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Abstract

Decision trees are a simple and interpretable way to classify data using a binary tree
structure. The size of the decision tree is the number of inner vertices and a lot of
decision tree problems try to find decision trees with a small size. One such problem is
theMinimum Decision Tree Size (MDTS) problem. MDTS is an NP-hard problem
where, for a given dataset, we try to find the smallest size s such that there is a decision
tree of size at most s that correctly classifies all examples in the dataset.
In this work we will present a search tree algorithm that solves MDTS. We will start

with a basic algorithm that recursively extends decision trees by adding a new inner
vertex and a new leaf. This algorithm is a special case of the witness tree algorithm by
Komusiewicz et al. [1]. We will then present multiple running time improvements for
this algorithm.
We will test our algorithm with all improvements on 700 randomly sampled instances

from 35 datasets that are part of the Penn Machine Learning Benchmarks [2]. We then
compare these results with the state of the art algorithms for MDTS by Narodytska et
al. [3] and Janota et al. [4]. We will show that our algorithm is able to solve roughly 25%
more instances than the state of the art algorithms.
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1 Introduction

Decision trees have been a popular model for classifiying multi-dimensional data ever
since they were first introduced by Morgan et al. [5]. Usually they are rooted binary
trees where each vertex is either an inner vertex with a left and right child or a leaf.
Additionally each leaf is labeled with a class and each inner vertex in the tree is labeled
with a cut (i, t) where i is a dimension of the data and t is a value in that dimension
called a threshold. The size of the tree is the number of inner vertices and the depth of
the tree is the number of edges of the longest path from the root to any leaf. Figure 1a
shows an example dataset and Figure 1b shows an example decision tree for that dataset.
A decision tree classifies an example by assigning it to a specific leaf which then

represents the class that is assigned to the example. To do this, each inner vertex with a
cut (i, t) represents a logical test that assigns all examples to its left subtree that have a
value in dimension i that is less than or equal to the threshold t. All other examples get
assigned to the right subtree. By starting at the root each example ends up in exactly
one leaf. The example a from the dataset in Figure 1a would for example be assigned to
the leaf E by the decision tree in Figure 1b. This is because in dimension d1 the value
of a is less than or equal to 1 and in dimension d2 the value of a is bigger than 0.
The example in Figure 1 also illustrates the interpretability of decision trees. For

example, by just looking at the tree in Figure 1b it is easy to understand why the tree
would assign the class blue to an example. However, if the tree was much bigger with
hundreds of inner vertices it would no longer be as easy to interpret. Additionally, large
decision trees could lead to overfitting which can decrease their accuracy on examples
that are not part of the training dataset.
Because of this, a lot of decision tree research is focused on finding small trees. Tra-

ditionally, this was done using heuristics such as the CART algorithm by Breiman et
al. [6]. This is because the problem of finding the smallest decision tree that correctly
classifies a training dataset has been shown to be NP-hard [7].
In the last ten years, however, more researchers have developed algorithms that can

find optimal decision trees [8, 9, 4, 10]. Not all of these algorithms solve the exact same
problems though. Some algorithms try to find a decision tree that minimizes the number
of incorrectly classified training examples while the tree is not allowed to exceed a certain
size or depth. These algorithms usually use Mathematical Programming [11, 9] or they
are search tree algorithms that use different techniques to prune the search tree [12, 10].
Other algorithms try to find the smallest tree that correctly classifies all examples. They
do this by either minimizing the size of the tree [3, 4] or the depth of the tree [13, 14].
These algorithms generally use SAT formulations to solve the problem using generic
SAT-solvers. For a more complete overview of the last decade of decision tree research,
we refer to a review by Costa et al. [8].
In this work we will focus on the problem of finding the smallest decision tree that

correctly classifies all examples in a training dataset. We will call this problem Mini-
mum Decision Tree Size (MDTS). The most recent algorithm that solves MDTS
is the SAT-based algorithm by Janota et al. [4]. In addition to presenting a novel SAT-
encoding, Janota et al. also propose the idea of splitting the search-space by different
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d1 d2 class
a 0 1 blue
b 1 1 blue
c 1 0 red
d 2 2 red

(a) An example dataset with n = 4 exam-
ples, d = 2 dimensions and the set of class
symbols Σ = {blue, red}.

A
(d1, 1)

B
(d2, 0)

C

D E

(b) An example witness tree with the two
inner vertices A and B and the three
leafs C, D and E. A has the cut (d1, 1)
and B has the cut (d2, 2).

Figure 1: Example dataset and witness tree.

tree topologies and calling the SAT-solver once for each topology. They then used this
idea not just to improve their own encoding but also a different encoding by Narodytska
et al. [3].
In contrast to these SAT-based algorithms, we will present a search tree algorithm that

solves MDTS. To do this we first solve the decision version of MDTS called Decision
Tree Size (DTS) where we need to decide if a decision tree with a maximum size s
exists that correctly classifies all training examples. We can then solve MDTS by
linearly increasing the maximum size by one until we find a tree that correctly classifies
the data.
The base version of our algorithm that solves DTS is a special case of the witness

tree algorithm proposed by Komusiewicz et al. [1]. Their algorithm solves a generalized
version of DTS called Tree Ensemble Size (TES) where an ensemble of decision
trees needs to be found that correctly classifies all examples while the sum of the sizes
of all trees in the ensemble is not bigger than a given maximum size S. Classification of
an example e by a tree ensemble works by first classifying e with each individual tree.
The class assigned to e by the ensemble is then the class that was assigned to e by the
majority of individual trees.
Next, we will describe how the special case of the witness tree algorithm with ensemble

size one works. Generally the algorithm is a search tree algorithm where each node in
the search tree represents a valid decision tree. If the decision tree of the current node
incorrectly classifies at least one example e then the algorithm goes through all possible
ways of adding a new inner vertex and a new leaf to the tree such that e gets assigned
to the new leaf. The class of e is then assigned to the new leaf so that e is correctly
classified by the new decision tree. This procedure is called a one-step-refinement.
To make sure that e does not get incorrectly classified again by other subsequent

one-step-refinements, an extension of a decision tree called a witness tree is used. In a
witness tree each leaf is labeled with an example called a witness with the restriction
that the witness always has to be assigned to this leaf by the tree. That means, when a
one-step-refinement is performed, the dirty example e becomes the witness of the newly
added leaf.
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Overall the algorithm now does the following: It starts with a witness tree that has
one leaf and no inner vertices. An arbitrary witness is chosen for this leaf and the class of
the leaf becomes the class of the witness. Then, as long as there is at least one example e
that is not correctly classified by the current tree and as long as the size of the tree is
not bigger or equal to the maximum size s, the algorithm recursively applies all possible
one-step-refinements that assign e to the new leaf and do not change the leafs of existing
witnesses. The algorithm terminates when a tree with maximum size s is found that
correctly classifies all examples or if the algorithm has discovered all trees that can be
discovered this way.
Komusiewicz et al. [1] used this witness tree algorithm to prove that TES has a

running time bound of O((6δDS)S ·Sℓn) where δ is the maximum number of dimensions
in which two examples differ, D the maximum number of unique values in a dimension, S
the maximum size of the trees in the ensemble, ℓ the number of trees in the ensemble
and n the number of training examples. For the special case with ℓ = 1 this running
time bound becomes O((δDs)s · sn).
To make this special case of the witness tree algorithm viable in practice we present

several improvements for the base algorithm in Sections 4 - 7. We will show that these
improvements will significantly speed up the algorithm to the point where it performs
significantly better than the state of the art algorithms for MDTS.
The rest of this work is structured in the following way. In Section 2, we will formally

define decision trees and the associated notation. In Section 3, we will give a more
in-depth explanation of how the special case of the witness tree algorithm works. In
Sections 4 - 7 we will introduce several improvements that speed up the algorithm.
Finally, in Section 8 we will compare our algorithm with the SAT-based algorithms by
Narodytska et al. [3] and Janota et al. [4].

6



2 Preliminaries

We define [n] := {1, 2, . . . , n} for n ∈ N. For a vector x ∈ Rd, we denote by x[i] the ith
entry in x.
Let Σ be a set of class symbols. We will always assume Σ = {blue, red} since we never

consider more than two classes. A dataset with classes Σ is a tuple (E, λ) where E ⊆ Rd

is a set of examples and λ : E → Σ is a map that maps each example to a class. From
now on we assume that some dataset (E, λ) is always given with n being the number
of examples and d the number of dimensions in that dataset. We also define δ as the
maximum number of dimensions in which two examples differ and D as the maximum
number of unique values in a dimension. For each dimension i ∈ [d] we define Thr(i) as
the smallest set of thresholds such that for each pair of examples e1, e2 ∈ E with e1[i] <
e2[i] there is a threshold t ∈ Thr(i) with e1[i] ≤ t < e2[i]. There are of course multiple
sets with this property but for our purposes any set with this property is fine. A
cut is a pair (i, t) where i ∈ [d] is a dimension and t ∈ Thr(i) is a threshold. The
set of all cuts is Cuts(E). We define the left side of a cut with respect to E ′ ⊆ E
as E ′[≤ (i, t)] := {e ∈ E ′ | e[i] ≤ t}. Similarly we define the right side of a cut with
respect to E ′ as E ′[> (i, t)] := {e ∈ E ′ | e[i] > t}.
A decision tree is a tuple D = (T, cut, cla) where T is a sorted and rooted binary

tree with vertex set V (D), cut : V (D) → Cuts(E) maps every inner vertex to a cut
and cla : V (D) → Σ maps each leaf to a class. For each vertex v ∈ V (D) we define
a set E[D, v] ⊆ E of examples that are assigned to v. If v is the root of D we simply
define E[D, v] := E. Otherwise v has a parent vertex p and we define E[D, v] :=
E[D, v][≤ cut(p)] if v is the left child of p and E[D, v] := E[D, v][> cut(p)] if v is the right
child of p. If D is clear we just write E[v]. With this definition each example e ∈ E is
assigned to exactly one leaf ℓ. We say that ℓ is the leaf of e in D and write leaf(D, e) := ℓ
or just leaf(e) if D is clear. An example e ∈ E is dirty in a decision tree T if we have
λ(e) ̸= cla(ℓ) with ℓ being the leaf of e. The set of all dirty examples in T is Dirty(T ).
We say that a decision tree classifies (E, λ) if the class of every example e ∈ E matches
the class of its leaf, i.e. we have λ(e) = cla(leaf(e)) for all e ∈ E. In this case we call D
correct.
Now we can properly define the two problems we mentioned in Section 1.

Decision Tree Size (DTS)

Instance: A training data set (E, λ) and a size bound s.
Question: Is there a decision tree of size at most s that classifies (E, λ)?

Minimum Decision Tree Size (MDTS)

Instance: A training data set (E, λ).
Task: Find the smallest s such that there is a decision tree of size at most s

that classifies (E, λ).
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3 Base Algorithm and Experimental Setup

In this section we will explain in more detail how the base version of our algorithm
works. As mentioned above our algorithm is a special case of the witness tree algorithm
developed by Komusiewicz et al. [1] where the ensemble size is one. That means the
correctness of this special case directly follows from the correctness of the witness tree
algorithm.
Before we can properly explain how the algorithm works we first need to introduce

some important definitions. We start by defining a witness tree as a tuple W =
(T, cut, cla,wit) where (T, cut, cla) is a decision tree and wit : V (T ) → E is a map
that maps each leaf ℓ to an example e ∈ E[ℓ] such that the class of e matches the class
of ℓ. We call these examples witnesses of W . Additionally, since a witness tree is just
an extension of a decision tree, any definition and notation we introduced in Section 2
that involves a decision tree works the same way for witness trees.
Next we need a way to extend a witness tree by adding a new inner vertex and a new

leaf. For this we define one-step-refinements. A one-step-refinement of a witness tree W
is a tuple (v, i, t, e) where v ∈ V (W ) is some vertex in W , (i, t) is a cut in Cuts(E)
and e ∈ E[W, v] is an example. We define RefAll(W ) as the set of all possible one-step-
refinements for W . Applying a one-step-refinement r = (v, i, t, e) to a witness tree W
works in the following way.
First we subdivide the edge from v to its parent p by adding a new inner vertex u.

Now, p is the parent of u and u is the parent of v. If v was previously the left child
of p then u is now the new left child. Similarly, if v was previously the right child of p
then u is now the new right child. It is of course possible that v is the root of the tree
and therefore does not have a parent p. In that case u becomes the new root.
Next we add a new leaf ℓ as the second child of u with v being the first child. To

determine which vertex is the left child and which vertex is the right child we look at
the the example e and the cut (i, t). We want e to be assigned to the new leaf ℓ. That
means if e is on the left side of (i, t), i.e. e ∈ E[≤ (i, t)], we make ℓ the left child of u.
Otherwise we make ℓ the right child of u. Finally we set the cut of u to (i, t), the class
of ℓ to the class of e and the witness of ℓ to e.
In this way we create a new witness tree R and we write W

r−→ R to represent that R
was created by applying r toW . If we apply a sequence of one-step-refinements r1, . . . , rn
to create R we write W

r1,...,rn−−−−→ R. Finally we define Ref(W ) ⊆ RefAll(W ) as the set of
all one-step-refinements r = (v, i, t, e) of W such that e ∈ Dirty(W ) is dirty in W and r
does not change the leaf of any witness of W . This set is important because it contains
all one-step-refinements that are relevant for the algorithm.
With these definitions we can now explain how the algorithm works. The algorithm

starts with a witness tree that just contains one leaf and no inner vertices. We choose
an arbitrary witness for this leaf and set the class of this leaf to the class of the witness.
The algorithm then chooses a dirty example e and iterates over all one-step-refinements
where e is the dirty example. The idea is that since e is currently dirty, we need to
assign e to a new leaf that has the same class as e if we want to correctly classify all
examples. The one-step-refinements with e as the dirty example do this by making e

8



Algorithm 1 Base Witness Tree Algorithm

Input: A witness tree W , a training data set (E, λ), and a maximum size s ∈ N.
Output: A witness tree of size at most s that classifies (E, λ) or ⊥ if none could be

found.
1: function Refine(W , (E, λ), s)
2: if W classifies (E, λ) then
3: return W
4: if size of W is equal to s then
5: return ⊥
6: e← some dirty example from Dirty(W )
7: for all r = (v, i, t, e) ∈ Ref(W ) do
8: Apply r to W to create the new witness tree R
9: R′ ← Refine(R, (E, λ), s)
10: if R′ ̸= ⊥ then
11: return R′

12: return ⊥

the witness of the leaf that they add to the tree and assigning the class of e to that leaf.
Next the algorithm applies these one-step-refinements to the current tree and then

recursively calls itself for each new tree that is created in this way. The recursion either
ends when the current tree classifies the data or when the tree has reached the maximum
size s and does not classify the data. Algorithm 1 shows the pseudocode.
In Line 2 we first check if the witness tree already classifies the data. If that is not

the case we check in Line 4 wether the tree has reached the maximum size s. In Line 6
we choose an arbitrary dirty example e and in Line 7 we iterate over every one-step-
refinement in Ref(W ) that uses e as the dirty example. Next we apply the current
one-step-refinement to W and recursively call the algorithm with the new witness tree
in Lines 8 and 9. In Line 10 we check if the recursive call has found a solution or not.
Lastly if no solution could be found for any of the one-step-refinements we return ⊥ in
Line 12.
Running the algorithm creates a search tree where each node N represents a call of

Refine. To avoid confusion we will always refer to the vertices of the search tree as
nodes. We will use Tree(N) to refer to the witness tree W that Refine is called with
and we will use ex(N) to refer to the dirty example that is chosen in Line 6 of the pseudo
code. The nodes created by calling Refine in Line 9 are the children of the current
node N .
We now explain the specific order in which the algorithm iterates over the one-step-

refinements in Line 7. This ordering will also induce an ordering on the children of the
current node N . First, the algorithm chooses the vertex v of the one-step-refinement by
iterating over the vertices on the leaf to root path starting at the leaf ℓ of e. Next, the
algorithm chooses the dimension i by iterating over all dimensions from 1 to d. Lastly,
the algorithm chooses the threshold t by iterating over all thresholds in Thr(i) that are
between e[i] and wit(ℓ)[i]. The algorithm always starts with the thresholds that are
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closest to e[i] regardless of whether e[i] is bigger than wit(ℓ)[i] or smaller. Some of those
thresholds may change the leaf of some witnesses. The algorithm skips such thresholds.

3.1 Dirty Example Priority

We currently have not specified how exactly the algorithm chooses the dirty example in
Line 6. This is because the example that we choose does not matter for the correctness
of the algorithm. However, this also allows us to introduce the first improvement to the
algorithm where we try to choose the dirty example such that the size of the search tree
is as small as possible.
The motivation for this is the running time bound O((δDS)S · Sn) for the algorithm

that we previously mentioned in Section 1. To obtain this running time bound, Ko-
musievicz et al. used δDS as an upper bound on the number of one-step-refinements
that the algorithm loops through in Line 7. This shows that reducing the number of
one-step-refinements that the algorithm loops through can have a large effect on the
running time of the algorithm.
One way we can do this is to simply choose the dirty example e such that the number

of one-step-refinements is as small as possible. However calculating this for every dirty
example every time Refine is called would take too long. Instead we recalculate this
number for an example e only when it is assigned to a new leaf. This can of course lead
to these numbers being inaccurate if many one-step-refinements are performed on the
tree that do not change the leaf of e. However our preliminary experiments have shown
that this is a good tradeoff.
We can use the same idea to choose the witness of the initial leaf and the dirty example

that is chosen in the first call of Refine. These two examples determine how many one-
step-refinements the algorithm has to go through in the initial call of Refine. That
means before the algorithm starts we can calculate the pair of examples with different
classes that minimizes the number of one-step-refinements, that is, the number of cuts
seperating them.

3.2 Solving MDTS

Next, we present a way to use Algorithm 1 to solve MDTS. The goal is to find an s
such that Algorithm 1 returns a decision tree when called with s and ⊥ when called
with s − 1. To do this we can start by calculating a lower bound for the value of s.
We then linearly increase s by one each time the algorithm returns ⊥. This way we
find the optimal value of s while never calling the algorithm for an s that is bigger than
necessary.
For the lower bound we will initially just use s = 1. In Section 5 we will introduce a

lower bound that is a lot better than this trivial lower bound.
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Table 1: Overview of the datasets we used for our experiments including their name,
number of examples n, number of dimensions d, number of total cuts c, maxi-
mum number of dimensions in which two examples differ δ and the maximum
number of unique values in a dimension D

name n d c δ D
appendicitis 106 7 523 7 99
australian 690 18 1155 16 350
auto 202 52 961 31 184
backache 180 55 469 26 180
biomed 209 14 735 9 191
breast-cancer 266 31 40 15 11
bupa 341 5 307 5 94
cars 392 12 704 9 346
cleve 302 27 390 18 152
cleveland 303 27 391 18 152
cleveland-nominal 130 17 17 11 2
cloud 108 7 585 7 108
colic 357 75 408 36 85
contraceptive 1358 21 66 13 34
dermatology 366 129 188 57 61
diabetes 768 8 1246 8 517
ecoli 327 7 351 6 81
glass 204 9 894 9 172
glass2 162 9 709 9 136
haberman 283 3 89 3 49
hayes-roth 84 15 15 8 2
heart-c 302 27 390 18 152
heart-h 293 29 325 19 154
heart-statlog 270 25 376 18 144
hepatitis 155 39 355 28 85
hungarian 293 29 325 19 154
lupus 86 3 126 3 75
lymphography 148 50 50 26 2
molecular biology promoters 106 228 228 104 2
new-thyroid 215 5 329 5 100
postoperative-patient-data 72 22 22 14 2
schizo 340 14 2218 14 203
soybean 622 133 133 68 2
spect 219 22 22 22 2
tae 106 5 96 5 46

3.3 Experimental Setup

In the following sections we will present several improvements to Algorithm 1. In order
to show the effect of these improvements, we will show the results of experiments where
we only use the improvements we have shown up to that point and the new improvement.
We will then compare those results to the results of the previous section. After we have
presented all of the improvements, we will compare the final version of our algorithm
with the algorithms presented by Janota et al. [4] that also solve MDTS. In this section
we will explain the details of how we performed those experiments.
Each of our experiments was performed on a single thread of an Intel(R) Xeon(R)

Silver 4116 CPU with 2.1 GHz, 12 CPUs, 24 threads, and 128 GB RAM running Java
openjdk 17.0.4. We implemented the algorithm in Kotlin and the code is available on
Github at https://github.com/LucaStaus/master-thesis-code.

11
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Figure 2: Comparison of the algorithm with and without dirty example priority.

For our experiments, we used 35 datasets that were also used by Janota et al. [4] for
their experiments. The datasets are part of the Penn Machine Learning Benchmarks [2]
and can all be found on this website https://epistasislab.github.io/pmlb/index.
html. Table 1 shows an overview of the datasets.
Before we could use the datasets for our experiments we had to modify them slightly

as follows: First we needed to replace categorical dimensions since our algorithm does
not support such dimensions. We did that by creating a new binary dimension for each
category. In each of those dimensions, we assigned the value 1 to an example if it has
the category of that dimension and 0 if not. We also had to deal with some datasets
having more than two classes. In that case we simply found the most common class and
turned an example into a red example if it had that class. Otherwise, we turned it into
a blue example. Lastly, there were some datasets with pairs of examples that had the
same values in all dimensions but had different classes. We simply removed one example
from each such pair.
Similar to Janota et al. [4], we randomly sampled multiple subsets of the examples

from each dataset. Specifically, for each dataset we chose 10 random subsets with 20%
of the examples and 10 random subsets with 50% of the examples. This means we ran
our experiments on a total of 700 instances. Additionally, we ran each instance with a
timeout of 30 minutes.

3.4 Evaluation

In this section, we evaluate the base version of our algorithm and show the effect of
dirty example priority. To show these results we use Figure 2. It shows the total
number of solved instances over time for each version of the algorithm. The red dashed
line represents Algorithm 1 without dirty example priority and the blue line represents
Algorithm 1 with dirty example priority. We will call these two versions Basic and Imp1
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respectively.
In total, Basic solved 219 of the 700 instances. Imp1 was able to solve the same 219

instances plus an additional 28 instances. Out of the 219 instances that were solved by
both algorithms, only 10 instances could be solved more than one second faster with
Basic than with Imp1. Imp1 also significantly decreases the size of the search trees.
On average, the search trees of Imp1 had 52% less nodes than the search trees of the
same instances solved by Basic. This shows that the dirty example priority had the
desired effect of reducing the number of children in each search tree node. Overall, we
can conclude that dirty example priority is an improvement which almost always speeds
up the algorithm substantially.
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4 Data Reduction

In this section, we will present some techniques for reducing the input data. The idea
is that we can sometimes transform a dataset into a smaller dataset without changing
the solution to any instance of DTS. Here, smaller can refer to the number of examples,
the number of dimensions, or the number of cuts. To formalize this idea we introduce
reduction rules with the following definition.

Definition 4.1. A reduction rule is a function r that maps any dataset (E, λ) to another
dataset (E ′, λ′). We call r correct if there is a decision tree of size s that correctly classi-
fies (E, λ), if and only if there is a decision tree of size s that correctly classifies (E ′, λ′).

In the following subsections we will introduce five reduction rules that decrease the
size of the dataset. To demonstrate how they work we will use the dataset in Table 2 as
an example.

4.1 Removing Examples and Dimensions

The first two reduction rules are very simple. We can use them to remove uneccessary
examples or dimensions.

Remove Duplicate Example Rule:

Let (E, λ) ba a dataset and let e1, e2 ∈ E be a pair of examples. If e1 and e2 have
the same value in all dimensions, then remove e1.

Remove Dimension Rule:

Let (E, λ) be a dataset and let i be a dimension. If all examples in i have the same
value, then remove dimension i.

The first rule is clearly correct because two examples with the same values in all
dimensions have the same class and would always end up in the same leaf of any decision
tree. Removing one of them therefore does not change wether a decision tree is correct
or not.
The second rule is clearly correct because a dimension where all examples have the

same value does not have any cuts. That means a decision tree will never use this
dimension anyway.

4.2 Equivalent Cuts

The third reduction rule is called the Equivalent Cuts Rule. The idea of this rule is to
remove cuts from the dataset that are equivalent to other cuts. To better understand
what it means for two cuts to be equivalent we can look at the two cuts (d1, 1) and (d2, 1)
in Table 2. Their left sides E[≤ (d1, 1)] and E[≤ (d2, 1)] are both equal to {a, b}. That
means if we replace the cut (d1, 1) in a decision tree with the cut (d2, 1) no example
would be assigned to a different leaf.
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Table 2: Example Dataset for Section 4.

d1 d2 d3 class
a 0 1 0 red
b 1 0 0 red
c 2 2 2 blue
d 3 2 1 red

With this we can define an equivalence relation over the set of all cuts Cuts(E). Two
cuts (i1, t1), (i2, t2) ∈ Cuts(E) are equivalent if E[≤ (i1, t1)] = E[≤ (i2, t2)]. We can now
use this relation to define the Equivalent Cuts Rule:

Equivalent Cuts Rule:

Let (E, λ) be a dataset and let (i1, t1), (i2, t2) ∈ Cuts(E) be two cuts. If (i1, t1) and
(i2, t2) are equivalent, then remove (i1, t1).

Next we will explain how removing a cut (i, t) from a dataset works. To remove
this cut, we need to remove the thresholds t from Thr(i). According to the definition
of Thr(i) there must be at least one pair of examples e1, e2 ∈ E such that t is the only
threshold in dimension i with e1[i] ≤ t < e2[i]. By setting the value in dimension i of the
examples in every pair with this property to t, we remove t from Thr(i). At the same
time this transformation ensures that the left and right side of every other cut does not
change.
If for example we want to remove the cut (d1, 1) from the dataset in Table 2 we

would find that the only pair of examples that has the property mentioned above is the
pair (b, c). All other pairs can also be split by the cuts (d1, 0) or (d1, 2). That means we
now set the values of b and c in dimension d1 to 1.
Now we just need to show that the Equivalent Cuts Rule is correct.

Lemma 4.1. The Equivalent Cuts Rule is correct.

Proof. Let (E, λ) be the original dataset and (E ′, λ′) be the dataset that was created
by the equivalent cuts rule. If a decision tree correctly classifies (E ′, λ′) then it also
correctly classifies (E, λ′) since the rule only removes cuts. If a decision tree correctly
classifies (E, λ) we can replace all cuts that were removed by the rule with the one cut
that was not removed from their equivalence class. This creates a tree with the same
size that correctly classifies (E ′, λ′).

4.3 Reducing the size of Dimensions

With the fourth reduction rule, we want to remove the extreme values in some dimen-
sions. For this let us again look at dimension d1 in Table 2. The left side E[≤ (d1, 0)] of
the cut (d1, 0) only contains a red example. The left side E[≤ (d1, 1)] of the cut (d1, 1)
also only contains red examples while the right side contains fewer examples.
If one of these cuts is used in a decision tree that correctly classifies the data and

does not contain empty leafs, then the left subtree of the vertex using these cuts would

15



Table 3: Example for merging the two dimensions d2 and d3.

(a) Before the merge.

d1 d2 d3 class
b 1 0 0 red
a 0 1 0 red
d 3 2 1 red
c 2 2 2 blue

(b) After the merge.

d1 d4 class
b 1 0 red
a 0 1 red
d 3 2 red
c 2 3 blue

just be a single leaf with the class red. That means replacing the cut (d1, 0) with the
cut (d1, 1) in such a tree would create a decision tree that has the same size and still
correctly classifies the data.
This leads to the following reduction rule.

Dimension Reduction Rule:

Let (E, λ) be a dataset and let (i, t1), (i, t2) with t1 < t2 be a pair of cuts. If all exam-
ples on the left side of both cuts have the same class, then remove (i, t1). Similarly, if
all examples on the right side of both cuts have the same class, then remove (i, t2).

Removing a cut works the same way as it does with the Equivalent Cuts Rule.

Lemma 4.2. The Dimension Reduction Rule is correct.

Proof. Let (E, λ) be the original dataset and (E ′, λ′) be the dataset that was created
by the equivalent cuts rule. If a decision tree correctly classifies (E ′, λ′), then it also
correctly classifies (E, λ′) since the rule only removes cuts.
Let D be a decision tree that correctly classifies (E, λ). If the cut (i, t) of an inner

vertex in D was removed and the threshold t is smaller than the smallest threshold t′ of
dimension i in (E ′, λ′), we can replace (i, t) with (i, t′). We can also do this replacement
if t′ is the biggest threshold of dimension i in (E ′, λ′) and t is bigger than t′.
Without loss of generality, let us assume that t is smaller than t′. Since the rule

removed (i, t) we know that all examples on the left sides of the cuts (i, t) and (i, t′)
must have the same class. Replacing (i, t) by (i, t′) means the right side is still correctly
classifies while the left side can be classified without any further cuts. This means there
is a tree with the same size as D that correctly classifies (E ′, λ′).

4.4 Merging Dimensions

With the last reduction rule we want to merge dimensions together in order to reduce
the number of dimensions while keeping the number of different cuts the same. This
may not seem useful at first but in Section 6 we will introduce an improvement of the
algorithm that will benefit from this.
To better demonstrate what merging two dimensions means we can look at dimen-

sions d2 and d3 in Table 2. If we now look at the examples in the order b, a, d, c as shown
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Table 5: Overview of the datasets we used for our experiments including their name,
number of examples n, number of dimensions d, number of total cuts c, maxi-
mum number of dimensions in which two examples differ δ and the maximum
number of unique values in a dimension D. The columns n′, d′, c′, δ′ and D′

show the values of the datasets after applying all reduction rules.
name n n′ d d′ c c′ δ δ′ D D′

appendicitis 106 106 7 7 523 460 7 7 99 98
australian 690 690 18 16 1155 1119 16 15 350 350
auto 202 202 52 35 961 916 31 29 184 182
backache 180 180 55 50 469 429 26 26 180 151
biomed 209 209 14 14 735 577 9 9 191 125
breast-cancer 266 266 31 25 40 40 15 15 11 11
bupa 341 341 5 5 307 302 5 5 94 94
cars 392 388 12 11 704 531 9 9 346 266
cleve 302 302 27 25 390 382 18 18 152 151
cleveland 303 303 27 25 391 383 18 18 152 151
cleveland-nominal 130 130 17 17 17 17 11 11 2 2
cloud 108 108 7 7 585 555 7 7 108 100
colic 357 357 75 71 408 400 36 36 85 82
contraceptive 1358 1358 21 21 66 65 13 13 34 34
dermatology 366 366 129 101 188 188 57 53 61 61
diabetes 768 768 8 8 1246 1238 8 8 517 515
ecoli 327 326 7 5 351 233 6 5 81 59
glass 204 204 9 9 894 846 9 9 172 165
glass2 162 162 9 9 709 667 9 9 136 132
haberman 283 283 3 3 89 86 3 3 49 46
hayes-roth 84 84 15 15 15 15 8 8 2 2
heart-c 302 302 27 25 390 382 18 18 152 151
heart-h 293 293 29 22 325 318 19 19 154 154
heart-statlog 270 270 25 23 376 369 18 18 144 142
hepatitis 155 155 39 28 355 335 28 25 85 85
hungarian 293 293 29 22 325 318 19 19 154 154
lupus 86 79 3 2 126 78 3 2 75 53
lymphography 148 148 50 37 50 50 26 23 2 3
molecular biology promoters 106 106 228 228 228 228 104 104 2 2
new-thyroid 215 214 5 5 329 232 5 5 100 73
postoperative-patient-data 72 72 22 17 22 22 14 14 2 3
schizo 340 340 14 14 2218 2209 14 14 203 203
soybean 622 622 133 73 133 108 68 49 2 7
spect 219 219 22 22 22 22 22 22 2 2
tae 106 106 5 5 96 94 5 5 46 45

in Table 4a we can see that their values in both dimensions never decrease. We can now
create a new dimension d4 with the values shown in Table 4b. We chose the values such
that for each cut in dimension d2 or d3, there is an equivalent cut in d4. This means we
can now completely remove dimensions d2 and d3 and if any decision tree uses a cut in
one of these dimensions, we can just replace it with the equivalent cut in d4. This leads
to the following rule.

Dimension Merge Rule:

Let (E, λ) be a dataset and let i1, i2 be a pair of dimensions. If there is an ordering
of the examples such that their values never decrease in either dimension, then we
can create a new dimension i1,2 such that for each cut in dimensions i1 and i2, there
is an equivalent cut in dimension i1,2. We then remove i1 and i2.

We can generate the values of each example in the new dimension in the following
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Figure 3: Comparison of the algorithm with and without datareduction.

way: We go through the examples in the order mentioned in the rule. We then start by
assigning each example the value 0. Every time the value of the examples increases in
one of the two original dimensions, we need a cut in the new dimension that has all the
previous examples on its left side. To achieve this, we increase the value we assign to
the remaining examples in the new dimension by 1.

Lemma 4.3. The Dimension Merge Rule is correct.

Proof. Let (E, λ) be the original dataset and (E ′, λ′) be the dataset that was created
by the dimension merge rule. After adding the new dimension to (E ′, λ′), there is
an equivalent cut in this new dimension for each cut in the original two dimensions.
The correctness of the Equivalent Cuts Rule shows that removing all cuts from the
two dimensions that were merged together is correct. Removing these cuts leads to all
examples having the same value in these two dimensions. The correctness of the Remove
Dimension Rule shows that removing these two dimensions is also correct.

4.5 Evaluation

We now evaluate the effectiveness of the above reduction rules. First, however, we need
to define the order in which we use the reduction rules. This is important because
applying the same rules to the same dataset in two different orders may lead to different
results.
We start by removing as many cuts as possible. We do this by first using the Dimension

Reduction Rule and then the Equivalent Cuts Rule. Next we use the Dimension Merge
Rule to remove as many dimensions as possible. Finally we use the Remove Duplicate
Examples Rule and the Remove Dimension Rule to clean up the data. It is important
to note that if we say we use a certain rule, then that means we use the rule as many
times as possible and not just once.
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To give a general overview of how effective these rules are, we can apply them to the
datasets in Table 1. The results of this are shown in Table 5.
Next, we will evaluate the effect that these reduction rules have on the running time

of the algorithm. For this we will compare a version of our algorithm that uses all
improvements we have shown so far including all reduction rules with a version that
uses all improvements except the reduction rules. We will refer to these algorithms as
Imp2 and Imp1, respectively.
Figure 3 shows this comparison. Imp1 was able to solve 247 out of the 700 total

instances. Imp2 solved 260 instances and was therefore able to solve slightly more
instances than Imp1. There were however two instances that Imp1 could solve that were
not solved by Imp2. Out of the 245 instances that were solved by both algorithms, there
were only 12 where Imp2 took more than one second longer to solve them than Imp1.
This shows that, overall, Imp2 performed slightly better than Imp1. Moreover, the

main advantage of these reduction rules is that they are a protection against datasets
with a high level of redundancy.
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5 Lower Bounds

In this section we will introduce two lower bounds that we can use to prune the search
tree. In both lower bounds an instance of Set Cover is constructed and then a lower
bound is calculated for this instance. The definition of Set Cover is as follows.

Set Cover
Instance: A universe U and a family S of subsets of U .
Task: Compute the size k of the smallest subset S ′ ⊆ S such that the union

of all sets in S ′ is equal to U .

We will show that for our two lower bounds, the size k of the smallest subset S ′

is a lower bound for the minimum number of one-step-refinements that are needed to
correctly classify the current witness tree. We can then calculate these lower bounds
after Line 5 in each call of Refine in Algorithm 1. If k is bigger than s minus the
current size of W we can return ⊥.
However, since Set Cover is NP-hard calculating the exact value of k in every call

of Refine is not feasible. Instead we are going to introduce different ways of calculating
a lower bound for k.

5.1 Improvement Lower Bound

The first lower bound is called the Improvement Lower Bound (ImpLB). The idea be-
hind this lower bound is to find the minimum number of one-step-refinements that are
necessary to correctly classify only the examples that are dirty in the current witness
tree W while ignoring the examples that are already correctly classified. Moreover we
will ignore that one-step-refinements may interfere with each other and consider the
effect of each one-step-refinement separately. To assess this effect, we use the following
definition.

Definition 5.1. Let W be a witness tree, E ′ ⊆ Dirty(W ) a set of dirty examples
and r ∈ Ref(W ) a one-step-refinement with W

r−→ R. Then we define

imp(W,E ′, r) := {e′ ∈ E ′ | e′ ̸∈ Dirty(R)}

as the set of dirty examples that get correctly classified by r. We call these sets the imp
sets.

With this definition an imp set is basically a set of dirty examples that can all be
correctly classified with just a single one-step-refinement. We can now create an instance
of Set Cover by choosing Dirty(W ) as the universe and

I = {imp(W,Dirty(W ), r) | r ∈ Ref(W )}

as the family of subsets. To demonstrate how an instance like this can look, consider the
example in Figure 4. On the left it shows a dataset and on the right it shows a witness
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d1 d2 class
a 0 3 blue
b 1 2 red
c 2 2 blue
d 2 1 red
e 2 0 blue

(a) An example dataset with n = 5 and d = 2.

A
(d1, 1)

B

wit: b

C

wit: c

(b) An example witness tree. A has the cut
(d1, 1), B has the witness b and C has the
witness c.

Figure 4: Example dataset and witness tree.

tree W with one inner vertex A and two leafs B and C. The set Ref(W ) contains six
one-step-refinements.

Ref(W ) = {(B, d1, 0, a), (B, d2, 2, a), (A, d1, 0, a), (A, d2, 2, a), (C, d2, 1, d), (A, d2, 1, d)}

The imp sets imp(W,Dirty(W ), r) for these one-step-refinements look like this.

{a}, {a}, {a}, {a}, {d}, {d}

That means the Set Cover instance for this example has the universe U = {a, d} and
the set of subsets I = {{a}, {d}}.

5.1.1 Correctness Proof

To show that the solution of this instance is a lower bound as described above, we
show that for any series of s one-step-refinements that correctly classify W there is a
set I ′ ⊆ I of size at most s such that the union of all sets in I ′ is equal to Dirty(W ).
This is captured in Theorem 5.1.

Theorem 5.1. Let W := R0 be a witness tree and (r1, . . . , rs) a series of one-step-

refinements with Ri−1
ri−→ Ri, ri ∈ Ref(Ri−1) for i ∈ [s] such that Rs classifies (E, λ).

Then there must be a set I ⊆ Ref(W ), |I| ≤ s, such that⋃
r∈I

imp(W,Dirty(W ), r) = Dirty(W ).

However to prove Theorem 5.1 we first need to prove Lemma 5.2. With this lemma we
want to show the following: If R was created by applying a one-step-refinement to W
then for any imp set S in R there is an imp set in W that is a superset of S. An
important detail is that we calculate these imp sets with respect to the dirty examples
in W . That means if there is a dirty example in R that was not dirty in W we will
ignore it.
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Lemma 5.2. Let W be a witness tree, E ′ ⊆ Dirty(W ) a subset of the dirty examples
in W , and r ∈ Ref(W ) a one-step-refinement with W

r−→ R. Then, for each one-step-
refinement r2 ∈ Ref(R) there exists a one-step-refinement r1 ∈ Ref(W ), such that

imp(R,E ′′, r2) ⊆ imp(W,E ′, r1)

with E ′′ := E ′ \ imp(W,E ′, r).

Proof. Let r = (v, i, t, e) and let r2 = (v′, i′, t′, e′) ∈ Ref(R) be some one-step-refinement
for R. We now just need to find some one-step-refinement r1 ∈ Ref(W ) such that
imp(R,E ′′, r2) ⊆ imp(W,E ′, r1). We can assume that imp(R,E ′′, r2) ̸= ∅, as other-
wise imp(R,E ′′, r2) = ∅ ⊆ imp(W,E ′, r1) for any r1 ∈ Ref(W ). By definition we
know that imp(R,E ′′, r2) ⊆ E ′′ ⊆ E ′ ⊆ Dirty(W ). Now we know there is some ex-
ample e′′ ∈ imp(R,E ′′, r2) which is dirty in W .
Let u be the inner node and ℓ the leaf that are added to W by r. We can now

distinguish between three cases based on the vertex v′.

1. (v′ ∈ V (W )): Here we choose r1 = (v′, i′, t′, e′′). Since e′′ was correctly clas-
sified by r2 we know that e′′ must be in E[R, v′] ⊆ E[W, v′]. We also know
that r1 does not change the leaf of any witnesses since r2 ∈ Ref(R). There-
fore we have r1 ∈ Ref(W ). Any example d ∈ imp(R,E ′′, r2) is a dirty exam-
ple in W and contained in E[W, v′]. Therefore r1 correctly classifies d and we
have imp(R,E ′′, r2) ⊆ imp(W,E ′, r1).

2. (v′ = u): Here we choose r1 = (v, i′, t′, e′′). The proof for this case works as in the
first case since we have E[R, v′] = E[R, u] = E[W, v].

3. (v′ = ℓ): Here we choose r1 = (v, i, t, e′′). We know that e′′ ∈ E[R, ℓ] ⊆ E[W, v].
We also know that r1 does not change the leaf of any witnesses since r ∈ Ref(W ).
Therefore we have r1 ∈ Ref(W ). Any example d ∈ imp(R,E ′′, r2) was assigned
to ℓ by the inner node u that was added by r. Since we also have d ∈ E[W, v] we
know that d will be assigned to the new leaf that is created by r1. All examples
in imp(R,E ′′, r2) have the same class which means λ(e′′) = λ(d). Therefore r1
correctly classifies d and we have imp(R,E ′′, r2) ⊆ imp(W,E ′, r1).

With this lemma we can now prove Theorem 5.1.

Proof for Theorem 5.1. Let E0 := Dirty(W ) and Ei := Ei−1 \ imp(Ri−1, Ei−1, ri) for
all i ∈ [s]. By Lemma 5.2, for each i ∈ [s] there is a one-step-refinement r′i ∈ Ref(W )
with the following property:

imp(Ri−1, Ei−1, ri) ⊆ imp(W,Dirty(W ), r′i). (1)

Let I = {r′i | i ∈ [s]}. Clearly |I| ≤ s. Since Rs classifies (E, λ) and Es ⊆ Dirty(Rs)
we must have Es = ∅. This implies

⋃
i∈[s] imp(Ri−1, Ei−1, ri) = Dirty(W ). Due to

Property (1) we now also know
⋃

r∈I imp(W,Dirty(W ), r) = Dirty(W ).
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5.1.2 Calculating the ImpLB

As mentioned above, we cannot simply calculate the solution for the Set Cover in-
stance due to the NP-hardness of Set Cover. Instead, we calculate a lower bound for
the Set Cover instance.
The idea is to not look at the content of each set, but to look at their sizes instead.

Specifically this means we now try to find the smallest set of subsets such that the sum
of their sizes is bigger or equal to the size of the universe. Clearly, this is a lower bound.
To calculate the ImpLB we now just need to look at each one-step-refinement r ∈

Ref(W ), calculate the size of imp(W,Dirty(W ), r), sort the sizes in descending order and
then check how many are needed to reach a sum that is at least the size of Dirty(W ).
For the example in Figure 4 this would not make a difference since each subset in I

has size one and there is no overlap. But let us instead assume we had the universe U =
{a, b, c, d} and the set of subsets I = {{a, b}, {b, c}, {d}}. The optimal solution for this
instance of Set Cover would be 3 since we need all three sets to cover U . Our method
turns I into a list of the sizes of each set sorted in descending order, giving [2, 2, 1]. We
would then sum up the numbers from left to right until we reach the size of U . In this
case we would need two numbers which is worse than the exact result. But for larger
instances this method is much quicker to calculate since we do not need to look at the
overlap between the sets. However there are some things we can do to speed up the
calculation even more and improve the result at the same time.
First, we can use a data reduction technique for Set Cover instances. If a set A

is a subset of a set B then we can remove A from our instance since it would always
be better to choose B instead. Of course checking this subset relationship for every
pair of imp sets in our instance every time we want to calculate the ImpLB would be
inefficient. Instead, we just eliminate sets where we already know that they are a subset
of a different set. We do this in the following way:
Consider two one-step-refinements r1 = (p, i, t, e) and r2 = (v, i, t, e) where p is the

parent of v. Clearly imp(W,Dirty(W ), r2) is a subset of imp(W,Dirty(W ), r1) since
both one-step-refinements use the same cut and E[W, v] is a subset of E[W, p]. So when
calculating the ImpLB we now only use one-step-refinements r = (v, i, t, e) if the same
one-step-refinement can not be applied at the parent p of v, i.e. when (p, i, t, e) is not
in Ref(W ).
For the next improvement, consider the example in Figure 4 again. The two one-step-

refinements (B, d1, 0, a), (B, d2, 2, a) are both applied to the same leaf B. If we now look
at the sizes of their imp sets and add them up we get 2 since they both correctly classify
the dirty example a. But we know that the set E[B] only contains one dirty example.
That means we can ignore one of the two one-step-refinements since we only need one
to reach the number of dirty examples in that leaf. In this example this does not make a
difference but in bigger instances we might be able to ignore very large sets in this way.
Additionally, we can use this idea for any subtree and not just leafs.
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Algorithm 2 ImpLB Algorithm

Input: A witness tree W and a training data set (E, λ).
Output: A lower bound for the number of one-step-refinements that are still required

for W to classify (E, λ).
1: function CalcImpLB(W ,(E, λ))
2: for all v ∈ V (W ) do Pv ← empty Priority Queue
3: root← root of W
4: Recurse(W ,(E, λ),root)
5: return |Proot|
6: function Recurse(W ,(E, λ),v)
7: if v is an inner vertex then
8: ℓ, r ← left child of v, right child of v
9: Recurse(W ,(E, λ),ℓ)
10: Recurse(W ,(E, λ),r)
11: Pv.addAll(Pℓ)
12: Pv.addAll(Pr)
13: p← parent of v or null if v is the root of W
14: for all r = (v, i, t, e) ∈ Ref(W ) do
15: if p = null ∨ (p, i, t, e) /∈ Ref(W ) then
16: Pv.add(| imp(W,Dirty(W ), r)|)
17: d← number of dirty examples in the subtree of v
18: while sum(Pv)− Pv.min() > d do
19: Pv.removeMin()

5.1.3 Algorithm for ImpLB

Algorithm 2 shows the pseudo code for calculating the ImpLB as described above includ-
ing the two improvements. The algorithm starts by initializing an empty priority queue
for each vertex in the tree in Line 2. These are for storing and sorting the sizes of the imp
sets. Next Recurse is called for the root of W . Recurse starts by calling itself for the
left and right child of v and adding the content of their priority queues to the priority
queue of v in Lines 7 through 12. This is of course only done if v is not a leaf. Next,
in Line 14, the algorithm iterates over every one-step-refinement in Ref(W ) that can
be performed at v. In Line 15 the algorithm checks that the same one-step-refinement
can not be applied at the parent if a parent exists. This is the first improvement we
mentioned above. The size of the imp set of r is then added to Pv in Line 16. Finally
in Lines 17 – 19 we remove the smallest numbers from Pv until removing even one more
would make the sum of the numbers in Pv smaller than the number of dirty examples
in the subtree of v. This is the second improvement we mentioned above. The ImpLB
is then just the size of Proot as can be seen in Line 5.
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5.2 Pair Lower Bound

Next we define the Pair Lower Bound (PairLB). For this lower bound we look at pairs
of vertices with different classes. For a witness tree W , we define Pairs(W ) as the set
of all pairs {e1, e2} ⊆ E with λ(e1) ̸= λ(e2) and leaf(e1) = leaf(e2), that is the set of all
pairs of examples that are assigned to the same leaf but have different classes. Clearly
each pair will always contain exactly one dirty example. For the example in Figure 4
this set would be Pairs(W ) = {{a, b}, {c, d}, {d, e}}.
In a tree that correctly classifies the data this set must be empty since examples with

different classes must be in different leafs. Because of this we can now define a lower
bound that is similar to the ImpLB but instead of correctly classifying all dirty examples
we try to split up all existing pairs. We use Definition 5.2 to capture this idea.

Definition 5.2. For some subset of pairs P ⊆ Pairs(W ) and a one-step-refinement r ∈
RefAll(W ) with W

r−→ R, we define

pairsplit(W,P, r) := {p ∈ P | p ̸∈ Pairs(R)}

as the set of pairs that get split up by r We call these sets the pairsplit sets.

Similar to the imp sets a pairsplit set is a subset of Pairs(W ) in which all pairs can
be split up by a single one-step-refinement.
We can now create an instance of Set Cover by choosing Pairs(W ) as the universe

and P = {pairsplit(W,Pairs(W ), r) | r ∈ RefAll(W )} as the family of subsets. Notice
how we use the set of all one-step-refinements RefAll(W ) instead of the set Ref(W ) that
only contains one-step-refinement that the algorithm is allowed to use. This is because
this lower bound would not work if we used Ref(W ) instead of RefAll(W ). We can see
this by looking at the example in Figure 4 again. If we construct the pairsplit sets for
each one-step-refinement in Ref(W ) for this example we would get the following sets.

{{a, b}}, {{a, b}}, {{a, b}}, {{a, b}}, {{c, d}}, {{c, d}}.

Notice how none of these sets contain the pair {d, e}. This means if we only used the
one-step-refinements in Ref(W ) to construct the Set Cover instance, it would have no
solution. If we actually use all one-step-refinements in RefAll(W ) to construct the set of
subsets P and we remove all duplicates, we would get P = {{{a, b}}, {{c, d}}, {{d, e}}}
since there are no one-step-refinements that can split more than one pair at a time.

5.2.1 Correctness Proof

To show that the solution of such an instance of Set Cover is a correct lower bound, we
just need to show that for any series of s one-step-refinements that correctly classify W ,
there is a set P ′ ⊆ P of size at most s such that the union of all sets in P ′ is equal
to Pairs(W ). This is captured in the following theorem.
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Theorem 5.3. Let W := R0 be a witness tree and (r1, . . . , rs) a series of one-step-

refinements with Ri−1
ri−→ Ri, ri ∈ RefAll(Ri−1) such that Rs classifies (E, λ). Then,

there must be a set of at most s one-step-refinements I ⊆ RefAll(W ), |I| ≤ s, such that⋃
r∈I

pairsplit(W,Pairs(W ), r) = Pairs(W ).

Again similar to the ImpLB, we first need a lemma that has the same function as
Lemma 5.2: If R was created by applying a one-step-refinement to W then for any
pairsplit set in R, we want to show that there is a pairsplit set in W that is a superset of
the pairsplit set in R. An important detail is that we calculate these pairsplit sets with
respect to Pairs(W ). That means if there is a pair in Pairs(R) that is not in Pairs(W )
we will ignore it.

Lemma 5.4. Let W be a witness tree, P ⊆ Pairs(W ) a subset of the pairs in W and r ∈
Ref(W ) a one-step-refinement with W

r−→ R. Then for each one-step-refinement r2 ∈
RefAll(R), there exists a one-step-refinement r1 ∈ RefAll(W ), such that

pairsplit(R,P ′, r2) ⊆ pairsplit(W,P, r1)

with P ′ := P \ pairsplit(W,P, r).

Proof. Let r2 = (v, i, t, e) ∈ RefAll(R) be some one-step-refinement for R. We now just
need to find some one-step-refinement r1 ∈ RefAll(W ) such that pairsplit(R,P ′, r2) ⊆
pairsplit(W,P, r1).
Since R was created by applying a one-step-refinement to W we have RefAll(W ) ⊆

RefAll(R). Because of this we can simply choose r1 = r2. We know that P ′ ⊆ P
and we know that pairs in P ′ can never be added to subtrees in R that they were not
originally in before r was applied to W . Because of this we have pairsplit(R,P ′, r2) ⊆
pairsplit(W,P, r1).

Now we can prove Theorem 5.3. Due to the similarities in how we defined the ImpLB
and the PairLB this proof works exactly the same as the proof for Theorem 5.1.

Proof for Theorem 5.3. Let P0 := Pairs(W ) and Pi := Pi−1 \ pairsplit(Ri−1, Pi−1, ri)
for all i ∈ [s]. Due to Lemma 5.4 we know that for each i ∈ [s] there is a one-step-
refinement r′i ∈ RefAll(W ) with the following property:

pairsplit(Ri−1, Pi−1, ri) ⊆ pairsplit(W,Pairs(W ), r′i). (2)

Let I = {r′i | i ∈ [s]}. Clearly |I| ≤ s. Since Rs classifies (E, λ) and Ps ⊆ Pairs(Rs)
we must have Ps = ∅. That implies

⋃
i∈[s] pairsplit(Ri−1, Pi−1, ri) = Pairs(W ). Due to

property (2) we now also know
⋃

r∈I pairsplit(W,Pairs(W ), r) = Pairs(W ).
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5.2.2 Calculating the PairLB

To actually calculate a lower bound for this instance of Set Cover we could use the
same method we used for the ImpLB. However our preliminary tests showed that this
method does not yield very good results if we use it to calculate the PairLB. This is
probably due to the fact that we use RefAll(W ) instead of Ref(W ).
Instead we translate the problem instance into an ILP instance. We can then create

an LP relaxation of that instance and solve this relaxation with an LP solver. Clearly
the solution for the LP relaxation is a lower bound for the solution of the ILP instance
since we are dealing with a minimization problem.
To construct the ILP instance we will use the standard ILP formulation for Set

Cover. First, we introduce a binary variable xr for every one-step-refinement r ∈
RefAll(W ). We want xr to be equal to 1 if and only if the pairsplit set of r is part of
the set cover solution. Next we are going to introduce a constraint 1 ≤

∑
r∈Sp

xr for

every pair p ∈ Pairs(W ) where Sp := {r ∈ RefAll(W ) | p ∈ pairsplit(W,Pairs(W ), r)}
is the set of all one-step-refinements that split p. The objective function is then just
to minimize the sum of all variables. The LP relaxation is obtained by allowing the
variables to have any value between 0 and 1. This of course also makes it possible that
the result of the objective function will not be an integer. In that case we will simply
round up to the nearest integer.
To reduce the size of the LP instance and speed up the calculation we can again use

one of the data reduction techniques that we used for the ImpLB. This time we can
eliminate all subsets S that come from one-step-refinements that are not applied to the
root of the tree. Since we are using one-step-refinements from RefAll(W ) we can always
apply the same one-step-refinement at the root of W and get a subset that is a superset
of S.

5.3 Evaluation

Next, we will evaluate the effect that the two lower bounds have on the running time
of the algorithm. As mentioned above, we calculate the lower bounds after Line 5 in
each call of Refine in Algorithm 1 and return ⊥ if one of them is bigger than the
remaining size budget. However, preliminary experiments showed that the calculation
of the PairLB takes too long compared to how effective it is. Because of this we will
only calculate the PairLB once to obtain an initial lower bound for the solution of the
MDTS instance as mentioned in Section 3.2.
Now we compare a version of our algorithm that uses all improvements we have shown

so far including the lower bounds with a version that uses all improvements except the
lower bounds. We will refer to these algorithms as Imp3 and Imp2, respectively.
Figure 5 shows this comparison. Out of the 700 total instances Imp2 was able to

solve 260 instances. Imp3 was able to solve the same 260 instances plus an additional 60
instances. Also, all of those 260 instances were solved faster by Imp3 than they were
solved by Imp2. Imp3 also decreases the size of the search tree drastically. On average,
the search trees of Imp3 had 85% less nodes than the search trees of Imp2 on the same
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Figure 5: Comparison of the algorithm with and without lower bounds.

instances. All of this shows that the two lower bounds are a big improvement for the
algorithm in every instance.
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6 Subset Constraints

In this section we will introduce subset constraints. A subset constraint of a vertex v in
a witness tree W is a subset S ⊆ E[W, v] which imposes the constraint that one-step-
refinements are not allowed to remove all examples in S from the subtree of v. The
idea is that if such one-step-refinements lead to a correct tree then there would be a
different correct tree that does not violate this constraint. We formalize the idea of a
subset constraint in the following definition.

Definition 6.1. Let W be a witness tree and let v ∈ V (W ) be some vertex in W . We
call a subset C ⊆ E a Subset Constraint of v. We call C violated if E[W, v] ∩ C = ∅.
The set Const(W, v) contains all subset constraint of v in the tree W .

The intuition behind subset constraints is that sometimes a witness tree W can be
transformed into a slightly different witness tree W ′ without increasing the size and
without changing the classes that the tree assigns to the examples. This could for
example be done by simply changing the threshold t of a vertex v in W to a different
threshold t′. This does not change the size of W and as long as there are no examples
in the subtree of v that have values between t and t′ then there is no example that gets
assigned to a different leaf by this change. That means the algorithm can skip the search
tree node N with Tree(N) = W . If one of these search tree nodes leads to a correct tree
then there would be a different search tree node that leads to the same tree where t is
replaced by t′.
However, detecting that there are no examples inbetween t and t′ by simply checking

every pair of thresholds for every vertex is inefficient. Instead we want to use a subset
constraint C to keep track of the values inbetween t and t′. We would add C when v
is first added to the tree with the threshold t. Then, every time a one-step-refinement
changes the tree we update which examples of C are still in the subtree of v. That way
we immediatly know when C is violated.
To prove the correctness of the specific subset constraints we will introduce later in

this section, we first need to introduce the concept of a refinement.

6.1 Refinements

We want to be able to show that a witness tree R was created by applying one or more
one-step-refinements to a witness tree W by looking at the structure of both trees. For
this we will look at the following properties of one-step-refinements.
First we can notice that a one-step-refinement in Ref(W ) never changes any vertices

that already exist in W , it only adds an inner vertex and a leaf. The role of a vertex
also never changes: a leaf will always be a leaf and an inner vertex will always be an
inner vertex. The relative positions of vertices to eachother do not change either. This
means that if a vertex is in the left subtree of some vertex then it will always be in that
left subtree. The same is true for the vertices in the right subtree. Lastly we know that
a witness will always stay in its leaf. This leads to the following definition.
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Definition 6.2. Let W = (T, cut, cla,wit) and R = (T ′, cut′, cla′,wit′) be two witness
trees. We say that R is a refinement of W if and only if W and R fulfill the following
properties:

1. V (W ) ⊆ V (R).

2. A vertex v ∈ V (W ) is a leaf in W if and only if it is a leaf in R.

3. Let v1, v2 ∈ V (W ) be a pair of vertices. The vertex v1 is in the left subtree of v2
in W if and only if it is in the left subtree of v2 in R. The vertex v1 is in the right
subtree of v2 in W if and only if it is in the right subtree of v2 in R.

4. For every leaf ℓ ∈ V (W ) we have cla(ℓ) = cla′(ℓ) and wit(ℓ) ∈ E[R, ℓ].

5. For every inner vertex v ∈ V (W ) we have cut(v) = cut′(v).

Clearly, if R was created by the algorithm by applying one or multiple one-step-
refinements to W then R is a refinement of W . Now we also want to show the other
direction. For this we use the following lemma.

Lemma 6.1. Let R be a correct witness tree that is a refinement of the witness tree W
and let e ∈ Dirty(W ) be a dirty example in W . Then, there must be a one-step-
refinement r ∈ Ref(W ) with W

r−→ W ′ such that R is a refinement of W ′.

Proof. We need to find a one-step-refinement r = (v, i, t, e) with W
r−→ W ′ such that R is

a refinement of W ′. That means the leaf ℓ and the inner vertex u we add with r need to
be in V (R) due to Property 1 in Definition 6.2. To identify these vertices we can use the
dirty example e. Let ℓ′ be the leaf that e is assigned to in W . The one-step-refinement r
will make e the witness of ℓ. Property 4 tells us that ℓ must be the leaf that e is assigned
to in R. The inner vertex u must now be the vertex in R that has ℓ in one of its subtrees
and ℓ′ in the other subtree. There can only be one vertex like this. This inner vertex u
now tells us the cut (i, t) we need for r due to Property 5. Now we just need to find the
vertex v in V (W ) at which r will be applied. For this we can look at the path from u
to ℓ′ in R. Starting from u, the vertex v must be the first vertex on that path that also
exists in V (W ).

An important detail of this lemma is that W needs to have at least one dirty example.
This means we may not be able to create R by applying one-step-refinements to W if
there is always a smaller correct tree of which R is also a refinement. However, this is
sufficient for our purposes since our goal is to find the smallest correct tree.

6.2 Definition and Proof of Subset Constraints

Now we are going to properly define and prove the subset constraints that we are going
to use to improve the algorithm. In order to show their correctness we are first going to
introduce Definition 6.3. This definition assumes that subset constraints can be added to
a tree after a one-step-refinement has been applied. We will define the exact conditions
for this later in this section when we introduce the specific subset constraints.
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Definition 6.3. Let N be a node in the search tree of Algorithm 1 with the witness
tree W := Tree(N) and the dirty example e := ex(N) and let r := (v, i, t, e) ∈ Ref(W )
be a one-step-refinement with W

r−→ W ′ that introduces a subset constraint C for the
newly added inner vertex.
We say that C is correct if for each correct witness tree R that is a refinement of W ′

and violates C, there is a different witness tree R′ with the following properties:

1. R′ is also correct.

2. R′ is not bigger than R.

3. There is a different one-step-refinement r′ := (v′, i′, t′, e) ∈ Ref(W ) with W
r′−→ W ′′

that Algorithm 1 chooses before r such that R′ is a refinement of W ′′.

The most important part of Definition 6.3 is Property 3. It requires that Algo-
rithm 1 chooses r′ before r. Together with the other properties this means, according to
Lemma 6.1, there must be a correct tree R′′ that is not bigger than R, of which R′ is a
refinement and which is discovered by the algorithm before R.
That means, if there is a correct tree W that violates a correct subset constraint there

must be a different correct tree W ′ that is discovered by the algorithm before W and
is not bigger than W . If W ′ now also violates a correct subset constraint we can find a
correct tree W ′′ that is discovered by the algorithm before W ′ and is not bigger than W ′.
We can keep doing this until we eventually find a correct tree that does not violate any
correct subset constraints. Due to Definition 6.3 and there only being a finite number of
trees, such a tree must always exist. We formalize this idea with the following theorem.

Theorem 6.2. Let s ∈ N. If there is at least one correct witness tree of size at most s,
then there is at least one correct witness tree of size at most s that does not violate any
correct subset constraints.

Proof. Let us assume there is a correct witness tree W that has at most size s and
violates at least one correct subset constraint C. According to Definition 6.3 there must
be a different correct witness tree W ′ that is not bigger than W and is discovered by
the algorithm before W .
We can keep replacing the current tree with a different tree according to Definition 6.3

until we find a tree where no correct subset constraint is violated. Since we know that
the replacement tree is always discovered earlier by the algorithm and there is only a
finite number of trees we must find such a tree eventually.

With this we will now introduce two specific subset constraints. To show that the
algorithm can skip any tree where one of these subset constraints is violated we just
need to show that they are correct.
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6.3 Threshold Subset Constraints

First we introduce a subset constraint that uses the idea from the example at the begin-
ning of this section where we showed that we can sometimes replace a threshold t with
a different threshold t′ without changing the leaf that any example is assigned to.

Definition 6.4. Let N be a node in the search tree of Algorithm 1 with the witness
tree W := Tree(N) and the dirty example e := ex(N) and let (v, i, t, e), (v, i, t′, e) ∈
Ref(W ) be two one-step-refinements with W

(v,i,t,e)−−−−→ R and W
(v,i,t′,e)−−−−→ R′ such that we

have e[i] ≤ t′ < t or t < t′ < e[i]. Finally, let ℓ and u be the leaf and inner vertex that
are added to W by (v, i, t, e).
Then, we add the Threshold Subset Constraint C := E[R, ℓ] \ E[R′, ℓ] to Const(R, u)

and we call t′ the Constraint Threshold of C.

Clearly if a Threshold Subset Constraint of a vertex u in a witness tree W is violated
then replacing the threshold of u by the Constraint Threshold t′ will not change the leaf
of any example in W . We will now use this observation to show that a Threshold Subset
Constraint is always correct.

Theorem 6.3. Threshold Subset Constraints are correct.

Proof. Let N be a node in the search tree of Algorithm 1 with the witness tree W :=
Tree(N) and the dirty example e := ex(N) and let (v, i, t, e), (v, i, t′, e) ∈ Ref(W ) be two

one-step-refinements with W
(v,i,t,e)−−−−→ R and W

(v,i,t′,e)−−−−→ R′ such that we have e[i] ≤ t′ < t
or t < t′ < e[i]. Finally, let ℓ and u be the leaf and inner vertex that are added to W
by (v, i, t, e) and let C ∈ Const(R, u) be the Threshold Subset Constraint added to u
in R.
Next, let R∗ be a correct witness tree that is a refinement of R and violates C. We find

a different witness tree that has the three properties from Definition 6.3. We can create
such a witness tree R∗∗ by simply replacing the threshold of u in R∗ by the Constraint
Threshold t′. Since C is violated in R∗ we know that R∗∗ is a correct tree. We also have
not increased the size of the tree. Now we just need to show Property 3.
In Section 3 we specified that the algorithm chooses (v, i, t′, e) before (v, i, t, e) be-

cause t′ is closer to e[i] than t. The only difference between R and R′ and between R∗

and R∗∗ is the threshold of u. That means R∗∗ is a refinement of R′.

6.4 Dirty Subset Constraints

The second subset constraint we want to introduce is the Dirty Subset Constraint. It is
based on the idea that we do not always have to apply a one-step-refinement at every
vertex on the leaf to root path. If for example we want to apply a one-step-refinement
at a vertex v but one of the child subtrees of v is already correct, then we could just
apply the same one-step-refinement at the other child subtree. Since there are no dirty
examples in the correct subtree it makes no sense to apply the one-step-refinement right
above that subtree. This leads to the following definition.
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Definition 6.5. Let N be a node in the search tree of Algorithm 1 with the witness
tree W := Tree(N) and the dirty example e := ex(N), let v be an inner vertex in W with
the children v1 and v2 and let (v, i, t, e), (v1, i, t, e) ∈ Ref(W ) be two one-step-refinements

with W
(v,i,t,e)−−−−→ R and W

(v1,i,t,e)−−−−→ R1. Finally, let ℓ and u be the leaf and inner vertex
that are added to W by (v, i, t, e).
Then, we add the Dirty Subset Constraint C = E[W, v2] ∩Dirty(W ) to Const(R, u).

Theorem 6.4. Dirty Subset Constraints are correct.

Proof. Let N be a node in the search tree of Algorithm 1 with the witness tree W :=
Tree(N) and the dirty example e := ex(N), let v be an inner vertex in W with the
children v1 and v2 and let (v, i, t, e), (v1, i, t, e) ∈ Ref(W ) be two one-step-refinements

with W
(v,i,t,e)−−−−→ R and W

(v1,i,t,e)−−−−→ R1. Finally, let ℓ and u be the leaf and inner vertex
that are added to W by (v, i, t, e).
Next, let R∗ be a correct witness tree that is a refinement of R and violates C. We find

a different witness tree R∗∗ that has the three properties from Definition 6.3. Without
loss of generality, we assume that v1 is the left child of v. We now obtain R∗∗ in the
following way.
First we know that v and u still exist in R∗ but u may no longer be the direct parent

of v. So we are now going to take the entire subtree of u with the exception of the
subtree of v, remove the edge from v to its left child and move the subtree of u into
that gap. We connect everything so that the previous parent of u is now the parent of v
and the previous parent of v is now the parent of the previous left child of v. Lastly we
replace the right subtree of v in R∗∗ with the right subtree of v in W .
We know that E[R∗∗, u] ⊆ E[R∗, u] which means that everything in the subtree of u

is still correctly classified. We also know that E[R∗, v] ⊆ E[R∗∗, v]. But we can also
see that E[R∗∗, v] ⊆ E[W, v]. We replaced the right subtree of v in R∗∗ with the right
subtree of v in W and we know that C is violated which means all dirty examples in
that right subtree were removed. This means that R∗∗ is correct.
These changes also do not increase the size of the tree and they also do not change

a leaf into an inner vertex or an inner vertex into a leaf. If we now only look at the
vertices that were already present in R we can notice that the relative position of most
of these vertices has not changed. The only changes are that u and ℓ are now in the left
subtree of v instead of v being a child of u. This is the exact same difference that we
have between R and R1. That means R∗∗ is a refinement of R1.
Since the algorithm chooses (v1, i, t, e) before (v, i, t, e) we have shown that R∗∗ fulfills

the three properties from Definition 6.3.

6.5 Evaluation

Now we will evaluate the effect that the two subset constraints have on the running time
of the algorithm. For this we will check wether any subset constraint is violated right
after a one-step-refinement has been performed in Line 9 of Algorithm 1.
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Figure 6: Comparison of the algorithm with and without subset constraints.

Now we will compare a version of our algorithm that uses all improvements we have
shown so far including the subset constraints with a version that uses all improvements
except the subset constraints. We will refer to these algorithms as Imp4 and Imp3,
respectively.
Figure 6 shows this comparison. In total, Imp3 solved 320 out of the 700 instances

while Imp4 was able to solve 372 instances. Additionally, there was only one instance
that was solved by Imp3 but not by Imp4. Out of all instances that were solved by both
algorithms, there were only 13 where Imp4 took more than one second longer than Imp3.
The size of the search trees also decreased significantly due to the subset constraints.
On average, the search trees of Imp4 had 38% less nodes than the search trees of Imp3
on the same instances. This shows that the two subset constraints are also generally a
big improvement for the algorithm.
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7 Subset Caching

The improvement in this section is inspired by the caching of subproblems used by
Demirovic et al. [10]. With their MurTree algorithm, they solve the problem of mini-
mizing the amount of dirty examples of a witness tree under a size and depth constraint.
Their algorithm works by first iterating through all possible cuts for the root of the
tree and then recursively calculating the optimal trees for the left and right child for
all possible ways of splitting up the remaining size budget between the two sides. This
approach naturally lends itself to saving and then later reusing the solutions to these
subproblems. Our algorithm, however, does not naturally calculate solutions for sub-
problems. This is because our algorithm can modify almost any part of the tree at any
time which means the algorithm never focuses on correctly classifying just a specific
subset of the examples. Because of that, we modify the subproblem caching approach
in the following way.
We will use a data structure to save lower bounds for specific subsets of the examples.

These lower bounds tell us how many inner vertices we would need at least to correctly
classify that subset of the examples. In any search tree node N with W := Tree(N),
we can then look at each leaf ℓ ∈ V (W ) and the set of examples L := E[W, ℓ] assigned
to ℓ and check if a subset of L is present in our data structure. We then know that the
lower bound associated with that subset is also a lower bound for L. Since all examples
in L are assigned to the same leaf, that lower bound must also be a lower bound for
the whole tree W . And if that lower bound is bigger than the remaining size budget s′,
we know that it is not possible to correctly classify the dataset by applying at most s′

one-step-refinements to W . Consequently, the algorithm can return ⊥. If the lower
bound is not big enough, we keep checking our data structure for another subset of L
until we either find a sufficiently large lower bound or until no more subsets of L are
left.
Of course for all of this to work, we need a data structure that lets us save lower

bounds for subsets of the examples and lets us quickly check out all subsets of a specific
set of examples. For this, we use the set-trie data structure proposed by Savnik [15].
A set-trie saves the subsets in a tree structure where each vertex represents a single
example. We add a subset of examples to the set-trie by first sorting them in ascending
order. We then start at the first example in the order and check if the root of the set-trie
has a child c that represents that example. If not, then we add such a child. We then
check if c has a child that represents the second example and add a new child if that is
not the case. We continue doing this until we have created a path that represents the
entire subset. We then mark the last vertex in this path as an end vertex and save the
lower bound of the subset in this end vertex.
The last step is to find a way to actually populate the set-trie with lower bounds for

relevant subsets of the examples. As mentioned above our algorithm does not naturally
calculate lower bounds for subsets of examples. Instead, we do the following. In a search
tree node N , we look at the example set L := E[Tree(N), ℓ] of any leaf ℓ with |L| ≤ 30.
Let r be the remaining size budget of the current tree. We then run a separate instance
of our algorithm that checks whether the set L can be correctly classified with a tree
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Figure 7: Comparison of the algorithm with and without subset caching.

of at most size r. If that is not the case, then we can add L to the set-trie with the
lower bound r + 1. Of course we could then check if L can be correctly classified with
a tree of size at most r + 1 to improve the lower bound, but we decided to only check
size r because that is sufficient to show that the current tree cannot correctly classify the
data. If we ever need a better lower bound for L at a later point, we can still calculate
it then. The reason why we chose to limit the size of L to at most 30 is because doing
this without such a limit would take too much time and preliminary experiments show
that 30 is a good limit.
Lastly, we want to mention that the set-trie is especially useful when solving MDTS

instead of only DTS since we do not have to throw the set-trie away after the algorithm
has checked a single s. We can keep reusing the set-trie until we find the optimal s.

7.1 Evaluation

We will now compare a version of our algorithm that uses all improvements we have
shown so far including subset caching with a version that uses all improvements except
subset caching. We will refer to these algorithms as Final and Imp4, respectively. Imp4
solved 372 out of the 700 total instances. Final was able to solve 399 instances and there
were only 4 instances that were solved by Imp4 but not by Final.
This shows that subset caching is an improvement for the algorithm. However, on

average, the search trees of Final had 580% more nodes than the search trees of Imp4 on
the same instances. This is clearly due to the additional instances of DTS that we solve
to populate the set-trie and it shows why it is important for us to limit which example
subsets we choose to check and potentially add to the set-trie.
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Figure 8: Comparison of the three strategies for solving MDTS.

8 Final Evaluation

In this section, we evaluate our algorithm with all improvements that we presented in the
previous sections. We will start by introducing two more strategies for solving MDTS
using Algorithm 1. We then compare the two strategies with our original strategy
from Section 3.2. Finally, we will compare the best strategy with the two SAT-based
algorithms from Narodytska et al. [3] and Janota et al. [4].

8.1 Comparison of the three Strategies

Our algorithm only solves the decision problem DTS. But since we are insterested in the
optimization problem MDTS we presented a strategy that allows us to solve MDTS
by solving multiple instances of DTS using our algorithm.
Our original strategy from Section 3.2 linearly increases the maximum size of the tree

starting from a lower bound until our algorithm no longer returns ⊥. However, this is
not the only way to find the optimal value of s.
As a second strategy we can linearly decrease the maximum size of the tree starting

from an upper bound until our algorithm returns ⊥. And as a third strategy we can
perform a binary search between a lower bound and an upper bound until the optimal
tree size is found.
For the initial lower bound we use the PairLB from Section 5.2. For the initial upper

bound we will use the scikit-learn [16] implementation of the CART algorithm originally
proposed by Breiman et al. [6]. Janota et al. [4] also use this implementation to calculate
an upper bound.
Figure 8 shows the running time comparison of all three strategies. Generally all

three strategies perform roughly the same, with Strategy 1 being slightly better than
the others in the long run. Strategy 1 solved 399 out of the 700 instances. Strategies 2
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Figure 9: Comparison of strategy 1 with the two SAT-based algorithms.

and 3 solved 366 and 377 instances, respectively. The 399 instances solved by Strategy 1
include all except one of the instances that can be solved by at least one of the other
two strategies.
The reason why the three strategies perform similarly is most likely because there are

always at least two instances of DTS that need to be solved by all strategies. If smin is
the solution for an instance of MDTS, then all strategies need to at least solve the DTS
instance with s = smin and the instance with s = smin−1. Since these two instances are
closest to the optimal value smin they take the longest time to solve and are therefore
the main deciding factor in wether a strategy can solve an instance of MDTS or not.
If we compare the running time of the three strategies on instances that can be solved

by all of them we can see that Strategy 1 is only very rarely substantially slower than
the other two: There are only 16 instances where Strategy 1 is more than 10 seconds
slower than the fastest strategy. This shows that Strategy 1 is generally the best choice
for our algorithm.

8.2 Comparison of our Algorithm and the SAT Algorithms

Now we will compare Strategy 1 with the SAT-based algorithms by Narodytska et al. [3]
and Janota et al. [4]. We will use the names dtfinder DT1 and dtfinder, respectively, to
refer to these algorithms. As mentioned in Section 1, we will use the improved version
of the encoding by Narodytska et al. [3] that was presented by Janota et al. [4].
Figure 9 shows the running time comparison between Strategy 1, dtfinder DT1 and

dtfinder. Overall, Strategy 1 is much better than the other two algorithms. Strategy 1
can solve 399 instances in total compared to the 286 and 324 total instances solved by
dtfinder and dtfinder DT1, respectively. There are also 324 instances that Strategy 1
can solve in less than 100 seconds each. Additionally, there are only three instances that
can be solved by dtfinder or dtfinder DT1 but not by Strategy 1.
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Again we can compare the running time of all three algorithms on instances that can
be solved by all of them. This time there are only 9 instances where Strategy 1 is slower
than the fastest algorithm. This also shows that Strategy 1 is the best choice on almost
all instances.
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9 Conclusion

As our experiments showed, our algorithm was able to solve roughly 25% more instances
than the state of the art algorithms by Narodytska et al. [3] and Janota et al. [4]. The
improvements that played the biggest role in achieving this result were the dirty example
priority from Section 3.1, the lower bounds from Section 5, the subset constraints from
Section 6, and the subset caching from Section 7. The reduction rules from Section 4
only slightly improved the running time of the algorithm. However, these reduction rules
are a good protection against data with a lot of redundancy.
We also showed that the strategy for solving MDTS using multiple instances of DTS

does not have a big impact on the overall running time. We concluded that this is
because the DTS instances that need to be solved by all strategies are the ones that
take the longest time to solve.
Another improvement that did not help as much as we had hoped is the PairLB from

Section 5.2. We already mentioned that we only used this lower bound as an initial
lower bound for s when solving MDTS. This is because calculating this lower bound
in every node of the search tree did not lead to an improvement in the overall running
time. However, we did observe that the number of search tree nodes still decreased by
up to two orders of magnitude when we used the PairLB in every node. This suggests
that a potential faster way of calculating the PairLB would lead to a large improvement
in the overall running time.
Another avenue for future research could be to adapt our algorithm and the individ-

ual improvements to datasets with more than two classes. We assume that with few
modifications most of the improvements can naturally support more than two classes.
Our algorithm could also be adapted to other problems. We already mentioned in

Section 1 that some algorithms try to optimize the depth of the tree instead of the size.
Again, we assume that most of the improvements should naturally work with a depth
constraint instead of a size constraint.
Another problem that many algorithms focus on is to minimize the number of dirty

examples while the tree has a size or depth constraint. We assume that it would be a
lot more difficult to adapt our algorithm and the improvements to these problems since
many of the improvements use the assumption that we want to correctly classify all
examples.
Finally, as we have mentioned multiple times already, our base algorithm is a special

case of the witness tree algorithm by Komusiewicz et al. [1]. Clearly, another natural
avenue for future research would be to adapt our improvements to the tree ensemble
version of MDTS.
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