ S and vB ∈ S, neither uB ∈ S nor vA ∈ S. Hence,
{xu,v} is an improving swap for S in G′.

Hence, in the following, we only have to consider nice independent sets in G′

when considering 7-optimal independent sets in G′. We are now able to show that
the solution-mapper f preserves local optimality.

Lemma 7.4. Let S be a nice independent set in G′. If S is 7-optimal in G′, then f(S)
is flip-optimal in G.

189

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

Proof. We show the statement by contraposition, that is, we show that S is not 7-
optimal in G′ if f(S) is not flip-optimal in G. Let (A,B) := f(S). By definition
of f and the fact that S is nice, A = {v ∈ V | vA ∈ S} and B = {v ∈ V | vB ∈ S}.
Suppose that (A,B) is not flip-optimal in G. Then, there is some vertex v ∈ V
where the total weight of the edges that are incident with v and in the cut EG(A,B)
is less than the total weight of the edges that are incident with v and not in the
cut EG(A,B). That is, either a) v ∈ A and É(EG({v}, A)) > É(EG({v}, B)) or
b) v ∈ B and É(EG({v}, B)) > É(EG({v}, A)).

Without loss of generality we may assume that v ∈ A and É(EG({v}, A)) >
É(EG({v}, B)). Let XA := NG(v) ∩A denote the neighbors of v in A and let XB :=
NG(v) ∩ B denote the neighbors of v in B. Since S is nice, we know that xv,u ∈ S
for each u ∈ XB. Moreover, for each w ∈ XA, xv,w /∈ S since wA ∈ S and xw,v /∈ S
since vA ∈ S. We show that

W := {vA, vB} ∪ {xv,u | u ∈ XB} ∪ {xw,v | w ∈ XA}

is a valid improving 7-swap for S in G′. An example of the swap W is illustrated
in Figure 7.2. First of all, note that W has size at most 7 since G has a maximum
degree of 5 and thus |XA∪XB| f 5. Moreover, by the fact that É′(xy,z) := É′(xz,y) :=
8 · É({y, z}) for each edge {y, z} ∈ E,

É′({xw,v | w ∈ XA}) = 8 · É({{v, w} | w ∈ XA})
> 8 · É({{v, u} | u ∈ XB}) = É′({xv,u | u ∈ XB}).

Hence, W is improving, since É′(vA) = É′(vB). It remains to show that W is valid.
Since W removes all neighbors of vB from S, S ·W does not contain any neighbor
of vB. Recall that vA /∈ S·W and that for each vertex w ∈ XA, S·W contains wA

and avoids wB. Hence, for each vertex w ∈ XA, xw,v has no neighbor in S ·W . As
a consequence, W is valid and thus S is not 7-optimal.

Since Weighted Vertex Cover and Weighted Independent Set are dual
problems, Observation 2.15 implies hardness also for Weighted Vertex Cover.

Corollary 7.5. Weighted Vertex Cover/7-swap is PLS-complete on graphs of
maximum degree 6.

As a final remark, note that it is open whether Max Cut/flip is PLS-hard
on graphs of maximum degree 4. If this is the case, the construction above would
directly imply hardness for Weighted Independent Set/6-swap and Weighted
Vertex Cover/6-swap graphs of maximum degree 5.

190

7.2. Hardness of Finding 3-Optimal Independent Sets

vB vA

xa,vxv,a xb,vxv,b xc,vxv,c xd,vxv,d xe,vxv,e

vB vA

xa,vxv,a xb,vxv,b xc,vxv,c xd,vxv,d xe,vxv,e

Figure 7.2: An example of an improving 7-swap W for a nice independent set S in G′

that simulates the flip of a vertex v ∈ V from A to B in G, where NG(v) = {a, b, c, d, e}
and NG(v) ∩ B = {b, d, e}. The black vertices are the vertices of S and all vertices of W
are highlighted by the blue shape.

7.2 Hardness of Finding 3-Optimal Independent

Sets

In this section, we use the previous reduction to also show that Weighted In-
dependent Set/3-swap is PLS-complete. To this end, we introduce additional
gadgets to the constructed graph.

Theorem 7.6. Weighted Independent Set/3-swap is PLS-complete on graphs
of constant maximum degree.

Construction. To show this, we present a PLS-reduction from Max Cut/flip.
As mentioned above, this reduction first computes the Weighted Independent
Set/7-swap-instance described in the previous section. Afterwards, we add addi-
tional gadgets to this instance to ensure that we are able to simulate improving
flips by a sequence of improving 3-swaps. We describe how to construct an in-
stance I ′′ = (G′′ = (V ′′, E ′′), É′′) of Weighted Independent Set/3-swap in poly-
nomial time and provide a polynomial-time computable solution-mapper f from I ′′

to I that preserves local optimality. First, we compute the instance I ′ = (G′ =
(V ′, E ′), É′) of Weighted Independent Set/7-swap described above. As above,
let VA := {vA | v ∈ V } and let VB := {vB | v ∈ V }. Moreover, we set for each

191

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

vertex v ∈ V , Xv := {xv,w, xw,v | w ∈ N(v)}, that is, Xv is the set of vertices in G′

that were introduced for the incident edges of v in G. We write NG(v) and NG[v]
when considering the neighborhood of a vertex v of V in G and N(v) or N [v] when
considering the neighborhood of a vertex v of V ′′ in G′′.

Initially, we add edges such that for each vertex v ∈ V , u ∈ NG(v), and w ∈
NG(v), the vertices xu,v and xv,w are adjacent in G′′. Note that this includes edges
between xu,v and xv,u in G′′ for each edge {u, v} ∈ E. Hence, in an independent
set S in G′′, for each vertex v ∈ V , there is no vertex xu,v ∈ S if S already contains
a vertex xv,w. The idea is that for each vertex v of G, at most one of vA and vB has
neighbors in Xv ∩ S.

Next, we add gadgets to allow us to simulate flips in G by a sequence of 3-swaps
in G′′. To this end, we first compute for each vertex v ∈ V the collection Pv of
subsets P ¦ NG(v) fulfilling É(EG({v}, P)) < É(EG({v}, NG(v) \ P)). Intuitively,
in a partition (A,B) of G, flipping a vertex v from A to B is improving if and only
if NG(v) ∩ B is contained in Pv. Note that ∅ ∈ Pv and NG(v) /∈ Pv for each v ∈ V .
Next, we add, for each nonempty P ∈ Pv a set of |NG(v)| − 1 new vertices to G′′.
Let Q := NG(v) \ P . Now, fix an ordering on both P and Q and let P (i) denote
the ith element of P and let Q(j) denote the jth element of Q where i ∈ [1, |P |]
and j ∈ [1, |Q|].

The newly added vertices are of three types: up, turn, and down. To simulate
a flip of v from A to B, we have to remove the neighbors of vB from S, add vB
to S, and add the vertices representing edges between v and A. Intuitively, the up-
vertices allow us—with a sequence of improving 3-swaps—to remove all neighbors
of vB from S except vA and the up-vertex of highest level. Afterwards, the turn-
vertex allows us—with two improving 3-swaps—to remove vA from S and add vB
and the down-vertex of highest level to S. Finally, the down-vertices allow us—with
a sequence of improving 3-swaps—to add the vertices to S that represent the edges
between v and A. After all these 3-swaps, no intermediately added auxiliary vertex
remains in S. In total, this allows us to simulate improving 7-swaps in G′ and thus
improving flips in G by a sequence of improving 3-swaps in I ′′. An example for a
sequence of improving 3-swaps in G′′ to simulate a flip in G is illustrated in Figure 7.3.

First, we add for each i ∈ [1, |P | − 1], a new vertex upA,i
v,P to G such that the

neighborhood of upA,i
v,P is exactly Xv minus the vertices {xv,P (j) | j < i}. Hence,

upA,1
v,P is adjacent to all vertices of Xv. Furthermore, we add an edge between upA,i

v,P

and each vertex of {wA | w ∈ P}∪{wB | w ∈ Q} and an edge between upA,i
v,P and vB.

192

7.2. Hardness of Finding 3-Optimal Independent Sets

vB vA

xa,vxv,a xb,vxv,b xc,vxv,c xd,vxv,d xe,vxv,e

upA,2v,P

upA,1
v,P

turnAv,P

downA,1
v,P

vB vA

xa,vxv,a xb,vxv,b xc,vxv,c xd,vxv,d xe,vxv,e

upA,2v,P

upA,1
v,P

turnAv,P

downA,1
v,P

..
.

vB vA

xa,vxv,a xb,vxv,b xc,vxv,c xd,vxv,d xe,vxv,e

upA,2v,P

upA,1
v,P

turnAv,P

downA,1
v,P

Figure 7.3: The simulation of the 7-swap shown in Figure 7.2 by a sequence of 3-swaps
(from left to right highlighted alternating by either a blue or a red shape). Since the 7-swap
shown in Figure 7.2 simulates a flip of a vertex v ∈ V from A to B in G, where NG(v) =
{a, b, c, d, e} and P = NG(v) ∩ B = {b, d, e} with P (1) = b, P (2) = d, and P (3) = e, this
sequence of 3-swaps also simulates the flip of vertex v from A to B. The black vertices are
the vertices of the current independent set S. Note that not all edges of this subgraph are
shown but only the important ones for the sequence of improving 3-swaps.

193

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

Moreover, we set

É′′(upA,i
v,P) := 4− i+ 8 ·

|P |∑

j=i

É({v, P (j)}) = 4− i+
|P |∑

j=i

É′′(xv,P (j)).

These weights are defined in a way that for i g 2, removing the vertices upA,i
v,P

and xv,P (j) and adding vertex upA,i−1
v,P , increases the total weight of the solution by

exactly 1. Intuitively, when flipping vertex v from A to B in G with P := NG(v)∩B,
one can obtain a 3-neighbor for S in G as follows:

1. if wA /∈ S for any neighbor w ∈ NG(v) in P and uB /∈ S for any neigh-
bor u ∈ NG(v) in Q, then we remove the vertices xv,P (|P |−1) and xv,P (|P |) and

add up
A,|P |−1
v,P , and

2. if upA,j
v,P ∈ S for some j ∈ [2, |P | − 1], then we remove upA,j

v,P and xv,P (j) and

add upA,j−1
v,P .

Hence, during the simulation of an improving flip of a vertex v in a partition (A,B)
from A to B in G, we can replace all vertices of Xv by the vertex upA,1

v,P with a
sequence of 3-swaps. In the correctness proof of the reduction, we will show that all
these 3-swaps are improving.

Recall that Q = NG(v) \ P . Second, we add a vertex turnA
v,P to G′′ which is

adjacent to all vertices of Xv, {vA, vB}, and to the vertices of {wA | w ∈ P} ∪ {wB |
w ∈ Q}. Recall that É′′(vA) = É′′(vB) = 16 · Z where Z =

∑
e∈E É(e). We set

É′′(turnA
v,P) := 4 + É′′(vA) + 8 ·

∑

w∈P
É({v, w}) = 4 + 16 · Z +

∑

w∈P
É′′(xv,w).

Intuitively, if upA,1
v,P is contained in S, one can obtain an improving 3-neighbor for S

in G by removing both upA,1
v,P and vA from S and adding turnA

v,P to S.

Third, we add, similar to upA,i
v,P , for each i ∈ [1, |Q|−1] a new vertex downA,i

v,P to G

such that the neighborhood of downA,i
v,P is exactly Xv minus the vertices {xQ(j),v | j <

i}. Hence, downA,1
v,P is adjacent to all vertices of Xv. Furthermore, we add an edge

between downA,i
v,P and each vertex of {wA | w ∈ P} ∪ {wB | w ∈ Q} and we also add

an edge between downA,i
v,P and vA. Moreover, we set

É′′(downA,i
v,P) := i− 4 + 8 ·

|Q|∑

j=i

É({v,Q(j)}) = i− 4 +

|Q|∑

j=i

É′′(xv,Q(j)).

194

7.2. Hardness of Finding 3-Optimal Independent Sets

Note that É′′(downA,i
v,P) > 0 since Q ̸= ∅ and the images of É are positive numbers.

Intuitively, one can obtain an improving 3-neighbor for S in G as follows:

1. if turnA
v,P ∈ S, then we remove turnA

v,P and add downA,1
v,P and vB,

2. if downA,j
v,P ∈ S for some j < |Q|−1, then we remove downA,j

v,P and add downA,j+1
v,P

and xQ(j),v, and

3. if down
A,|Q|−1
v,P ∈ S, then we remove down

A,|Q|−1
v,P and add xQ(|Q|−1),v and xQ(|Q|),v.

With the current graph, it is possible to simulate a flip of a vertex v from A to B.
To also simulate a flip of vertex v from B to A, we add symmetric vertices to G′′,
that is, for each vertex upA,i

v,P , we add a vertex upB,i
v,P , for each vertex turnA

v,P , we add

a vertex turnB
v,P , and for each vertex downA,i

v,P , we add a vertex downB,i
v,P .

For the sake of completeness, we provide their formal definition. Let P be a
nonempty set of Pv and let Q := Nv(G) \ P .

• First, we add for each i < |P |, a new vertex upB,i
v,P to G such that the neighbor-

hood of upB,i
v,P is exactly Xv minus the vertices {xP (j),v | j < i}. Furthermore,

we add an edge between upB,i
v,P and each vertex of {wB | w ∈ P}∪{wA | w ∈ Q}

and we also add an edge between upB,i
v,P and vA.

• Second, we add a vertex turnB
v,P to G′′ which is adjacent to all vertices of Xv,

{vA, vB}, and to the vertices of {wB | w ∈ P} ∪ {wA | w ∈ Q}.

• Third, we add for each i < |Q|, a new vertex downB,i
v,P to G such that the

neighborhood of downB,i
v,P is exactly Xv minus the vertices {xv,Q(j) | j < i}.

Furthermore, we add an edge between downB,i
v,P and each vertex of {wB | w ∈

P} ∪ {wA | w ∈ Q} and we also add an edge between downB,i
v,P and vB.

• Moreover, we set É′′(upB,i
v,P) := É′′(upA,i

v,P) for each i ∈ [1, |P |−1], É′′(turnB
v,P) :=

É′′(turnA
v,P), and É

′′(upB,j
v,P) := É′′(upA,j

v,P) for each j ∈ [1, |Q| − 1].

Note that we did not add any vertices for P = ∅ ∈ Pv to the graph G′′. In
the correctness proof, we show that a single improving 3-swap for S is sufficient to
simulate the flip of a vertex v of G if no edge incident with v is currently in the cut.

195

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

For each vertex v ∈ V , let Vv denote the set of the additional vertices associated
with v, that is,

Vv :=
⋃

P∈Pv ,P ̸=∅
({upA,i

v,P , up
B,i
v,P | i < |P |} ∪ {turnA

v,P , turn
B
v,P}∪

{downA,i
v,P , down

B,i
v,P | i < |NG(v) \ P |}).

To complete the construction, for each v ∈ V , we make the set
⋃

w∈NG[v] Vw a clique
in G′′.

Lemma 7.7. The graph G′′ has maximum degree at most 3140.

Proof. We show that G′′ has a maximum degree of 3140. To this end, we first show
that for each v ∈ V , the set Vv contains at most 120 vertices. Since G has maximum
degree 5 and if some P is contained in Pv, then NG(v) \P is not contained in Pv, Pv

contains at most 24 subsets of NG(v). By construction, Vv contains |NG(v)| − 1 f 4
vertices for each nonempty P ∈ Pv and each C ∈ {A,B}. Hence, Vv contains at
most (24−1) ·2 ·4 = 120 vertices. Next, we show the maximum degree of G′′. Let v ∈
V and let y be a vertex of Vv ∪ {vA, vB}. Moreover, let N2

G[v] :=
⋃

u∈NG[v]NG[u]
denote the set of vertices having distance at most two to v in G. By definition, the
neighborhood of y in G′′ is a subset of Xv ∪

⋃
u∈N2

G
[v] Vu∪

⋃
u∈NG(v){uA, uB}. Since G

has maximum degree 5, N2
G[v] has size at most 26 and thus the degree of y in G′′ is

at most 10 + 26 · 120 + 10 = 3140. Next, consider a vertex xu,v with {u, v} ∈ E. By
construction, the neighborhood of xu,v is a subset of {uB, vA} ∪ Vu ∪ Vv ∪Xv ∪Xu.
Hence, xu,v has degree at most 2 + 2 · 120 + 20 = 262. As a consequence, G′′ has a
maximum degree of 3140.

It remains to define the solution-mapper f . Analogously to the solution-mapper
of the presented PLS-reduction for Weighted Independent Set/7-swap, for an
independent set S, we define f(S) to be the partition (A,B) of G where A := {v ∈
V | vA ∈ S} and B := V \ A.

Correctness. To show the correctness of the PLS-reduction, we first analyze the
structure of 3-optimal independent sets in G′′. To this end, we show in Lemmas 7.8
– 7.10 that each 3-optimal independent set in G′′ contains for each v ∈ V either
the vertex vA or the vertex vB. Recall that the vertices vA and vB are adjacent
in G′′. As a consequence, this then implies that for f(S) = (A,B), B is exactly
the set {v ∈ V | vB ∈ S}. Finally, in Lemma 7.11, we then show that for such an
independent set S, f(S) is flip-optimal in G if S is 3-optimal in I ′′.

First, we show that no 3-optimal independent set in G′′ contains any up-vertices.

196

7.2. Hardness of Finding 3-Optimal Independent Sets

Lemma 7.8. Let S be an independent set in G′′. If S contains a vertex upC,i
v,P

for C ∈ {A,B}, then S is not 3-optimal.

Proof. First, we show the statement for i = 1. By construction, the closed neighbor-
hood N [turnC

v,P] is exactly N [upC,1
v,P]∪{vC} and É′′(turnC

v,P) = 1+É′′(upC,1
v,P)+É

′′(vC).

Hence, S ′ := (S ∪ {turnC
v,P}) \ {upC,1

v,P , vC} is an improving 3-neighbor of S in G′′.
This holds also if vC is not in S.

Second, we show the statement for i > 1. Let r := xv,P (i−1) if C = A and r :=

xP (i−1),v if C = B. Note that by construction, the closed neighborhood N [upC,i−1
v,P]

is exactly N [upC,i
v,P] ∪ {r} and É′′(upC,i−1

v,P) = 1 + É′′(upC,i
v,P) + É′′(r). Hence, if an

independent set S contains upC,i
v,P with i > 1, then S is not 3-optimal in G′′ since (S∪

{upC,i−1
v,P }) \ {upC,i

v,P , r} is an improving 3-neighbor of S in G′′. This holds also if r is
not in S.

Next, we show that each 3-optimal independent set in G′′ contains for each ver-
tex v ∈ V a vertex of {vA, vB} or a turn-vertex of Vv.

Lemma 7.9. Let S be an independent set in G′′. If there is a vertex v ∈ V such
that S avoids vA, vB, and Tv := {turnA

v,P , turn
B
v,P | P ∈ Pv, P ̸= ∅}, then S is

not 3-optimal.

Proof. Let v ∈ V and let S and Tv be as specified in the lemma. Note that if for
some C ∈ {A,B}, S contains no vertex of N(vC), then {vC} is an improving 3-
swap for S in G′′. Hence, we assume in the following that N(vA) ∩ S ̸= ∅ and
that N(vB)∩S ̸= ∅. Recall that N(vA)∪N(vB) ¦ Xv∪

⋃
w∈NG[v] Vw and

⋃
w∈NG[v] Vw

is a clique in G′′. Moreover, the common neighbors of vA and vB in
⋃

w∈NG[v] Vw are
the vertices of Tv. By assumption, S contains no vertex of Tv. As a consequence, at
most one vertex of {vA, vB} has a neighbor in (

⋃
w∈NG[v] Vw) ∩ S. Next, we analyze

the neighbors of vA and vB in Xv. By construction, the neighborhood of vA in Xv

is {xw,v | w ∈ NG(v)}, and the neighborhood of vB in Xv is {xv,w | w ∈ NG(v)}.
These two sets are disjoint and each vertex of N(vA)∩Xv is adjacent to each vertex
of N(vB) ∩Xv by construction. As a consequence, at most one vertex of vA and vB
has neighbors in Xv ∩ S. Hence, one vertex of vA and vB has no neighbor in Xv ∩ S
but has a neighbor in (

⋃
w∈NG[v] Vw) ∩ S.

Assume without loss of generality that vA is the vertex of {vA, vB} which has no
neighbor in Xv ∩ S but has a neighbor r in (

⋃
w∈NG[v] Vw) ∩ S. In the following, we

make a case distinction between the possible choices of r and show in each case, that
there is an improving 3-swap for S in G′′.

197

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

Case: r = upC′,P
w,i for some w ∈ NG[v], some C ′ ∈ {A,B}, some nonempty

set P ∈ Pw, and some i < |P |. By Lemma 7.8, we directly obtain that S is not 3-
optimal in G′′.

Case: r = turnC′

w,P for some w ∈ NG[v], some C ′ ∈ {A,B}, and some nonempty

set P ∈ Pw. Note that by assumption, w ̸= v. Recall that É′′(turnC′

w,P) < É′′(vA) +

É′′(wA) and that turnC′

w,P is the only neighbor of wA in S, since N [wA] ¦ N [turnC′

w,P].

Hence, since turnC′

w,P is the unique neighbor of vA in S, (S ∪ {vA, wA}) \ {turnC′

w,P} is
an improving 3-neighbor of S in G′′.

Case: r = downC′,P
w,i for some vertex w ∈ NG[v], some C ′ ∈ {A,B}, some

nonempty set P ∈ Pw, and some i < |Nw(G)\P |. Recall that É′′(downC′,P
w,i) < É′′(vA)

and that downC′,P
w,i is the only neighbor of vA in S. Hence, (S ∪ {vA}) \ {downC′,P

w,i }
is an improving 3-neighbor of S in G′′.

Hence, we can assume that each 3-optimal independent set S in G′′ contains no
up-vertex and for each vertex v ∈ V exactly one vertex of {vA, vB} ∪ Tv with Tv :=
{turnA

v,P , turn
B
v,P | P ∈ Pv, P ̸= ∅}. In the following, we call an independent set S

of G′′ nice if S ¦ V ′ = VA ∪ VB ∪
⋃

v∈V Xv and if S is a nice independent set for
the instance I ′ of Weighted Independent Set/7-swap. That is, if for A := {v ∈
V | vA ∈ S} and B := {v ∈ V | vB ∈ S}, (A,B) is a partition of G and for each
edge {u, v} ∈ E with (u, v) ∈ A × B, the vertex xu,v is contained in S. Next, we
show similar to Lemma 7.4, that each 3-optimal independent set S in G′′ is nice.

Lemma 7.10. Let S be an independent set in G′′. If S is 3-optimal, then S is nice.

Proof. We show this statement by contraposition. That is, given an independent
set S in G′′ which is not nice, we show that S is not 3-optimal. Due to Lemma 7.8,
we know that S is not 3-optimal if some vertex upC,i

v,P for C ∈ A,B is contained
in S. Hence, in the following, we assume that none of these vertices is contained
in S. Moreover, due to Lemma 7.9, we also know that S is not 3-optimal if there
is some vertex v ∈ V such that S does not contain vA, vB, and no vertex of Tv =
{turnA

v,P , turn
B
v,P | P ∈ Pv, P ̸= ∅}. Hence, in the following we further assume that

for each vertex v ∈ V , S contains one of these vertices.
We distinguish whether there is some vertex v ∈ V , such that S contains a vertex

of Tv. In both cases, we show that S is not 3-optimal.
Case 1: There is some vertex v ∈ V , such that S contains some vertex of Tv.

Assume without loss of generality that turnA
v,P ∈ S and let Q := NG(v) \ P . Recall

that
⋃

w∈NG[v] Vw is a clique in G′′ which implies that for each vertex w ∈ NG(v),
S contains no vertex of Tw ¦ Vw. Furthermore, since for each vertex u ∈ V , S
contains exactly one vertex of {uA, uB} ∪ Tu, for each neighbor w of v in G, S

198

7.2. Hardness of Finding 3-Optimal Independent Sets

contains either wA or wB. Moreover, turnA
v,P is adjacent to all vertices of Xv, all

vertices of {wA | w ∈ P}, and all vertices of {wB | w ∈ Q}. As a consequence, for
each vertex w ∈ P , S contains wB and avoids wA, and for each vertex u ∈ Q, S
contains uA and avoids uB. Furthermore, turnA

v,P is the unique neighbor of vB in S.
Recall that P ̸= NG(v) which implies that Q is nonempty. In the following, it is thus
sufficient to distinguish between |Q| = 1 and |Q| > 1.

Case 1.1: |Q| = 1. Let w denote the unique vertex of Q. We show that S ′ :=
(S ∪ {vB, xw,v}) \ {turnA

v,P} is an improving 3-neighbor of S in G′′. By construction,
vB and xw,v are nonadjacent in G′′ and

É′′(vB) + É′′(xw,v) = 16 · Z + 8 · É({v, w}) = 16 · Z + 8 ·
∑

u∈Q
É({v, u})

> 16 · Z + 4 + 8 ·
∑

u∈P
É({v, u}) = É′′(turnA

v,P)

which is true, since the images of É are positive integers and P ∈ Pv which im-
plies

∑
u∈Q É({v, u}) g

∑
u∈P É({v, u}) + 1. Hence, it remains to show that S ′ is

an independent set. Since by definition, N [vB] ¦ N [turnA
v,P], we only have to show

that turnA
v,P is the only neighbor of xw,v in S. By construction, the neighborhood

of xw,v in G′′ is a subset of {vA, wB} ∪ Vv ∪ Vw ∪Xv ∪Xw. Recall that turn
A
v,P is ad-

jacent to all vertices of this set except for some vertices of Xw. Hence, we only have
to consider the neighbors of xw,v in Xw. By construction, these are the vertices xu,w
where u ∈ NG(w). Since wA is contained in S and each of these vertices xu,w is
adjacent to wA in G′′, xw,v has no neighbor in S besides turnA

v,P . As a consequence,
S ′ is an improving 3-neighbor of S.

Case 1.2: |Q| > 1. Then, the vertex downA,1
v,P exists. We show that S ′ := (S ∪

{vB, downA,1
v,P}) \ {turnA

v,P} is an improving 3-neighbor of S in G′′. By construction,

vB and downA,1
v,P are nonadjacent in G′′ and

É′′(vB) + É′′(downA,1
v,P) = 16 · Z − 3 + 8 ·

∑

w∈Q
É({v, w})

> 16 · Z + 4 + 8 ·
∑

u∈P
É({v, u}) = É′′(turnA

v,P)

since the images of É are positive integers and P ∈ Pv which yields
∑

u∈Q É({v, u}) >∑
u∈P É({v, u}). Hence, it remains to show that S ′ is an independent set. By defini-

tion, N [vB] ¦ N [turnA
v,P] and N [downA,1

v,P] ¦ N [turnA
v,P], which implies that turnA

v,P

is the unique neighbor of both vB and turnA
v,P in S. As a consequence, S ′ is an

independent set and thus an improving 3-neighbor of S.

199

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

Case 2: For each vertex v ∈ V , S contains either vA or vB. In a first step, we
show that if for some vertex v ∈ V , there is some vertex r ∈ Vv contained in S,
then S is not 3-optimal. Note that we already showed that this is the case if r is
an up-vertex or a turn-vertex. Hence, it remains to show the claim for r being a
down-vertex. Assume without loss of generality that there is a nonempty set P ∈ Pv

and some i < |Q| with Q := NG(v) \ P such that downA,i
v,P is contained in S.

We distinguish between the cases of i < |Q| − 1 and i = |Q| − 1.
Case 2.1: i < |Q| − 1. Let w denote the vertex Q(i). We show that S ′ :=

(S ∪ {downA,i+1
v,P , xw,v}) \ {downA,i

v,P} is an improving 3-neighbor of S in G′′. By

construction, downA,i+1
v,P and xw,v are nonadjacent in G′′ and

É′′(downA,i+1
v,P) + É′′(xw,v) = i+ 1− 4 +

|Q|∑

j=i+1

É′′(xQ(j),v) + É′′(xw,v)

> i− 4 +

|Q|∑

j=i

É′′(xQ(j),v) = É′′(downA,P
v,i).

Hence, it remains to show that S ′ is an independent set in G′′. Note that by con-
struction, N [downA,i+1

v,P] = N [downA,i
v,P] \ {xw,v}. Consequently, we only have to

show that downA,i
v,P is the only neighbor of xw,v in S. By construction, N [xw,v] ¦

{vA, wB} ∪ Vv ∪ Vw ∪ Xv ∪ Xw. Since Vv ∪ Vw is a clique in G′′ and downA,i
v,P is a

vertex of Vv and downA,i
v,P is adjacent to vA and wB, we only have to consider the

neighbors of xw,v in Xv ∪Xw. By construction, the neighbors of xw,v in Xv are the

vertices xv,u where u ∈ NG(v) which are all adjacent to downA,i
v,P . Hence, S contains

no neighbor of xw,v in Xv. Moreover, the neighbors of xw,v in Xw are the vertices xu,w
where u ∈ NG(w). For each such u ∈ NG(w), the vertex xu,w is adjacent to wA in G′′.

Recall that S contains either wA or wB. Since wB is adjacent to downA,i
v,P , S con-

tains wA, which implies that no vertex xu,w with u ∈ NG(v) is contained in S. As a

consequence, both xw,v and downA,i
v,P have no neighbor in S besides downA,i

v,P . Hence,
S ′ is an improving 3-neighbor of S.

Case 2.2: i = |Q| − 1. Let w1 denote the vertex Q(i) and let w2 denote the

vertex Q(i+ 1) = Q(|Q|). We show that S ′ := (S ∪ {xw1,v, xw2,v}) \ {downA,|Q|−1
v,P } is

an improving 3-neighbor of S in G′′. By construction, xw1,v and xw2,v are nonadjacent
in G′′ and

É′′(xw1,v) + É′′(xw2,v) + |Q| − 1− 4 = É′′(downA,P
v,|Q|−1).

Since P ̸= ∅ and G has maximum degree 5, Q has size at most 4, which implies
that S ′ is improving. Hence, it remains to show that S ′ is an independent set in G′′.

200

7.2. Hardness of Finding 3-Optimal Independent Sets

To this end, we show that for each w ∈ {w1, w2}, downA,|Q|−1
v,P is the only neighbor

of xw,v in S. Let w ∈ {w1, w2}. By construction, the neighborhood of xw,v in G′′

is a subset of {vA, wB} ∪ Vv ∪ Vw ∪ Xv ∪ Xw. Since down
A,|Q|−1
v,P is in S, a vertex

of the clique Vv ∪ Vw in G′′, and adjacent to vA and wB, it remains to show that w
has no neighbor in (Xv ∪ Xw) ∩ S. By construction, the neighbors of xw,v in Xv

are the vertices xv,u where u ∈ NG(v) which are all adjacent to down
A,|Q|−1
v,P . Hence,

S contains no neighbor of xw,v in Xv. Moreover, the neighbors of xw,v in Xw are
the vertices xu,w where u ∈ NG(w). For each such u ∈ NG(w), the vertex xu,w is
adjacent to wA in G′′. Recall that S contains either wA or wB. Since wB is adjacent
to down

A,|Q|−1
v,P and down

A,|Q|−1
v,P is contained in S, wA is contained in S. This implies

that no vertex xu,w with u ∈ NG(v) is contained in S. As a consequence, xw1,v

and xw2,v have no neighbor in S besides down
A,|Q|−1
v,P . Hence, S ′ is an improving 3-

neighbor of S.
Summarizing, we can assume in the following that S ¦ V ′ = VA ∪ VB ∪

⋃
v∈V Xv

and that (A,B) is a partition of G, where A := {v ∈ V | vA ∈ S} and B :=
{v ∈ V | vB ∈ S}. Hence, it remains to show that if there is some edge {v, w} ∈ E
with (v, w) ∈ A×B such that xv,w is not contained in S, then S is not 3-optimal inG′′.
To this end, we show that S ∪ {xv,w} is an independent set in G′′. By construction,
xv,w is adjacent to vB, wA, some vertices of Vv ∪ Vw, and the vertices {xu,v | u ∈
NG(v)}∪{xw,u | u ∈ NG(w)}. Recall that S contains no vertex of Vv∪Vw. Moreover,
since (v, w) ∈ A × B, vA and wB are contained in S which implies that vB and wA

are not contained in S. Furthermore, since all vertices of {xu,v | u ∈ NG(v)} are
adjacent to vA, all vertices of {xw,u | u ∈ NG(w)} are adjacent to wB, and vA and wB

are contained in S, S ∪ {xv,w} is an independent set in G′′.
We conclude that if S is not nice in G′′, then S is not 3-optimal.

With the knowledge that each 3-optimal independent set in G′′ is nice, we are now
able to show the correctness of the PLS-reduction, that is, to show that f preserves
local optimality.

Lemma 7.11. Let S be a nice independent set in G′′. If S is 3-optimal in G′′,
then f(S) is flip-optimal in G.

Proof. We show the statement by contraposition. That is, we show that if (A,B) is
not flip-optimal in G, then S is not 3-optimal in G′′. Let S be a nice independent
set in G′′ and let A := {v ∈ V | vA ∈ S} and B := {v ∈ V | vB ∈ S}, such
that f(S) = (A,B) is not flip-optimal in G. Then, there is some vertex v ∈ V where
the total weight of the edges in the cut of (A,B) incident with v is less than the total
weight of the edges incident with v that are not in the cut of (A,B). That is, either

201

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

a) v ∈ A and É(EG({v}, A)) > É(EG({v}, B)) or b) v ∈ B and É(EG({v}, B)) >
É(EG({v}, A)).

Without loss of generality we may assume that v ∈ A and É(EG({v}, A)) >
É(EG({v}, B)). Hence, for P := NG(v) ∩B and Q := NG(v) ∩A,

∑
u∈P É({v, u}) <∑

w∈Q É({v, w}) which implies that P ∈ Pv. Note that this further implies that Q
is nonempty. In the following, we distinguish between the cases of |P | = 0, |P | = 1,
and |P | g 2 and present for each of these cases an improving 3-neighbor for S in G′′.

Case: |P | = 0. Let w be an arbitrary neighbor of v in G. Such a vertex exists,
since Q is nonempty. Since w ∈ Q, wA is contained in S. We show that S ′ :=
(S∪{vB, xw,v})\{vA} is an improving 3-neighbor of S in G′′. Since É′′(vA) = É′′(vB)
and É′′(xw,v) > 0, it remains to show that S ′ is an independent set inG′′. Note that vB
and xw,v are nonadjacent in G

′′ and that S contains no vertex of Vv∪Xv since S is nice
and P = ∅. Hence, vA is the only neighbor of vB in S. Thus, we only have to show
that vA is also the only neighbor of xw,v in S. By construction, xw,v is adjacent to vA,
wB, some vertices of Vv∪Vw and the vertices {xv,u | u ∈ NG(v)}∪{xu,w | u ∈ NG(w)}.
Since S is nice and contains wA, S contains no vertex of Vv∪Vw and no vertex of Xv.
Hence, we only have to consider the vertices xu,w where u ∈ NG(w). Since each such
vertex is adjacent to wA, vA is the unique neighbor of xw,v in S. As a consequence,
S ′ is an improving 3-neighbor of S in G′′.

Case: |P | = 1. Let w be the unique neighbor of v in B, that is, the unique
vertex of P . Note that xv,w is the only vertex of Xv in S. Since P is nonempty,
there is a vertex turnA

v,P in G′′ which is not contained in S since S is nice. We show
that S ′ := (S ∪ {turnA

v,P}) \ {vA, xv,w} is an improving 3-neighbor of S in G′′. Note
that

É′′(vA) + É′′(xv,w) = 16 · Z +
∑

u∈P
É′′(xv,w) = É′′(turnA

v,P)− 4.

Hence, we only have to show that S ′ is an independent set in G′′. For this it is
sufficient to show that vA and xv,w are the only two neighbors of turnA

v,P in S. Recall
that turnA

v,P is adjacent to vA, vB, all vertices of Xv, the vertices {uA | u ∈ P}, the
vertices {uB | u ∈ Q} and some vertices of

⋃
u∈V Vu. Since vA is contained in S,

vB is not contained in S. Moreover, recall that xv,w is the only vertex of Xv in S.
Furthermore, since S is nice, S contains no vertex of

⋃
u∈V Vu. Hence, it remains

to show that S contains no vertex of {uA | u ∈ P} ∪ {uB | u ∈ Q}. By definition
of (A,B) and the fact that P ¦ B and Q ¦ A, for each vertex u ∈ P , uB is
contained in S and for each vertex u ∈ Q, uA is contained in S. Hence, S contains
none of the vertices of {uA | u ∈ P} ∪ {uB | u ∈ Q} which implies that S ′ is an
improving 3-neighbor of S in G′′.

202

7.2. Hardness of Finding 3-Optimal Independent Sets

Case: |P | g 2. Let i := |P | − 1, let w1 denote the vertex P (i), and let w2 denote
the vertex P (i + 1). Note that xv,w1

and xv,w2
are contained in S since S is nice,

v ∈ A, and w1 and w2 are in P ¦ B. Moreover, since i > 0, there is a vertex upA,P
v,i

in G′′ which is not contained in S. We show that S ′ := (S ∪ {upA,P
v,i }) \ {xv,w1

, xv,w2
}

is an improving 3-neighbor of S in G′′. Note that

É′′(xv,w1
) + É′′(xv,w2

) =

|P |∑

j=i

É′′(xv,P (j))

<

|P |∑

j=i

É′′(xv,P (j)) + 4− i = É′′(upA,P
v,i)

since i < 4 by the fact that P ¦ NG(v) and G has maximum degree 5. Hence,
we only have to show that S ′ is an independent set in G′′. To this end, we show
that xv,w1

and xv,w2
are the only two neighbors of upA,P

v,i in S. Recall that upA,P
v,i is

adjacent to vB, all vertices of Xv except xv,P (j) for j < i, the vertices {uA | u ∈ P},
the vertices {uB | u ∈ Q} and some vertices of

⋃
u∈V Vu. Since vA is contained in S,

we have that vB is not contained in S and for each u ∈ NG(v), xu,v is not contained
in S. By the fact that for each u ∈ Q, uA is contained in S, the vertex xv,u is not

contained in S. Hence, xv,w1
and xv,w2

are the only two neighbors of upA,P
v,i from Xv

in S. Moreover, since S is nice, S contains no vertex of
⋃

u∈V Vu. Hence, it remains
to show that S contains no vertex of {uA | u ∈ P} ∪ {uB | u ∈ Q}. By definition
of (A,B) and the fact that P ¦ B and Q ¦ A, for each u ∈ P , uB is contained in S
and for each u ∈ Q, uA is contained in S. Hence, S contains none of the vertices
of {uA | u ∈ P} ∪ {uB | u ∈ Q} which implies that S ′ is an improving 3-neighbor
of S in G′′.

Concluding, for each nice 3-optimal independent set S in G′′, f(S) is flip-optimal
in G.

Recall that to prove Theorem 7.6, we have to show that for each 3-optimal inde-
pendent set S in G′′, f(S) is flip-optimal in G. We obtain this by the following facts:
a) due to Lemma 7.10, each 3-optimal independent set in G′′ is nice and b) due to
Lemma 7.11, for each nice 3-optimal independent set S in G′′, f(S) is flip-optimal
in G.

Again, since Weighted Vertex Cover and Weighted Independent Set
are dual problems, Observation 2.15 implies hardness also for Weighted Vertex
Cover.

Corollary 7.12. Weighted Vertex Cover/3-swap is PLS-complete on graphs
of constant maximum degree.

203

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

7.3 Hardness of Finding 3-Optimal Solutions for

Weighted Subgraph Deletion Problems

We now consider more general graph-based subset-weight optimization problems
and extend the PLS-hardness with respect to the 3-swaps-neighborhood to these
problems.

A graph property Π is a collection of undirected and finite graphs. If a graph G
is contained in Π, we say that G fulfills (the graph property) Π. In this section, we
consider the following two general problems which are dual to each other.

Weighted Π Subgraph
Input: A graph G = (V,E) and a vertex-weight function É : V → N.
Output: A vertex set S of maximum total weight such that G[S] ful-
fills Π.

Weighted Deletion to Π
Input: A graph G = (V,E) and a vertex-weight function É : V → N.
Output: A vertex set S of minimum total weight such that G − S
fulfills Π.

We show that both Weighted Π Subgraph/3-swap and Weighted Dele-
tion to Π/3-swap are PLS-hard for each nontrivial hereditary graph property Π
where each minimal forbidden induced subgraph is connected. To this end, we first
define these restricted graph properties.

We call a graph property Π nontrivial if infinitely many graphs fulfill Π and
infinitely many graphs do not fulfill Π. We say that Π is hereditary (on induced
subgraphs) if for each graph G that fulfills Π, each induced subgraph of G also
fulfills Π. We say that a graph G is a minimal forbidden induced subgraph of a graph
property Π if G does not fulfill Π and each proper induced subgraph of G fulfills Π.
A graph property Π is hereditary if and only if Π can be characterized by a set F of
minimal forbidden induced subgraphs. That is, a graph G fulfills Π if and only if G
does not contain any graph of F as an induced subgraph.

For example, the collection of all edgeless graphs is a hereditary graph property.
This graph property has a single minimal forbidden induces subgraph: the graph
that consists of a single edge and its both endpoints. For this graph property Π,
Weighted Deletion to Π is exactly Weighted Vertex Cover. Another
hereditary graph property is the collection of all acyclic graphs. For this graph
property the set of minimal forbidden induces subgraphs are exactly the collection
of all cycle graphs.

204

7.3. Hardness of Finding 3-Optimal Solutions for Subgraph Deletion Problems

In the remaining section, we establish the PLS-hardness for Weighted Π Sub-
graph/3-swap and Weighted Deletion to Π/3-swap.

Theorem 7.13. Let Π be a nontrivial hereditary graph property where each minimal
forbidden induced subgraph is connected. Then, Weighted Π Subgraph/3-swap
and Weighted Deletion to Π/3-swap are PLS-hard even on graphs of constant
maximum degree.

Recall that due to Corollary 7.12 Weighted Vertex Cover/3-swap is PLS-
complete on graphs of constant maximum degree. We present a PLS-reduction
from Weighted Vertex Cover/3-swap to Weighted Deletion to Π/3-swap.
Since Weighted Π Subgraph and Weighted Deletion to Π are dual subset-
weight optimization problems, due to Observation 2.15, the PLS-hardness then di-
rectly transfers also to Weighted Π Subgraph.2 In our reduction, we follow the
general idea of the NP-hardness reduction from Vertex Cover to Deletion to Π
presented by Lewis and Yannakakis [115].

Definition of the ³-sequence. Similar to Lewis and Yannakakis [115], we also
define the notion of ³-sequences. Informally, an ³-sequence of a graph G is a non-
increasingly ordered sequence of integers indicating how large the connected compo-
nents of G−v are for some suitably chosen vertex v of G. Lewis and Yannakakis [115]
used ³-sequences only for connected graphs. Based on our more restricted graph
property Π, we also define ³-sequences for disconnected graphs. The rough idea for
the reduction is to replace the edges in the Weighted Vertex Cover-instance
by a graph H that has lexicographically smallest ³-sequence among all graphs not
fulfilling Π. In the following, let z denote the lexicographic order relation. Moreover,
we write x ¯ y if x = y or x z y.

For a graph G = (V,E) with ℓ connected components, we let comp(G) =
(|V1|, . . . , |Vℓ|) with |Vi| g |Vi+1| for each i ∈ [1, ℓ − 1] denote the (nonincreasingly
sorted) component-size vector of G. Now, assume that G = (V,E) has at least two
vertices. We denote by ³(G) the ³-sequence of G, which is defined by ³(G) :=
comp(G − v), where v is a vertex of V such that comp(G − v) ¯ comp(G − w) for
each vertex w ∈ V . Observe that for every graph G = (V,E) with at least two
vertices and every vertex v ∈ V , we have comp(G− v) z comp(G) since the deletion

2Note that if Π is not polynomial-time checkable, Weighted Deletion to Π/3-swap and
Weighted Π Subgraph/3-swap are no subset-weight optimization problems. Still, the remaining
properties of dual optimizations problems hold. Hence, Observation 2.15 still applies if Π is not
polynomial-time checkable.

205

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

of v decreases the size of its connected component by one or splits this component
into several smaller components.

Lemma 7.14. Let G be a graph. Then, for each proper induced subgraph Ĝ of G
with at least two vertices, ³(Ĝ) z ³(G).

Proof. We show the statement by induction over the number of vertices of G =
(V,E). For the base case where G contains at most two vertices, the statement
follows trivially, since there is no proper subgraph of G with at least two vertices.

For the inductive step assume that G has at least three vertices and the statement
holds for each graph with fewer vertices than G. Let v be a vertex of V such
that ³(G) = comp(G − v). Moreover, let Ĝ = (V̂ , Ê) be a proper and induced

subgraph of G with exactly one vertex less than G. We show that ³(Ĝ) z ³(G).

If Ĝ contains the vertex v, let w be the unique vertex of V \ V̂ . Otherwise, that is,

if v is the unique vertex of V \ V̂ , let w be an arbitrary vertex of V̂ . In both cases, V̂
contains exactly one of v and w. Consider the graph G−{v, w} and observe that G−
{v, w} = (G− w)− v = (G− v)− w. Now the claim follows from two observations:
First, comp(G−{v, w}) z comp(G−v) = ³(G) since any vertex deletion results in a

smaller component-size vector as observed above. Second, ³(Ĝ) ¯ comp(G−{v, w})
since the graph G− {v, w} can be obtained from Ĝ by deletion of the unique vertex

in V̂ ∩ {v, w}. Together, this implies ³(Ĝ) ¯ comp(G− {v, w}) z ³(G).

Hence, for each proper induced subgraph Ĝ of G with exactly one vertex less
than G, ³(Ĝ) z ³(G). Note that each proper induced subgraph of G either has
exactly one vertex less than G or is a proper subgraph of some proper induced
subgraph Ĝ ofG with exactly one vertex less thanG. Hence, the induction hypothesis
implies that for each proper induced subgraph Ĝ of G with at least two vertices,
³(Ĝ) z ³(G).

Definition of the gadget graphs H, J and D. Note that since Π is nontrivial
and hereditary on forbidden induced subgraphs and Weighted Deletion to Π
is a minimization problem, a graph consisting of a single vertex fulfills Π. Hence,
each graph not fulfilling property Π contains at least two vertices. Further, since Π
is nontrivial, there is a graph that does not fulfill Π.

Let H be a minimal forbidden induced subgraph of Π such that no other min-
imal forbidden induced subgraph of Π has a lexicographically smaller ³-sequence.
Furthermore, Lemma 7.14 implies that for each graph H ′ with ³(H ′) z ³(H), H ′

fulfills Π. Note that H is connected.
Let c be a vertex of H such that ³(H) = comp(H − c) and let J ′ be a fixed

largest connected component of H − c. Moreover, let J := H[J ′ ∪ {c}] denote the

206

7.3. Hardness of Finding 3-Optimal Solutions for Subgraph Deletion Problems

induced subgraph on all vertices of J ′ plus c, and let D := H − J ′. Note that by
performing a disjoint union of the graphs J and D and identifying the vertex c in J
with the vertex c in D, the resulting graph is H. The goal is to replace each edge of
the Weighted Vertex Cover-instance by a distinct copy of J and each vertex
of the Weighted Vertex Cover-instance by a distinct copy of D. Note that
since H only depends on the graph property Π, H has constant size.

Construction. We are now able to present the PLS-reduction from Weighted
Vertex Cover/3-swap to Weighted Deletion to Π/3-swap. Let I = (G =
(V,E), É) be an instance of Weighted Vertex Cover/3-swap with a constant
maximum degree. We describe how to construct an instance I ′ = (G′ = (V ′, E ′), É′)
of Weighted Deletion to Π in polynomial time and a polynomial-time com-
putable solution-mapper f from I ′ to I that preserves local optimality. As described
above, we extend the graph G by replacing edges and vertices of G with copies of J
and D, respectively. More precisely, we initialize G′ as an edgeless copy of G. For
each vertex v ∈ V , we add a copy of D to G and identify v with the vertex c of D.
We call this newly added subgraph (including vertex v) the D-gadget of the vertex v.
Next, we describe the edge-gadgets. To this end, recall that H is a connected graph
with at least two vertices. Hence, since J consists of the largest connected component
of H− c plus vertex c, c has at least one neighbor in J . Fix any such neighbor c′ of c
in J . For each edge {u, v} of G, we add a copy of J to G′ and identify u with c and v
with c′. We call this newly added subgraph (including vertices u and v) the J-gadget
of the edge {u, v}. This completes the construction of G′.

Intuitively, for each edge {u, v} of G, each solution for I ′ contains at least one
vertex of i) theD-gadget of the vertex v, ii) theD-gadget of the vertex u, or iii) the J-
gadget of the edge {u, v}. In the following, we define the weights of the vertices of G′

in such a way that a solution with at least one vertex of V ′ \ V is guaranteed to not
be a 3-optimal solution for I ′. This then implies that each 3-optimal solution for I ′

contains for each edge {u, v} ∈ E at least one of u or v and is thus a vertex cover
for I.

Next, we define the weight function É′ and the solution-mapper f . Let Z :=
1+

∑
v∈V É(v). For each vertex v ∈ V , we set É′(v) := É(v) and for each vertex v′ ∈

V ′ \ V , we set É′(v′) := Z. We define the solution-mapper as follows: For each
solution S for I ′, we set f(S) := S if S ¦ V . Otherwise, that is, if S contains at
least one vertex of V ′ \ V , we set f(S) := V . This completes the construction.

First, we show that f is in fact a solution-mapper, that is, for each solution S
for I ′, f(S) is a vertex cover for I. If S contains at least one vertex of V ′ \ V ,
then f(S) = V is a vertex cover for I. Hence, we only have to show that a solu-

207

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

tion S ¦ V for I ′ is also a vertex cover for I.

Lemma 7.15. Let S ¦ V . If S is a solution for I ′, then S is a vertex cover for I.

Proof. We show the statement by contraposition. Let S ¦ V such that S is not a
vertex cover for I. We show that S is not a solution for I ′. Let {u, v} be an edge
of E such that S contains neither u nor v. Since S is not a vertex cover for I, such
an edge {u, v} exists. We show that S is not a solution for I ′. Since S contains only
vertices of V and contains neither u nor v, G′−S contains all vertices of the D-gadget
of the vertex u, the D-gadget of the vertex v, and the J-gadget of the edge {u, v}.
Recall that identifying vertex c of J with vertex c of D yields a graph isomorphic
to H. Hence, G′ − S contains an induced subgraph isomorphic to H, since either u
or v are identified with the vertex c of the J-gadget of the edge {u, v} and each of the
vertices u and v is identified with the vertex c of its respective D-gadget. Since Π is
hereditary, this implies that G′ − S does not satisfy property Π. Hence, S is not a
solution for I ′.

Consequently, f is a solution-mapper.

Correctness. It remains to show that if S is a 3-optimal solution for I ′, then f(S)
is a 3-optimal vertex cover for I. To this end, we show two additional statements.
First, we show that each 3-optimal solution for I ′ contains only vertices of V . Second,
we show that each vertex cover for I is a solution for I ′.

Lemma 7.16. Let S be a 3-optimal solution for I ′. Then, S contains no vertex
of V ′ \ V .

Proof. Let S be a solution for I ′. We show that S is not 3-optimal for I ′ if S contains
a vertex of V ′ \ V . Let w be a vertex of V ′ \ V contained in S. By construction,
each vertex of V ′ \ V is contained either in the D-gadget of some vertex v ∈ V
or in the J-gadget of some edge {u, v} ∈ E. If w is contained in the D-gadget of
some vertex v ∈ V , let u be an arbitrary vertex of V . Let S ′ := (S \ {w}) ∪ {u, v}.
We show that W := S · S ′ is a valid and improving 3-swap for S for I ′. By
definition of S ′, W is a 3-swap. Moreover, W is an improving 3-swap for S in I ′

since É′(w) = Z > É(u) + É(v) = É′(u) + É′(v). It remains to show that S ′ is
a solution for I ′. To this end, first note that S ′′ := S ∪ {u, v} = S ′ ∪ {w} is a
solution for I ′ since Π is a hereditary graph property. Since S ′′ is a solution for I ′,
each connected component of G′ − S ′′ fulfills Π. Let C be the connected component
of G′ − S ′ that contains w. Since S ′′ = S ′ ∪ {w}, each other connected component
of G′ − S ′ is a connected component of G′ − S ′′ and thus fulfills Π. By the fact

208

7.3. Hardness of Finding 3-Optimal Solutions for Subgraph Deletion Problems

that each minimal forbidden induced subgraph of Π is connected, it remains to show
that G′[C] fulfills Π. Since Π is nontrivial, G′[C] fulfills Π if w is the unique vertex
of C. Hence, in the following, we assume that C has size at least 2. To show
that G′[C] fulfills Π, we show that ³(G′[C]) is lexicographically smaller than ³(H)
which implies that G′[C] fulfills Π by definition of H. We distinguish two cases. In
both cases, we show that G′[C] is isomorphic to a proper induced subgraph of H.

Case 1: w is contained in the D-gadget of the vertex v. Since v is contained in S ′

and each other vertex of the D-gadget of v has only neighbors within this gadget
in G′, C contains only vertices of the D-gadget of the vertex v. Since S ′ contains v,
G′[C] is isomorphic to a proper induced subgraph of H.

Case 2: w is contained in the J-gadget of the edge {u, v}. Since u and v are
contained in S ′ and each other vertex of the J-gadget of {u, v} has only neighbors
within this gadget in G′, C contains only vertices of the J-gadget of the vertex {u, v}.
Since S ′ contains both u and v, G′[C] is isomorphic to a proper induced subgraph
of H.

In both cases, G′[C] is isomorphic to a proper induced subgraph of H. By choice
of H, this implies that G′[C] fulfills Π and thus S ′ is a solution for I ′.

Note that Lemma 7.15 and Lemma 7.16 imply that each 3-optimal solution S
for I ′ is a vertex cover for I and contains only vertices of V .

Next, we show that each vertex cover for I is a solution for I ′. Since we followed
the construction of Lewis and Yannakakis [115], the statement follows. For the sake
of completeness, we provide a proof.

Lemma 7.17. Let S ¦ V . If S is a vertex cover for I, then S is a solution for I ′.

Proof. Let S be a vertex cover for I. We show that G′ − S fulfills Π. Since each
minimal forbidden induced subgraph of Π is connected, we only have to show that
each connected component of G′ − S fulfills Π. Recall that each vertex of V ′ \ V
is either a) contained in a D-gadget of some vertex v ∈ V and has only neighbors
within this D-gadget or b) contained in a J-gadget of some edge {u, v} ∈ E and has
only neighbors within this J-gadget. Moreover, in G′, each vertex v ∈ V has only
neighbors within the D-gadget of v and neighbors within the J-gadget of {u, v} for
each neighbor u of v in G.

Hence, there are three types of connected components of G′ − S. If a connected
component C of G′ − S contains no vertex of V , then G′[C] is either i) a proper
and induced subgraph of the D-gadget of some vertex v ∈ S or ii) a proper induced
subgraph of the J-gadget of some edge {u, v} ∈ E. Otherwise, iii) C contains a
vertex v ∈ V \ S. For the first two types, G′[C] is a proper and induced subgraph

209

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

of H. Since each graph with a lexicographically smaller ³-sequence than H fulfills Π,
Lemma 7.14 implies that G′[C] fulfills Π.

Hence, to show that G′−S fulfills Π, it remains to show that the induced subgraph
of G′ of each connected component of G′−S of the third type fulfill Π. To this end,
we further analyze the structure of such connected components. Let C be a such a
connected component of G′ − S and let v be a vertex of V contained in C. If C has
size one, then G′[C] fulfills Π, since Π is nontrivial. Hence, in the following, assume
that C has size at least 2. Since S is a vertex cover for I, v has in G′ only neighbors
in the D-gadget of v and in the J-gadget of the edge {u, v} for each neighbor u of v
in G, v is the unique vertex of C ∩ V . More precisely, since for each neighbor u of v
in G, u is contained in S, G′[C] contains a proper induced subgraph of the J-gadget
of the edge {u, v}. Moreover, C contains all vertices of the D-gadget of the vertex v.
All these subgraphs share vertex v. We show that ³(G′[C]) z ³(H). By choice of H
this then implies that G′[C] fulfills Π.

To this end, we show that comp(G′[C]−v) z ³(H). Since C contains all vertices
of the D-gadget of the vertex v, each connected component of Dv − v is a connected
component in G′[C]− v, where Dv denotes the D-gadget of the vertex v. Moreover,
each other connected component of G′[C]−v is an induced subgraph of J{u,v}−{u, v},
where J{u,v} denotes the J-gadget of the edge {u, v} for some neighbor u of v in G.
Recall that the number of vertices in J minus 1 is equal to the largest value x of ³(H).
Hence, each connected component of G′[C] − v besides the connected components
of Dv − v contains less than x vertices. Moreover, recall that c denotes a vertex
of H with ³(H) = comp(H − c) such that the connected components of H − c are
the connected components of D − c plus the connected components of J − c. Let ℓ
denote the number of connected components of H− c of size exactly x. Since Dv− v
has exactly ℓ− 1 connected components of size at most x, comp(G′[C]− v) contains
strictly less entries of value x than ³(H). Since each ³-sequence is in nonincreasing
order, ³(G′[C]) ¯ comp(G′[C] − v) z ³(H) and thus by definition of H, G′[C]
fulfills Π.

Hence, each connected component of G′ − S fulfills Π which implies that G′ − S
fulfills Π and that S is a solution for I ′.

With these statements, we are now able to show that f preserves local optimality.

Lemma 7.18. The solution-mapper f preserves local optimality.

Proof. We show the statement by contraposition. That is, for each solution S for I ′

for which f(S) is not a 3-optimal vertex cover for I, we show that S is not a 3-optimal
solution for I ′. Let S be a solution for I ′ for which f(S) is not a 3-optimal vertex

210

7.4. Hardness of Finding 3-Optimal Dominating Sets

cover for I. If S contains a vertex of V ′ \V , then S is not a 3-optimal solution for I ′

due to Lemma 7.16. Hence, in the following, assume that S contains only vertices
of V . Since S is a solution for I ′, Lemma 7.15 implies that S is a vertex cover for I
and that f(S) = S. Since we assume that f(S) is not a 3-optimal vertex cover for I,
there is an improving 3-swap W for S for I. Let S ′ := S ·W . Since S ′ is a vertex
cover for I, Lemma 7.17 implies that S ′ is a solution for I ′. Moreover, since for each
vertex v ∈ V , É(v) = É′(v) and both S and S ′ contain only vertices of V , S ′ is a
better solution than S for I ′. Consequently, S is not a 3-optimal solution for I ′.
Concluding, for each 3-optimal solution S for I ′, f(S) is a 3-optimal vertex cover
for I.

Hence, for each nontrivial hereditary graph property Π where each minimal
forbidden induced subgraph is connected, Weighted Π Subgraph/3-swap and
Weighted Deletion to Π/3-swap are PLS-hard even on graphs of constant max-
imum degree. This completes the proof of Theorem 7.13.

7.4 Hardness of Finding 3-Optimal Dominating

Sets

In this section, we consider Weighted Dominating Set.

Weighted Dominating Set
Input: A graph G = (V,E) and a vertex-weight function É : V → N.
Output: A dominating set in G of minimum total weight.

Note that Weighted Dominating Set is a subset-weight minimization prob-
lem. In the following, we derive PLS-hardness for Weighted Dominating Set/3-
swap by presenting a PLS-reduction from Weighted Vertex Cover/3-swap.
Note that there is no graph property Π such that Weighted Dominating Set
is equal to Weighted Deletion to Π. Hence, the result does not follow from
Theorem 7.13.

We show that the classic Karp-reduction [97] from Vertex Cover to Domi-
nating Set also gives a PLS-reduction from Weighted Vertex Cover/k-swap
to Weighted Dominating Set/k-swap for k g 3.

Theorem 7.19. Let k g 3. There is a PLS-reduction from Weighted Vertex
Cover/k-swap to Weighted Dominating Set/k-swap where the maximum de-
gree of the output graph is at most two times the maximum degree of the input graph.

211

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

Proof. Let I = (G = (V,E), É : V → N) be an instance of Weighted Vertex
Cover/k-swap. We describe how to obtain an instance I ′ = (G′ = (V ′, E ′), É′ : V ′ →
N) of Weighted Dominating Set/k-swap and a solution-mapper f from I ′ to I
that preserves local optimality and can be computed in polynomial time. We can
assume that each vertex of V is incident with at least one edge in G.

Initially, we set G′ to be a copy of G. Afterwards, we add for each edge {u, v} ∈ E
a new vertex x{u,v} and make {u, v, x{u,v}} a clique in G′. Let Z := 1 +

∑
v∈V É(v).

We set É′(v) := É(v) if v is a vertex of V and É′(v) := Z otherwise. Finally,
the solution-mapper f is defined as f(S) := (S ∩ V) ∪ {u, v | x{u,v} ∈ S}. Note
that for each dominating set S for G′, f(S) is in fact a vertex cover in G since for
each edge {u, v} of E, S contains at least one vertex of {u, v, x{u,v}} which implies
that f(S) contains at least one endpoint of the edge {u, v}.

Next, we show that if for a dominating set S in G′, f(S) is not a k-optimal vertex
cover for G, then S is not a k-optimal dominating set in G′.

To this end, we first show that a dominating set S in G′ is not k-optimal if S
contains any vertex of V ′ \ V . Let {u, v} be an edge of E and let x{u,v} be a vertex
of S. Since x{u,v} is only adjacent to u and v in G′ and all three vertices form a clique
in G′, S ′ := (S \ {x{u,v}}) ∪ {u, v} is a dominating set in G′ and is improving by the
fact that É′(x{u,v}) = Z > É′(u) + É′(v). Hence, we assume in the following, that S
is a subset of V . Moreover, since x{u,v} is only adjacent to u and v, each dominating
set S ¦ V contains at least one endpoint of the edge {u, v}. Consequently, each
dominating set S ¦ V in G′ is a vertex cover of G. On the other hand, a vertex
cover S of G is a dominating set in G′ since for each vertex v of G′, there is some
edge {u, w} ∈ E such that {u, w} ¦ NG′ [v]. We conclude, a vertex set S ¦ V is
a dominating set in G′ if and only if S is a vertex cover of G. Hence, if there is
an improving k-swap W for f(S) in G, then W is an improving k-swap for S in G′

since É′(v) := É(v) for each v ∈ V .

Due to Theorem 7.19 and Theorem 7.1, imply PLS-hardness for Weighted
Dominating Set/7-swap, and Theorem 7.19 and Theorem 7.6 imply PLS-hardness
for Weighted Dominating Set/3-swap.

Corollary 7.20. Weighted Dominating Set/7-swap is PLS-complete on graphs
of maximum degree at most 12 and Weighted Dominating Set/3-swap is PLS-
complete on graphs of constant maximum degree.

212

7.5. Finding Locally Optimal Solutions for some Restricted 3-Swaps

7.5 Finding Locally Optimal Solutions for some

Restricted 3-Swaps

We now show that we can find locally optimal solutions in polynomial time for many
subset-weight optimization problems if we restrict the allowed 3-swaps as follows:
we either only allow swaps that add at most one vertex to the current solution or
we allow only swaps that remove at most one vertex from the solution. These are
exactly the (1, 2)-swaps and (2, 1)-swaps.

Recall that a (kin, kout)-swapW for a set S fulfills |W \S| f kin and |W∩S| f kout.
That is, a (k, 1)-swap may add up to k elements to the solution and removes at most
one element from the solution.

Further, recall that a subset-weight optimization problem L consists of func-
tions U , f , and É, where for each instance I of L, U(I) is the universe of I, f(I, S)
checks if S is a solution for I, and É(I, u) assigns a weight to each u ∈ U(I). More-
over, the functions U , f , and É are polynomial-time computable.

7.5.1 Algorithms for Subset-Weight Optimization Problems
with Provided Initial Solution

We start by bounding the length of any longest sequence of solutions that are consecu-
tively improving (k, 1)-neighbors for a given instance of a subset-weight maximization
problem.

Theorem 7.21. Let L be a subset-weight maximization problem, let I be an instance
of L, and let k ∈ N. Moreover, let (S0, S1, . . . , Sx) be a sequence of consecutive
improving (k, 1)-neighbors in I that are all solutions for I. Then, x ∈ O(n3), where n
denotes the size of the universe U(I) of I.

In other words, by starting with any solution for I, one can find a (k, 1)-optimal
solution in I in a polynomial number of improving steps by applying a simple hill-
climbing algorithm, that is, by replacing the current solution by an improving (k, 1)-
neighbor in I until reaching a locally optimal solution.

Proof of Theorem 7.21. We first show that for each ℓ ∈ [1, x], |Sℓ| is never smaller
than |Sℓ−1|. Let ℓ ∈ [1, x]. Assume towards a contradiction that |Sℓ| < |Sℓ−1|.
Then, there is some u ∈ Sℓ−1 such that Sℓ = Sℓ−1 \ {u} since Sℓ is a (k, 1)-neighbor
of Sℓ−1 in I. Since the weight of Sℓ is defined as the sum of weights of the elements
of Sℓ and each element u ∈ U(I) has a positive weight É(I, u), the total weight
of Sℓ is not larger than the total weight of Sℓ−1, a contradiction. As a consequence,

213

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

there are at most y f n distinct indices ℓ1, . . . , ℓy such that |Sℓi | is strictly larger
than |Sℓi−1|. To prove that x ∈ O(n3), we now show that for each ℓ ∈ [1, x − n2],
there is some z ∈ [ℓ, ℓ + n2] where |Sz| is larger than |Sℓ−1|. In other words, after
at most n2 improving swaps that do not increase the size of the solution, the next
improving swap increases the size of the solution.

Let ℓ ∈ [1, x − n2], let Ã = (u1, . . . , un) be a fixed nondecreasing order of the
elements of U(I) by weight, and let for each j ∈ [ℓ, ℓ + n2], qj :=

∑
ui∈Sj

i denote
the sum of the indices of Sj in Ã. Note that if Sj and Sj−1 have the same size, then
Sj · Sj−1 is an improving (1, 1)-swap for Sj−1. That is, Sj = (Sj−1 ∪ {u2}) \ {u1}
for two elements u1 ∈ U(I) and u2 ∈ U(I) where the weight of u2 is larger than the
weight of u1. Hence, qj is larger than qj−1 if Sj and Sj−1 have the same size. Since qj
can never exceed n2, there is some z ∈ [ℓ, ℓ + n2] where the size of Sz is larger than
the size of Sℓ−1. We conclude that x ∈ O(n3).

We call a subset-weight optimization problem L initializable, if for each instance I
of L, one can compute some feasible solution for I with respect to L in polynomial
time. Note that by definition of PLS, for any neighborhood structure N , L/N can
only be contained in PLS if L is initializable. Using Theorem 7.21, we can show
that we can find for each initializable subset-weight maximization problem and each
constant value k a (k, 1)-optimal solution in polynomial time. We then use this fact
to show a polynomial-time algorithm for minimization problems with the (1, k)-swap
neighborhood.

Theorem 7.22. Let I be an instance of an initializable subset-weight optimization
problem L, and let k g 0 be a constant.

• If L is a maximization problem, then one can compute in polynomial time
a (k, 1)-optimal solution for I.

• If L is a minimization problem, then one can compute in polynomial time
a (1, k)-optimal solution for I.

Proof. We first show the statement for the case that L is a maximization problem.
Recall that L consists of the polynomial-time computable functions U , f , and É.

Note that we can compute some feasible solution S0 of L in polynomial time
since L is initializable. Now, let n := |U(I)| and observe that n is bounded by a poly-
nomial in |I| since U(I) can be computed in polynomial time. Since f and É can be
computed in polynomial time, we can check for a given solution S in nO(k)·|I|O(1) time
if there is an improving (k+1)-swapW such thatW is a (k, 1)-swap for S by consid-
ering all subsets of size at most k+1 of U(I). Note that this is a polynomial running

214

7.5. Finding Locally Optimal Solutions for some Restricted 3-Swaps

time since k is a constant. Hence, we can determine whether a solution S is (k, 1)-
optimal and, if this is not the case, replace S by an improving (k, 1)-neighbor, both
in polynomial time. Let Sx be an arbitrary (k, 1)-optimal solution in I which can
be found this way. Moreover, let (S0, S1, . . . , Sx) be the sequence of consecutive im-
proving (k, 1)-neighbors in I starting from S0 that lead to Sx. Due to Theorem 7.21,
x ∈ O(n3), which implies that we can compute a (k, 1)-optimal solution for I in
polynomial time.

The statement for minimization problems with (1, k)-swaps now follows from
Observation 2.15.

Since for maximization problems there is no improving swap that only removes
elements from the solution and for minimization problems there is no improving swap
that only adds elements to the solution, Theorem 7.22 implies the following.

Corollary 7.23. Let L be an initializable subset-weight optimization problem. Then,
for each instance I of L, one can compute a 2-optimal solution for I in polynomial
time.

All specific problems that we considered so far are subset-weight optimization
problems; the following summarizes the consequences of Theorem 7.22 for these
problems.

Corollary 7.24. Let k be a constant. One can compute in polynomial time a (k, 1)-
optimal solution for Weighted Independent Set and Weighted Π Subgraph
with polynomial-time decidable Π and one can compute in polynomial time a (1, k)-
optimal solution for Weighted Vertex Cover, Weighted Dominating Set,
and Weighted Deletion to Π with polynomial-time decidable Π .

7.5.2 A General Greedy Algorithm for Hereditary Subset-
Weight Optimization Problems

So far, we considered the (k, 1)-swap neighborhood for maximization problems and
the (1, k)-swap neighborhood for minimization problems. We now swap the com-
binations of neighborhoods and optimization goals, that is, we consider the (1, k)-
swap neighborhood for maximization problems and the (k, 1)-swap neighborhoods
for minimization problems. To simplify the discussion, let us consider maximization
problems for now.

The crux behind the proof for the (k, 1)-swap neighborhood was that one could
bound the number of improving steps because for maximization (0, 1)-swaps are never
improving and all other (k, 1)-swaps do not decrease the size of the solution. With

215

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

the (1, k)-swap neighborhood we do not have such a monotone behavior: Removing
two vertices and adding one with a larger weight may increase the weight and si-
multaneously decrease the size of the solution. Afterwards, it could be possible that
one performs (1, 0)-swaps that increase the size of the solution. Thus, the size of the
solution may oscillate with the (1, k)-swap neighborhood.

A consequence of this is that we could not show an algorithm for all subset-weight
maximization problems. Instead, we show an algorithm for hereditary subset-weight
optimization problems, a natural restriction of subset-weight optimization problems
that covers all specific problems considered in this chapter. We show that a sim-
ple greedy algorithm can find locally optimal solutions for hereditary maximization
problems with (1, k)-swap neighborhood and for hereditary minimization problems
with (k, 1)-swap neighborhood.

Definition 7.25. A subset-weight optimization problem L is hereditary

• if L is a maximization problem and for each instance I of L and each solution S
for I, each set S ′ ¦ U(I) with S ′ ¦ S is a solution for I or

• if L is a minimization problem and for each instance I of L and each solution S
for I, each set S ′ ¦ U(I) with S ¦ S ′ is a solution for I.

As mentioned above, all the specific problems considered in this chapter are
hereditary subset-weight optimization problems:

• Weighted Independent Set,

• Weighted Vertex Cover,

• Weighted Dominating Set, and

• Weighted Deletion toΠ andWeightedΠ Subgraph for each hereditary
graph property Π for which one can check in polynomial time whether a given
graph fulfills Π.

Theorem 7.26. Let L be a hereditary subset-weight optimization problem and let I
be an instance of L for which there is at least one feasible solution.

• If L is a maximization problem, then one can compute in polynomial time a
solution S for I which is (1, k)-optimal for every k ∈ N.

• If L is a minimization problem, then one can compute in polynomial time a
solution S for I which is (k, 1)-optimal for every k ∈ N.

216

7.5. Finding Locally Optimal Solutions for some Restricted 3-Swaps

Algorithm 1 Greedy algorithm for a hereditary subset-weight minimization prob-
lem L

1: Input Instance I of L with functions U , f , and É

2: Output a (k, 1)-optimal solution for I for each k ∈ N

3: Ã ← order of the elements of U(I) sorted non-increasingly by their weight
4: S ← U(I)
5: for all v ∈ Ã do
6: if S \ {v} is a solution for I then
7: S ← S \ {v}

return S

Note that in contrast to Theorem 7.22, this includes even non-constant values
of k.

Proof of Theorem 7.26. We first consider the case where L is a minimization prob-
lem. Recall that L consists of the polynomial-time computable functions U , f , and É.
Let I be an instance of L. Since L is hereditary and there is at least one solution
for I, U(I) is a solution for I. The algorithm works as follows: First, order the
elements of U(I) non-increasingly by their weight and initialize S := U(I). Next,
iterate over the computed order Ã. Let u be the currently considered element in the
order Ã. If S \ {u} is a solution for I, replace S by S \ {u}. After the algorithm iter-
ated over the whole order Ã, return the set S. Note that S is a solution for I since S
was initialized as U(I) and we only removed elements from S if the resulting set was
still a solution for I. The pseudocode of the algorithm is given in Algorithm 1.

Next, we show that S is in fact (k, 1)-optimal for every k ∈ N. Assume towards a
contradiction that this is not the case. Let k be the smallest integer such that there
is an improving (k, 1)-neighbor S ′ of S. Since S ′ is improving, S \ S ′ is nonempty.
Moreover, since S ′ is an improving (k, 1)-neighbor of S, S \ S ′ consists of a single
element sout. Let Sin := S ′ \ S. Since S ′ is improving,

∑
u∈Sin É(I, u) < É(I, sout).

Consequently, since É(I, u) > 0 for each element u of U(I), É(I, u) < É(I, sout) for
each element u of Sin. Hence, while iterating over the ordering Ã, the element sout

was considered before any element of Sin was considered. Let S̃ be the solution for I
when element sout was considered during the iteration over the ordering Ã. Since sout

is contained in S, sout was not removed from S̃. Thus, S̃\{sout} is not a solution for I.

Since S̃ and S ′ agree on all elements that were considered before sout and S̃ \ {sout}
contains all elements that are considered after sout, S̃ \ {sout} is a superset of S ′.
Because L is hereditary, this implies that S ′ is not a solution for I, a contradiction.

It remains to show that the algorithm runs in polynomial time. Since U(I) can

217

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

Algorithm 2 Greedy algorithm for a hereditary subset-weight maximization prob-
lem L

1: Input Instance I of L with functions U , f , and É

2: Output a (1, k)-optimal solution for I for each k ∈ N

3: Ã ← order of the elements of U(I) sorted non-increasingly by their weight
4: S ← ∅
5: for all v ∈ Ã do
6: if S ∪ {v} is a solution for I then
7: S ← S ∪ {v}

return S

be computed in polynomial time, U(I) has polynomial size. Hence, the order Ã can
be computed in polynomial time. Finally, while iterating over the order Ã, checking
whether S\{u} is a solution for I can be done in polynomial time, since the function f
can be computed in polynomial time. Since this is done exactly once for each element
of Ã, the whole algorithm runs in polynomial time.

For maximization problems, we may derive the statement by reducing to the dual
minimization problem (which is also hereditary) using Observation 2.15. Alterna-
tively, one may use Algorithm 2 whose correctness proof is a direct adaptation of the
proof for Algorithm 1 and thus omitted.

In the remainder of this section, we show that for Weighted Independent
Set and Weighted Dominating Set Algorithm 2 and Algorithm 1 we can adapt
the respective algorithms so that they have running time O(n · log(n) +m).

First, we show the statement for Weighted Independent Set.

Corollary 7.27. One can compute in O(n · log(n) + m) time an independent set
which is (1, k)-optimal for every k ∈ N.

Proof. Let I = (G = (V,E), É) be an instance of Weighted Independent Set.
Following Algorithm 2, we have to perform two things in the stated running time:

• sort the vertices of V non-increasingly by their weight,

• while iterating over the order Ã, for each vertex v ∈ S, check whether S ∪ {v}
is an independent set in G.

The first step can be performed in O(n · log(n)) time. Moreover, the second step can
be performed in O(|N(v)|) time for each vertex v ∈ V which gives a total running
time of O(n +m). Hence, for Weighted Independent Set, Algorithm 2 can be
performed in O(n · log(n) +m) time.

218

7.5. Finding Locally Optimal Solutions for some Restricted 3-Swaps

Second, we show the statement for Weighted Dominating Set.

Corollary 7.28. One can compute in O(n · log(n)+m) time a dominating set which
is (k, 1)-optimal for every k ∈ N.

Proof. Let I = (G = (V,E), É) be an instance of Weighted Dominating Set.
Following Algorithm 1, we have to perform two things in the stated running time:

• sort the vertices of V non-increasingly by their weight,

• while iterating over the order Ã, for each vertex v ∈ S, check wether S \ {v} is
still a dominating set for G.

The first step can be performed in O(n · log(n)) time. In the following, we show that
the second step can performed in O(|N(v)|) time for each vertex v ∈ V , by using an
additional variable dv that stores the number of times vertex v is dominated in the
current solution.

Recall that the initial dominating set of the algorithm contains all vertices. Hence,
for each vertex v ∈ V , we initialize the variable dv := |N(v)|+1. This can be done in
total time O(n+m). Whenever we remove a vertex v from the current solution, we
decrement du for each vertex u ∈ N [v]. Hence, whenever we consider a dominating
set S during the iteration over the order Ã, for each vertex v ∈ V , dv stores the
number of times vertex v is dominated by vertices of S in G. Note that for each
vertex v ∈ V , the update of the variables du for all vertices u ∈ N [v] can be done in
O(|N(v)|) time.

We can now determine wether S \{v} is a dominating set in G in time O(|N(v)|)
for each vertex v ∈ V , where S is the current solution when considering vertex v.
Since S is a dominating set in G, this can be done by checking wether du > 1 for
each vertex u ∈ N [v].

Hence, for Weighted Dominating Set, Algorithm 1 can be performed in
O(n · log(n) +m) time.

In summary, the results of this section now relate to our previous hardness results
as follows: If we allow only (1, 2)-swaps or only (2, 1)-swaps, then we can find locally
optimal solutions for Weighted Independent Set, Weighted Π Subgraph,
Weighted Deletion to Π, and Weighted Dominating Set in polynomial
time. In contrast, if we simultaneously allow (1, 2)-swaps and (2, 1)-swaps, then we
allow all 3-swaps and both problems are PLS-complete even on graphs of constant
maximum degree.

219

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

7.6 Concluding Remarks

We have shown that a large number of natural weighted subset-weight optimization
problems, including Weighted Independent Set and Weighted Dominating
Set, are PLS-hard already for the 3-swap neighborhood. Moreover, we showed
that locally optimal solutions for these problems can be found in polynomial time
if (i) each swap can add at most one vertex to the solution or (ii) each swap can
remove at most one vertex from the solution.

Open questions. From a theoretical point of view, one open topic is to de-
termine the precise degree bounds that separate the polynomial-time solvable and
PLS-complete cases for Weighted Independent Set and Weighted Dominat-
ing Set for k-swaps with small constant k-values. In particular, there seems to be
a lot of room for improvement on the degree bound for Weighted Independent
Set/3-swap, since the maximum degree of the constructed instance in our PLS-
reduction is 3140. It seems unlikely that the reduction we presented can be modified
to show PLS-hardness for graphs with much smaller maximum degree since to ensure
the correctness of reduction, large cliques are required in the constructed instance.
Hence, to significantly improve on the degree bound for Weighted Independent
Set/3-swap, a different reduction idea might be necessary. Moreover, we left open
some subsets of 3-swap neighborhoods. For example, the complexity of Weighted
Independent Set is open when all 3-swaps are allowed except all swaps of size ex-
actly 2. If there is an algorithm that finds locally optimal solutions for such restricted
swaps in polynomial time, this algorithm has to use significantly different techniques
than the ones we presented in Section 7.5. Also, the complexity of many subset-
weight optimization problems with respect to k-swap neighborhoods remains open.
A prominent example that is not covered by our hardness results is Longest Path,
where the goal is to find a path of maximum total weight. Note that Longest Path
is a subset-weight optimization problem, where the universe consists of all edges of
the input graph.

A further more general direction for subset-weight optimization problems would
be to study the influence of the distribution of the weights on the complexity of the
local search problems. For example, if the universe has size n and the number of
elements whose weight exceeds n is constant, then a standard hill-climbing algorithm
finds a locally optimal solution after nO(1) improvement steps. Can we improve
substantially on this observation?

Moreover, it would be interesting to further analyze the complexity of finding
locally optimal solutions for local search problems with scalable k-neighborhoods for

220

7.6. Concluding Remarks

small constant values of k. For example, one could consider Weighted Clus-
ter Deletion or Weighted Cluster Editing with respect to the k-move
neighborhood described in Chapter 5. In particular, it might be worth analyzing
whether Weighted Cluster Deletion is PLS-hard with respect to the 1-move
neighborhood, since this neighborhood describes the most simple change between
any two solutions to the problem.

From a practical point of view, our hardness results are informative in the sense
that efficient heuristics which employ the practically relevant swap neighborhoods
must address the problem of potentially long sequences of improving swaps, which
seems to be unavoidable when the aim is to find locally optimal solutions. One way
to counter this is to restrict the neighborhoods further, like for example considering
only (1, 2)-swaps or (2, 1)-swaps instead of all possible 3-swaps. Another option could
be to use gap-variants of local search that we introduced in Chapter 3. Recall that
in such a gap-version, we are not looking for any improving solution but only for
those that improve the objective value by at least some threshold d. Clearly, the
thresholds may be set sufficiently high so that any series of improvements must be
bounded by a polynomial in the input size. However, setting the threshold too high
may lead to a deterioration of solution quality. For practical purposes, it will thus be
interesting to study the impact of the thresholds on the running time and solution
quality. From a theoretical point of view, the introduction of improvement thresholds
defines a new type of neighborhoods and it would be interesting to study for which
thresholds these neighborhoods are tractable and for which they lead to PLS-hard
local search problems.

221

Chapter 7. Finding k-Swap-Optimal Solutions for Subset Optimization Problems

222

Chapter 8

Conclusion

In this work, we considered the complexity of two main aspects of hill-climbing local
search algorithms for several important optimization problems with respect to their
arguably most natural scalable local neighborhoods. The questions we considered
were Question 1: “How fast can we determine whether a given solution is locally
optimal, and provide a better solution in the local neighborhood, if this is not the
case?” and Question 2: “How fast can we find a locally optimal solution for a
given problem instance?” In the following we provide a high-level description of our
findings and propose some general open questions for future research.

8.1 “How Fast Can We Decide Whether a Given

Solution is Locally Optimal?”

We considered Question 1 for local search versions of the optimization problem:
Weighted Vertex Cover, Weighted Independent Set, Max c-Cut, Clus-
ter Deletion, Cluster Editing, and Maximum Parsimony. On the positive
side, we were able to present algorithms for each problem with a running time of
the form ℓO(k) · |I|O(1) time for structural parameters ℓ f |I|. As we propose, for
algorithms that search for a better solution in the scalable local neighborhood, such
FPT running times are desirable over general FPT running times (f(k+ℓ)·nO(1) time
for an arbitrary computable function f), since the search radius k can be assumed
to be a small constant set by a user. On the negative side, we showed that for
all considered problems the corresponding local search problem, with respect to the

223

Chapter 8. Conclusion

most popular scalable local neighborhoods, is W[1]-hard when parameterized by k1

and cannot be solved in f(k) · |I|o(k) time for any computable function f , unless
the Exponential Time Hypothesis fails. An exception is the less popular scalable
neighborhood for Maximum Parsimony based on sECR-operations, for which we
provided an FPT-algorithm with respect to the search radius k (see Theorem 6.23).

Outlook. From both a practical and a theoretical point of view, there are
several interesting potential future directions. As we showed for LS Max c-Cut
in Chapter 4, and as was shown for Weighted Vertex Cover by Ullmann [164],
hill-climbing algorithms based on scalable neighborhoods perform nicely as post-
processing for state-of-the-art heuristics for the considered problems. In future work,
it would be interesting to further analyze the usefulness of such hill-climbing algo-
rithms as post-processing for other important optimization problems. For example,
one might revisit k-Flip Max Sat, which was first analyzed by Szeider [161]. As
we discussed in Section 2.8, the results of Szeider [161] together with Theorem 2.18
imply that k-Flip Max Sat can be solved in (pq)O(k) · |I|O(1) time, where q denotes
the size of a largest clause and p denotes the maximal number of occurrences of any
variable. Note that the super-polynomial factor of the running time grows strongly
only with the search radius k. Hence, for instances where both p and q are small, one
might be able to solve k-Flip Max Sat for moderate values of k efficiently. This
motivates to experimentally evaluate the performance of a hill-climbing algorithm
based on this scalable neighborhood as post-processing for state-of-the-art heuristics
for Max Sat. Additionally, one might consider other parameters ℓ for which one
tries to find algorithms that solve k-Flip Max Sat in ℓO(k) · nO(1) time. For exam-
ple, one might look into parameters that measure how “difficult” finding an optimal
solution for the Max Sat instance is. An example for such a measurement is the
size of a minimal backdoor set [134, 175]. Roughly speaking, a backdoor set is a
subset X of the variables of the input formula F , such that for each assignment Ä
of X, the restriction of F to Ä belongs to some base class of formulas for which an
optimal solution can be found in polynomial time.

Generally, it would also be interesting to evaluate the performance of stand-alone
hill-climbing algorithms based on scalable neighborhoods. To do so, it might be
beneficial to include aspects of iterated local search (ILS) in such algorithms. In
particular, one might apply some random perturbation to the current solution, if
searching the current local neighborhood seems to be to inefficient. Such a random
perturbation during the hill-climbing algorithms is a perturbation step. For example,

1For Weighted Vertex Cover and Weighted Independent Set, these W[1]-hardness
results were already known [52].

224

8.1. “How Fast Can We Decide Whether a Given Solution is Locally Optimal?”

ILS-based heuristics for Max c-Cut usually use a probability for their perturbation
step which is 1 if k is at least 3 [120,178]. In other words, these ILS-based heuristics
for Max c-Cut may perform some perturbation step while searching for 2-optimal
solutions, but are guaranteed to perform some perturbation step, if the found solution
is 2-optimal. As we showed experimentally, even k-optimal solutions for k f 6 can
be found efficiently. One might thus consider ILS approaches that allow k to grow
arbitrarily large while letting the probability for a perturbation step increase, the
larger k gets. For example, whenever the search radius k is incremented, with a
probability of 1 − 1

2k
, one might perform a perturbation step and reset k to 1. It

would be interesting to combine our algorithm for LS Max c-Cut with such an ILS
approach in the future and evaluate its performance in comparison to other heuristic
approaches for Max c-Cut. Surely, this approach is not limited to LS Max c-Cut
and might also be considered for other implementations of parameterized local search
algorithms, such as Weighted Vertex Cover and Cluster Editing.

From a theoretical point of view, one might consider searching for a better so-
lution in the k-neighborhood from the perspective of kernelization. Kernelization is
a general concept from parameterized complexity theory that is closely related to
FPT-algorithms [35, 44]. Roughly speaking, kernelization is the reduction of the in-
put instance (in our case, the local search problem) into an an equivalent instance for
which the whole size is bounded by some function of the parameter. This is mostly
achieved by data reduction rules that remove easy parts from the instance, so that
only the hard kernel remains. Formally, we say that a decision problem L admits a
kernel for some parameter ℓ, if there is a polynomial-time algorithm A that trans-
forms each instance I of L into an equivalent instance I ′ of L of size at most f(ℓ).
Such an algorithm A is called a kernelization algorithm and f(ℓ) is referred to as
the size of the kernel I ′. If f(ℓ) ∈ ℓO(1), we say that I ′ is a polynomial kernel. It
is known that a decidable problem L is in FPT with respect to some parameter ℓ
if and only if L admits a kernel for ℓ [35, 44]. Since a kernel of small size can be
solved efficiently, a clear future goal is to analyze whether the considered local search
problems of Chapters 3 to 6 admit polynomial kernels when parameterized by the
parameter combinations for which we presented FPT-algorithms. Similar to the dif-
ficulty difference between strict and permissive local search for the considered local
search problems, finding polynomial kernel for the strict version of parameterized
local search problems might be impossible, even though any better solution can be
found efficiently. Hence, we propose to introduce and analyze a relaxed version of
kernelization for local search problems: permissive kernelization. One way to model
permissive kernelization could be to allow the algorithm to (i) output a classical ker-
nel or (ii) output any better solution. In future research it might be interesting to

225

Chapter 8. Conclusion

analyze for which local search problems and which parameters permissive polynomial
kernels are possible whereas classical polynomial kernels are not. From a practical
point of view it would also be interesting to analyze the impact of (permissive) ker-
nelization on the derived hill-climbing algorithms.

8.2 “How Fast Can We Find a Locally Optimal

Solution?”

Regarding Question 2, we considered a large class of subset-weight optimization
problems with respect to the k-swap neighborhood for k ∈ {2, 3}. One of these
considered problems was Weighted Independent Set, for which we showed that
finding a locally optimal solution is PLS-hard with respect to the 3-swap neighbor-
hood even on graphs of constant maximum degree. This hardness result was then
lifted to a large class of subset-weight optimization problems. From the positive side,
we presented generic algorithms for many subset-weight optimization problems that
find locally optimal solution in polynomial time when considering only the 2-swap
neighborhood. Recall that for the problem considered in Chapter 4, namely Max
Cut, finding a locally optimal solution was already shown to be PLS-complete with
respect to the 1-flip neighborhood [47].

Outlook. A potential research direction for the future might be to lift the com-
plexity class PLS to the realm of parameterized complexity. Recall that PLS contains
those local search problems for which (i) an initial solution can be found in polynomial
time and (ii) the local neighborhood of each solution can be searched in polynomial
time. Moreover, recall that there is no known algorithm that finds a locally optimal
solution for any PLS-complete problem in polynomial time. Hence, intuitively, the
subclass of PLS-complete local search problems can be seen as an analogue of the
class of NP-complete decision problems. Based on this interpretation, instead of ask-
ing whether a locally optimal solution can be found in polynomial time, one might
be interested in asking whether a locally optimal solution can be found in FPT-time
with respect to some input-dependent parameter p. In other words, is there a con-
stant c such that for each constant parameter value of p, one can find a locally optimal
solution in O(nc) time? This would give rise to a parameterized complexity class
for local search problems: FPT-PLS. Note that for optimization problems L, where
finding an optimal solution can be done in f(p) ·nO(1) time for some parameter p, for
each local neighborhood N , L/N is contained in FPT-PLS with respect to p. This is
true, since each globally optimal solution is locally optimal with respect to every lo-

226

8.2. “How Fast Can We Find a Locally Optimal Solution?”

cal neighborhood. For example, an optimal solution for Weighted Independent
Set can be found in FPT-time with respect to the vertex cover number of the input
graph. Hence, asking whether a local search problem L/N is contained in FPT-PLS
with respect to p is only of interest when considering a parameter p, for which finding
an optimal solution for L can presumably not be done in FPT-time with respect to p.
Another extreme is when L/N is PLS-hard even on instances where p is a constant.
Then, L/N is not contained in FPT-PLS with respect to p, unless every PLS-hard
problem can be solved in polynomial time. Note that the PLS-hardness of Max
Cut/flip on graphs of constant maximum degree [47] and the PLS-hardness results
for Weighted Independent Set/3-swap on graphs of constant maximum degree
presented in Chapter 7 imply that both these problems are presumably not contained
in FPT-PLS with respect to the maximum degree of the input graph. Hence, asking
for the containment in FPT-PLS is only interesting for parameters p, where

(i) an optimal solution for L can presumably not be found in FPT-time with
respect to p and

(ii) L/N is not PLS-hard on instances where p is a constant.

An example for a local search problem and a parameter p fulfilling these prop-
erties is Weighted Independent Set/N with respect to p, where p denotes the
largest assigned weight and where N is an arbitrary polynomial-time computable
local neighborhood. The desired properties hold, since (i) Weighted Indepen-
dent Set is NP-hard even if all weights are equal to 1 and (ii) a basic hill-climbing
algorithm for Weighted Independent Set/N can find a locally optimal solu-
tion after O(p · n) improvement steps, which each take polynomial time by choice
of N . Hence, Weighted Independent Set/N is in FPT-PLS with respect to the
largest assigned weight for each polynomial-time computable local neighborhood N .

Another example for a parameterized local search problem that is contained in
FPT-PLS is Max Circuit with respect to any polynomial-time computable local
neighborhood. In Max Circuit, the input consists of a Boolean acyclic circuit
with n input gates, m output gates, and a weight function in the output gates, and
the goal is to find an assignment of the input gates that maximizes the total weight
of satisfied output gates [95]. Note that the NP-complete SAT-problem is a special
case of Max Circuit on circuit with only a single output gate. Hence, for p being
the number of output gates, a globally optimal solution for Max Circuit cannot be
found in f(p) · |I|O(1) time, unless P = NP. Moreover, Max Circuit/1-flip is PLS-
complete [95]. Hence, it is well-motivated to ask whether Max Circuit/1-flip is in
FPT-PLS with respect to the number of output gates. In fact, for each polynomial-
time computable local neighborhood, a basic hill-climbing algorithm for Max Cir-

227

Chapter 8. Conclusion

cuit finds a locally optimal solution in 2p ·|I|O(1) time, since there are only 2p possible
configurations of satisfied output gates and in the process of the hill-climbing algo-
rithm, we never encounter the same configuration twice, since we always search for
strictly better solutions.

Similar to FPT-PLS, one could also define a complexity class XP-PLS, which
contains all parameterized local search problems, for which one can find a locally
optimal solution in O(nf(p)) time. Note that the current toolkit of parameterized
complexity is not capable of giving evidence that a parameterized local search prob-
lem is contained in XP-PLS but not in FPT-PLS. That is, we cannot easily lift
known W[1]-hardness results from decision problems to local search problem, since
the latter are total search problems and guarantee that there is always a solution
we can find. Therefore, it would be interesting to find parameterized local search
problems that are contained in XP-PLS, but for which the containment in FPT-PLS
seem unlikely. Based on such problems, one could then try to develop a completeness
theory to prove that other parameterized local search problems are presumably also
not contained in FPT-PLS. In other words, it would also be of interest to find an
analogue to W[1]-hardness in the context of parameterized local search problems to
better analyze for which parameterized local search problems we can find a locally
optimal solution in FPT-time, and for which problems XP-time is the best we can
hope for.

228

Bibliography

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the Cur-
rent Clique Algorithms Are Optimal, so Is Valiant’s Parser. SIAM Journal on
Computing, 47(6):2527–2555, 2018. (Cited on pp. 27, 33)

[2] Faisal N. Abu-Khzam, Shaowei Cai, Judith Egan, Peter Shaw, and Kai Wang.
Turbo-Charging Dominating Set with an FPT Subroutine: Further Improve-
ments and Experimental Analysis. In Proceedings of the 14th Annual Con-
ference on Theory and Applications of Models of Computation (TAMC ’17),
volume 10185 of Lecture Notes in Computer Science, pages 59–70, 2017. (Cited
on p. 62)

[3] Benjamin L. Allen and Mike Steel. Subtree transfer operations and their in-
duced metrics on evolutionary trees. Annals of Combinatorics, 5(1):1–15, 2001.
(Cited on pp. 150, 154, 155, 156, 169, 170, 178)

[4] Josh Alman and Virginia Vassilevska Williams. A Refined Laser Method and
Faster Matrix Multiplication. In Proceedings of the 32nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’21), pages 522–539. SIAM, 2021.
(Cited on p. 33)

[5] Diogo Vieira Andrade, Mauricio G. C. Resende, and Renato Fonseca F. Wer-
neck. Fast local search for the maximum independent set problem. Journal of
Heuristics, 18(4):525–547, 2012. (Cited on p. 3)

[6] Alexandre A. Andreatta and Celso C. Ribeiro. Heuristics for the phylogeny
problem. Journal of Heuristics, 8(4):429–447, 2002. (Cited on p. 150)

[7] Konstantin Andreev and Harald Räcke. Balanced Graph Partitioning. Theory
of Computing Systems, 39(6):929–939, 2006. (Cited on p. 99)

229

Bibliography

[8] Manuel Aprile, Matthew Drescher, Samuel Fiorini, and Tony Huynh. A tight
approximation algorithm for the cluster vertex deletion problem. Mathematical
Programming, 197(2):1069–1091, 2023. (Cited on pp. 129, 133, 146)

[9] David Arbour, Drew Dimmery, and Anup B. Rao. Efficient Balanced Treat-
ment Assignments for Experimentation. In Proceedings of the 24th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS ’21),
volume 130 of Proceedings of Machine Learning Research, pages 3070–3078.
PMLR, 2021. (Cited on p. 63)

[10] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Ap-
proach. Cambridge University Press, 2009. (Cited on p. 11)

[11] Emmanuel Arrighi, Niels Grüttemeier, Nils Morawietz, Frank Sommer, and
Petra Wolf. Multi-parameter analysis of finding minors and subgraphs in edge-
periodic temporal graphs. In Proceedings of the 48th Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM ’23), volume
13878 of Lecture Notes in Computer Science, pages 283–297. Springer, 2023.
(Cited on p. IV)

[12] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation Clustering. Ma-
chine Learning, 56(1-3):89–113, 2004. (Cited on p. 101)

[13] Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pier-
ron, and Ulysse Prieto. PACE Solver Description: µSolver - Heuristic Track.
In Proceedings of the 16th International Symposium on Parameterized and Ex-
act Computation (IPEC ’21), volume 214 of LIPIcs, pages 33:1–33:3. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. (Cited on p. 102)

[14] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering Gene Expression
Patterns. Journal of Computational Biology, 6(3/4):281–297, 1999. (Cited
on p. 101)

[15] Una Benlic and Jin-Kao Hao. Breakout Local Search for the Max-Cut prob-
lem. Engineering Applications of Artificial Intelligence, 26(3):1162–1173, 2013.
(Cited on p. 91)

[16] Daniel Berend and Tamir Tassa. Improved bounds on Bell numbers and on
moments of sums of random variables. Probability and Mathematical Statistics,
30(2):185–205, 2010. (Cited on p. 132)

230

Bibliography

[17] Piotr Berman and Marek Karpinski. On Some Tighter Inapproximability Re-
sults (Extended Abstract). In Proceedings of the 26th International Collo-
quium on Automata, Languages and Programming (ICALP ’99), volume 1644
of Lecture Notes in Computer Science, pages 200–209. Springer, 1999. (Cited
on pp. 63, 64)

[18] Alexander Bille, Niels Grüttemeier, Christian Komusiewicz, and Nils Moraw-
ietz. A Graph-Theoretic Formulation of Exploratory Blockmodeling. In Pro-
ceedings of the 21st International Symposium on Experimental Algorithms
(SEA ’23), volume 265 of LIPIcs, pages 14:1–14:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023. (Cited on p. III)

[19] Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, To-
bias Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm. PACE
Solver Description: KaPoCE: A Heuristic Cluster Editing Algorithm. In
Proceedings of the 16th International Symposium on Parameterized and Ex-
act Computation (IPEC ’21), volume 214 of LIPIcs, pages 31:1–31:4. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. (Cited on p. 102)

[20] Sebastian Böcker. A golden ratio parameterized algorithm for Cluster Editing.
Journal of Discrete Algorithms, 16:79–89, 2012. (Cited on p. 101)

[21] Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-
Decompositions of Small Treewidth. SIAM Journal on Computing, 25(6):1305–
1317, 1996. (Cited on p. 43)

[22] Hans L. Bodlaender, Michael R. Fellows, and Tandy J. Warnow. Two Strikes
Against Perfect Phylogeny. In Proceedings of the 19th International Collo-
quium on Automata, Languages and Programming (ICALP ’92), volume 623
of Lecture Notes in Computer Science, pages 273–283. Springer, 1992. (Cited
on p. 150)

[23] Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Lukasz Kowalik. Fine-
Grained Complexity of k-OPT in Bounded-Degree Graphs for Solving TSP. In
Proceedings of the 27th Annual European Symposium on Algorithms (ESA ’19),
volume 144 of LIPIcs, pages 23:1–23:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. (Cited on pp. 7, 17)

[24] Flavia Bonomo, Guillermo Durán, and Mario Valencia-Pabon. Complexity
of the cluster deletion problem on subclasses of chordal graphs. Theoretical
Computer Science, 600:59–69, 2015. (Cited on p. 130)

231

Bibliography

[25] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner. On Modularity Clustering. IEEE
Transactions on Knowledge and Data Engineering, 20(2):172–188, 2008. (Cited
on p. 148)

[26] David Bryant, John Tsang, Paul E. Kearney, and Ming Li. Computing the
quartet distance between evolutionary trees. In Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’00), pages 285–286.
ACM/SIAM, 2000. (Cited on p. 182)

[27] Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An Efficient
Local Search Algorithm for Minimum Vertex Cover. Journal of Artificial In-
telligence Research, 46:687–716, 2013. (Cited on p. 2)

[28] Amir Carmel, Noa Musa-Lempel, Dekel Tsur, and Michal Ziv-Ukelson. The
worst case complexity of maximum parsimony. Journal of Computational Bi-
ology, 21(11):799–808, 2014. (Cited on pp. 149, 180)

[29] Arnaud Casteigts, Nils Morawietz, and Petra Wolf. Distance to Transitivity:
New Parameters for Taming Reachability in Temporal Graphs. In Proceedings
of the 49th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS ’24), volume 306 of LIPIcs, pages 36:1–36:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024. (Cited on p. IV)

[30] Luigi L. Cavalli-Sforza and Anthony W. F. Edwards. Phylogenetic analysis.
Models and estimation procedures. American Journal of Human Genetics,
19(3 Pt 1):233–257, 1967. (Cited on p. 180)

[31] Vaggos Chatziafratis, Mohammad Mahdian, and Sara Ahmadian. Maximizing
Agreements for Ranking, Clustering and Hierarchical Clustering via MAX-
CUT. In Proceedings of the 24th International Conference on Artificial Intel-
ligence and Statistics (AISTATS ’21), volume 130 of Proceedings of Machine
Learning Research, pages 1657–1665. PMLR, 2021. (Cited on p. 63)

[32] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory
Yaroslavtsev. Near optimal LP rounding algorithm for correlation clustering
on complete and complete k-partite graphs. In Proceedings of the 47th Annual
Symposium on Theory of Computing (STOC ’15), pages 219–228. ACM, 2015.
(Cited on p. 101)

232

Bibliography

[33] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes,
Iyad A. Kanj, and Ge Xia. Tight lower bounds for certain parameterized NP-
hard problems. Information and Computation, 201(2):216–231, 2005. (Cited
on p. 158)

[34] Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal
of Computer and System Sciences, 78(1):211–220, 2012. (Cited on p. 101)

[35] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Loksh-
tanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket
Saurabh. Parameterized Algorithms. Springer, 2015. (Cited
on pp. 12, 13, 14, 25, 35, 42, 67, 71, 72, 112, 116, 120, 121, 158, 225)

[36] Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren
Strash, and Renato F. Werneck. Accelerating Local Search for the Maximum
Independent Set Problem. In Proceedings of the 15th International Sympo-
sium on Experimental Algorithms (SEA ’16), volume 9685 of Lecture Notes in
Computer Science, pages 118–133. Springer, 2016. (Cited on p. 3)

[37] Constantinos Daskalakis and Christos H. Papadimitriou. Continuous Local
Search. In Proceedings of the 22nd Annual Symposium on Discrete Algorithms
(SODA ’11), pages 790–804. SIAM, 2011. (Cited on p. 185)

[38] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2012. (Cited on p. 10)

[39] Alexander Dobler, Manuel Sorge, and Anäıs Villedieu. Turbocharging Heuris-
tics for Weak Coloring Numbers. In Proceedings of the 30th Annual European
Symposium on Algorithms (ESA ’22), volume 244 of LIPIcs, pages 44:1–44:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. (Cited on p. 62)

[40] Srinivas Doddi, Madhav V. Marathe, Andy Mirzaian, Bernard M. E. Moret,
and Binhai Zhu. Map Labeling and Its Generalizations. In Proceedings of the
8th Annual Symposium on Discrete Algorithms (SODA ’97), pages 148–157.
ACM/SIAM, 1997. (Cited on p. 1)

[41] Yuanyuan Dong, Andrew V. Goldberg, Alexander Noe, Nikos Parotsidis,
Mauricio G. C. Resende, and Quico Spaen. A Local Search Algorithm for
Large Maximum Weight Independent Set Problems. In Proceedings of the 30th
Annual European Symposium on Algorithms (ESA ’22), volume 244 of LIPIcs,

233

Bibliography

pages 45:1–45:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
(Cited on p. 186)

[42] Marco Dorigo and Thomas Stützle. Ant colony optimization. MIT Press, 2004.
(Cited on p. 2)

[43] Martin Dörnfelder, Jiong Guo, Christian Komusiewicz, and Mathias Weller. On
the parameterized complexity of consensus clustering. Theoretical Computer
Science, 542:71–82, 2014. (Cited on pp. 7, 17, 102)

[44] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parame-
terized Complexity. Texts in Computer Science. Springer, 2013. (Cited
on pp. 13, 14, 25, 67, 71, 158, 225)

[45] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification and
scene analysis. John Wiley & Sons, 1973. (Cited on p. 148)

[46] Dominic Dumrauf and Tim Süß. On the Complexity of Local Search for
Weighted Standard Set Problems. In Proceedings of the 6th Conference on
Computability in Europe (CiE 10), volume 6158 of Lecture Notes in Computer
Science, pages 132–140. Springer, 2010. (Cited on pp. 7, 186)

[47] Robert Elsässer and Tobias Tscheuschner. Settling the Complexity of Local
Max-Cut (Almost) Completely. In Proceedings of the 38th International Collo-
quium on Automata, Languages and Programming (ICALP ’11), volume 6755
of Lecture Notes in Computer Science, pages 171–182. Springer, 2011. (Cited
on pp. 7, 20, 186, 188, 226, 227)

[48] David Eppstein and Emma S. Spiro. The h-Index of a Graph and its Ap-
plication to Dynamic Subgraph Statistics. Journal of Graph Algorithms and
Applications, 16(2):543–567, 2012. (Cited on p. 26)

[49] Thomas Erlebach, Nils Morawietz, Jakob T. Spooner, and Petra Wolf. A cop
and robber game on edge-periodic temporal graphs. Journal of Computer and
System Sciences, 144:103534, 2024. (Cited on p. III)

[50] Thomas Erlebach, Nils Morawietz, and Petra Wolf. Parameterized Algorithms
for Multi-Label Periodic Temporal Graph Realization. In Proceedings of the
3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND ’24),
volume 292 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2024. (Cited on p. IV)

234

Bibliography

[51] George F. Estabrook, F. R. McMorris, and Christopher A. Meacham. Compar-
ison of Undirected Phylogenetic Trees Based on Subtrees of Four Evolutionary
Units. Systematic Biology, 34(2):193–200, 1985. (Cited on p. 182)

[52] Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosa-
mond, Saket Saurabh, and Yngve Villanger. Local search: Is brute-force avoid-
able? Journal of Computer and System Sciences, 78(3):707–719, 2012. (Cited
on pp. 7, 17, 25, 64, 77, 99, 224)

[53] Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Peter
Shaw. Efficient Parameterized Preprocessing for Cluster Editing. In Proceed-
ings of the 16th International Symposium on Fundamentals of Computation
Theory (FCT ’07), volume 4639 of Lecture Notes in Computer Science, pages
312–321. Springer, 2007. (Cited on p. 101)

[54] Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates Sunderland,
2004. (Cited on p. 149)

[55] Pedro Felzenszwalb, Caroline Klivans, and Alice Paul. Clustering with Semidef-
inite Programming and Fixed Point Iteration. Journal of Machine Learning
Research, 23(190):1–23, 2022. (Cited on p. 63)

[56] David Fernández-Baca and Jens Lagergren. A Polynomial-Time Algorithm for
Near-Perfect Phylogeny. SIAM Journal on Computing, 32(5):1115–1127, 2003.
(Cited on p. 150)

[57] Paola Festa, Panos M. Pardalos, Mauricio G. C. Resende, and Celso C. Ribeiro.
Randomized heuristics for the Max-Cut problem. Optimization Methods and
Software, 17(6):1033–1058, 2002. (Cited on pp. 64, 91)

[58] Walter M. Fitch. Toward defining the course of evolution: minimum change
for a specific tree topology. Systematic Biology, 20(4):406–416, 1971. (Cited
on pp. 149, 180, 181)

[59] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh.
Fast Local Search Algorithm for Weighted Feedback Arc Set in Tournaments.
In Proceedings of the 24th Annual AAAI Conference on Artificial Intelligence
(AAAI ’10). AAAI Press, 2010. (Cited on p. 17)

[60] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and
Marcin Wrochna. Fully Polynomial-Time Parameterized Computations for

235

Bibliography

Graphs and Matrices of Low Treewidth. ACM Transactions on Algorithms,
14(3):34:1–34:45, 2018. (Cited on p. 43)

[61] Les R. Foulds and Ronald L. Graham. The Steiner problem in phylogeny
is NP-complete. Advances in Applied Mathematics, 3(1):43–49, 1982. (Cited
on p. 149)

[62] Alan M. Frieze and Mark Jerrum. Improved Approximation Algorithms for
MAX k-CUT and MAX BISECTION. Algorithmica, 18(1):67–81, 1997. (Cited
on pp. 63, 64)

[63] Ganeshkumar Ganapathy, Vijaya Ramachandran, and Tandy Warnow. On
contract-and-refine transformations between phylogenetic trees. In Proceedings
of the 15th Annual Symposium on Discrete Algorithms (SODA ’04), pages 900–
909. SIAM, 2004. (Cited on pp. 150, 151, 154)

[64] Ganeshkumar Ganapathy, Vijaya Ramachandran, and Tandy J. Warnow. Bet-
ter Hill-Climbing Searches for Parsimony. In Proceedings of the 3rd Interna-
tional Workshop on Algorithms in Bioinformatics (WABI ’03), volume 2812
of Lecture Notes in Computer Science, pages 245–258. Springer, 2003. (Cited
on pp. 150, 151)

[65] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979. (Cited on pp. 11, 63)

[66] Jaroslav Garvardt, Niels Grüttemeier, Christian Komusiewicz, and Nils
Morawietz. Parameterized Local Search for Max c-Cut. In Proceedings of
the 32nd International Joint Conference on Artificial Intelligence (IJCAI ’23),
pages 5586–5594. ijcai.org, 2023. (Cited on pp. I, 16)

[67] Jaroslav Garvardt, Nils Morawietz, André Nichterlein, and Mathias Weller.
Graph Clustering Problems Under the Lens of Parameterized Local Search. In
Proceedings of the 18th International Symposium on Parameterized and Exact
Computation (IPEC ’23), volume 285 of LIPIcs, pages 20:1–20:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023. (Cited on p. II)

[68] Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Ste-
fan Rümmele. Turbocharging Treewidth Heuristics. Algorithmica, 81(2):439–
475, 2019. (Cited on pp. 7, 17, 62)

236

Bibliography

[69] Serge Gaspers, Eun Jung Kim, Sebastian Ordyniak, Saket Saurabh, and Stefan
Szeider. Don’t Be Strict in Local Search! In Proceedings of the 26th Annual
AAAI Conference on Artificial Intelligence (AAAI ’12). AAAI Press, 2012.
(Cited on pp. 5, 7, 17, 18, 25, 71)

[70] Martin Josef Geiger. PACE Solver Description: A Simplified Threshold Accept-
ing Approach for the Cluster Editing Problem. In Proceedings of the 16th In-
ternational Symposium on Parameterized and Exact Computation (IPEC ’21),
volume 214 of LIPIcs, pages 34:1–34:2. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. (Cited on p. 102)

[71] Adrien Goëffon, Jean-Michel Richer, and Jin-Kao Hao. Local Search for the
Maximum Parsimony Problem. In Proceedings of the 1st International Confer-
ence on Advances in Natural Computation (ICNC ’05), volume 3612 of Lecture
Notes in Computer Science, pages 678–683. Springer, 2005. (Cited on p. 150)

[72] Adrien Goëffon, Jean-Michel Richer, and Jin-Kao Hao. Progressive tree neigh-
borhood applied to the maximum parsimony problem. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 5(1):136–145, 2008. (Cited
on p. 150)

[73] Pablo A Goloboff. Character optimization and calculation of tree lengths.
Cladistics, 9(4):433–436, 1993. (Cited on p. 150)

[74] Pablo A. Goloboff. Analyzing Large Data Sets in Reasonable Times: Solutions
for Composite Optima. Cladistics, 15(4):415–428, 1999. (Cited on pp. 150, 151)

[75] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-Modeled
Data Clustering: Exact Algorithms for Clique Generation. Theory of Comput-
ing Systems, 38(4):373–392, 2005. (Cited on p. 101)

[76] Jens Gramm, Arfst Nickelsen, and Till Tantau. Fixed-Parameter Algorithms in
Phylogenetics. The Computer Journal, 51(1):79–101, 2008. (Cited on p. 183)

[77] Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Efficient
Bayesian Network Structure Learning via Parameterized Local Search on Topo-
logical Orderings. In Proceedings of the 35th Annual AAAI Conference on Ar-
tificial Intelligence (AAAI ’21), pages 12328–12335. AAAI Press, 2021. (Cited
on pp. IV, 7, 17)

237

Bibliography

[78] Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. On the Param-
eterized Complexity of Polytree Learning. In Proceedings of the 30th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI ’21), pages 4221–4227.
ijcai.org, 2021. (Cited on p. IV)

[79] Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz, and Frank Som-
mer. String Factorizations Under Various Collision Constraints. In Proceedings
of the 31th Annual Symposium on Combinatorial Pattern Matching (CPM ’20),
volume 161 of LIPIcs, pages 17:1–17:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. (Cited on p. V)

[80] Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz, and Frank Som-
mer. Preventing Small (s, t)-Cuts by Protecting Edges. In Proceedings of the
47th International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG ’21), volume 12911 of Lecture Notes in Computer Science, pages
143–155. Springer, 2021. (Cited on p. IV)

[81] Jiong Guo. A More Effective Linear Kernelization for Cluster Editing. Theo-
retical Computer Science, 410(8-10):718–726, 2009. (Cited on p. 101)

[82] Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The Param-
eterized Complexity of Local Search for TSP, More Refined. Algorithmica,
67(1):89–110, 2013. (Cited on pp. 7, 17)

[83] Jiong Guo, Danny Hermelin, and Christian Komusiewicz. Local search for
string problems: Brute-force is essentially optimal. Theoretical Computer Sci-
ence, 525:30–41, 2014. (Cited on pp. 7, 17)

[84] Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized Com-
plexity of Vertex Cover Variants. Theory of Computing Systems, 41(3):501–520,
2007. (Cited on p. 25)

[85] Maozu Guo, Jian-Fu Li, and Yang Liu. Improving the Efficiency of p-ECR
Moves in Evolutionary Tree Search Methods Based on Maximum Likelihood
by Neighbor Joining. In Proceeding of the 2nd International Multi-Symposium
of Computer and Computational Sciences (IMSCCS ’07), pages 60–67. IEEE
Computer Society, 2007. (Cited on p. 151)

[86] Michael T. Hallett and Catherine McCartin. A Faster FPT Algorithm for
the Maximum Agreement Forest Problem. Theory of Computing Systems,
41(3):539–550, 2007. (Cited on p. 182)

238

Bibliography

[87] Sepp Hartung and Rolf Niedermeier. Incremental list coloring of graphs, pa-
rameterized by conservation. Theoretical Computer Science, 494:86–98, 2013.
(Cited on pp. 7, 17)

[88] Emanuel Herrendorf, Christian Komusiewicz, Nils Morawietz, and Frank Som-
mer. On the Complexity of Community-Aware Network Sparsification. In Pro-
ceedings of the 49th International Symposium on Mathematical Foundations
of Computer Science (MFCS ’24), volume 306 of LIPIcs, pages 60:1–60:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. (Cited on p. IV)

[89] Jana Holznigenkemper, Christian Komusiewicz, Nils Morawietz, and Bernhard
Seeger. On the Complexity of Computing Time Series Medians Under the
Move-Split-Merge Metric. In Proceedings of the 48th International Symposium
on Mathematical Foundations of Computer Science (MFCS ’23), volume 272 of
LIPIcs, pages 54:1–54:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. (Cited on pp. IV, 140)

[90] Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations &
Applications. Elsevier / Morgan Kaufmann, 2004. (Cited on pp. 2, 4, 14)

[91] Weiran Huang, Liang Li, and Wei Chen. Partitioned Sampling of Public Opin-
ions Based on Their Social Dynamics. In Proceedings of the 31st Annual AAAI
Conference on Artificial Intelligence (AAAI ’17), pages 24–30. AAAI Press,
2017. (Cited on p. 63)

[92] Pavel Hubácek and Eylon Yogev. Hardness of Continuous Local Search: Query
Complexity and Cryptographic Lower Bounds. SIAM Journal on Computing,
49(6):1128–1172, 2020. (Cited on p. 185)

[93] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT.
Journal of Computer and System Sciences, 62(2):367–375, 2001. (Cited
on p. 12)

[94] Tommy R Jensen and Bjarne Toft. Graph coloring problems, volume 39. John
Wiley & Sons, 2011. (Cited on p. 63)

[95] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How
Easy is Local Search? Journal of Computer and System Sciences, 37(1):79–100,
1988. (Cited on pp. 7, 19, 26, 185, 186, 227)

239

Bibliography

[96] Viggo Kann, Sanjeev Khanna, Jens Lagergren, and Alessandro Panconesi. On
the Hardness of Approximating Max k-Cut and its Dual. Chicago Journal of
Theoretical Computer Science, 1997(2), 1997. (Cited on p. 63)

[97] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings
of a Symposium on the Complexity of Computer Computations, The IBM Re-
search Symposia Series, pages 85–103. Plenum Press, New York, 1972. (Cited
on pp. 63, 158, 211)

[98] Maximilian Katzmann and Christian Komusiewicz. Systematic Exploration
of Larger Local Search Neighborhoods for the Minimum Vertex Cover
Problem. In Proceedings of the 31st Annual AAAI Conference on Arti-
ficial Intelligence (AAAI ’17), pages 846–852. AAAI Press, 2017. (Cited
on pp. I, 3, 6, 7, 17, 25, 26, 45, 47, 48, 51, 52, 62)

[99] Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche.
The PACE 2021 Parameterized Algorithms and Computational Experiments
Challenge: Cluster Editing. In Proceedings of the 16th International Sympo-
sium on Parameterized and Exact Computation (IPEC ’21), volume 214 of
LIPIcs, pages 26:1–26:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. (Cited on pp. 6, 101, 102, 103)

[100] Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for par-
titioning graphs. Bell System Technical Journal, 49(2):291–307, 1970. (Cited
on p. 186)

[101] Hartmut Klauck. On the Hardness of Global and Local Approximation. In Pro-
ceedings of the 5th Scandinavian Workshop on Algorithm Theory (SWAT ’96),
volume 1097 of Lecture Notes in Computer Science, pages 88–99. Springer,
1996. (Cited on p. 186)

[102] Jon M. Kleinberg and Éva Tardos. Algorithm design. Addison-Wesley, 2006.
(Cited on pp. 16, 63, 64)

[103] Gary A. Kochenberger, Jin-Kao Hao, Zhipeng Lü, Haibo Wang, and Fred W.
Glover. Solving large scale Max Cut problems via tabu search. Journal of
Heuristics, 19(4):565–571, 2013. (Cited on p. 98)

[104] Christian Komusiewicz, Simone Linz, Nils Morawietz, and Jannik Schestag. On
the Complexity of Parameterized Local Search for the Maximum Parsimony
Problem. In Proceedings of the 34th Annual Symposium on Combinatorial

240

Bibliography

Pattern Matching (CPM ’23), volume 259 of LIPIcs, pages 18:1–18:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023. (Cited on p. II)

[105] Christian Komusiewicz and Nils Morawietz. Can Local Optimality Be Used for
Efficient Data Reduction? In Proceedings of the 12th International Conference
on Algorithms and Complexity (CIAC ’21), volume 12701 of Lecture Notes in
Computer Science, pages 354–366. Springer, 2021. (Cited on p. III)

[106] Christian Komusiewicz and Nils Morawietz. Finding 3-Swap-Optimal Indepen-
dent Sets and Dominating Sets Is Hard. In Proceedings of the 47th International
Symposium on Mathematical Foundations of Computer Science (MFCS ’22),
volume 241 of LIPIcs, pages 66:1–66:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. (Cited on p. III)

[107] Christian Komusiewicz and Nils Morawietz. Parameterized Local Search for
Vertex Cover: When Only the Search Radius Is Crucial. In Proceedings
of the 17th International Symposium on Parameterized and Exact Computa-
tion (IPEC ’22), volume 249 of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. (Cited on p. I)

[108] Christian Komusiewicz and Frank Sommer. Enumerating connected induced
subgraphs: Improved delay and experimental comparison. Discrete Applied
Mathematics, 303:262–282, 2021. (Cited on pp. 23, 91)

[109] Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally
bounded modifications. Discrete Applied Mathematics, 160(15):2259–2270,
2012. (Cited on p. 111)

[110] Athanasios L. Konstantinidis and Charis Papadopoulos. Cluster Deletion on
Interval Graphs and Split Related Graphs. Algorithmica, 83(7):2018–2046,
2021. (Cited on p. 130)

[111] Mirko Krivánek and Jaroslav Morávek. NP-Hard Problems in Hierarchical-Tree
Clustering. Acta Informatica, 23(3):311–323, 1986. (Cited on p. 101)

[112] Harold W. Kuhn. The Hungarian Method for the Assignment Problem. In
50 Years of Integer Programming 1958-2008 - From the Early Years to the
State-of-the-Art, pages 29–47. Springer, 2010. (Cited on p. 139)

[113] Manuel Laguna. Tabu Search. In Handbook of Heuristics, pages 741–758.
Springer, 2018. (Cited on p. 6)

241

Bibliography

[114] Mark D. M. Leiserson, Diana Tatar, Lenore J. Cowen, and Benjamin J. Hescott.
Inferring Mechanisms of Compensation from E-MAP and SGA Data Using
Local Search Algorithms for Max Cut. Journal of Computational Biology,
18(11):1399–1409, 2011. (Cited on pp. 63, 64)

[115] John M. Lewis and Mihalis Yannakakis. The Node-Deletion Problem for Hered-
itary Properties is NP-Complete. Journal of Computer and System Sciences,
20(2):219–230, 1980. (Cited on pp. 129, 205, 209)

[116] Ruizhi Li, Shuli Hu, Shaowei Cai, Jian Gao, Yiyuan Wang, and Minghao Yin.
NuMWVC: A novel local search for minimum weighted vertex cover problem.
Journal of the Operational Research Society, 71(9):1498–1509, 2020. (Cited
on pp. 2, 186)

[117] Shaohua Li, Marcin Pilipczuk, and Manuel Sorge. Cluster Editing Parameter-
ized Above Modification-Disjoint P3-Packings. In Proceedings of the 38th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS ’21),
volume 187 of LIPIcs, pages 49:1–49:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. (Cited on p. 101)

[118] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. Iterated Lo-
cal Search. In Handbook of Metaheuristics, volume 57 of International Se-
ries in Operations Research & Management Science, pages 320–353. Kluwer /
Springer, 2003. (Cited on p. 5)

[119] Junjie Luo, Hendrik Molter, André Nichterlein, and Rolf Niedermeier. Pa-
rameterized Dynamic Cluster Editing. Algorithmica, 83(1):1–44, 2021. (Cited
on pp. 102, 104)

[120] Fuda Ma and Jin-Kao Hao. A multiple search operator heuristic for the max-
k-cut problem. Annals of Operations Research, 248(1-2):365–403, 2017. (Cited
on pp. 6, 64, 65, 91, 92, 93, 94, 225)

[121] Bodo Manthey, Nils Morawietz, Jesse van Rhijn, and Frank Sommer. Complex-
ity of Local Search for Euclidean Clustering Problems. CoRR, abs/2312.14916,
2023. (Cited on pp. III, 186)

[122] Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard.
Operations Research Letters, 36(1):31–36, 2008. (Cited on pp. 7, 17)

242

Bibliography

[123] Dávid Matolcsi and Zoltán Lóránt Nagy. Generalised outerplanar Turán num-
bers and maximum number of k-vertex subtrees. Discrete Applied Mathematics,
307:115–124, 2022. (Cited on p. 179)

[124] Ross M. McConnell and Jeremy P. Spinrad. Linear-Time Modular Decompo-
sition and Efficient Transitive Orientation of Comparability Graphs. In Pro-
ceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’94), pages 536–545. ACM/SIAM, 1994. (Cited on pp. 35, 58, 59)

[125] Wil Michiels, Emile H. L. Aarts, and Jan H. M. Korst. Theoretical aspects of
local search. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2007. (Cited on pp. 7, 186)

[126] Nenad Mladenovic and Pierre Hansen. Variable neighborhood search. Com-
puters & Operations Research, 24(11):1097–1100, 1997. (Cited on p. 5)

[127] Nils Morawietz, Carolin Rehs, and Mathias Weller. A Timecop’s Work Is
Harder Than You Think. In Proceedings of the 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS ’20), volume 170 of
LIPIcs, pages 71:1–71:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. (Cited on p. III)

[128] Nils Morawietz and Petra Wolf. A Timecop’s Chase Around the Table. In
Proceedings of the 46th International Symposium on Mathematical Foundations
of Computer Science (MFCS ’21), volume 202 of LIPIcs, pages 77:1–77:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. (Cited on p. III)

[129] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415–
419, 1985. (Cited on p. 33)

[130] M. E. J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical Review E, 69:026113, 2004. (Cited on p. 148)

[131] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006. (Cited on pp. 13, 42)

[132] Kevin C. Nixon. The parsimony ratchet, a new method for rapid parsimony
analysis. Cladistics, 15(4):407–414, 1999. (Cited on p. 150)

243

Bibliography

[133] Bruno C. S. Nogueira, Rian G. S. Pinheiro, and Anand Subramanian. A hy-
brid iterated local search heuristic for the maximum weight independent set
problem. Optimization Letters, 12(3):567–583, 2018. (Cited on p. 186)

[134] Sebastian Ordyniak, André Schidler, and Stefan Szeider. Backdoor DNFs. In
Proceedings of the 30th International Joint Conference on Artificial Intelligence
(IJCAI ’21), pages 1403–1409. ijcai.org, 2021. (Cited on p. 224)

[135] Sebastian Ordyniak and Stefan Szeider. Algorithms and Complexity Results
for Exact Bayesian Structure Learning. In Proceedings of the 26th Conference
on Uncertainty in Artificial Intelligence (UAI ’10), pages 401–408. AUAI Press,
2010. (Cited on pp. 7, 17)

[136] Ibrahim H Osman and James P Kelly. Meta-heuristics: an overview. Meta-
heuristics: Theory and applications, pages 1–21, 1996. (Cited on p. 2)

[137] Christos H. Papadimitriou. The Complexity of the Lin–Kernighan Heuristic for
the Traveling Salesman Problem. SIAM Journal on Computing, 21(3):450–465,
1992. doi:10.1137/0221030. (Cited on p. 7)

[138] Christos H. Papadimitriou. Computational complexity. Academic Internet
Publ., 2007. (Cited on p. 11)

[139] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, 1982. (Cited on p. 14)

[140] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, Approxi-
mation, and Complexity Classes. Journal of Computer and System Sciences,
43(3):425–440, 1991. (Cited on pp. 63, 64)

[141] Svatopluk Poljak. Integer Linear Programs and Local Search for Max-Cut.
SIAM Journal on Computing, 24(4):822–839, 1995. (Cited on p. 186)

[142] Pablo D Rabinowicz and Jeffrey L Bennetzen. The maize genome as a model
for efficient sequence analysis of large plant genomes. Current Opinion in Plant
Biology, 9(2):149–156, 2006. (Cited on p. 183)

[143] Celso C. Ribeiro and Dalessandro Soares Vianna. A GRASP/VND heuristic
for the phylogeny problem using a new neighborhood structure. International
Transactions in Operational Research, 12(3):325–338, 2005. (Cited on p. 150)

244

Bibliography

[144] David F. Robinson. Comparison of labeled trees with valency three. Journal
of Combinatorial Theory, Series B, 11(2):105–119, 1971. (Cited on p. 155)

[145] D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathemat-
ical Biosciences, 53(1):131–147, 1981. (Cited on pp. 154, 155, 182)

[146] Peter Rossmanith. Simulated Annealing. In Algorithms Unplugged, pages 393–
400. Springer, 2011. (Cited on p. 2)

[147] Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly Bal-
anced Graph Partitioning. In Proceeding of the 12th International Symposium
on Experimental Algorithms (SEA ’13), volume 7933 of Lecture Notes in Com-
puter Science, pages 164–175. Springer, 2013. (Cited on p. 99)

[148] David Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied
Mathematics, 28(1):35–42, 1975. (Cited on p. 149)

[149] David Sankoff, Yvon Abel, and Jotun Hein. A tree· a window· a hill; general-
ization of nearest-neighbor interchange in phylogenetic optimization. Journal
of Classification, 11(2):209–232, 1994. (Cited on pp. 151, 152, 154, 180)

[150] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64,
2007. (Cited on p. 101)

[151] Alejandro A. Schäffer and Mihalis Yannakakis. Simple Local Search Problems
That are Hard to Solve. SIAM Journal on Computing, 20(1):56–87, 1991.
(Cited on pp. 7, 20, 64, 186)

[152] Ernst Schröder. Vier combinatorische Probleme. Zeitschrift Mathematischer
Physik, 15:361–376, 1870. (Cited on p. 180)

[153] Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification prob-
lems. Discrete Applied Mathematics, 144(1-2):173–182, 2004. (Cited on p. 101)

[154] Shinichi Shimozono. Finding Optimal Subgraphs by Local Search. Theoretical
Computer Science, 172(1-2):265–271, 1997. (Cited on pp. 7, 186)

[155] VP Shylo, F Glover, and IV Sergienko. Teams of global equilibrium search algo-
rithms for solving the weighted maximum cut problem in parallel. Cybernetics
and Systems Analysis, 51(1):16–24, 2015. (Cited on p. 91)

245

Bibliography

[156] Srinath Sridhar, Kedar Dhamdhere, Guy E. Blelloch, Eran Halperin, R. Ravi,
and Russell Schwartz. Algorithms for efficient near-perfect phylogenetic tree
reconstruction in Theory and Practice. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, 4(4):561–571, 2007. (Cited on p. 150)

[157] Luca Pascal Staus, Christian Komusiewicz, Nils Morawietz, and Frank Som-
mer. Exact Algorithms for Group Closeness Centrality. In Proceedings of
the 2nd SIAM Conference on Applied and Computational Discrete Algorithms
(ACDA ’23), pages 1–12. SIAM, 2023. (Cited on p. IV)

[158] Thomas Stützle and Rubén Ruiz. Iterated Local Search. In Handbook of
Heuristics, pages 579–605. Springer, 2018. (Cited on pp. 5, 6)

[159] Anand Prabhu Subramanian, Himanshu Gupta, Samir R. Das, and Jing Cao.
Minimum Interference Channel Assignment in Multiradio Wireless Mesh Net-
works. IEEE Transactions on Mobile Computing, 7(12):1459–1473, 2008.
(Cited on p. 63)

[160] Sylwester Swat. PACE Solver Description: CluES - a Heuristic Solver for
the Cluster Editing Problem. In Proceedings of the 16th International Sym-
posium on Parameterized and Exact Computation (IPEC ’21), volume 214 of
LIPIcs, pages 32:1–32:3. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. (Cited on p. 102)

[161] Stefan Szeider. The parameterized complexity of k-flip local search for
SAT and MAX SAT. Discrete Optimization, 8(1):139–145, 2011. (Cited
on pp. 7, 16, 17, 24, 79, 80, 99, 183, 224)

[162] Dekel Tsur. Faster Parameterized Algorithm for Cluster Vertex Deletion. The-
ory of Computing Systems, 65(2):323–343, 2021. (Cited on pp. 132, 133)

[163] Esther Ulitzsch, Qiwei He, Vincent Ulitzsch, Hendrik Molter, André Nichter-
lein, Rolf Niedermeier, and Steffi Pohl. Combining clickstream analyses and
graph-modeled data clustering for identifying common response processes. Psy-
chometrika, 86(1):190–214, 2021. (Cited on p. 101)

[164] Felix Ullmann. Engineering a Local Search Solver for Weighted Ver-
tex Cover. Bachelor’s thesis, Philipps-Universität Marburg, 2023. (Cited
on pp. 7, 17, 62, 98, 224)

[165] Steven van Dijk. Genetic algorithms for map labeling. PhD thesis, Utrecht
University, Netherlands, 2001. (Cited on p. 2)

246

Bibliography

[166] Vijay V. Vazirani. Approximation algorithms. Springer, 2001. (Cited on p. 2)

[167] Stefan Voß, Silvano Martello, Ibrahim H Osman, and Catherine Roucairol.
Meta-heuristics: Advances and trends in local search paradigms for optimiza-
tion. 2012. (Cited on p. 2)

[168] Tjark Vredeveld and Jan Karel Lenstra. On local search for the generalized
graph coloring problem. Operations Research Letters, 31(1):28–34, 2003. (Cited
on pp. 63, 64)

[169] Jǐŕı Š́ıma, Pekka Orponen, and Teemu Antti-Poika. Some Afterthoughts on
Hopfield Networks. In Proceedings of the 26th Conference on Current Trends
in Theory and Practice of Informatics (SOFSEM ’99), volume 1725 of Lecture
Notes in Computer Science, pages 459–469. Springer, 1999. (Cited on p. 63)

[170] Jiahai Wang. An improved discrete Hopfield neural network for Max-Cut prob-
lems. Neurocomputing, 69(13-15):1665–1669, 2006. (Cited on p. 63)

[171] Yang Wang, Zhipeng Lü, Fred Glover, and Jin-Kao Hao. Probabilistic GRASP-
Tabu search algorithms for the UBQP problem. Computers & Operations
Research, 40(12):3100–3107, 2013. (Cited on p. 91)

[172] Kunihiro Wasa, Yusaku Kaneta, Takeaki Uno, and Hiroki Arimura. Constant
Time Enumeration of Bounded-Size Subtrees in Trees and Its Application. In
Proceedings of the 18th Annual International Conference on Computing and
Combinatorics (COCOON ’12), volume 7434 of Lecture Notes in Computer
Science, pages 347–359. Springer, 2012. (Cited on p. 179)

[173] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, 2000.
(Cited on p. 10)

[174] Chris Whidden and Frederick A. Matsen IV. Calculating the Unrooted Sub-
tree Prune-and-Regraft Distance. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 16(3):898–911, 2019. (Cited on p. 182)

[175] Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors To Typical
Case Complexity. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI ’03), pages 1173–1178. Morgan Kaufmann,
2003. (Cited on p. 224)

247

Bibliography

[176] Gerhard J. Woeginger. Space and Time Complexity of Exact Algorithms:
Some Open Problems (Invited Talk). In Proceedings of the 1st International
Workshop on Parameterized and Exact Computation (IWPEC ’04), volume
3162 of Lecture Notes in Computer Science, pages 281–290. Springer, 2004.
(Cited on p. 33)

[177] Qinghua Wu, Yang Wang, and Zhipeng Lü. A tabu search based hybrid evolu-
tionary algorithm for the max-cut problem. Applied Soft Computing, 34:827–
837, 2015. (Cited on p. 98)

[178] Wenxing Zhu, Geng Lin, and M. Montaz Ali. Max-k -Cut by the Discrete
Dynamic Convexized Method. INFORMS Journal on Computing, 25(1):27–
40, 2013. (Cited on pp. 64, 91, 225)

248

	Introduction
	Hill-Climbing Local Search
	Variations of Basic Hill-Climbing
	Scope of this Work

	Preliminaries
	Set Notation
	Graph Theory Notation
	Computational Complexity
	Parameterized Complexity
	Optimization and Local Search Problems
	Parameterized Local Search
	The Complexity Class PLS
	An Algorithm for Searching the k-Flip Neighborhood

	Parameterized Local Search for Vertex Cover
	Basic Observations and Lower Bounds
	Parameterization by Treewidth
	Degree-Related Parameterizations
	Using Modular Decompositions
	Concluding Remarks

	Parameterized Local Search for Max c-Cut
	W[1]-hardness and a Tight ETH Lower Bound for LS Max c-Cut and Related Problems
	Parameterized Algorithms for LS Max c-Cut
	Speedup Strategies
	Implementation and Experimental Results
	Concluding Remarks

	Graph Clustering Problems under the Lens of Parameterized Local Search
	Problem-Specific Notation
	Basic Observations
	Running Time Lower Bounds
	Algorithms for Permissive Problem variants
	Concluding Remarks

	On the Complexity of Parameterized Local Search for the Maximum Parsimony Problem
	Problem-Specific Notation
	Properties of the Considered Distance Measures
	Hardness of Local Search for the Maximum Parsimony Problem
	An Adaptation for the Permissive Version
	Essentially Tight Brute-Force Algorithms
	Concluding Remarks

	The Complexity of Finding k-Swap-Optimal Solutions for Subset Optimization Problems
	Hardness of Finding 7-Optimal Independent Sets
	Hardness of Finding 3-Optimal Independent Sets
	Hardness of Finding 3-Optimal Solutions for Weighted Subgraph Deletion Problems
	Hardness of Finding 3-Optimal Dominating Sets
	Finding Locally Optimal Solutions for some Restricted 3-Swaps
	Concluding Remarks

	Conclusion
	``How Fast Can We Decide Whether a Given Solution is Locally Optimal?''
	``How Fast Can We Find a Locally Optimal Solution?''

	Bibliography

