
Who Should Have a Place on the Ark?
Parameterized Algorithms for the

Maximization of Phylogenetic Diversity

DISSERTATION
FOR THE DEGREE OF DOCTOR OF NATURAL SCIENCES

DOCTOR RERUM NATURALIUM (DR. RER. NAT.)

Submitted to the Council of the Faculty of Mathematics and Computer Science
of the Friedrich Schiller University Jena

on July 29, 2024, by
Jannik “Theodor” Schestag, M.Sc.,

born May 20, 1995 in Heilbronn, Germany.

Expert Reviewer (Gutachter):
Prof. Dr. Christian Komusiewicz, Friedrich-Schiller-Universität Jena, Germany
Prof. Dr.ir. Leo J.J. van Iersel, TU Delft, The Netherlands
Dr. Mathias Weller, Université Gustave Eiffel, Paris, France
Defended on January 17, 2025

Ehrenwörtliche Erklärung

Hiermit erkläre ich,

- dass mir die Promotionsordnung der Fakultät bekannt ist,

- dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte oder
Ergebnisse eines Dritten oder eigenen Prüfungsarbeiten ohne Kennzeichnung
übernommen und alle von mir benutzten Hilfsmittel, persönlichen Mitteilungen
und Quellen in meiner Arbeit angegeben habe,

- dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen habe
und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von
mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der
vorgelegten Dissertation stehen,

- dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder
andere wissenschaftliche Prüfung eingereicht habe.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des
Manuskripts haben mich folgende Personen unterstützt:

Leo van Iersel (Co-Autor), Mark Jones (Co-Autor), Christian Komusiewicz (Co-
Autor), Celine Scornavacca (Co-Autorin) und Mathias Weller (Co-Autor).

Ich habe die gleiche, eine in wesentlichen Teilen ähnliche bzw. eine andere Ab-
handlung bereits bei einer anderen Hochschule als Dissertation eingereicht: Ja/Nein*.
(*Zutreffendes unterstreichen)

Wenn Ja, Name der Hochschule: —
Ergebnis: —

Ort, Datum Jannik Schestag, Unterschrift

Schestag, Jannik

Who Should Have a Place on the Ark?
Parameterized Algorithms for the Maximization of Phylogenetic Diversity

Dissertation,
Friedrich-Schiller-Universität Jena, submitted July 2024, defended January 2025.

Curriculum vitae

• since January 2025: Member of the Discrete Mathematics and Optimization
group in a postdoctoral position,
Technische Universiteit Delft, The Netherlands.

• October 2023 to July 2024: Member of the Algorithm Engineering group,
Friedrich-Schiller-Universität Jena, Germany.

• April 2023 to September 2023: Member of the Discrete Mathematics and Op-
timization group,
Technische Universiteit Delft, The Netherlands.

• May 2022 to March 2023: Member of the Algorithmics group,
Philipps-Universität Marburg, Germany.

• April 2019 to February 2022: M.Sc. in Computer Science,
Philipps-Universität Marburg, Germany.

• April 2016 to December 2018: B.Sc. in Computer Science,
Philipps-Universität Marburg, Germany.

• October 2015 to June 2020: B.Sc. in Economical Mathematics,
Philipps-Universität Marburg, Germany.

III

Acknowledgments
First and foremost, I humbly thank my redeemer, Jesus Christ, through whom the
foundations of the heavens and the earth were created (Colossians 1:16, John 1:3) and
who died on the cross as I deserve (Romans 6:23) so that I may live as He deserves
(2 Corinthians 5:21). Jesus not only became my God but also my best friend. All
the strength, concentration, and willpower I needed to accomplish every part of this
work were surely given by Him (Philippians 2:13). All glory, honor, and power be
unto Him forever and ever (Revelation 4:11). Amen!

Academically, I express my deepest gratitude to my supervisor, Christian
Komusiewicz, for his multitude of great ideas and quick answers to my questions.
Additionally, I thank him for the endless hours spent writing applications and for al-
ways staying supportive, even in situations where many other professors would have
opted out.

Though officially he is just a co-author, I want to thank Mark Jones as a ‘minor’
supervisor. His knowledge, humor, and way of working during the cooperative time
left a very positive feeling with me and definitively improved my working spirit.

Furthermore, I am grateful to Niels Grüttemeier and Frank Sommer, who initially
supervised my Bachelor’s and Master’s degrees and later became colleagues. Also,
I thank my other colleagues Alexander Bille, Jaroslav Garvardt, Nils Morawietz,
Luca Staus, and the Master’s student Anton Herrmann, for creating a pleasant work-
ing atmosphere, sharing one or the other joke in times, and providing deep talks.
I further want to thank all of my co-authors, listed in lexicographic order: Matthias
Bentert, Jaroslav Garvardt, Niels Grüttemeier, Leo van Iersel, Mark Jones,
Christian Komusiewicz, Simone Linz, Ber Lorke, Nils Morawietz, Malte Renken,
Frank Sommer, Celine Scornavacca, and Mathias Weller.

Gratefully, I received a financial support by the Deutscher Akademischer Aus-
tauschdienst (DAAD—German Academic Exchange Service), project 57556279,
from April to September 2023. I thank the TU Delft and especially Leo van Iersel,
Mark Jones, and their colleagues for hosting me during this period.

Last but not least, for their unwavering support throughout my life, I want to ex-
press my sincerest thanks to my mother, Kerstin Schestag, and my sister, Mona Felina
Schestag. Surely, I would have not come to where I am without them. While it is im-
possible to list all the important people in my life, I explicitly want to express thanks
to my grandmother Edeltraud Schestag, Klaus Pieper, Holger & Regine Hellmich,
Ricarda Schwarz, the Slembeck family, the Köhler family, Niklas Vogt, Jan Mischon,
my late father Joachim Schestag, my late grandfather Ulrich Hellmich, and everyone
who supportively prayed for me!

V

Preface

Within this thesis, I present the results of the research I conducted in the field of pa-
rameterized algorithms for the maximization of phylogenetic diversity from May 2022
until June 2024. During these two years, I have at first been part of the Algorithmics
research group led by Christian Komusiewicz at the Philipps-Universität Marburg,
Germany. Because of receiving a six-month scholarship I worked some time in the
Discrete Mathematics and Optimization research group led by Karen Aardal at the
TU Deft, The Netherlands. After my pleasant stay in the Netherlands, I again
moved to Germany to work with Christian Komusiewicz; this time in the Algorithm
Engineering research group at the Friedrich-Schiller-Universität Jena, Germany.

The results presented in this thesis are predominantly published in scientific pa-
pers on the platform ArXiv. Many of them are however not yet published in con-
ference proceedings or journals. In the following, I will explain which chapters are
based on which publications and what participation I had in the research and writing
process. Afterward, I will give a brief list of other scientific publications I coauthored
that are not included in this thesis.

It is worth mentioning that the order of chapters in this thesis does not cor-
responding to when the research occurred. To minimize confusion: The order
of research was Generalized Noah’s Ark Problem, Max-All-Paths-PD,
Time-PD, Max-Net-PD, and finally Optimizing PD with Dependencies. This
order may be good to keep in min for readers, as algorithmic ideas for Max-All-
Paths-PD appear in Chapter 6 of this thesis but are basis for many algorithms in
Chapters 4 and 5.

Chapter 3 is based on the publication “A Multivariate Complexity Analysis of
the Generalized Noah’s Ark Problem” written with Christian Komusiewicz, which
can be found on the platform ArXiv [KS23a].A preliminary version of this publica-
tion appeared in the Proceedings of the 19th Cologne-Twente Workshop on Graphs
and Combinatorial Optimization (CTW 2023) [KS23b]. During my initial literature
research on what kind of generalizations of Max-PD there are, I first considered
studying Generalized Noah’s Ark Problem (and Optimizing PD with De-
pendencies). As it was my first project as a Ph.D. student and I was at first
only working from home, I was relatively slow in the research and first had to start
with basic concepts. I made the key discovery to find the strong connection to the
Multiple-Choice Knapsack. The overall research was conducted in cooperation
with Christian whereby Christian gave the better ideas. The writing-up process
was predominately conducted by me. Christian provided helpful hints and wrote
the introduction. I gave the talk at CTW 2023. This work also contains a small

VII

observation, Observation 3.14, which is not published elsewhere.
Chapter 4 is based on the publication “Maximizing Phylogenetic Diversity un-

der Time Pressure: Planning with Extinctions Ahead” written with Mark Jones,
which can be found on the platform ArXiv [JS24]. The research of Time-PD and
s-Time-PD was initialized by me during my stay in Delft, after Mark and I finished
the research on Max-All-Paths-PD. We were actually stuck in the research process
for quite a while because it was difficult to find out how to cope with the scheduling
and tree-structures at the same time. Mark made the final breakthrough and had
the rough idea for the FPT-algorithm for Time-PD with respect to D (Lemma 4.7).
I quickly had the idea of how to utilize the idea to show that also s-Time-PD is
FPT when parameterized by D (Lemma 4.8). Afterward, it took us several months of
work to show that s-Time-PD is FPT when parameterized by D (Theorem 4.2). The
according proof is arguably the most technical and difficult in this thesis. Mark and
I had a fair share in the writing-up process of the results. I additionally provided
the connection to the scheduling field and he wrote up most of the introduction.

Chapter 5 is based on the publication “Maximizing Phylogenetic Diversity under
Ecological Constraints: A Parameterized Complexity Study” written with Christian
Komusiewicz, which can be found on the platform ArXiv [KS24a]. A preliminary
version of this publication appeared in the Proceedings of the 44th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2024) [KS24b]. As mentioned above, the idea of the study of Op-
timizing PD with Dependencies came along with my first literature research.
Christian and I conducted the research roughly on an equal level of scientific input.
The writing-up process was predominately conducted by me. Christian provided
helpful hints and wrote the introduction.

Chapter 6 is predominantly based on the research of Max-All-Paths-PD and
only Section 6.6 is about Max-Net-PD. However, also the introduction and discus-
sion of the chapter contain material from the Max-Net-PD-paper. The research is
contained in the two following publications. Firstly, “How Can We Maximize Phylo-
genetic Diversity? Parameterized Approaches for Networks” was written with Mark
Jones, which can be found on the platform archive [JS23a]. A preliminary version
of this publication appeared in the Proceedings of the 18th International Sympo-
sium on Parameterized and Exact Computation (IPEC 2023) [JS23b]. Secondly,
“Maximizing Network Phylogenetic Diversity” was written with Leo van Iersel, Mark
Jones, Celine Scornavacca, and Mathias Weller, which can be found on the platform
ArXiv [vIJS+24]. Christian Komusiewicz suggested me also to study phylogenetic
diversity in phylogenetic networks. We then came into contact with Mark Jones and
Leo van Iersel and asked them whether I could join them in Delft for a time. After

VIII

their confirmation, I applied for a scholarship from DAAD with a great deal of help
from Christian. Mark and I were both very active in the research of Max-All-
Paths-PD so that Leo did not join the paper in the end. Mark and I conducted
the research roughly on an equal level of scientific input and also the writing-up
roughly on equal sides. I gave the talk at IPEC 2023. After the conference ver-
sion, I proposed a color-coding algorithm with respect to D (Theorem 6.4) which
improves to the previous algorithm in running time and working on general graphs
and not only on binary graphs. Further, Mark and I together developed a kernel-
ization algorithm with respect to the reticulation number. Arising from the research
of Max-All-Paths-PD, Mark proposed to study Max-Net-PD in an established
research group where I joined. In the meetings, Mark and I quickly showed that there
is a reduction from GNAP to Max-Net-PD on level-1-networks (Theorem 6.9). We
then collectively also proved the NP-hardness of Penalty Sum (Section 2.6) and an
FPT-algorithm for the number of reticulations. I wrote up what is Section 6.6 in
this thesis, Mark what is Section 2.6 in this thesis, Mathias the FPT-algorithm, and
Celine and Leo the intro, prelims, and discussion of the paper.

Chapters 1, 2, and 7, these are the introduction, the preliminaries, and the conclu-
sion, are based on parts of all five papers. The examination of Multiple-Choice
Knapsack, presented in Section 2.5, is part of the GNAP-paper [KS23b]. The
examination of Penalty Sum, presented in Section 2.6, is part of the Max-Net-
PD-paper [vIJS+24], except for Proposition 2.21 which was not published elsewhere.

IX

During my time as a Ph.D. student, I also participated in the research of the
following publications. These are ordered by when the research project started.

• “On Critical Node Problems with Vulnerable Vertices”, with Niels
Grüttemeier, Christian Komusiewicz, and Frank Sommer. This paper is based
on my Master’s thesis. Journal: Journal of Graph Algorithms and Applica-
tions [SGKS24]. Conference: 33rd International Workshop on Combinatorial
Algorithms (IWOCA 2022) [SGKS22].

• “On the Complexity of Parameterized Local Search for the Maximum Parsi-
mony Problem”, with Christian Komusiewicz, Simone Linz, and Nils
Morawietz. Conference: 34th Annual Symposium on Combinatorial Pattern
Matching (CPM 2023) [KLMS23].

• “Finding Degree-Constrained Acyclic Orientations”, with Jaroslav Garvardt,
Malte Renken, and Mathias Weller. Conference: 18th International Symposium
on Parameterized and Exact Computation (IPEC 2023) [GRSW23].

• “On the Complexity of Finding a Sparse Connected Spanning Subgraph in
a Non-Uniform Failure Model”, with Matthias Bentert, and Frank Sommer.
Conference: 18th International Symposium on Parameterized and Exact Com-
putation (IPEC 2023) [BSS23a]. ArXiv: [BSS23b].

• “Protective and Nonprotective Subset Sum Games: A Parameterized Com-
plexity Analysis”, with Jaroslav Garvardt, Christian Komusiewicz, and Ber
Lorke. Conference: 8th International Conference on Algorithmic Decision The-
ory (ADT 2024) [GKLS24].

X

Abstract
Phylogenetic Diversity (PD) is a well-regarded measure of the overall biodiversity
of a set of present-day species (taxa) that indicates its ecological significance. In
the Maximize Phylogenetic Diversity (Max-PD) problem one is asked to
find a small set of taxa in a phylogenetic tree for which this measure is maxi-
mized. Max-PD is particularly relevant in conservation planning, where limited
resources necessitate prioritizing certain taxa to minimize biodiversity loss. Although
Max-PD can be solved in polynomial time [Steel, Systematic Biology, 2005; Pardi
and Goldman, PLoS Genetics, 2005], its generalizations—which aim to model biologi-
cal processes and other aspects in conservation planning with greater accuracy—often
exhibit NP-hardness, making them computationally challenging. This thesis explores
a selection of these generalized problems within the framework of parameterized
complexity.

In Generalized Noah’s Ark Problem (GNAP), each taxon only survives
at a certain survival probability, which can be increased by investing more money in
the taxon. We show that GNAP is W[1]-hard with respect to the number of taxa but
is XP with respect to the number of different costs and different survival probabilities.
Additionally, we show that unit-cost-NAP, a special case of GNAP, is NP-hard.

In Time Sensitive Maximization of Phylogenetic Diversity
(Time-PD), different extinction times of taxa are considered after which they can
no longer be saved. For Time-PD, we present color-coding algorithms that prove
that Time-PD is fixed-parameter tractable (FPT) with respect to the threshold of
diversity and the acceptable loss of diversity.

In Optimizing PD with Dependencies (PDD), each saved taxon must be a
source in the ecological system or a predator of another saved species. These depen-
dencies are given in a food-web. We show that PDD is FPT when parameterized with
the size of the solution plus the height of the phylogenetic tree. Further, we consider
parameters characterizing the food-web and prove that PDD is FPT with respect to
the treewidth if the phylogenetic tree is a star, disproving an open conjecture.

Phylogenetic Diversity is traditionally defined on phylogenetic trees, but phylo-
genetic networks have gained popularity as they enable the modeling of so-called
reticulation events. Max-All-Paths-PD (MapPD) and Max-Net-PD are two
problems in maximizing phylogenetic diversity on phylogenetic networks. MapPD
is W[2]-hard with respect to the solution size but we show that MapPD is FPT with
respect to the number of reticulations and the treewidth, two parameters that show
how tree-like the phylogenetic network is. Max-Net-PD however remains NP-hard
even on level-1-networks.

11

Zusammenfassung (Translation of the Abstract)

Die phylogenetische Diversität (PD) ist ein anerkanntes Maß für die gesamte Bio-
diversität, das die ökologische Bedeutung einer Gruppe heutiger Arten (Taxa) anzeigt.
Im Problem Maximize Phylogenetic Diversity (Maximierung der phylogenetis-
chen Diversität, Max-PD) wird gefordert, eine kleine Menge an Taxa in einem phylo-
genetischem Baum zu finden, für welche dieses Maß maximiert wird. Dieses Problem
ist besonders relevant in der Naturschutzplanung, bei der begrenzte Ressourcen die
Priorisierung bestimmter Taxa zur Minimierung des Biodiversitätsverlusts erfordern.
Obwohl Max-PD in polynomialer Zeit gelöst werden kann [Steel, Systematic Biology,
2005; Pardi und Goldman, PLoS Genetics, 2005], weisen seine Verallgemeinerun-
gen - welche biologische Prozesse und andere Aspekte des Artenschutzes genauer
modellieren sollen - oft NP-Härte auf, was sie rechnerisch anspruchsvoller macht.
Diese Arbeit untersucht eine Auswahl dieser generalisierten Probleme im Rahmen
der parametrisierten Komplexität.

In Generalized Noah’s Ark Problem (Generalisiertes Noahs-Arche-Pro-
blem, GNAP) überlebt jedes Taxon nur mit einer bestimmten Überlebenswahrschein-
lichkeit, die durch mehr Investitionen in das Taxon erhöht werden kann. Wir zeigen,
dass GNAP in Bezug auf die Anzahl der Taxa W[1]-schwer, jedoch XP in Bezug auf
die Anzahl der verschiedenen Kosten und Überlebenswahrscheinlichkeiten ist. Zusät-
zlich zeigen wir, dass das unit-cost-NAP (Einheitspreis-NAP), ein Spezialfall von
GNAP, NP-schwer ist.

In Time Sensitive Maximization of Phylogenetic Diversity (zeitkritis-
che Maximierung der phylogenetischen Diversität, Time-PD) werden unterschied-
liche Aussterbezeiten der Taxa berücksichtigt, nach denen diese nicht mehr gerettet
werden können. Für Time-PD präsentieren wir Farbmarkierungsalgorithmen, die
beweisen, dass Time-PD in Bezug auf die geforderte Diversität und den akzept-
ablen Verlust an Diversität festparameter handhabbar (FPT) ist.

In Optimizing PD with Dependencies (Optimieren phylogenetischer Diver-
sität bei Abhängigkeiten, PDD) muss jedes gerettete Taxon eine Quelle im ökol-
ogischen System oder ein Raubtier einer anderen geretteten Art sein. Diese Ab-
hängigkeiten sind in einem Nährungsnetz gegeben. Wir zeigen, dass PDD FPT ist,
wenn es in Bezug auf die Größe der Lösung plus die Höhe des phylogenetischen
Baumes parametrisiert wird. Darüber hinaus betrachten wir Parameter, die das
Nährungsnetz charakterisieren, und beweisen, dass PDD in Bezug auf die Baumweite
FPT ist, wenn der phylogenetische Baum ein Stern ist, womit wir eine offene Vermu-
tung widerlegen.

Phylogenetische Diversität wird traditionell auf phylogenetischen Bäumen defi-

12

niert, aber phylogenetische Netzwerke haben an Popularität gewonnen, da sie auch
die Modellierung sogenannter retikulierender Ereignisse ermöglichen. Max-All-
Paths-PD (Maximierung aller Pfade [zur Bestimmung] der phylogenetischen Diver-
sität, MapPD) und Max-Net-PD (Maximierung der phylogenetischen Netzwerk-
Diversität) sind zwei Probleme zur Maximierung der phylogenetischen Diversität
in phylogenetischen Netzwerken. MapPD ist in Bezug auf die Lösungsgröße W[2]-
schwer, aber wir zeigen, dass MapPD in Bezug auf die Anzahl der Retikulationen und
die Baumweite FPT ist, zwei Parameter, welche zeigen, wie Baum-ähnlich das phylo-
genetische Netzwerk ist. Max-Net-PD bleibt jedoch auch auf Level-1-Netzwerken
NP-schwer.

13

14

Contents

Curriculum vitae . III
Acknowledgments . V
Preface . VII
Abstract . 11
Zusammenfassung . 12

1 Introduction 17
1.1 Phylogenetic Diversity . 18
1.2 Modeling Real-World Biological Processes 20
1.3 Phylogenetic Networks . 23
1.4 Structure of this Thesis . 25

2 Preliminaries 27
2.1 Mathematical Notation . 27
2.2 Phylogenetics . 31
2.3 Classic and Parameterized Complexity 32
2.4 A List of Frequently Used Problems 40
2.5 Multiple-Choice Knapsack . 42
2.6 Penalty Sum . 48

3 The Generalized Noah’s Ark Problem 59
3.1 Introduction . 59
3.2 Preliminaries . 60
3.3 The Generalized Noah’s Ark Problem 64
3.4 Restriction to Two Projects per Taxon 75
3.5 Discussion . 84

4 Phylogenetic Diversity with Extinction Times 85
4.1 Introduction . 85
4.2 Preliminaries . 88

15

4.3 The Diversity D . 93
4.4 The Acceptable Loss of Diversity D 99
4.5 Further Parameterized Complexity Results 111
4.6 Discussion . 118

5 Phylogenetic Diversity with Ecological Dependencies 121
5.1 Introduction . 121
5.2 Preliminaries . 123
5.3 The Solution Size k . 126
5.4 The Diversity D . 133
5.5 The Loss of Species k and Diversity D 138
5.6 Structural Parameters . 144
5.7 Discussion . 159

6 Phylogenetic Diversity in Networks 161
6.1 Introduction . 161
6.2 Preliminaries . 163
6.3 MapPD and Item-Weighted Partial Set Cover 168
6.4 Fixed-Parameter Tractability of MapPD 172
6.5 A Kernelization for Reticulation-Edges 184
6.6 Hardness of Max-Net-PD . 193
6.7 Discussion . 195

7 Conclusion 197
7.1 Summary of Problems and Results 197
7.2 A Broader View on Our Results . 199
7.3 Research Ideas Based on This Work 200

Bibliography 203

16

Chapter 1

Introduction

Human activities [CME17] in the current Western economic system, driven by sig-
nificant overconsumption and the externalization of costs to society and the environ-
ment [Mar20, LLS15], have significantly contributed to the world’s ecological system
approaching a sixth mass extinction [RWN+17] within the last decades and thereby
created arguably one of mankind’s biggest challenges for this century. While activists
and scientists alike are waiting for a serious political response to this crisis [MBR+23],
the looming threat posed by climate change is predicted to further exacerbate the de-
cline in species. The 2023 report of the Intergovernmental Panel on Climate Change
(IPCC) [IPCC23, Page 73] warns that as the average global temperature increases,
thousands of plant and animal species around the world face increasing risk of extinc-
tion. With a “climate breakdown” [Hic20] on the horizon, media outlets worldwide
report with drastic words on an increasing number of species that are already extinct
or are inevitably about to become extinct in the near future [BBC23, Nic23, DJ22].

The reason for quantifying the loss of biodiversity in public media by naming the
number of extinct species is relatively evident. The sheer number of extinct species
is a very easy-to-understand metric. Additionally, it subliminally carries a political
message: Not a single further species should face extinction. However, a bit more
realism reveals the tragedy that certainly not enough resources—of monetary nature,
political willpower, land-wise, time-wise, and further—are available to save each and
every single species alive today. Already in 1990, May [May90] argued in a seminal
note that the subsequent question of which set of species should be saved, “raises
larger questions about the ways in which relative values are assigned to different
creatures”.

Indeed, when it seems impossible to save the entire “tree of life”, some species have
to be selected to focus on. May further describes this selection as “making choices

17

for the ineluctably limited number of places on the ark” [May90], where he compares
to the biblical narrative of Noah who built an ark to save his family and pairs of
animals from a great flood. In the de facto approach, a lot of effort in protection is
spent on species which are perceived to be “cute” or “dangerous” [PZZ+21] or which
have the “right color” [PF13].

1.1 Phylogenetic Diversity

While humans can bond to species [Wil84] and therefore feel the need to protect a
species that they consider aesthetically pleasing, such a factor most certainly does
not state how important a species is in the ecological system. However, requiring
the information which species have such an importance is crucial, as “it is foolish to
allow destruction of nature without knowing what it is worth” [Cro97]. In the years
after May’s note, a lot of effort in the scientific world has been put into the question
of how to measure the relevance of a set of taxa or species. The key for this search
was the usage of phylogenetic trees [HWVW95], which are represented by graphs
with vertices and edges. Each leaf represents a living taxon (species) and internal
vertices represent common ancestors of the leaves that can be reached or biological
categories—technically known as operational taxonomic units. Usually, the set of
taxa is denoted with X and one then refers to phylogenetic X-trees.1

As an inaugural idea, it was proposed to count the number of internal vertices
that the spanning tree of a given set of taxa in the phylogenetic tree has [VWHW91,
NW92] to measure the diversity of this set. This measure, called cladistic diversity,
was soon improved by adding weights on the edges of the phylogenetic tree. Indepen-
dently, Faith [Fai92] and Weitzmann [Wei92] proposed phylogenetic diversity, where
Weitzmann’s definition even generalizes the usage of this metric to arbitrary items
such as books in a library. The phylogenetic diversity of a set A of taxa, denoted
by PDT (A), is the total weight of all edges that are on a path from the root to a
leaf that corresponds to a taxon in A. In Figure 1.1 an example of cladistic and
phylogenetic diversity is given.

Intuitively, with phylogenetic diversity one measures the expected range of bi-
ological features of a given set of taxa. We, however, need to be a bit cautious
as it is not always correct to estimate the number of features with the phyloge-
netic diversity [WMS21]. Nevertheless, maximizing phylogenetic diversity has be-
come the standard, albeit imperfect, measure for the biological diversity of a set

1Note that phylogenetic trees may be rooted or unrooted. In this thesis, we only consider the
rooted variant.

18

150
154

66

113

(a) Acropora cf rotumana
(b) Acropora valencinessi
(c) Acropora abtrotanoides
(d) Acropora derawanensis
(e) Acropora batunai

Figure 1.1: A weighted phylogenetic tree of a selection of Acropora corals. For edges
without numbers, the evolutionary distances are not specified [FR12].
The cladistic diversity of the sets of corals {a, c, e} and {a, e} is 4, each. The phylogenetic
diversity of the sets of corals {a, c, e} is 483 and of {a, c} is 370, assuming that edges without
numbers have a weight of 0.

of taxa [GCJW+15, ITC+07, MPC+18]. This measure forms the basis of the Fair
Proportion Index and the Shapley Value [HKS08, Har13, RM06], which are used
to evaluate the individual contribution of individual taxa to overall biodiversity.
Over the years, phylogenetic diversity nevertheless became the most well-regarded
metric in measuring the biodiversity and therefore the value of a set of species
(see [Cro97]), which for example is used by the IUCN’s Phylogenetic Diversity Task
Force (https://www.pdtf.org/) and the Zoological Society of London’s EDGE of
Existence program [ITC+07]. Despite all the mentioned positive features of phyloge-
netic diversity, to not present a one-sided picture, we also want to mention that there
are some objections raised against the usage of phylogenetic diversity [WDS13] and
many preservation projects also do not consider phylogenetic diversity [MP08, SM12].

Based on the phylogenetic diversity index, Daniel Faith proposed a maximiza-
tion problem, Max-PD, in which one has to find a relatively small set of taxa that
achieves maximal phylogenetic diversity [Fai92]. The set needs to be small because
limited resources impose monetary, environmental, or other restrictions to the preser-
vation project. More formally, Max-PD, formulated as a decision problem, is defined
as follows.

Maximize Phylogenetic Diversity (Max-PD)
Input: A phylogenetic X-tree T and integers k and D.
Question: Is there a set of taxa S ⊆ X of size at most k such that PDT (S) ≥ D?

Faith already stated that Max-PD can be computed with a greedy algorithm and
therefore is computationally easy [Fai92]. Formal proofs were given by Steel [Ste05]
and Pardi and Goldman [PG05], independently. Consequently, Max-PD can be

19

solved within seconds, even on large instances [MKvH06].

1.2 Modeling Real-World Biological Processes

As much as the lightweight definition of Max-PD is an advantage in understanding
and quickly solving the problem, just as much of a drawback it is in modeling real-
world biological processes. Among these disadvantages stand that it is not realistic
that all species can be saved for the same price, that all species have the same
remaining time before an extinction, or that the survival of each species is decided
without regarding the interaction of species. To cope with these issues, several further
problems were introduced which, in contrast to Max-PD, are NP-hard [PG07, HS06,
JS24, MSS07]. Therefore, it is unlikely that these problems can be solved with an
algorithm that only consumes time polynomial to the size of the input. In this
thesis, we examine a selection of NP-hard problems in which one aims to maximize
phylogenetic diversity. We study these problems from a classical and parameterized
point of view and want to help understanding what makes these problems tractable
and provide algorithms that break this intractability to a certain degree. While
more mathematical definitions follow in the next chapter, the reader at this point
only needs to understand that if a problem is XP or FPT, then an algorithm exists
which solves the problem in a desirable time. For W[1]-hard problems, the existence
of an FPT-algorithm is unlikely. A deeper view of the theoretical framework is given
in the next chapter. In the following, we briefly present the problems considered in
this work and summarize some results.

Generalized Noah’s Ark Problem. One of the first steps was to allow that the
protection of taxa may have different costs [PG07]. This approach introduced the
problem Budgeted NAP, also referred to as 0 ci→ 1 [2]-NAP, which is shown to be
NP-hard by a reduction from Knapsack [PG07].

Subsequent approaches also allowed to model uncertainty as follows. For example,
performing an action to protect some species does not guarantee the survival of that
species but only raises the survival probability [Wei98]. In this model, one now aims
to maximize the expected phylogenetic diversity. That is, the weight of an edge is only
added with the probability that at least one of the offspring in the subtree survives.
Finally, one may also consider the even more realistic case when for each species,
one may choose from a set of different actions or even from combinations of different
actions. Each choice is then associated with a cost and with a resulting survival
probability. This model was studied by Hartmann and Steel [HS06], Pardi [Par09]

20

a

b c d

80 100

50
30 70

Taxon a
0 0
1 0.3
2 0.5
5 0.8
10 0.9

Taxon b
0 0
1 0.2
3 0.5
10 0.75

Taxon c
0 0
1 0.1
2 0.3
3 0.5
7 0.8

Taxon d
0 0
1 0.2
2 0.4
5 0.6
7 0.9

Figure 1.2: An example of an instance of GNAP with a phylogenetic tree on the left and
the lists of projects to the right. In each table, in the left column the cost of the project is
shown and in the right column the associated survival probability. Spending 2 on Taxon a,
1 on Taxon b, 0 on Taxon c, and 5 on Taxon d would cost 8 and give an expected diversity
of 80 · 0.5 + 50 · 0.2 + 30 · 0 + 70 · 0.6 + 100 · (1− 0.8 · 0.4) = 40 + 10 + 42 + 68 = 160.

and Billionnet [Bil13, Bil17] as Generalized Noah’s Ark Problem (GNAP).
An example of an instance of GNAP is given in Figure 1.2.

It feels natural that putting more effort into a certain species increases their sur-
vival probability. While the biblical story tells us that for God it was possible to
restore species with a single male and female after the great flood, such a project
seems unlikely to succeed for men without divine skills. So, in GNAP one can
consider the projects to refer to the cost and the according survival probability that
are associated with the protection of a certain amount of individuals of the same
kind. However, projects can also be a lot more general.

We consider GNAP and also put a focus on a special case of GNAP in which
every taxon only has a single project that has a cost of 1 and a positive survival pro-
bability. We show that this special case, which we call unit-cost-NAP, is NP-hard
even if the phylogenetic tree of the input has a height of 2 or is ultrametric and has a
height of 3. Furthermore, we show that GNAP is XP with respect to the number of
unique costs or the number of unique survival probabilities, but when parameterized
with the number of taxa, GNAP is W[1]-hard and therefore unlikely to admit an FPT
algorithm.

Consideration of Extinction Times. Efforts in another direction were made
to consider that species could have differing times, after which they will die out if
they have not been protected. In this extension of Budgeted NAP, denoted Time
Sensitive Maximization of Phylogenetic Diversity (Time-PD), each taxon
has an associated rescue length (the amount of time it takes to save them) and also

21

an extinction time (the time after which the taxon can not be saved anymore).
Additionally, we know when preservation teams are able to work on saving taxa.
Thus, to ensure that a set of taxa can be saved with the available resources, it is not
enough to guarantee that their total cost is below a certain threshold. One also needs
to ensure that there is a schedule for the involved intervention teams under which
each taxon is saved before its moment of extinction. The first steps to addressing
this issue were made by defining and analyzing Time-PD and s-Time-PD [JS24],
which is a part of this thesis. s-Time-PD and Time-PD are related versions of
the problem which differ only in the specification of whether operating teams may
cooperate on saving a specific taxon or not.

Time-PD and s-Time-PD have much in common with machine scheduling prob-
lems, insofar as we may think of the taxa as corresponding to jobs with a certain due
date and the teams corresponding to machines. One may think of Time-PD and
s-Time-PD as machine scheduling problems, in which the objective to be maximized
is the phylogenetic diversity of the set of completed tasks—which are the saved taxa.

We show that both problems, Time-PD and s-Time-PD, are FPT when param-
eterized with the threshold of diversity D. Further, we present an FPT-algorithm
for Time-PD with respect to the acceptable loss of phylogenetic diversity. Such an
algorithm is unlikely to exist for s-Time-PD, as this problem is NP-hard even if every
taxon needs to be saved.

Considering Ecological Dependencies. Moulton et al. [MSS07] were the first
to consider a formal problem in which the survival of some taxa may also depend
on the survival of other taxa and modeled the Optimizing PD with Dependen-
cies (PDD). Here, the input additionally contains a directed acyclic graph (DAG)2 F
with vertex set X where an arc uv is present if the existence of taxa u provides all
the necessary foundations for the existence of taxon v. In other words, F models
ecological dependencies between taxa. Now, a taxon v may survive only if (i) it does
not depend on other taxa at all, that is, it has no incoming arcs, or (ii) at least one
taxon u survives such that F contains the arc uv. The most widespread interpreta-
tion of such ecological dependency networks are food-webs where the arc uv means
that taxon v feeds on taxon u.3 A subset of taxa X where every vertex fulfills (i)
or (ii) is called viable. The task in PDD is to select a viable set of k taxa that achieves

2A DAG is a directed graph without loops in which there is no path from vertex v to vertex u
if there is a path from u to v.

3We remark that previous works [MSS07, FSW11] consider a reversed interpretation of the arcs.
We define the order in such a way that a source of the network also corresponds to a source of the
ecosystem.

22

Phytoplankton

Zooplankton

Sardine

Whales

Anchovy

Hakes

Squid

Seals

Birds

Figure 1.3: Here, a model of the food-web of the Benguela ecosystem is depicted [PLS14].
Phytoplankton is the only source. If whales are to be saved, then zooplankton and phyto-
plankton also need to be saved.

maximal phylogenetic diversity. An example of a food-web is given in Figure 1.3.
We consider PDD and the special case s-PDD, where the phylogenetic tree is a

star. We show that PDD is FPT when parameterized by the size of the solution k
plus the height of the phylogenetic tree and therefore with respect to the desired
diversity D. We further examine PDD with respect to parameters analyzing the
structure of the food-web. Herein, we show that s-PDD is FPT when parameterized
by the distance to cluster or the treewidth of the food-web. With the distance to
cluster it is measures how few vertices could be removed to result in a cluster graph
and with the treewidth, one can state how similar a graph is to a tree. The latter
disproves a conjecture of Faller et al. [FSW11, Conjecture 4.2] stating that s-PDD
is NP-hard even when the food-web is a tree, unless P = NP.

1.3 Phylogenetic Networks
Phylogenetic trees are the familiar model to represent the inheritance of a set of
taxa. Even though such a representation may models the biological ground truth
acceptably well for many applications, it is not flawless. In the interaction between
taxa it is possible that reticulation events occur. These events include hybridization,
horizontal gene transfer and other forms of genetic recombination [HB06]. With
hybridization, evolutionists describe the crossing of two groups of species that have
developed different features over time [Ste59, SPSS23]. Bacteria and fungi use the
mechanism of horizontal gene transfer to pass DNA from a donor cell to a receiver
cell in order to make themselves more resistant [NBP19].

These reticulation events can not be represented in a phylogenetic tree. Biolo-
gists have therefore generalized phylogenetic trees and have introduced the concept
of phylogenetic networks. A phylogenetic network is a directed acyclic graph (DAG)

23

Spectacled

Sun Sloth

Asiatic Black American Black

PolarBrown

10

3

2 1
21

1
1

1

2

5 4

41

3
12

1

Figure 1.4: This figure depicts a likely heritage of several bears in a weighted phylogenetic
network [KLB+17]. The two reticulations are depicted in red.

in which there is exactly one vertex with an in-degree of 0 and each vertex with
an in-degree bigger than 1—which are called reticulations—has an out-degree of 1.
As the name suggests, in the reticulations, reticulation events can be represented.
Similarly as in phylogenetic trees, vertices with an out-degree of 0 represent (a sub-
set of) present day taxa and the other vertices represent assumed extinct ancestors.
Weights on the edges of a phylogenetic network mark a distance between the two
endpoints and can stand for a number of features or an estimated evolutionary dis-
tance. We note that this definition of phylogenetic networks is sometimes referred to
as phylogenetic reticulate networks or explicit phylogenetic networks and that other
types of phylogenetic networks exist. An overview of different types of phylogenetic
networks can be found in [HB06, HRS10]. An example of a phylogenetic reticulate
network is given in Figure 1.4.

Phylogenetic networks generalize phylogenetic trees. Therefore, the question
of what measure generalizes phylogenetic diversity on phylogenetic networks nat-
urally arises. First concepts have been introduced for so-called phylogenetic split
systems [VMM+14, CKvHM16] and later also for explicit phylogenetic reticulate
networks [WF18, BSW22].

Arguably the most easy-to-understand measure of phylogenetic diversity of a
set of taxa A in a phylogenetic network N is all-paths phylogenetic diversity, de-
noted with AP-PDN (A), which was first defined as “phylogenetic subnet diversity”
in [WF18]. In all-paths phylogenetic diversity, one simply adds the weight of all the
edges uv for which there is a path from v to a taxon in A.

In all-paths phylogenetic diversity it is therefore assumed that taxa which result

24

from reticulation events have all the features of the parents. A more realistic assump-
tion is that all parents contribute some features at some inheritance proportion. As a
consequence, to compute network phylogenetic diversity, denoted with Net-PDN (A),
of a set of taxa A in a phylogenetic network N we need to know the inheritance
proportion p(e) of every edge e incoming at some reticulation v. Then, if a taxon
below v is selected, the features above e only survive with a probability p(e)—if not
covered by a better path. Observe that if all the inheritance proportions are 1, then
the network phylogenetic diversity takes the same value as the all-paths phylogenetic
diversity.

Corresponding to these two measures, decision problems Max-All-Paths-PD
(MapPD) and Max-Net-PD were introduced [BSW22] in which we are given a
phylogenetic network, two integers k and D, and inheritance proportions in the case
of the latter problem. It is asked whether a subset S of taxa exists such that S has
a size of at most k and AP-PDN (S) ≥ D or Net-PDN (S) ≥ D, respectively.

Based on a known hardness reduction for MapPD [BSW22], we establish the
W[2]-hardness with respect to the size k of a solution. We then show that MapPD is,
however, FPT when parameterized by the threshold of diversityD or by the acceptable
loss of diversity D. We further show that MapPD is FPT with respect to the number
of reticulations and with respect to the number of edges incoming in reticulations
and admits a kernelization of polynomial size.

As Max-Net-PD generalizes MapPD, the hardness-results for MapPD also
hold for Max-Net-PD. We moreover show that Max-Net-PD remains NP-hard in
instances in which the phylogenetic network has a level of 1. The level measures the
tree-likeness of a phylogenetic network.

1.4 Structure of this Thesis

In the following chapter, we formally define phylogenetic diversity in the considered
variants and the problems regarded in this thesis. Furthermore, we give an overview
of further relevant definitions such as terms of computational complexity. At the
end of Chapter 2, we show parameterized complexity results for Multiple-Choice
Knapsack and Penalty Sum, two problems that are unrelated to phylogenetic
diversity but are relevant for results in the following chapters.

In Chapter 3, we consider Generalized Noah’s Ark Problem with its special
cases; in Chapter 4, we consider Time-PD and s-Time-PD; and in Chapter 5,
we consider Optimizing PD with Dependencies with its special cases. At the
beginning of each of these chapters, we give an overview of the known results and

25

then we examine the respective problem within the framework of parameterized
complexity.

In Chapter 6, with Max-All-Paths-PD and Max-Net-PD, we examine two
problems that are based on measures of phylogenetic diversity in phylogenetic net-
works. As in the chapters before, we first present known results. Afterward, we
show parameterized complexity results for Max-All-Paths-PD before we show
that Max-Net-PD is NP-hard even on networks of level 1.

Finally, in Chapter 7 we discuss open problems and future research ideas.

26

Chapter 2

Preliminaries

In this chapter, we give the fundamental definitions that we use throughout this
thesis. We start with some mathematical notation, then formally define phylogenetic
diversity and Maximize Phylogenetic Diversity. Afterward, we define notions
of classic and parameterized complexity. Finally, in Sections 2.5 and 2.6, we consider
two problems, Multiple-Choice Knapsack and Penalty Sum, to which we refer
later in the thesis. These problems are not about the maximization of phylogenetic
diversity but are very useful for results later in the thesis.

2.1 Mathematical Notation

For an integer n, let [n] denote the set {1, . . . , n} and let [n]0 denote the set {0}∪ [n].
Define R[0,1] := {x ∈ R | 0 ≤ x ≤ 1} and R(0,1) := R[0,1] \ {0, 1}. A partition of a
set N is a family of pairwise disjoint sets {N1, . . . , Nm} such that

⋃︁m
i=1Ni = N .

We extend functions f : A → B, where B is a family of sets, to handle sub-
sets A′ ⊆ A of the domain by defining f(A′) :=

⋃︁
a∈A′ f(a). Functions f : A → N

are extended to subsets A′ ⊆ A of the domain by defining fΣ(A′) :=
∑︁

a∈A′ f(a).
Throughout the thesis, we will use both natural and binary logarithms. We will

write lnx to denote the natural logarithm of x (to the base e), and logi x to denote
the logarithm of x to the base i ∈ N. If i is not further specified, then we use i = 2.

The encoding length of a number is the number z of bits necessary to encode z
in binary. Let 0 denote the multidimensional-dimensional zero. For a vector p of
numbers, we use the following operations. We let p(j)+z denote the vector p in which
in position i, value z is added. We write p ≤ q if p and q have the same dimension d
and pi ≤ qi for every i ∈ [d].

27

2.1.1 Graph-Theoretic Notation

We define the graph-theoretic notion used throughout the work. Standard mono-
graphs provide a deeper view [Wes00, Die12].

For a set V and a set E ⊆ {uv | u, v ∈ V }, a (directed) graph G is a tuple (V,E),
where V is called the set of vertices of G and E the set of edges of G, respectively.
We write uv or (u, v) for a (directed) edge from u to v, and {u, v} for an undirected
edge between u and v. For any graph G, we write V (G) and E(G), respectively,
to denote the set of vertices and edges of G. If E is a family of undirected edges,
then G = (V,E) is called an undirected graph. For a directed graph G = (V,E), the
directed graph G′ := (V,E ′) with E ′ := {{u, v} | uv ∈ E} is called the underlying
undirected graph.

An edge e = uv or e = {u, v} is incident with u and v. Further, the edge uv is
incoming at u and outgoing from v. We say two vertices are adjacent or neighbors
if they are incident with the same edge, and similarly we say two edges are adjacent
if they are incident with the same vertex.

The degree of a vertex v is the number of edges that are incident with v. Similarly,
the in-degree (and out-degree, respectively) of v is the number of incoming (outgoing)
edges of v.

For a graph G and a set of vertices V ′ ⊆ V (G), the subgraph of G induced
by V ′ is G[V ′] := (V ′, E ′), where E ′ := {e = uv ∈ E(G) | u, v ∈ V ′}. Moreover,
with G − V ′ := G[V \ V ′] with V ′ ⊆ V , we denote the graph obtained from G by
removing V ′ and its incident edges. For an edge set E ′ ⊆ E, we define G−E ′ as the
graph (V,E \ E ′).

We say that there is a path of length p from u to w if v = w and p = 0 or there
is an edge uv or {u, v} such that there is a path of length p − 1 from v to w. We
sometimes omit the length of the path. Two vertices u and v are connected if there is
a path from u to v or from v to u. An undirected graph G is connected if the vertices
in V (G) are pairwise connected. For an undirected graph G and a non-empty set
of vertices V ′ ⊆ V (G), the subgraph of G induced by V ′ is a connected component
if G[V ′] is connected, and vertices u and v are not connected for each v ∈ V (G) \ V ′

and each u ∈ V ′. An undirected graph G is biconnected if G− {v} is connected for
every vertex v ∈ V (G).

A topological order induced by a given directed graph G = (V,E) is a bijective
mapping f : V → [|V |] such that f(u) ≤ f(v) for every edge uv ∈ E.

The complement graph of an undirected graph is obtained by replacing edges with
non-edges and vice versa.

28

Other Graph Classes. An undirected graph G is cyclic if there are
vertices u, v, w ∈ V (G) such that neighbors u and w are neighbors of v and u and w
are connected in G−{v}. An undirected graph is not cyclic is acyclic. A self-loop is
an edge uu for some vertex u. A directed, acyclic graph (DAG) is a directed graph
that does not contain self-loops and we can conclude u = v if there is a path from u
to v and from v to u.

An undirected graph G = (V,E) is bipartite if there is a partition {V1, V2} of the
vertex set V such that e∩ V1 and e∩ V2 are both non-empty for each edge e ∈ E. In
other words, each edge is between V1 and V2. The vertex sets V1 and V2 are a vertex
bipartition.

An undirected graph is a cluster graph if the existence of edges {u, v} and {v, w}
implies the existence of the edge {u,w}. Equivalently, a graph is a cluster graph if
every connected component is a clique. An undirected graph is a co-cluster graph
if its complement graph is a cluster graph. In other words, a graph is a co-cluster
graph if its vertex set can be partitioned into independent sets such that each pair
of vertices from different independent sets is adjacent.

For a graph class Π defined exclusively on undirected graphs, we say that a
directed graph is of class Π if the underlying undirected graph is of class Π.

Trees. A rooted tree T with root ρ is a directed, acyclic graph with ρ ∈ V (T) where
each vertex of T can be reached from r via exactly one path. A vertex v of a tree T
is a leaf when the out-degree of v is 0. We refer to the non-leaf vertices of a tree as
the internal vertices. In a rooted tree, the height of a vertex v is the length of the
(only) path from the root ρ to v for each vertex v. The height heightT of a rooted
tree T is the maximal height of one of the vertices of T . A star is a tree with a height
of 1.

For an edge uv of a rooted tree, we call u the parent of v and v a child of u.
For two edges e and ê incident with the same vertex v, we say ê is the parent-edge
of e if ê = uv and e = vw. If e = vu and ê = vw, we say ê is a sibling-edge of e.
For a vertex v with parent u, the subtree Tv rooted at v is the connected component
containing v in T −{u}. In the special case that ρ is the root of T , we define Tρ := T .
For a vertex v with children w1, . . . , wt, the i-partial subtree Tv,i rooted at v for i ∈ [t]
is the connected component containing v in Tv − {wi+1, . . . , wt}.

For an undirected graph G and a set of vertices V ′ ⊆ V (G), a spanning tree of V ′

is a tree T with V ′ ⊆ V (T) ⊆ V (G) and E(T) ⊆ E(G). The size of a spanning tree
is the number of vertices. A minimum spanning tree of V ′ is a spanning tree of V ′

of minimum size. For a tree T = (V,E) and a vertex set V ′ ⊆ V , the minimum
spanning tree of V ′ is denoted by T ⟨V ′⟩.

29

Graph Parameters. For an undirected graph G = (V,E) and a graph class Π the
distance to Π of G is the smallest number d such that there exists a set Y ⊆ V of d
such that G−Y is of class Π. The set Y in this definition is called a modulator to Π.

The max leaf number of an undirected graph G = (V,E) is the maximum number
of leaves a spanning tree of V has.

Definition 2.1 (Tree Decomposition). A tree decomposition of a directed graph G
is a rooted tree T and a mapping which assigns each node t ∈ T a subset Qt ⊆ V (G)
such that

(a) every vertex of G is contained in some bag,

(b) for every edge e = {u, v}, there is some bag containing u and v, and

(c) the nodes of T whose bags contain any particular vertex v are connected.

A tree decomposition is nice [CNP+22] if the bags of the root and all leaves of T
are empty, and every non-leaf node t has one of the following types

Introduce vertex node: t has only one child t′ and Qt′ = Qt \ {v} for some
vertex v which is said to be introduced at t;

Introduce edge node: t has only one child t′ and Qt′ = Qt and t is labeled with
an edge e ⊆ Qt which is said to be introduced at t;

Forget node: t has only one child t′ and Qt′ = Qt ∪ {v} for some vertex v;

Join node: t has exactly two children t1, and t2 and Qt = Qt1 = Qt2 .

Every edge ofGmust be introduced exactly once, and we may assume this happens as
high in T as possible, i.e. we can introduce edges right before some of their endpoints
is forgotten. For a node t ∈ T , we denote by Gt = (Vt, Et) the subgraph of G that
contains exactly those vertices Vt and edges Et and edges that are introduced at t or
any descendant of t.

If we do not define introduce edge nodes, then all edges are introduced once both
vertices are introduced. The width of a tree decomposition is the size of the biggest
bag minus 1. The treewidth of an undirected graph G is the minimum width of a
tree decomposition of G.

For a graph parameter κ defined exclusively on undirected graphs, we define κ
on directed graphs with the size of κ in the underlying undirected graph.

30

2.2 Phylogenetics
For a given set X, a phylogenetic X-tree T = (V,E, λ) (in short, X-tree or phylo-
genetic tree) is a tree T = (V,E) with an edge-weight function λ : E → N>0 and a
bijective labeling of the leaves with elements from X where all non-leaves in T have
out-degree at least 2. The set X is a set of taxa (species). Because of the bijective
labeling, we interchangeably use the words taxon and leaf. We write maxλ to denote
the biggest edge weight in T . An X-tree T is ultrametric if there is an integer p such
that the sum of the weights of the edges of the path from the root ρ to xi equals p
for every leaf xi.

If there is a directed path from u to v in T (including when u = v or when v
is a child of u), we say that u is an ancestor of v and v is a descendant of u. If
in addition u ̸= v, we say u is a strict ancestor of v and v a strict descendant
of u. The sets of ancestors and descendants of v are denoted anc(v) and desc(v),
respectively. The set of descendants of v which are in X are offspring off(v) of a
vertex v. Moreover, we denote off(e) = off(v) for an edge e = uv ∈ E.

Phylogenetic Diversity. Given a subset of taxa A ⊆ X, let ET (A) denote the
set of edges in e ∈ E with off(e) ∩ A ̸= ∅. The phylogenetic diversity PDT (A) of A
is defined by

PDT (A) :=
∑︂

e∈ET (A)

λ(e). (2.1)

That is, PDT (A) is the total weight of all edges uv in T so that there is a path from v
to a vertex in A. The phylogenetic diversity model assumes that features of interest
appear along the edges of the tree with frequency proportional to the weight of that
edge and that any feature belonging to one species is inherited by all its descendants.
Thus, PDT (Z) corresponds to the expected number of distinct features appearing in
all species in Z.

See Figure 2.1 for an example of the definition of phylogenetic diversity.
In Section 3.2.1 and Section 6.2.1, we present the generalizations of phylogenetic

diversity to a) handle that species do not survive indefinite but at a given probability
and b) phylogenetic networks, respectively.

Phylogenetic Networks. A phylogenetic X-network N = (V,E, λ) (in
short, X-network or network) is a directed acyclic graph with an edge-weight
function λ : E → N>0 and a single vertex with an in-degree of 0 (the root ρ), in
which the vertices with an out-degree of 0 (the leaves) have an in-degree of 1 and are

31

1 1

5 10

2 4 1 2

x1

x2 x3 x4 x5

Figure 2.1: An example of a phylogenetic X-tree T with taxa X = {x1, x2, x3, x4, x5}.
The set A = {x2, x3, x5} has a phylogenetic diversity of PDT (A) = 1+5+10+2+4+2 = 24.
The set of edges ET (A) is blue and dashed.

bijectively labeled with elements from a set X, and such that all vertices either have
an in-degree of at most 1 or an out-degree at most 1. The vertices with in-degree
at least 2 and out-degree 1 are called reticulations ; the other non-leaf vertices are
called tree vertices. Every edge incoming at a reticulation is a reticulation edge. A
network is binary if the root has an out-degree of 2 and every other non-leaf vertex
has a degree of 3.

The number of reticulations of a network N is denoted with retN . The number
of reticulation-edges e-retN of a network N is the number of edges that need to be
removed such that N is a tree. We note that this is not state what the number of
the reticulation edges is. Some authors refer to the number of reticulation-edges as
the reticulation number of N . If N is binary, then the number of reticulations is
exactly the number of reticulation-edges. The level of a network N is the maximum
reticulation number of a subgraph N [V ′] for some V ′ ⊆ V (N) where we require that
the underlying undirected graph of N [V ′] is biconnected.

2.3 Classic and Parameterized Complexity

In this section, we provide the necessary background in complexity theory, both
for classical concepts of NP-hardness and NP-completeness, and for parameterized
complexity. Readers are referred to monographs for classic computational complex-
ity [GJ79, Pap07, AB09], and to monographs for parameterized complexity [FG06,
Nie06, DF13, CFK+15] for more detailed introductions.

32

2.3.1 Classic Computational Complexity

Within the field of classic computational complexity, we deal with computational
problems and the question of how many computational resources are required to find
an answer to the raised question. In this thesis, we only consider decision problems Π
(problems for short). The closely related optimization problems can usually be solved
with only a small overhead, if an algorithm is given that solves the decision variant.
We consider the following formal definitions.

Definition 2.2 (Languages, Decision Problems and Instances).

(a) A language L ⊆ Σ∗ is a set of (finitely long) strings over a finite alphabet Σ.

(b) The decision problem associated with a language L is to determine if x ∈ L for
any given instance x ∈ Σ∗.

(c) An instance x ∈ Σ∗ is a yes-instance if x ∈ L and a no-instance if x /∈ L.

An algorithm is a defined order of computational steps to solve a computational
problem. An algorithm A solves a decision problem Π if, after a finite number of
computation steps, A correctly determines whether an instance is a yes-instance or
a no-instance. If such an algorithm exists, then Π is decidable. In this thesis, we only
consider decidable decision problems.

The complexity measures of algorithms are the computational resources that are
required to let the algorithm run on any instance, usually in correspondence with the
encoding length |x| of the instance x. The most frequently used complexity measures
are time and space. With time, we refer to the number of steps the computation
needs, and with space we refer to the required memory. Throughout this thesis, we
only consider the running time of algorithms. The complexity of a decision problem Π
is given by the fastest, usually unknown algorithm solving Π.

In our running time analyses, we assume a unit-cost RAM model where arith-
metic addition and multiplication for numbers of any length have a constant running
time. This model is unrealistically strong but avoids that we have to add factors
to the running time which are not all too interesting from a theoretical point of
view. We will, in order to have more clarity, recall this fact in the running time
analyses of algorithms in which we operate with numbers that are potentially bigger
than O(log(|I|)), where |I| is the size of the entire instance.

There are several complexity classes for decision problems, of which P and NP are
the most prominent.

33

Definition 2.3 (The classes P and NP).

(a) A decision problem is in P if a deterministic Turing machine exists which,
for each given instance x ∈ Σ∗, determines whether x is a yes-instance
within poly(|x|) time.

(b) A decision problem is in NP if a non-deterministic Turing machine exists which,
for each given instance x ∈ Σ∗, accepts x within poly(|x|) time.

A full definition of non-determinism is beyond the scope of this work. Informally,
in a non-deterministic Turing machine some configurations may have several succes-
sor configurations. A Turing machine accepts an input x if it is possible to reach an
accepting configuration from the starting configuration.

Every problem in P is also in NP, but it is assumed that certain problems are
in NP but not in P, and, therefore, P ̸= NP. In other words, it is believed that there
are problems in NP that are not deterministically solvable in polynomial time—the
NP-complete problems. To mathematically define these, we introduce the concept of
reductions, to show that a problem is at least as hard as another. For two decision
problems Π1,Π2 ⊆ Σ∗, a reduction from Π1 to Π2 is an algorithm—a computable
function f : Σ∗ → Σ∗—which takes instances of Π1 and returns instances of Π2, and
we require that x ∈ Σ∗ is a yes-instance of Π1 if and only if f(x) ∈ Σ∗ is a yes-
instance of Π2. The instances x and f(x) are then called equivalent. A reduction f
is a polynomial-time reduction if f(x) is computed within poly(|x|) time. A decision
problem Π is NP-hard if there is a polynomial-time reduction from Ψ to Π for every
decision problem Ψ in NP. A decision problem Π is NP-complete if Π is NP-hard and
in NP. If there was an NP-complete problem which is also in P, then all problems
in NP could be solved deterministically in polynomial time. As discussed earlier, it
is not believed that such a decision problem exists. In Section 2.4, a small list of
NP-complete problems is given.

A function f : N → N is in O(g(n)) for another function g : N → N, if there
are integers c and m such that f(n) ≤ c · g(n) for each integer n ≥ m. Similarly,
function f : N → N is in O∗(g(n)) for another function g : N → N, if there is
an integer m such that f(n) ≤ g(n) · poly(n) for each integer n ≥ m. In other
words, if f(n) ∈ O(g(n)) then g grows at least as fast as f . We use in the O and
the O∗-notation to describe the running times of algorithms and in the O∗-notation
we omit factors polynomial in the input size.

34

2.3.2 Parameterized Complexity

In this section, we give a brief overview of formal definitions of parameterized com-
plexity.

Fixed-Parameter Tractability. Here, we first define what a parameterized prob-
lem is before we define the complexity classes FPT and XP. The formal definition for
parameterized languages and parameterized decision problems are similar to the def-
inition of languages and decision problems given in Definition 2.2.

Definition 2.4 (Parameterized Languages and Parameterized Problems).

(a) A parameterized language L ⊆ Σ∗ × N0 is a set of tuples (x, k), where x is a
(finitely long) string over a finite alphabet Σ and k is an integer.

(b) We call x the input, k the parameter, and (x, k) the instance.

(c) The parameterized decision problem associated with a parameterized language L
is to determine if (x, k) ∈ L for any given instance (x, k) ∈ Σ∗ × N0.

(d) An instance (x, k) ∈ Σ∗ × N0 is a yes-instance if (x, k) ∈ L and a no-instance
if (x, k) /∈ L.

The encoding length of an instance (x, k) is denoted by |(x, k)|. We usually simply
use the term problem, when the context makes it clear that it is a parameterized
decision problem. Now, with the definition of parameterized decision problems at
hand, we define the two most relevant classes of parameterized decision problems,
FPT and XP.

Definition 2.5 (Fixed-Parameter Tractability).

(a) An algorithm A for a parameterized decision problem Π is fixed-parameter if
for every instance (x, k) ∈ Σ∗ ×N0, within f(k) · poly(|x|) (deterministic) time
the algorithm A correctly determines whether (x, k) is a yes- or a no-instance
of Π. Here, the function f can be any computable function that only depends
on k. We write in short that A is an FPT-algorithm.

(b) A parameterized decision problem is fixed-parameter tractable (FPT) if it can
be solved by a fixed-parameter algorithm.

(c) FPT is the complexity class of all parameterized decision problems that are
fixed-parameter tractable.

35

An algorithm has a pseudo-polynomial running time if it has a running time
polynomial in the input size when all numbers are encoded in unary, but the running
time is not polynomial in the input size when all numbers are encoded in binary. A
parameterized decision problem is polynomial fixed-parameter tractable (PFPT) if the
function f in Definition 2.5(a) is a polynomial.

Definition 2.6 (Slice-wise Polynomial (XP)).

(a) An algorithm A for a parameterized decision problem Π is slice-wise polynomial
if for every instance (x, k) ∈ Σ∗ × N0, within poly(|(x, k)|)g(k) (deterministic)
time the algorithm A correctly determines whether (x, k) is a yes- or a no-
instance of Π. Here, the function g can be any computable function that only
depends on k. We write in short that A is an XP-algorithm.

(b) A parameterized decision problem is slice-wise polynomial (XP) if it can be
solved by an XP-algorithm.

(c) XP is the complexity class of all parameterized decision problems that are slice-
wise polynomial.

We observe that the definition of FPT is stricter than the definition of XP. Con-
sequently, any FPT-algorithm is an XP-algorithm, but the converse is not given. We
conclude that FPT ⊆ XP.

We observe further that problems which are XP can be solved in polynomial time
if we require the parameter to be a constant. In order to show that a parameterized
decision problem Π is not XP, we therefore show that Π is NP-hard even for constant
values of the parameter. Next, we define how we exclude that a parameterized
decision problem is FPT under some complexity-theoretic assumptions.

The W-Hierarchy. Of course, we do not assume that all parameterized decision
problems are FPT. Proving that a parameterized decision problem Π is NP-hard for
a constant size of the parameter shows that Π is not in XP (assuming P ̸= NP).
Because FPT ⊆ XP we can also conclude that Π is not in FPT in that case. But then
automatically the question arises of how to provide evidence that a problem in XP is
not in FPT.

To answer this question, Downey and Fellows defined the W-Hierarchy [DF95a,
DF95b, DF13]. This hierarchy is defined with parameterized reductions which gen-
eralize reductions.

36

Definition 2.7 (Parameterized Reductions). For two parameterized decision prob-
lems Π1 and Π2 and two computable functions f, g : N → N, a parameterized reduc-
tion from Π1 to Π2 is an algorithm A which takes instances (x, k) ∈ Σ∗ × N of Π1

and returns instances (x′, k′) ∈ Σ∗ × N of Π2 such that

(a) (x, k) is a yes-instance of Π1 if and only if (x′, k′) is a yes-instance of Π2, and

(b) the computation of A takes f(k) · poly(|x|) time, and

(c) k′ ≤ g(k).

Essential for the W-hierarchy are the following problems. In Weighted Cir-
cuit Satisfiability over Ct,d, we are given a logic circuit with a depth of d and
a weft of t. It is asked whether there is an input that satisfies the circuit. The depth
of a circuit is the maximum number of nodes on a path from an input variable to
the output and the weft of a circuit is the maximum number of nodes with in-degree
greater than 2 on a path from an input variable to the output. It is evident that
Weighted Circuit Satisfiability over Ct,d generalizes the famous Satisfia-
bility problem. The parameter we consider in the definition of the W-hierarchy is
the weft of the circuit.

Definition 2.8 (The W-Hierarchy).

(a) The complexity class W[i] for an integer i consists of the parameterized decision
problems Π for which there is a parameterized reduction from Π to Weighted
Circuit Satisfiability over Ci,d for some d ∈ N.

(b) A parameterized decision problem Π is W[i]-hard if there is a parameterized
reduction from Ψ to Π for every parameterized decision problem Ψ in W[i].

(c) A parameterized decision problem Π is W[i]-complete if Π is W[i]-hard and in W[i].

It is know that FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. Further, it is widely believed
that FPT ⊊ W[1] ⊊ W[2] ⊊ · · · ⊊ XP, but like P ̸= NP, this claim is not yet proven.

Kernelization. For parameterized decision problems, the concept of kernelization
provides a means of measuring how much the preprocessing decreases the size of the
instance.

Definition 2.9 (Kernelization Algorithms). A kernelization algorithm (also
kernelization, kernel or problem kernel) for a parameterized decision problem Π
is an algorithm A which takes instances (x, k) ∈ Σ∗ × N of Π and returns
instances (x′, k′) ∈ Σ∗ × N of Π such that

37

(a) the computation of A takes time polynomial in |(x, k)|, and

(b) (x, k) is a yes-instance of Π if and only if (x′, k′) is a yes-instance of Π, and

(c) |x′|+ k′ ≤ g(k) for some computable function g : N → N.

Kernelization algorithms are usually explained in several steps. These steps are
called reduction rules. A (data) reduction rule for a parameterized decision prob-
lem Π is an algorithm that given an instance (x, k) of Π returns an instance (x′, k′)
of Π. A reduction rule is correct if (x, k) is a yes-instance of Π if and only if (x′, k′)
is a yes-instance of Π. We say that a reduction rule has been exhaustively applied
on an instance if an application does not change the instance.

Kernelizations have a close connection to the class FPT, as we see in this theorem.

Theorem 2.1 ([CFK+15, DF13]). A parameterized decision problem Π admits a
problem kernel if and only if Π is FPT.

A polynomial kernelization (algorithm) is a kernelization where the function g in
Definition 2.9 is a polynomial. To disprove that a parameterized decision problem
admits a polynomial kernelization, we use one of the following two concepts. All
these concepts are based on the assumption that NP ̸⊆ coNP/poly. Even though
it is not proven yet, it is widely believed that NP ̸⊆ coNP/poly. In particular,
if NP ⊆ coNP/poly, then the polynomial hierarchy would collapse at the third
level [Yap83].

Definition 2.10 (Polynomial Parameter Transformation). For two parameterized
decision problems Π1 and Π2, a polynomial parameter transformation (PPT) is an
algorithm A which maps instances (x, k) ∈ Σ∗×N of Π1 to instances (x′, k′) ∈ Σ∗×N
of Π2 such that

(a) the computation of A takes time polynomial in |(x, k)|, and

(b) (x, k) is a yes-instance of Π if and only if (x′, k′) is a yes-instance of Π, and

(c) k′ ≤ p(k) for some polynomial p : N → N.

If there is a PPT from Π1 to Π2 for decision problems Π1 and Π2 with Π1 ∈ NP
and Π2 is NP-hard and admits a kernel of polynomial size, then also Π1 admits a
kernel of polynomial size. We conclude that if there is a PPT from Π1 to Π2 and Π1

does not admit a polynomial kernelization, assuming NP ̸⊆ coNP/poly, then also Π2

does not admit a polynomial kernelization, assuming NP ̸⊆ coNP/poly.
Next, we define cross-compositions, another technique for excluding polynomial

kernelizations. For this definition, we require polynomial equivalence relations.

38

Definition 2.11 (Polynomial Equivalence Relations). A polynomial equivalence re-
lation is an equivalence relation R on Σ∗ for which the following holds.

(a) There is an algorithm that for given strings x, y ∈ Σ∗ can check if x ∼R y
in poly(|x|+ |y|) time, and

(b) for any finite set S ⊆ Σ∗ there are at most poly(maxx∈S |x|) equivalence classes
with regard to the relation R.

Definition 2.12 (Cross-Compositions, [BJK14, CFK+15]). Let a decision prob-
lems Π1 ⊆ Σ∗, a parameterized decision problems Π2 ⊆ Σ∗ × N, and a polynomial
equivalence relation R, and an integer t be given. A cross-composition from Π1

into Π2 is an algorithm A which takes 2t instances x1, . . . , x2t of Π1 that are pairwise
equivalent with respect to R and returns an instance (x′, k′) of Π2 such that

(a) the computation of A takes time polynomial in
∑︁2t

i=1 |xi|, and

(b) xi is a yes-instance of Π1 for some i ∈ [2t] if and only if (x′, k′) is a yes-instance
of Π2, and

(c) k′ ≤ p(t+max2
t

i=1 |xi|) for some polynomial p : N → N.

Exponential Time Hypothesis (ETH). The Exponential Time Hypothesis (ETH)
and the Strong Exponential Time Hypothesis (SETH) are important conjectures in the
field of parameterized complexity and have been proposed by Impagliazzo, Paturi,
and Zane [IPZ01]. Relevant to the definition of ETH and SETH is q-SAT, a special
case of Satisfiability. In q-SAT, we are given a formula ψ with n variables that
is a conjunction of disjunctions of at most q literals. It is asked whether there is
an assignment of the variables that fulfills ψ. The problem q-SAT is NP-hard for
each q ≥ 3 [Kar72].

Now, for any q let Cq be the set of numbers such that q-SAT can be solved
in O(2c·n) time. As q-SAT is a special case of q + 1-SAT, we conclude Cq ⊆ Cq+1.
Let δq be the infimum of Cq. The formal definitions of ETH and SETH are as follows.

Definition 2.13 (ETH and SETH).

(a) The Exponential Time Hypothesis (ETH) states δ3 > 0.

(b) The Strong Exponential Time Hypothesis (SETH) states lim
q→∞

δq = 1.

It is widely believed that ETH is correct while there are some doubts for the
correctness of SETH. However, we again do not have a prove of the correctness or
incorrectness of either ETH or SETH, yet.

39

Color Coding. Here, we briefly want to define some mathematical objects that are
relevant for the technique of color coding which we use several times throughout this
thesis. For an in-depth treatment of color coding, we refer the reader to [CFK+15,
Sec. 5.2 and 5.6] and [AYZ95]. The technique of color-coding is traditionally used
for randomized algorithms. Over the years, concepts for derandomization have been
developed. Derandomization is necessary to meet the formal definition of (deter-
ministic) FPT-algorithms. However, we want to mention that randomized algorithms
with a very low error probability usually have faster running times.

Definition 2.14 (Perfect Hash Families). For integers n and k, an (n, k)-perfect
hash family H is a family of functions f : [n] → [k] such that for every subset Z
of [n] of size k, some f ∈ H exists that is injective when restricted to Z.

We will also resort to another data structure relevant for color coding.

Definition 2.15 (Universal Sets). For integers n and k, an (n, k)-universal set is
a family U of subsets of [n] such that for any S ⊆ [n] of size k, {A ∩ S | A ∈ U}
contains all 2k subsets of S.

It has been proven how big (n, k)-perfect hash families and (n, k)-universal sets
can be and how fast they can be computed.

Theorem 2.2 ([NSS95]). For any integers n, k ≥ 1, an (n, k)-perfect hash family
which contains ekkO(log k)·log n functions can be constructed in time ekkO(log k)·n log n.

Theorem 2.3 ([NSS95]). For any integers n, k ≥ 1, an (n, k)-universal set which
contains 2kkO(log k) · log n functions can be constructed in time 2kkO(log k) · n log n.

2.4 A List of Frequently Used Problems

In this section, we define some problems and results that we frequently refer to
throughout this thesis. This list is far from complete and we also recall problem
definitions when we use them.

Knapsack
Input: A set of items N = {a1, . . . , an}, two functions c, d : N → N, and two

integers B and D.
Question: Is there a set S ⊆ N such that cΣ(S) ≤ B and dΣ(S) ≥ D?

40

k-Subset Sum
Input: A set of items N = {a1, . . . , an}, a function c : N → N, and two

integers k and G.
Question: Is there a set S ⊆ N such that |S| = k and cΣ(S) = G?

We mostly use an analogous definition in which we say that we are given a multiset of
integers instead of N and the function c. Knapsack is a generalization of k-Subset
Sum. Both problems are NP-hard [Kar72] and W[1]-hard with respect to the size of
the solution [DF95b].

Vertex Cover
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there a vertex set C ⊆ V of size at most k such that e ∩ C ̸= ∅ for

each edge e ∈ E?

In other words, every edge has at least one endpoint in C. Such a vertex set C is
called a vertex cover of G. Vertex Cover is NP-hard even if each vertex in G has
a degree of exactly 3 [Moh01].

Set Cover
Input: A universe U , a family F of subsets over U , and an integer k.
Question: Are there sets F1, . . . , Fk ∈ F such that U :=

⋃︁k
i=1 Fi?

In other words, every item of U occurs at least in one of the sets F1, . . . , Fk ∈ F .
Set Cover is NP-hard [Kar72] and W[2]-complete when parameterized by k [DF13].
Assuming NP ̸⊆ coNP/poly, Set Cover does not admit a polynomial kernel when
parameterized by the size of the universe |U| [DLS14].

Red-Blue Non-Blocker
Input: An undirected bipartite graph G with vertex bipartition V (G) = Vr∪Vb

and an integer k.
Question: Is there a set S ⊆ Vr of size at least k such that each vertex v of Vb has

a neighbor in Vr \ S?

Red-Blue Non-Blocker is W[1]-hard when parameterized by k [DF95b].

ILP-Feasibility
Input: A matrix A ∈ Rm×n and a vector b ∈ Rm.
Question: Does a vector x ∈ Zn exist such that Ax ≤ b?

It is possible to redefine equations ax = b for some vectors a and x, and a number b

41

to be two inequalities ax ≤ b and −ax ≤ −b. In general, ILP-Feasibility is NP-
hard [Kar72]. However, it is known that instances of ILP-Feasibility with n
variables and input length s can be solved using s · n2.5n+o(n) arithmetic opera-
tions [FT87, LJ83].

2.5 Multiple-Choice Knapsack

In this section, we consider Multiple-Choice Knapsack (MCKP), a variant of
Knapsack, in which the set of items is divided into classes. From every class, exactly
one item can be chosen. MCKP is algorithmically closely related with Generalized
Noah’s Ark Problem and therefore particularly interesting for the examination
we want to conduct in the next chapter. While MCKP has been studied from a
classical and approximation point of view [KPP04], a parameterized point of view
has not been considered yet, to the best of our knowledge. We want to close this gap
in this section. The problem is formally defined as follows.

Multiple-Choice Knapsack Problem (MCKP)
Input: A set of items N = {a1, . . . , an}, a partition {N1, . . . , Nm} of N , two

functions c, d : N → N, and two integers B, and D.
Question: Is there a set S ⊆ N such that cΣ(S) ≤ B, dΣ(S) ≥ D, and |S ∩Ni| = 1

for each i ∈ [m]?

Recall that we write cΣ(A) :=
∑︁

ai∈A c(ai) and dΣ(A) :=
∑︁

ai∈A d(ai) for a set A ⊆ N .
We call c(ai) the cost of ai and d(ai) the value of ai. Further, for a set A ⊆ N we
define c(A) := {c(a) | a ∈ A} and d(A) := {d(a) | a ∈ A}. A set S holding the
criteria of the question is called a solution for the instance I of MCKP. The sets Ni

for i ∈ [m] are called classes.
We examine MCKP with respect to the following parameters. The input directly

gives the number of classes m, the budget B, and the desired value D. Closely related
to B is the maximum cost for an item C := maxaj∈N c(aj). By varc, we denote the
number of different costs, that is, varc := |{c(aj) : aj ∈ N}|. We define the number
of different values vard analogously. The size of the biggest class is denoted by L.
If a class Ni contains two items ap and aq with the same cost and d(ap) ≤ d(aq),
the item ap can be removed from the instance. Thus, we may assume that no class
contains two items with the same cost and so L ≤ varc. Analogously, we may assume
that no class contains two same-valued items and consequently L ≤ varw.

Since projects whose cost exceeds the budget can be removed from the input,
we may assume C ≤ B. Further, we assume that B ≤ C ·m, as otherwise, we can

42

Table 2.1: Complexity results for Multiple-Choice Knapsack. The two question
marks indicate unknown results.

Parameter PFPT FPT XP Remarks
Number of classes m ✗ ✗ ✓ Thm. 2.5
Budget B ✓ ✓ ✓ O(B · |N |) [Pis95]
Maximum cost C ✓ ✓ ✓ O(C · |N | ·m); Obs. 2.16
Threshold D ✓ ✓ ✓ O(D · |N |) [BV04]
Largest class L ✗ ✗ ✗ NP-hard for L = 2 [KPP04]
Number of costs varc ✗ ? ✓ O(mvarc −1 · |N |); Prop. 2.17
Number of values vard ✗ ? ✓ O(mvard −1 · |N |); Prop. 2.18
varc +vard ✗ ✓ ✓ Thm. 2.4

return yes if the total value of the most valuable items per class exceeds D, and no
otherwise.

Table 2.1 presents an overview of known and new complexity results for MCKP.
Observe that because varc and vard are bound in the size of the instance and MCKP is
NP-hard [KPP04], MCKP can not be PFPT with respect to varc+vard, unless P = NP.

2.5.1 Algorithms for Multiple-Choice Knapsack

First, we provide some algorithms that solve MCKP. It is known that MCKP can
be solved in O(B · |N |) time [Pis95], or in O(D · |N |) time [BV04]. As we may assume
that C ·m ≥ B, we may also observe the following.

Observation 2.16. MCKP can be solved in O(C · |N | ·m) time.

In the following we want to study MCKP with respect to the number of dif-
ferent costs and different values. Knapsack is FPT with respect to the number
of different costs, varc [EKMR17]. This result is shown by a reduction to ILP-
Feasibility instances with f(varc) variables. This approach can not be adopted
easily, as it has to be checked whether a solution contains exactly one item per
class. In Proposition 2.17 and 2.18 we show that MCKP is XP with respect to
the number of different costs and different values, respectively. Then, in Theo-
rem 2.4 we show that MCKP is FPT with respect to the parameter varc +vard. In
the following, let I = (N, {N1, . . . , Nm}, c, d, B,D) be an instance of MCKP, and
let {c1, . . . , cvarc} := c(N) and {d1, . . . , dvard} := d(N) denote the set of different
costs and the set of the different values in I, respectively. Without loss of generality,
assume ci < ci+1 for each i ∈ [varc−1] and likewise we can assume dj < dj+1 for
each j ∈ [vard−1]. In other words, ci is the ith cheapest cost in c(N) and dj is the jth
smallest value in d(N). Recall also that we assume that there is at most one item

43

with cost cp and at most one item with value dq in Ni, for every i ∈ [m], p ∈ [varc],
and q ∈ [vard].

Proposition 2.17. MCKP can be solved in O(mvarc −1 · |N |) time, where varc is the
number of different costs.

Proof. Table definition. We describe a dynamic programming algorithm with a ta-
ble DP that has varc dimensions. We want to store the largest value of a set S that
contains exactly one item of each set of N1, . . . , Ni and contains exactly pj items of
cost cj for each j ∈ [varc−1] in entry DP[i, p1, . . . , pvarc −1]. Consequently, S contains
exactly p(i)varc := i−

∑︁varc −1
j=1 pj items of cost cvarc .

We denote by p in the following (p1, . . . , pvarc −1).
Algorithm. As a base case, we consider i = 1. For entries DP[1,p], only subsets
of N1 with a single number are considered. Thus, for every a ∈ N1 with a cost
of c(a) = cj < cvarc , store DP[1,0(j)+1] = d(a). If N1 contains an item a with a cost
of c(a) = cvarc , then store DP[1,0] = d(a) and otherwise store DP[1,0] = −∞. For
all other p, store DP[1,p] = −∞.

Fix an i ∈ [m]. Once the entries DP[i,p] for all p have been computed, we use
the following recurrence to compute further values

DP[i+ 1,p] = max
a∈Ni+1

{︃
DP[i,p(j)−1] + d(a) if c(a) = cj < cvarc and pj ≥ 1
DP[i,p] + d(a) if c(a) = cvarc

.(2.2)

Return yes if DP[m,p] ≥ D for some p with p(m)
varc · cvarc +

∑︁varc −1
i=1 pi · ci ≤ B and

return no, otherwise.
Correctness. For given integers i ∈ [m] and p ∈ [i]varc −1

0 , we define S(i)
p to be the

family of i-sized sets S ⊆ N that contain exactly one item of each of N1, . . . , Ni and
where pℓ is the number of items in S with cost cℓ for each ℓ ∈ [varc −1].

For fixed a p ∈ [i]varc −1
0 , we prove that DP[i,p] stores the largest value of a

set S ∈ S(i)
p , by an induction. This implies that the algorithm is correct. The base

cases are correct. Now, as an induction hypothesis assume that the claim is correct
for a fixed i ∈ [m − 1]. We first prove that if DP[i + 1,p] = q, then there exists a
set S ∈ S(i+1)

p with dΣ(S) = q. Afterward, we prove that DP[i + 1,p] ≥ dΣ(S) for
every set S ∈ S(i+1)

p .
Now, let DP[i+1,p] = q. Let a ∈ Ni+1 be an item with a cost of c(a) = cj be an

item of Ni+1 that maximizes the right side of Equation (2.2) for DP[i+1,p]. Assume
first that cj < cvarc , and thus DP[i+1,p] = q = DP[i,p(j)−1]+d(a). By the induction
hypothesis, there is a set S ∈ S

(i)
p(j)−1

such that DP[i+ 1,p(j)−1] = dΣ(S) = q − d(a).

44

Observe that S ′ := S ∪ {a} ∈ S
(i+1)
p . The value of S ′ is dΣ(S ′) = dΣ(S) + d(a) = q.

The other case with c(a) = cvarc is shown analogously.
Conversely, let S ∈ S(i+1)

p be a set of items and let a ∈ S ∩Ni+1 be an item. As-
sume first that c(a) = cj < cvarc . Observe that S ′ := S \{a} ∈ S

(i)
p(j)−1

. Consequently,

DP[i+ 1,p] ≥ DP[i,p(j)−1] + d(a) (2.3)
= max{dΣ(S) | S ∈ S(i)

p(j)−1
}+ d(a) (2.4)

≥ dΣ(S
′) + d(a) = dΣ(S).

Herebin, Inequality (2.3) is the definition of the recurrence in Equation (2.2), and
Equation (2.4) follows by the induction hypothesis. The other case with c(a) = cvarc
is shown analogously.
Running time. First, we show how many options of vectors p there are and then
how many equations have to be computed for one of these options.

For p1, . . . , pvarc −1 with
∑︁varc −1

j=1 pj ≥ m and each i ∈ [m], the entry DP[i,p]
stores −∞. Consequently, we consider a vector p with pj = m only if pℓ = 0 for
each ℓ ̸= j. Thus, we are only interested in p ∈ [m − 1]varc −1

0 or p = 0(j)+m for
each j ∈ [varc −1]. So, there are mvarc −1 +m ∈ O(mvarc −1) options of p.

For a fixed p, each item a ∈ Ni is considered exactly once in the computation
of DP[i,p]. Thus, overall O(mvarc −1 · |N |) time is needed to compute the table F .
Additionally, we need O(varc ·|N |) time to check, whether DP[m, p1, . . . , pvarc −1] ≥ D

and p
(m)
varc · cvarc +

∑︁varc −1
i=1 pi · ci ≤ B for any p. As we may assume mvarc −1 > varc,

the running time of the entire algorithm is O(mvarc −1 · |N |).

One can define a dynamic programming algorithm which is very similar to the
one in Proposition 2.17 in which the table has vard dimensions. Herein, instead of
storing the maximum value of a set of items with a given set of costs, we store the
minimum cost a set of items with a given set of values can have.

Proposition 2.18. MCKP can be solved in O(mvard −1 · |N |), where vard is the
number of different values.

By Propositions 2.17 and 2.18, MCKP is XP with respect to varc and vard, respec-
tively. In the following, we show that MCKP is FPT with respect to the combined
parameter varc +vard. To prove this, we reduce an instance of MCKP to an instance
of ILP-Feasibility, in which the number of variables is in 2varc +vard · varc.

Theorem 2.4. For an instance of MCKP one can define an equivalent instance
of ILP-Feasibility with O(2varc +vard · varc) variables. Thus, MCKP is FPT with
respect to varc+vard.

45

Proof. Description. We may assume that any class Ni does not contain two items
of the same cost or the same value. We conclude that c(a) ̸= c(b), d(a) ̸= d(b), and
if c(a) < c(b) then d(a) < d(b) for items a, b ∈ Ni. Thus, each class Ni is described
by the set of costs c(Ni) of the items in Ni and the set of values d(Ni) of the items
in Ni.

In the following, we call T = (C,Q) a type, for sets C ⊆ c(N), Q ⊆ d(N)
with |C| = |Q|. Let T be the family of types. We say that class Ni is of
type T = (c(Ni), d(Ni)). For each T ∈ T , let mT be the number of classes of
type T . Clearly,

∑︁
T∈T mT = m.

Observe, for every class Nj of type T = (C,Q), and each item a ∈ Nj with a cost
of c(a) ∈ C the value d(a) ∈ Q can be determined. More precisely, if c(a) is the ℓth
cheapest cost in C, then the value of a is the ℓth smallest value in Q. For every
type T = (C,Q) and each i ∈ [varc], we define a constant dT,i := −

∑︁m
i=1max d(Ni)

if ci ̸∈ C. Otherwise, let dT,i be the ℓth smallest value in Q, if ci is the ℓth smallest
cost in C.

We define an instance of ILP-Feasibility that is equivalent to the instance I
of MCKP. The variable xT,i expresses the number of items with cost ci that are
chosen in a class of type T .

∑︂
T∈TC

varc∑︂
i=1

xT,i · ci ≤ B (2.5)

∑︂
T∈TC

varc∑︂
i=1

xT,i · dT,i ≥ D (2.6)

varc∑︂
i=1

xT,i = mT ∀T ∈ T (2.7)

xT,i ≥ 0 ∀T ∈ T , i ∈ [varc] (2.8)

Correctness. Observe that if ci ̸∈ C, then Inequality (2.6) would not be fulfilled
if xT,i > 0 because we defined dT,i to be −

∑︁m
i=1 max d(Ni). Consequently, xT,i = 0

if ci ̸∈ C for each type T = (C,Q) ∈ T and i ∈ [varc]. Inequality (2.5) can only
be correct if the total cost is at most B. Inequality (2.6) can only be correct if
the total value is at least D. Equation (2.7) can only be correct if exactly mT

elements are picked from the classes of type T , for each T ∈ T . It remains to
show that the instance of the ILP-Feasibility has O(2varc +vard · varc) variables.
Because T ⊆ 2c(N) × 2d(N), the size of T is O(2varc +vard). Consequently, there
are O(2varc +vard · varc) different options for the variables xT,i.

46

Observe that with the same technique, an instance of ILP-Feasibility
with 2varc +vard · vard variables can be described.

2.5.2 Hardness With Respect to the Number of Classes

Kellerer et al. gave a reduction from Knapsack to MCKP in which each item in
the instance of Knapsack is added to a unique class with a new item that has no
costs and no value [KPP04].

Observation 2.19 ([KPP04]). MCKP is NP-hard even if every class contains two
items.

The reduction above constructs an instance with many classes. In the follow-
ing, we prove that MCKP is W[1]-hard with respect to the number of classes m,
even if B = D and c(a) = d(a) for each a ∈ N . This special case of MCKP is
called Multiple-Choice Subset Sum [KPP04].

Theorem 2.5. MCKP is XP and W[1]-hard with respect to the number of classes m.

To show the hardness, we reduce from Multi-Selectable Subset Sum, a
version of Subset Sum in which every integer can be chosen arbitrarily often, pa-
rameterized by k. More formally, in Multi-Selectable Subset Sum, a multi-
set Z = {z1, . . . , zn} of integers and two integers Q and k are given, and it is asked,
whether there is a multi -set S ⊆ Z of size k such that

∑︁
s∈S = Q.

In parameterized complexity, the problem is often defined for set inputs. The
original W[1]-hardness proof for Subset Sum relies on a reduction from the Per-
fect Code problem [DF95a, Lemma 4.4]. It is easy to observe that this reduction
also works if every constructed integer is added k times to Z. We will not repeat
the details of the reduction but give a brief intuition. In the reduction, the target
number Q has a value of one at each digit. Now, adding k copies of a number to Z
in the construction maintains correctness because including any number twice in the
solution produces carries in the summation which destroys the property that every
digit has a value of 1.

Proposition 2.20 ([DF95a]). Subset Sum is W[1]-hard with respect to k, even when
every integer in Z has multiplicity at least k.

Proof of Theorem 2.5. Slicewice-polynomial. We first discuss the XP-algorithm and
then focus on the W[1]-hardness. For every class Ni, iterate over the items aji ∈ Ni

such that there are m nested loops. We check whether
∑︁m

i=1 c(aji) ≤ B

47

and
∑︁m

i=1 d(aji) ≥ D in O(m) time, such that a solution of MCKP is computed
in O(Lm ·m) time.
Reduction. We reduce from Subset Sum with multi-set inputs Z where every in-
teger z occurs k times. Let I = (Z,Q, k) be such an instance of Subset Sum
and assume, without loss of generality, that Z = {zi,j | i ∈ [n], j ∈ [k]} such
that zi,1 = zi,2 = . . . = zi,k for all i ∈ [n].

We define Nj := {ai,j | i ∈ [n]} for each j ∈ [k] and set c(ai,j) = d(ai,j) = zi,j for
each element ai,j. Then I ′ is (N, {N1, . . . , Nk}, Q,Q) where N is the union of the
sets Nj, j ∈ [k]. Observe that m = k.
Correctness. We show that I is a yes-instance if and only if I’ is a yes-instance.

Let S = {zi1 , . . . , zik} be a solution for I. Observe that, by construction, for
each j ∈ k, the set Nj contains one element aℓj such that c(aℓj) = d(aℓj) = zij .
Then, the set S ′ := {aℓ1 , aℓ2 , . . . , aℓk} is a solution for I ′ since∑︂

j∈[k]

c(aℓj) =
∑︂
j∈[k]

d(aℓj) =
∑︂
j∈[k]

zij = Q.

Conversely, let S ′ := {aℓ1 , aℓ2 , . . . , aℓk} be a solution for I ′. By construction, for
each j ∈ [k], there is a number zij ∈ Z such that c(aℓj) = zij . Then, since

Q =
∑︂
j∈[k]

c(aℓj) =
∑︂
j∈[k]

zij ,

S := {zij | j ∈ [k]} is a solution for I.

2.6 Penalty Sum
In this section, we examine Penalty Sum, a problem that has been introduced
in [KS23b]. In the next chapter we will present a hardness reduction which builds
on results from this chapter. Penalty Sum is defined as follows.

Penalty Sum
Input: A set of tuples {ti = (ai, bi) | i ∈ [m], ai ∈ Q+ ∪ {0}, bi ∈ (0, 1)}, two

integers k and Q, and a number D ∈ Q+.
Question: Is there a set S ⊆ [m] such that |S| = k and

∑︁
i∈S ai−Q ·

∏︁
i∈S bi ≥ D?

We first show that Penalty Sum can be solved in polynomial running time if
the numbers in the input are given in unary. Afterward, we show that Penalty
Sum nevertheless is NP-hard in general.

48

Proposition 2.21. Penalty Sum can be solved in O((Q+ ⌈D⌉) ·m · k) time.

Proof. Let I = (T, k,Q,D) be an instance of Penalty Sum, where T is a set of
tuples ti = (ai, bi) of size m. We say that a set S ⊆ [m] is (c, A)-feasible for integers c
and A if S has a size of c and

∑︁
j∈S aj = A.

Table definition. We describe a dynamic programming algorithm with a table DP.
We want that entry DP[i, c, A] stores the smallest value

∏︁
j∈S bj for a (c, A)-feasible

set S ⊆ [i] for each i ∈ [m], each c ∈ [k], and each A ∈ [Q + ⌈D⌉]. We want
that DP[i, c, A] stores ∞ if no such set S exists.
Algorithm. As a base case, for any i ∈ [m], store DP[i, 0, 0] = 1 and for c, A > 0
store DP[i, c, 0] = ∞ and DP[i, 0, A] = ∞. Further, store DP[1, c, A] = ∞ if c > 1
or A ̸∈ {0, a1}. We consider DP[i, c, A] = ∞ when we call invalid values such
as A < 0.

We compute the table for increasing values of i. For a fixed i, let the val-
ues DP[i, c, A] be computed for each c and A. To compute further values we use
the recurrence

DP[i+ 1, c, A] = min{ DP[i, c, A]; DP[i, c− 1, A− ai+1] · bi+1 }. (2.9)

If there is an A ∈ [Q + ⌈D⌉] such that DP[m, k,A] = B and A − BQ ≥ D
return yes. Otherwise, return no.
Correctness. The base cases are correct. We show first that Recurrence (2.9) is
correct. Afterward, we prove that this algorithm returns the right value.

As an induction hypothesis, assume that DP[i, c, A] stores the desired value for a
fixed i ∈ [m]. We show first that if DP[i+1, c, A] = B, then there is a (c, A)-feasible
set S ⊆ [i+1]. Then, we show that DP[i+1, c, A] ≤

∏︁
j∈S bj for every (c, A)-feasible

set S ⊆ [i+ 1].
If DP[i + 1, c, A] = B, then by Recurrence (2.9) DP[i, c− 1, A− ai+1] · bi+1 = B

or DP[i, c, A] = B. In the latter case, the induction hypothesis directly proves that
there is a (c, A)-feasible set S ⊆ [i]. In the first case, a (c − 1, A − ai+1)-feasible
set S ⊆ [i] exists. Consequently, ai+1 +

∑︁
j∈S aj = A such that S ∪ {i+ 1} is (c, A)-

feasible.
Now, let S ⊆ [i + 1] be a (c, A)-feasible set. If i + 1 ̸∈ S, then we conclude

that DP[i + 1, c, A] ≤ DP[i, c, A] ≤
∏︁

j∈S bj, where the first inequality follows from
Recurrence (2.9) and the second by the induction hypothesis. Otherwise, if i+1 ∈ S,
then S ′ := S \ {i+1} is a (c− 1, A− ai+1)-feasible set and with the arguments from
before DP[i+ 1, c, A] ≤ DP[i, c− 1, A− ai+1] · bi+1 ≤ bi+1 ·

∏︁
j∈S′ bj =

∏︁
j∈S bj.

Finally, assume that there is an A ∈ [Q + ⌈D⌉] such that DP[m, k,A] = B
and A − BQ ≥ D. Consequently, a (k,A)-feasible set S ⊆ [m] with

∏︁
j∈S bj = B

49

exists and so S is a solution for I. Conversely, let S be a solution for I. We
define A :=

∑︁
j∈S aj, then S is a (c, A)-feasible set. So, B = DP[m, k,A] ≤

∏︁
j∈S bj

and so A−BQ ≥ A−Q
∏︁

j∈S bj ≥ D.
Running time. The table contains m · k · (Q + ⌈D⌉) entries. Each of these stores a
number between 0 and 1 (if not ∞), that is a multiplication of at most k numbers bj.
Consequently, the encoding length of each table entry is at most k times the longest
encoding length of a bj. Then, Recurrence (2.9) can be computed in constant time
in our RAM-model. We want to declare, however, that the table entries may store
numbers with an encoding length of up to |k| · maxb, where maxb is the maximum
encoding length of a number b.

2.6.1 Hardness of Subset Product

Now, we prove the NP-hardness of Penalty Sum. To this end, we first show the
NP-hardness of the following variant of Subset Product.

Subset Product
Input: A multiset of positive integers {v1, v2, . . . , vm} and integers M and k.
Question: Is there a set S ⊆ [m] such that |S| = k and

∏︁
i∈S vi =M?

We note the definition of Subset Product is slightly different here from the
formulation that appears for example in the book of Garey and Johnson [GJ79]. In
particular, we assume that the size k of the set S is given and that all integers are
positive. This makes the subsequent NP-hardness reductions slightly simpler.

The NP-hardness of Subset Product is not a new result. It was stated by [GJ79]
without a full proof (the authors indicate that the problem is NP-hard by reduction
from Exact Cover by 3-Sets (X3C), citing "Yao, private communication") and
a full proof appears in the book of Moret [Mor97]. We reprove it here for our slightly
adapted variant.

In X3C, the input is a universe U and a family C of subsets of U which have a
size of three each. It is asked whether there is a subset C ′ of C such that U =

⋃︁
C∈C′ C

and the sets in C ′ are pairwise disjoint. In other words, for each item u of U there is
exactly one set in C ′ containing u.

Lemma 2.22 ([Mor97]). Subset Product is NP-hard.

Proof. Reduction. Let (U := {u1, . . . , u3n}, C := {C1, . . . , Cm}) be an instance of
X3C. Let p1, . . . , p3n be the first 3n prime numbers, so that we may associate

50

each uj ∈ U with a unique prime number pj. For each set Ci = {ua, ub, uc}, de-
fine vi := pa · pb · pc, that is, vi is the product of the three primes associated with the
elements of Ci. Now, let M be the product of the prime numbers p1 to p3n. Finally,
set k := n. This completes the construction of the instance ({v1, . . . vm},M, k) of
Subset Product.
Correctness. Now, observe that if

∏︁
i∈S vi =M for some S ⊆ [m], then by the unique-

ness of prime factorization, every prime number p1, . . . , pm must appear exactly once
across the prime factorizations of all numbers in {vi | i ∈ S}. It follows by the
construction that the collection of subsets C ′ := {Ci | i ∈ S} contains each element
of U exactly once. Thus, if ({v1, . . . vm},M, k) is a yes-instance of Subset Prod-
uct then (U , C) is a yes-instance of X3C. Conversely, if (U , C) is a yes-instance
of X3C with solution C ′, then we can define S := {i ∈ [m] | Ci ∈ C ′}. Since every
element of U appears in exactly one Ci ∈ C ′ and |Ci| = 3 for all i ∈ [m], we have
that |C ′| = |U|/3 = n = k, and

∏︁
i∈S vi = p1 · · · · ·p3n =M . Thus, ({v1, . . . vm},M, k)

is a yes-instance of Subset Product.
It remains to show that the construction of ({v1, . . . vm},M, k) from (U , C) takes

polynomial time. In particular, we need to show that each of the primes p1, . . . p3n
(and thus the product M) can be constructed in polynomial time. This can be shown
using two results from number theory: pj < j(ln j+ln ln j) for j ≥ 6, [Ros41, Dus99]
and the set of all prime numbers in [Z] can be computed in time O(Z/ ln lnZ) [AB04].
Combining these, we have that the first 3n prime numbers can be generated in
time O(n lnn/ ln lnn).

Given the prime numbers p1, . . . , p3n, it is clear that the numbers {vi | i ∈ [m]}
can also be computed in polynomial time. The number M , being the product of 3n
numbers each less than 3n(ln 3n+ln ln 3n), can also be computed in time polynomial
in n (though M itself is not polynomial in n). It follows that ({v1, . . . vm},M, k) can
be constructed in polynomial time.

2.6.2 Hardness of Penalty Sum

In the following, we first describe a simple reduction from an instance of Subset
Product to an equivalent ‘instance’ of Penalty Sum, but one in which the num-
bers involved are irrational (and as such, cannot be produced in polynomial time).
We then show how this transformation can be turned into a polynomial-time reduc-
tion by replacing the irrational numbers with suitably chosen rationals.

The reduction from Subset Product to Penalty Sum can be informally de-
scribed as follows: For an instance ({v1, . . . vm},M, k′) of Subset Product and
a big integer A, we let ai be (a rational close to) A − ln vi and let bi := 1/vi, for

51

each i ∈ [n]. Let Q :=M , let k := k′, and let D be (a rational close to) kA− lnQ−1.
Observe that we cannot set ai := A−ln vi orD := kA−lnQ−1 exactly, because in

general these numbers are irrational and cannot be calculated exactly in finite time,
or even stored in finite space. We temporarily forget about the need for rational
numbers, and consider how the function

∑︁
i∈S ai−Q ·

∏︁
i∈S bi behaves when we drop

the ‘a rational close to’ qualifiers from the descriptions above. In particular, we show
that the function reaches its theoretical maximum exactly when S is a solution to
the Subset Product instance.

Reduction with irrational numbers

Construction 2.23. Let ({v1, . . . vm},M, k) be an instance of Subset Product.
We define the following (not necessarily rational) numbers.

• Define A := ⌈maxi∈[m](ln vi)⌉+ 1;

• Define a∗i := A− ln vi for each i ∈ [m];

• Define bi := 1/vi for each i ∈ [m];

• Define Q :=M ;

• Define D∗ := kA− lnQ− 1.

Finally, output instance ({(a∗i , bi) | i ∈ [m]}, k, Q,D∗) of Penalty Sum.

We note the purpose of A is to ensure that a∗i > 0 for each i ∈ [m], as is required
by the formulation of Penalty Sum. Now, define f ∗ to be a function mapping a
subset S of [m] to R by

f ∗(S) :=
∑︂
i∈S

a∗i −Q ·
∏︂
i∈S

bi. (2.10)

Lemma 2.24. For every set S ⊆ [m] of size k the following hold.

1. f ∗(S) ≤ D∗, and

2. f ∗(S) = D∗ if and only if
∏︁

i∈S vi = Q.

Proof. Observe that given S with |S| = k, the value f ∗(S) can be written as

f ∗(S) = kA−
∑︂
i∈S

ln vi −Q/
∏︂
i∈S

vi = kA− ln

(︄∏︂
i∈S

vi

)︄
−Q/

∏︂
i∈S

vi

52

Letting xS :=
∏︁

i∈S vi, we therefore have f ∗(S) = kA − lnxS − Qx−1
S . Define a

function g∗ : R>0 → R by g∗(x) := kA − lnx − Qx−1 and observe f ∗(S) = g∗(xS)
for any S ∈

(︁
[m]
k

)︁
. Recall that a function f has a critical point at x′ if df

dx(x
′) = 0.

Since dg∗
dx = −x−1 + Qx−2, there are critical points x′ in x′−1 = Qx′−2, which is the

case in x′ = Q. Moreover, for Q > x > 0, we have Qx−1 > 1, implying

dg∗

dx
= −x−1 +Qx−2 > −x−1 + x−1 = 0.

Further, for x > Q > 0, we have Qx−1 < 1, implying

dg∗

dx
= −x−1 +Qx−2 < −x−1 + x−1 = 0.

It follows that g∗(x) is strictly increasing in the range 0 < x < Q and strictly
decreasing in the range x > Q. Thus, g∗ has a unique maximum in the range x > 0,
which is in x = Q. In particular, for all S ⊆ [m], we have

f ∗(S) = g∗(xS) ≤ g∗(Q) = kA− lnQ− 1 = D∗. (2.11)

With equality if and only if xS =
∏︁

i∈S vi = Q.

The above result implies that ({(a∗i , bi) | i ∈ [m]}, k, Q,D∗) is a yes-instance
of ‘Penalty Sum’ if and only if ({v1, . . . vm},M, k′) is a yes-instance of Subset
Product, when allowing irrational numbers.

We are now ready to fully describe the polynomial-time reduction from Subset
Product to Penalty Sum, showing how we can adapt the ideas above to work
for rational ai and D.

Reduction with rational numbers

Let ({v1, . . . vm},M, k′) be an instance of Subset Product. So far we have seen
that if we define a∗i , bi, Q, k, and D∗ as beforehand, then, by Lemma 2.24, for
any S ⊆ [m], f ∗(S) =

∑︁
i∈S a

∗
i −Q ·

∏︁
i∈S bi ≥ D∗ if and only if

∏︁
i∈S vi = Q =M .

Our task now is to show how to replace a∗i and D∗ with rationals ai and D, in such
a way that this property—

∑︁
i∈S ai−Q ·

∏︁
i∈S bi ≥ D if and only if

∏︁
i∈S vi =M—still

holds, so that an instance of Penalty Sum can be constructed in polynomial time.
The key idea is to find rational numbers that can be encoded in polynomially many
bits, but are close enough to their respective irrationals such that the difference
between f ∗(S) and f(S) (and between D∗ and D) is guaranteed to be small. To
this end, let us fix a positive integer H to be defined later, and we will require all

53

numbers ai, bi, and D to be a multiple of 2−H . This ensures that the denominator
part of any of these rationals can be encoded using O(H) bits.

Given a number x ∈ R and a positive integer H, we define ⌊x⌋H := rx/2
H ,

where rx is the largest integer such that rx/2H ≤ x. Observe for example that
because 25/23 < π < 26/23 we have rπ = 25 and ⌊π⌋3 = 3.125 = 25/23. One may
think of ⌊x⌋H as the number derived from the binary representation of x by deleting
all digits more thanH positions after the binary point. Thus, as the binary expansion
of π begins 11.00100 10000 11111. . . , the binary expression of ⌊π⌋3 is 11.001.
Similarly, define ⌈x⌉H := sx/2

H , where sx is the smallest integer such that x ≤ sx/2
H .

Finally, define δ := 1/2H .

Observation 2.25. Let x ∈ R. Then, x− δ < ⌊x⌋H ≤ x ≤ ⌈x⌉H < x+ δ.

We can now describe the reduction from Subset Product to Penalty Sum.

Construction 2.26. Let ({v1, . . . vm},M, k) be an instance of Subset Product.

• Define A := ⌈maxi∈[m](ln vi)⌉+ 1;

• Define ai := ⌈a∗i ⌉H = ⌈A− ln vi⌉H for each i ∈ [m];

• Define bi := 1/vi for each i ∈ [m];

• Define Q :=M ;

• Define D := ⌊D∗⌋H = ⌊kA− lnQ− 1⌋H .

Finally, output instance I := ({(ai, bi) | i ∈ [m]}, k, Q,D) of Penalty Sum.

In the following, we show that the two instances are equivalent. Now, define f to
be a function mapping a subset S of [m] to R by

f(S) :=
∑︂
i∈S

ai −Q ·
∏︂
i∈S

bi.

Note that f is the same as the function f ∗ defined previously but with each a∗i
replaced by ai. Then, I is a yes-instance of Penalty Sum if and only if there
is some S ⊆ [m] such that f(S) ≥ D. The next lemma shows the close relation
between f ∗ and f , and between D∗ and D. This will be used in both directions
to show the equivalence between yes-instances of Subset Product and Penalty
Sum.

Lemma 2.27. f ∗(S) ≤ f(S) < f ∗(S)+kδ for each S ⊆ [m]; and D∗− δ < D ≤ D∗.

54

Proof. By Observation 2.25, ⌈x⌉H − x < δ and x− ⌊x⌋H < δ for each x ∈ R.
Observe that f(S) − f ∗(S) =

∑︁
i∈S(ai − a∗i) and |S| = k. We conclude

that 0 ≤ ai−a∗i = ⌈a∗i ⌉H−a∗i < δ for all i ∈ [m]. Consequently, 0 ≤ f(S)−f ∗(S) < kδ
and D∗ −D = D∗ − ⌊D∗⌋H < δ.

Corollary 2.28. For every S ⊆ [m] with
∏︁

i∈S vi = Q it follows f(S) ≥ D.

Proof. D
Lem. 2.27

≤ D∗ Lem. 2.24 (2)
= f ∗(S)

Lem. 2.27
≤ f(S).

We now have that ({v1, . . . vm},M, k′) being a yes-instance of Subset Product
implies I being a yes-instance of Penalty Sum. To show the converse, we show
that if

∏︁
i∈S vi = Q′ ̸= Q for every S ⊆ [m], then f(S) < D. Since f(S) < f ∗(S)+kδ

and D∗− δ < D, it is sufficient to show that f ∗(S)+ kδ ≤ D∗− δ. This is equivalent
to (k+1)δ ≤ D∗−f ∗(S). To this end, we first establish a lower bound on D∗−f ∗(S ′)
in terms of Q, using the following technical lemma.

Lemma 2.29. For every pair of positive integers Q and Q′ with Q ≥ 2 and Q ̸= Q′

it follows that lnQ′ − lnQ+Q/Q′ − 1 > Q−4.

We explicitly note that we use the natural logarithm. For other logarithms, this
lemma is not true. Consider for example integers Q = 2 and Q′ = 1 in the logarithm
on basis 2. We have log2(1)− log2(2) + 2/1− 1 = 0− 1 + 2− 1 = 0 < 2−4.

Proof. We first show that it is enough to consider the casesQ′ = Q+1 andQ′ = Q−1.
Fix an integer Q ∈ N+ with Q ≥ 2. Consider the function hQ : R>0 → R given by

hQ(x) = ln x− lnQ+Q/x− 1.

So, we aim to show that hQ(Q′) ≥ Q−4. Similar to the proof of Lemma 2.24, we
can observe that the derivation

dhQ
dx

= x−1 −Qx−2 =
1

x

(︃
1− Q

x

)︃
.

is less than 0 if x < Q; exactly 0 if x = Q; and greater than 0 if x > Q. It follows
that in the range x > 0, the function hQ has a unique minimum at x = Q, and
is decreasing in the range x < Q and increasing in the range x > Q. Thus, in
particular hQ(Q′) ≥ hQ(Q− 1) if Q′ ≤ Q− 1 and hQ(Q′) ≥ hQ(Q+1) if Q′ ≥ Q+1.
Since either Q′ ≤ Q − 1 or Q′ ≥ Q + 1 for any integer Q′ ̸= Q, it remains to show
that hQ(Q− 1) > Q−4 and hQ(Q+ 1) > Q−4.

55

To show hQ(Q− 1) > Q−4 for any Q ∈ N≥2, we define the function λ : R>0 → R
given by

λ(Q) = hQ(Q− 1)−Q−4

= ln(Q− 1)− lnQ+Q/(Q− 1)− 1−Q−4

= ln(Q− 1)− lnQ+ 1/(Q− 1)−Q−4.

We then observe
dλ
dQ

= (Q− 1)−1 −Q−1 + (Q− 1)−2 + 4Q−5

> (Q− 1)−2 + 4Q−5 > 0.

Therefore, λ is a (strictly) increasing function. We conclude λ(Q) > 0, because
of λ(2) = 0− ln 2 + 1− 1/16 ≈ 0.244 > 0, for all Q ≥ 2, and thus hQ(Q− 1) > Q−4.

To show that hQ(Q + 1) > Q−4 for all Q ∈ N≥2, observe first that if Q = 2,
hQ(Q+1) = ln(3)− ln(2)+2/3−1 ≈ 0.0721 > 0.0625 = 2−4 and so the claim is true.
For any Q ≥ 3, observe that hQ(Q+1) = ln(Q+1)− lnQ+ Q

Q+1
−1 = ln(Q+1

Q
)− 1

Q+1
.

We use the Mercator series for the natural logarithm.

ln

(︃
Q+ 1

Q

)︃
= ln

(︃
1 +

1

Q

)︃
=

∞∑︂
k=1

(−1)k+1

kQk
=

1

Q
− 1

2Q2
+

1

3Q3
− 1

4Q4
+ . . .

Since 1
kQk − 1

(k+1)Qk+1 > 0 for all k > 0, we conclude

ln

(︃
Q+ 1

Q

)︃
>

1

Q
− 1

2Q2
=

2Q− 1

2Q2
.

Then,

ln

(︃
Q+ 1

Q

)︃
− 1

Q+ 1
>

2Q− 1

2Q2
− 1

Q+ 1

=
(2Q− 1)(Q+ 1)− 2Q2

2Q2(Q+ 1)

=
2Q2 +Q− 1− 2Q2

2Q2(Q+ 1)

=
Q− 1

2Q2(Q+ 1)

≥ 1

Q2(Q+ 1)

>
1

Q4

56

where the last two inequalities use Q ≥ 3.

Corollary 2.30. If
∏︁

i∈S vi = Q′ ̸= Q for some Q ≥ 2 and S ⊆ [m],
then D∗ − f ∗(S) > Q−4.

Proof. Recall f ∗(S) = kA − ln(
∏︁

i∈S vi) − Q/(
∏︁

i∈S vi) = kA − lnQ′ − Q/Q′ and
that D∗ = kA − lnQ − 1. Then, D∗ − f ∗(S) = lnQ′ − lnQ + Q/Q′ − 1. With
Lemma 2.29 we conclude D∗ − f ∗(S) > Q−4.

Given the above, we can now fix a suitable value for H. Given that we want to
conclude D∗ − f ∗(S) ≥ (k + 1)δ = (k+1)

2H
from

∏︁
i∈S vi ̸= Q, and assuming without

loss of generality that k < Q, it is sufficient to set H := 5⌈log2Q⌉.

Corollary 2.31. If H = 5⌈log2Q⌉ and δ = (1/2H), then the instance of Penalty
Sum constructed in Construction 2.26 holds Q−4 ≥ (k + 1)δ.

Proof. We assume k < Q. Then, (k + 1)δ ≤ Q/2H ≤ Q/Q5 = Q−4.

We now have all the necessary pieces to reduce from Subset Product to
Penalty Sum and therefore show the intractability of Penalty Sum.

Theorem 2.6. Penalty Sum is NP-hard.

Proof. Given an instance I = ({v1, . . . vm},M, k′) of Subset Product,
define Q := M , H := 5⌈log2Q⌉, and δ := (1/2H). Construct A, ai, bi, k, and D as
in Construction 2.26. That is:

• Define A := ⌈maxi∈[m](ln vi)⌉+ 1;

• Define ai := ⌈a∗i ⌉H = ⌈A− ln vi⌉H for each i ∈ [m];

• Define bi := 1/vi for each i ∈ [m];

• Define Q :=M ;

• Define D := ⌊D∗⌋H = ⌊kA− lnQ− 1⌋H .

Let I ′ = ({(ai, bi) | i ∈ [m]}, k, Q,D) be the resulting instance of Penalty Sum.
We first show that I ′ is a yes-instance of Penalty Sum if and only if I is

a yes-instance of Subset Product. Suppose first that I is a yes-instance of
Subset Product. Then,

∏︁
i∈S vi = M = Q for some S ⊆ [m]. Consequently, by

Corollary 2.28, f(S) ≥ D and so instance I ′ is a yes-instance of Penalty Sum.
Conversely, suppose that I ′ is a yes-instance of Penalty Sum. Then, there

is some S ⊆ [m] such that f(S) ≥ D. By Lemma 2.27 and Corollary 2.31, we
conclude f ∗(S) > f(S)− kδ ≥ D − kδ > D∗ − (k + 1)δ ≥ D∗ −Q−4. Consequently,

57

D∗ − f ∗(S) ≤ Q−4, which by Corollary 2.30 implies that
∏︁

i∈S vi = Q. Therefore,
I is a yes-instance of Subset Product.

It remains to show that the reduction takes polynomial time. For this, it is
sufficient to show that the rationals A, k, D, ai, and bi can all be computed in
polynomial time for each i ∈ [m]. Observe that A = ⌈maxi∈[m](ln vi)⌉ is the unique
integer such that eA > maxi∈[m] vi > eA−1. We have 1 ≤ A ≤ ⌈maxi∈[m] log2 vi⌉
since ln vi < log2 vi. So we can compute A in polynomial time by checking all
integers in this range.

For each i ∈ [m], ai = ⌈A− ln vi⌉H = ri/2
H , where ri is the minimum integer

such that A − ln vi ≤ ri/2
H . Thus, we can compute ri by checking eA−ri/2

H ≤ vi
with ri = 2H · (A − ⌈ln vi⌉H), setting ri to its successor if the inequality is not
satisfied. Thus, we can construct ai in polynomial time, and ai can be represented
with O(log2 r +H) bits. The construction of D can be handled in a similar way.

For each i ∈ [m], rational bi = 1/vi can be represented with O(log2 vi) bits (recall
that we represent 1/vi with binary representations of the integers 1 and vi). It
takes O(log2 vi) time to construct bi. The integers Q and k are taken directly from
the instance I of Subset Product.

58

Chapter 3

The Generalized Noah’s Ark Problem

3.1 Introduction

The definition of Maximize Phylogenetic Diversity was given with the inten-
tion of helping to systematically address the challenge of preservation of biological
diversity [Fai92, Cro97]. We, however, have to acknowledge the fact that selecting a
species for protection in an ecological intervention will not necessarily help to protect
them. Real-world interaction always have to consider uncertainties such as diseases,
famines, floods, or other natural catastrophes. It is therefore useful to consider the
protection of a given taxon only at a specific survival probability [Wei98]. Further,
we may assume that investing more into a given species will increase their survival
probability by a certain amount.

In such a model, we therefore have to consider the expected phylogenetic diversity.
In the case of Generalized Noah’s Ark Problem (GNAP), for each species one
may choose from a set of different actions. Each choice is then associated with a cost
and with a resulting survival probability. With a preprocessing step, we can even
consider combinations of different actions.

Introducing cost differences for species protection makes the problem of maximiz-
ing phylogenetic diversity NP-hard [PG07] and thus all of the even richer models are
NP-hard as well. However, in special cases even then a solution can still be computed
greedily [HS06, HS07].

Billionnet provided some practical algorithmic ideas and results for GNAP with
integer linear programming [Bil13, Bil17]. Pardi showed that GNAP can be solved
in pseudo-polynomial running time in the budged plus the number of possible solu-
tions [Par09].

Apart from these algorithms and the NP-hardness, there is no work that system-

59

atically studies which structural properties of the input make GNAP tractable. In
this chapter, we try to fill this gap. On the way, we also observe close relations to
Multiple-Choice Knapsack and to Penalty Sum, which we observed in the
previous chapter.

Structure of the chapter. In the next section, we give a formal definition of
Generalized Noah’s Ark Problem and we give an overview over results. Fur-
ther, we provide first observations. In Section 3.3, we provide the algorithmic ideas
for solving GNAP in its most generalized form. We, additionally, prove that GNAP
is W[1]-hard when parameterized by the number of taxa. In Section 3.4, we consider
the special case of GNAP in which for each taxon we can chose between only two
options.

3.2 Preliminaries
In this section, we consider definitions used in this chapter, an overview over the
results and some preliminary observations.

3.2.1 Projects and Phylogenetic Diversity

A project pi,j is a tuple (ci,j, wi,j) ∈ N0×Q∩R[0,1], where ci,j is the cost and wi,j is the
survival probability of pi,j. For a given phylogenetic X-tree T and a taxon xi ∈ X, a
project list Pi is an ℓi-tuple of projects (pi,1, . . . , pi,ℓi). As a project with a higher cost
will only be considered when the survival probability is higher, we assume the costs
and the survival probabilities to be ordered. That is, ci,j < ci,j+1 and wi,j < wi,j+1

for every project list Pi and each j ∈ [ℓi − 1]. An m-collection of projects P is a
set of m project lists {P1, . . . , Pm}. For a project set S, the total cost Cost(S) of S
is
∑︁

pi,j∈S ci,j.
For a given phylogenetic X-tree T , the phylogenetic diversity PDT (S) of a set of

projects S = {p1,j1 , . . . , p|X|,j|X|} is given by

PDT (S) :=
∑︂
uv∈E

λ(uv) ·

⎛⎝1−
∏︂

xi∈off(v)

(1− wi,ji)

⎞⎠ . (3.1)

The formula
(︂
1−

∏︁
xi∈off(v)(1− wi,ji)

)︂
describes the likelihood that at least one off-

spring of v survives. Thus, the phylogenetic diversity is the sum of the expected
values of the edges of T when applying S. If the survival probabilities of all projects

60

in S is either 0 or 1, then this definitions coincides with the standard definition of
phylogenetic diversity given in Equation (2.1).

In this chapter, we use the convention that n := |V (T)|. Observe n ∈ O(|X|).

3.2.2 Problem Definitions

We now define this chapter’s main problem, Generalized Noah’s Ark Problem,
and the special case where each species has two projects, ai

ci→ bi [2]-Noah’s Ark
Problem.

Generalized Noah’s Ark Problem (GNAP)
Input: A phylogenetic X-tree T = (V,E, λ), an |X|-collection of projects P ,

an integer B ∈ N0, and a number D ∈ Q≥0.
Question: Is there a set of projects S = {p1,j1 , . . . , p|X|,j|X|}, one from each project

list of P , such that PDT (S) ≥ D and Cost(S) ≤ B?

A project set S is called a solution for instance I = (T ,P , B,D) if S satisfies the
conditions in the question of the problem definition.

ai
ci→ bi [2]-Noah’s Ark Problem (ai

ci→ bi [2]-NAP)
Input: A phylogenetic X-tree T = (V,E, λ), a |X|-collection of projects P in

which the project list Pi contains exactly two projects (0, ai) and (ci, bi)
for each i ∈ [|X|], an integer B ∈ N0, and a number D ∈ Q≥0.

Question: Is there a set of projects S = {p1,j1 , . . . , p|X|,j|X|}, one from each project
list of P , such that PDT (S) ≥ D, and Cost(S) ≤ B?

In other words, in an instance ai
ci→ bi [2]-NAP we can decide for each taxon xi

whether we want to spend ci to increase the survival probability of xi from ai to bi.
If Pi contains two projects (c̄, ai) and (ĉ, bi) with c̄ > 0 for an i ∈ [|X|], we can reduce
the cost of the two projects and the budget by c̄ each to obtain an equivalent instance.
Therefore, we will assume that the project with the lower survival probability has a
cost of 0 and we refer to the cost of the other project as ci.

As a special case of this problem, we consider 0 c→ bi [2]-NAP where every project
with a positive survival probability has a cost of c. Observe that for each c ∈ N,
an instance I = (T ,P , B,D) of 0 c→ bi [2]-NAP can be reduced to an equivalent
instance I ′ = (T ,P ′, B′, D) of 0

1→ bi [2]-NAP by replacing each project (c, bi)
with (1, bi), and setting B′ = ⌊B/c⌋. Thus, 0 c→ bi [2]-NAP can be considered as the
special case of GNAP with unit costs for projects. In the following we refer to this
problem as unit-cost-NAP.

61

3.2.3 Parameters, and Results Overview

We study GNAP and the special cases of GNAP with respect to several parameters
which we describe in the following; For an overview of the results see Table 3.1. If not
stated differently, we assume in the following that i ∈ [|X|] and j ∈ [|Pi|]. The input
of GNAP directly gives the following natural parameters: The number of taxa |X|,
the budget B, and the required diversity D. Closely related to B is C := maxi,j ci,j,
the maximum cost of a project. We may assume that no projects have a cost that
exceeds the budget, as we can delete them from the input and so C ≤ B. We may
further assume that B ≤ C · |X|, as otherwise we can compute in polynomial time
whether the diversity of the most valuable projects of the taxa exceeds D and return
yes, if it does and no, otherwise.

Further, we consider the maximum number of projects per taxon L := maxi |Pi|.
By definition, L = 2 in ai

ci→ bi [2]-NAP and in GNAP we have L ≤ C + 1. We
denote the number of projects by ∥P∥ :=

∑︁
i |Pi|. Clearly, |X| ≤ ∥P∥, L ≤ ∥P∥,

and ∥P∥ ≤ |X| ·L. We denote with varc := |{ci,j : (ci,j, wi,j) ∈ Pi, Pi ∈ P}|, the num-
ber of different costs. We define the number of different survival probabilities varw,
analogously. The consideration of this type of parameterization, called the number
of numbers parameterization was initiated by Fellows et al. [FGR12]; It is motivated
by the idea that in many real-life instances the number of numbers may be small.
In fact, for non-negative numbers, it is never larger than the maximum values which
are used in pseudo-polynomial time algorithms. Also, we consider the maximum
encoding length for survival probabilities w-code := maxi,j(binary length of wi,j) and
the maximum edge weight maxλ := maxe∈E λ(e). Observe that because the max-
imal survival probability of a taxon could be smaller than 1, one can not assume
that maxλ ≤ D, in this chapter.

3.2.4 Observations for GNAP

We first present some basic observations that provide some first complexity clas-
sifications. In the problem with exactly two projects per taxa, ai

ci→ bi [2]-NAP,
one can iterate over all subsets X ′ of taxa and check if it is a possible solution
pay ci to increase the survival probability for each xi ∈ X ′. To this end, we check
if
∑︁

xi∈X′ ci ≤ B and compute if the phylogenetic diversity is at least D, when the
survival probability of every xi ∈ X ′ is bi and ai otherwise. Thus, ai

ci→ bi [2]-NAP
is fixed-parameter tractable with respect to the number of taxa.

Observation 3.1. ai
ci→ bi [2]-NAP can be solved in 2|X| · poly(|I|) time.

62

Table 3.1: Complexity results for Generalized Noah’s Ark Problem. Recall that
the special cases mentioned are 0

ci→ 1 [2]-NAP which is the special case where the survival
probabilities are only 0 or 1, and unit-cost-NAP is the special case where each project
has unit costs. Entries with the sign “—” mark parameters that are (partially) constant in
the specific problem definition and thus are not interesting.

Parameter GNAP GNAP with heightT = 1
|X| W[1]-hard, XP Thm. 3.3, Prop. 3.5 W[1]-hard, XP Thm. 3.3, Prop. 3.5
B XP; FPT is open Obs. 3.2 PFPT O(B · ∥P∥) Prop. 3.10
C NP-h for C = 1 Thm. 3.5 PFPT O(C · ∥P∥ · |X|) Prop. 3.10
D NP-h for D = 1 Obs. 3.4 NP-h for D = 1 Obs. 3.4
maxλ NP-h for maxλ = 1 Thm. 3.3 NP-h for maxλ = 1 Thm. 3.3
varc NP-h for varc = 2 Thm. 3.5 XP O(|X|varc −1 · ∥P∥) Prop. 3.10
varw NP-h for varw = 2 Obs. 3.3 NP-h for varw = 2 Obs. 3.3
D +w-code open FPT O(D · 2w-code · ∥P∥) Prop. 3.10
B + varw XP O(B · |X|2·varw +1 Thm. 3.2 PFPT Prop. 3.10
D + varw NP-h for D = 1, varw = 2 Obs. 3.4 NP-h for D = 1, varw = 2 Obs. 3.4
varc +varw XP O(|X|2·(varc +varw)+1 Thm. 3.1 FPT Thm. 3.4

Parameter 0
ci→ 1 [2]-NAP unit-cost-NAP

|X| FPT Obs. 3.1 FPT Obs. 3.1
B PFPT O(B2 · n) [PG07] XP Obs. 3.2
C PFPT O(C2 · n3) Cor. 3.11 —
D PFPT O(D2 · n) Prop. 3.12 open
maxλ PFPT O((maxλ)

2 · n3) Cor. 3.13 open
varc XP Cor. 3.6 —
varw — XP Cor. 3.7

A GNAP solution contains at most B projects with positive costs. Hence, a
solution can be found by iterating over all B-sized subsets X ′ of taxa and checking
every combination of projects for X ′. Like before, we have to check that the budget
is not exceeded and the phylogenetic diversity of the selected projects is at least D.
This brute-force algorithm shows that GNAP is XP with respect to the budget.

Observation 3.2. GNAP can be solved in (|X| · L)B · poly(|I|) time.

In Knapsack, one is given a set of items N , a cost-function c : N → N, a
value-function d : N → N, and two integers B and D and asks whether there is an
item set N ′ such that cΣ(N ′) ≤ B and dΣ(N

′) ≥ D. We describe briefly a known
reduction from Knapsack to 0

ci→ 1 [2]-NAP [PG07]. Let I = (N, c, d, B,D) be an
instance of Knapsack. Define an N -tree T := (V,E, λ) with vertices V := {ρ}∪N
and edges E := {ρxi | xi ∈ N} of weight λ(ρxi) := d(xi). For each taxon xi we
define a project list Pi that contains two projects (0, 0) and (c(xi), 1). Then, the
instance (T ,P , B′ := B,D′ := D) is a yes-instance of 0 ci→ 1 [2]-NAP if and only
if (N, c, d, B,D) is a yes-instance of Knapsack. Because Knapsack is NP-hard,
also 0

ci→ 1 [2]-NAP is NP-hard.

63

Observation 3.3 ([PG07]). 0 ci→ 1 [2]-NAP is NP-hard, even if the tree T is a star.

Because 0
ci→ 1 [2]-NAP is a special case of GNAP in which L = 2, w-code = 1,

and varw = 2, we conclude that GNAP is NP-hard, even if heightT = w-code = 1
and L = varw = 2. In this reduction, one could also set D′ := 1 and set the survival
probability of every project with a positive cost to 1/D.

Observation 3.4. 0 ci→ b [2]-NAP is NP-hard, even if b ∈ (0, 1] is a constant, D = 1,
and the given phylogenetic X-tree T is a star.

3.3 The Generalized Noah’s Ark Problem

In this section, with GNAP we consider the most general form of the problem.

3.3.1 Algorithms for the Generalized Noah’s Ark Problem

First, we observe that for a constant number of taxa, we can solve GNAP in poly-
nomial time by considering all the possible project choices for each taxon.

Proposition 3.5. GNAP is XP with respect to |X|.

Proof. For every taxon xi ∈ X, iterate over the projects pi,ji of Pi such that there
are |X| nested loops to compute a set S := {pi,ji | i ∈ [|X|]}. Return yes,
if Cost(S) ≤ B and PDT (S) ≥ D. Otherwise, return no, after the iteration.

This algorithm is clearly correct. We can check whether Cost(S) ≤ B
and PDT (S) ≥ D in O(n2) time. Therefore, in O(L|X| · n2) time a solution is
computed.

In Theorem 3.1, we show that GNAP can be solved in polynomial time when the
number of different project costs and the number of different survival probabilities
is constant. In the following, let I = (T ,P , B,D) be an instance of GNAP, and
let C := {c1, . . . , cvarc} and W := {w1, . . . , wvarw} denote the sets of different costs
and different survival probabilities in I, respectively. Without loss of generality,
assume ci < ci+1 for each i ∈ [varc−1] and assume wj < wj+1 for each j ∈ [varw −1],
likewise. In other words, ci is the ith cheapest cost in C and wj is the jth smallest
survival probability in W . Recall that we assume that there is at most one item with
cost cp and at most one item with survival probability wq in every project list Pi,
for each p ∈ [varc] and q ∈ [varw]. For the rest of the section, by a and b we denote
vectors (a1, . . . , avarc −1) and (b1, . . . , bvarw −1), respectively.

64

Theorem 3.1. GNAP can be solved in O
(︁
|X|2(varc +varw −1) · (varc+varw)

)︁
time.

Proof. Table Defintion. We describe a dynamic programming algorithm with two
tables DP and DP′ that have a dimension for all the varc different costs, except
for cvarc and all the varw different survival probabilities, except for wvarw . Recall
that Tv is the subtree rooted at v and the offspring off(v) of v are the leaves in Tv,
and that the i-partial subtree Tv,i rooted at v is the subtree of Tv containing only the
first children w1, . . . , wi of v for some i ∈ [t] for a vertex v with children w1, . . . , wt

of v. For a vertex v ∈ V and given vectors a and b, we define S(v)
a,b to be the family

of sets of projects S such that

• S contains exactly one project of Pi for each xi ∈ off(v),

• S contains exactly ak projects of cost ck for each k ∈ [varc−1], and

• S contains exactly bℓ projects of survival probability wℓ for each ℓ ∈ [varw −1].

For a vertex v ∈ V with children u1, . . . , ut, given vectors a, and b and a given
integer i ∈ [t] we define S(v,i)

a,b analogously, just that exactly one project of Pj is
chosen for each xj ∈ off(u1) ∪ · · · ∪ off(ui).

It follows that we can compute how many projects with cost cvarc and survival
probability wvarw a set S ∈ S(v)

a,b contains. That are a(v)varc := | off(v)| −
∑︁varc −1

j=1 aj

projects with a cost of cvarc and b
(v)
varw := | off(v)| −

∑︁varw −1
j=1 bj projects with a sur-

vival probability of wvarw . We want entries DP[v, a,b] to store the largest expected
phylogenetic diversity PDTv(S) of the tree Tv, for a set S ∈ S(v)

a,b. We analogously
want DP′[v, i, a,b] to store the largest expected phylogenetic diversity PDTv,i

(S) of
the tree Tv,i, for a set S ∈ S(v,i)

a,b . We further define the total survival probability
to be

w(bvarw ,b) := 1− (1− wvarw)
bvarw ·

varw −1∏︂
i=1

(1− wi)
bi , (3.2)

when bvarw and b describe the number of chosen single survival probabilities.
Algorithm. As a base case, fix a taxon xi with project list Pi. As we want to
select exactly one project of Pi, the project is clearly defined by a and b. So, we
store DP[xi, a,b] = 0, if Pi contains a project p = (ck, wℓ) such that

• (k < varc and a = 0(k)+1 or k = varc and a = 0), and

• (ℓ < varw and b = 0(ℓ)+1 or ℓ = varw and b = 0).

65

Otherwise, store DP[xi, a,b] = −∞.
Let v be an internal vertex with children u1, . . . , ut. We define

DP′[v, 1, a,b] = DP[u1, a,b] + λ(vu1) · w
(︁
b(u1)
varw ,b

)︁
. (3.3)

To compute further values of DP′, we use the recurrence

DP′[v, i+ 1, a,b] (3.4)
= max

a′,b′
DP′[v, i, a− a′,b− b′] + DP[ui+1, a

′,b′] + λ(vui+1) · w
(︁
b(ui+1)
varw ,b′)︁ .

Herein, a′ and b′ are selected to satisfy 0 ≤ a′ ≤ a and 0 ≤ b′ ≤ b.
Finally, we define DP[v, a,b] = DP′[v, t, a,b].
Return yes if there are a and b such that

∑︁varc −1
i=1 ai ≤ |X|, and

∑︁varw −1
i=1 bi ≤ |X|,

and a
(r)
varc · cvarc +

∑︁varc −1
i=1 ai · ci ≤ B, and DP[ρ, a,b] ≥ D where ρ is the root of T .

Otherwise, if no such a and b exist, return no.
Correctness. For any vertex v, vectors a, b, and an integer i, we prove that DP[v, a,b]
and DP′[v, i, a,b] store maxPDTv(S) for S ∈ S(v)

a,b and maxPDTv,i(S) for S ∈ S(v,i)
a,b ,

respectively. This implies that the algorithm is correct. For a taxon xi, the tree Txi

does not contain edges and so there is no diversity. We can only check if a and b
correspond to a feasible project. So, the table F stores the correct value in the base
cases. For an internal vertex v with children u1, . . . , ut, and i ∈ [t − 1], observe
that PDTv,1(S) = PDTu1 (S) + λ(vu1) ·w(b(ui+1)

varw ,b) for S ∈ S(v,1)
a,b , where w(b(ui+1)

varw ,b)
is the survival probability at u1. Thus entry DP′[v, 1, a,b] stores the correct value.
Further, the value in entry DP[v, a,b] stores the correct value, when DP′[v, t, a,b]

stores the correct value, because S(v)
a,b = S(v,t)

a,b . It remains to show that the correct
value is stored in DP′[v, i+ 1, a,b].

Now, assume as an induction hypothesis that in DP[uj, a,b] and DP′[v, i, a,b] the
correct value is stored, for an internal vertex v with children u1, . . . , ut and i ∈ [t−1].
We first prove that if DP′[v, i + 1, a,b] = d, then there exists a set S ∈ S(v,i+1)

a,b

with PDTv(S) = d. Afterward, we prove that DP′[v, i + 1, a,b] ≥ PDTv,i+1
(S) for

every set S ∈ S(v,i+1)
a,b .

Let DP′[v, i + 1, a,b] = d. Let a′ and b′ be the vectors that maximize the right
side of Equation (3.4) for DP′[v, i + 1, a,b]. By the induction hypothesis, there is
a set SG ∈ S

(v,i)
a−a′,b−b′ such that DP′[v, i, a − a′,b − b′] = PDTv,i(SG) and there is a

set SF ∈ S
(ui+1)
a′,b′ such that DP[ui+1, i, a

′,b′] = PDTui+1
(SF). Define S := SG ∪ SF .

Then,

PDTv,i+1
(S) = PDTv,i(SG) + PDTv(SF) (3.5)

= PDTv,i(SG) + PDTui+1
(SF) + λ(vui+1) · w(b(ui+1)

varw ,b). (3.6)

66

This equals the right side of Recurrence (3.4) and we conclude PDTv(S) = d.
Conversely, let S ∈ S

(v,i+1)
a,b . Let SF be the subset of projects of S that are from

a project list of an offspring of ui+1 and define SG = S \ SF . Let ak be the number
of projects in SF with a cost of ck and let bℓ be the number of projects in SF with
a survival probability of bℓ. Define a′ = (a1, . . . , avarc −1) and b′ = (b1, . . . , bvarw −1).
Then,

DP′[v, i+ 1, a,b] (3.7)

≥ DP′[v, i, a− a′,b− b′] + DP[ui+1, a
′,b′] + λ(vui+1) · w

(︂
b′
(ui+1)
varw ,b′

)︂
(3.8)

= PDTv,i(SG) + PDTui+1
(SF) + λ(vui+1) · w

(︂
b′
(ui+1)
varw ,b′

)︂
(3.9)

= PDTv,i+1
(S). (3.10)

Inequality (3.7) follows from Recurrence (3.4). By the definition of SF and SG,
Equation (3.9) is correct. Finally, Equation (3.10) follows from Equation (3.6).
Running time. First, we prove how many options for vectors a and b there are.
Because

∑︁varc −1
i=1 ai ≤ |X|, we conclude that if ai = |X|, then aj = 0 for i ̸= j.

Otherwise, for ai ∈ [|X| − 1]0 there are O(|X|varc −1) options for a of not contain-
ing |X|, such that altogether there are O(|X|varc −1+ |X|) = O(|X|varc −1) options for
a suitable a. Likewise, there are O(|X|varw −1) options for a suitable b.

Clearly, the base cases can be computed in O(∥P∥) time, each. Let v be an
internal vertex and fix a and b. For a vertex w ∈ V , we can compute in O(n) time
the set off(w). It follows that w(b(ui)

varw ,b) can be computed in O(n + varw) time
such that Recurrence (3.3) can be computed in O(n + varw) time for fixed v, i, a,
and b. For fixed a and b, there are O (|X|varc +varw −2) options to choose a′ and b′.
Therefore, Recurrence (3.4) can be evaluated in O (|X|varc +varw −2 · (n+ varw)) time.

Recurrence (3.3) has to be computed once for every internal vertex. Recur-
rence (3.4) has to be computed once for every vertex except the root. Altogether,
in O

(︁
|X|2(varc +varw −2) · (n+ varw) + |X| · ∥P∥

)︁
time all entries of the tables DP

and DP′ can be computed. Additionally, O(|X|varc +varw −2 · (varc +varw)) time is
needed to check whether there are vectors a and b such that

• DP[r, a,b] ≥ D,

•
∑︁varc −1

i=1 ai ≤ |X|,

•
∑︁varw −1

i=1 bi ≤ |X|, and

• a
(r)
varc · cvarc +

∑︁varc −1
i=1 ai · ci ≤ B.

67

Because O(n) = O(|X|) and O(∥P∥) ≤ O(|X| · varw), the overall running time
is O

(︁
|X|2(varc +varw −1)) · (varc +varw)

)︁
in our RAM-model. We want to declare,

however, that the table entries may store numbers with an encoding length of up
to |X| · w-code+ log(D), which is not linear in the input size.

The algorithm of Theorem 3.1 can easily be adjusted for 0
ci→ 1 [2]-NAP, in

which the only survival probabilities are 0 and 1. In this problem, we additionally
can compute w(b(u1)

varw ,b) faster, as it can only be 0 or 1.

Corollary 3.6. 0
ci→ 1 [2]-NAP can be solved in O

(︁
|X|2(varc +1) · varc

)︁
time.

As each project with a cost higher than B can be deleted, we may assume that
there are no such projects. This implies that varc ≤ C+1 ≤ B+1. Thus, Theorem 3.1
also implies that GNAP is XP with respect to C+varw and B+varw with astronomical
running times of O

(︁
|X|2(C+varw −1) · (C + varw)

)︁
and O

(︁
|X|2(B+varw −1) · (B + varw)

)︁
,

respectively. However, we can adjust the algorithm so that B is not in the exponent
of the running time. Instead of declaring how many projects of cost ci for i ∈ [varc]
are selected, we declare the budget that can be spent.

Theorem 3.2. GNAP can be solved in O
(︁
B2 · |X|2(varw −1) · varw

)︁
time.

Proof. Table definition. We describe a dynamic programming algorithm with two
tables DP and DP′ that have a dimension for all the varw different survival proba-
bilities, except for varw −1. For a vertex v ∈ V , a given vector b and k ∈ [B]0, we
define S(v)

k,b to be the family of sets of projects S such that

• S contains exactly one project of Pi for each xi ∈ off(v),

• Cost(S) ≤ k, and

• S contains exactly bℓ projects of survival probability wℓ for each ℓ ∈ [varw −1].

For a vertex v ∈ V with children u1, . . . , ut, a given vector b and integers k ∈ [B]0
and i ∈ [t] we define S(v,i)

k,b analogously, just that exactly one project of Pj is chosen
for each xj ∈ off(u1) ∪ · · · ∪ off(ui).

As in the previous proof, there are b(v)varw := | off(v)| −
∑︁varw −1

j=1 bj projects with
survival probability wvarw . We want entries DP[v, k,b] to store the largest expected
phylogenetic diversity PDTv(S) of the tree Tv, for a set S ∈ S(v)

k,b and, respectively,
DP′[v, i, k,b] to store the largest expected phylogenetic diversity PDTv,i

(S) of the
tree Tv,i, for a set S ∈ S(v,i)

k,b . We further define the total survival probability analo-
gously as in Equation (3.2).

68

Algorithm. As a base case, fix a taxon xi with project list Pi. As we want to
select exactly one project of Pi, the project is clearly defined by k and b. So, we
store DP[xi, k,b] = 0, if Pi contains a project p = (ct, wℓ) such that ct ≤ k, and

• (ℓ < varw and b = 0(ℓ)+1 or ℓ = varc and b = 0).

Otherwise, store DP[xi, k,b] = −∞.
Let v be an internal vertex with children u1, . . . , ut. We define

DP′[v, 1, k,b] = DP[u1, k,b] + λ(vu1) · w
(︁
b(u1)
varw ,b

)︁
. (3.11)

To compute further values of G, we can use the recurrence

DP′[v, i+ 1, k,b] (3.12)
= max

k′,b′
DP′[v, i, k − k′,b− b′] + DP[ui+1, k

′,b′] + λ(vui+1) · w
(︁
b(ui+1)
varw ,b′)︁ .

Herein, k and b′ are selected to satisfy k′ ∈ [k]0 and 0 ≤ b′ ≤ b.
Finally, we define DP[v, a,b] = DP′[v, t, a,b].
Return yes if there is a vector b such that

∑︁varw −1
i=1 bi ≤ |X|, and DP[ρ,B,b] ≥ D

where ρ is the root of T . Otherwise, if no such vector b exists, return no.
Correctness and running time. The correctness and the running time can be proven
analogously to the correctness and running time of the algorithm in Theorem 3.1.

Generally, we have to assume that B is exponential in the input size. However,
there are special cases of GNAP, in which this is not the case, such as the case
with unit costs for projects. Since varw ≤ 2w-code, we conclude the following from
Theorem 3.2.

Corollary 3.7. GNAP is XP with respect to varw and w-code, if B is bounded
polynomially in the input size.

3.3.2 Generalized Noah’s Ark Problem on Stars

We now consider the special case of GNAP where the given phylogenetic tree is
a star. We first show that this special case—and therefore GNAP in general—is
W[1]-hard with respect to the number of taxa, |X|. This implies that the algorithm
in Proposition 3.5 is tight in some sense. Afterward, we prove that most of the FPT
and XP algorithms that, in Section 2.5, we presented for MCKP can also be adopted
for this special case of GNAP.

69

Hardness

Theorem 3.3. GNAP is W[1]-hard with respect to |X| + ∆, even on ultrametric
phylogenetic trees with maxλ = heightT = 1, and D = 1, where ∆ is the largest
degree of a vertex in the phylogenetic tree.

Proof. Reduction. We reduce from MCKP, which by Theorem 2.5 is W[1]-hard with
respect to the number of classes m. Let I = (N, {N1, . . . , Nm}, c, d, B,D) be an
instance of MCKP. We define an instance I ′ = (T ,P , B′ := B,D′ := 1) of GNAP
in which the phylogenetic X-tree T = (V,E, λ) is a star with root ρ and the vertex
set is V := {ρ}∪X, with X := {x1, . . . , xm}. Set λ(e) := 1 for every e ∈ E. For every
class Ni = {ai,1, . . . , ai,ℓi}, define projects pi,j := (ci,j := c(ai,j), wi,j := d(ai,j)/D) of
a project list Pi for taxon xi. The |X|-collection of projects P contains all these
project lists Pi.
Correctness. Because we may assume 0 ≤ d(a) ≤ D for all a ∈ N , the survival
probabilities wi,j are in R[0,1] for all i ∈ [m] and j ∈ [|Ni|]. The tree has m taxa and
a maximum degree of m. The reduction is clearly computable in polynomial time,
so it only remains to show the equivalence.

Let S be a solution for instance I and assume S ∩ Ni = {ai,ji} without loss of
generality. We show that S ′ = {pi,ji | i ∈ [m]} is a solution for I ′: The cost of the
set S ′ is

∑︁m
i=1 ci,ji =

∑︁m
i=1 c(ai,ji) ≤ B and further

PDT (S
′) =

∑︂
(v,xi)∈E

λ(vxi) · wi,ji

=
∑︂

(v,xi)∈E

1 · d(ai,j)/D

=
1

D
·

m∑︂
i=1

d(ai,j) ≥ 1 = D′.

Conversely, let S = {p1,i1 , . . . , pm,jm} be a solution for instance I ′. We show
that S ′ = {a1,i1 , . . . , am,jm} is a solution for I. Clearly, S ′ contains exactly one item
per class. The cost of the set S ′ is cΣ(S ′) =

∑︁m
i=1 c(ai,ji) =

∑︁m
i=1 ci,ji ≤ B. The value

of S ′ is dΣ(S ′) =
∑︁m

i=1 d(ai,ji) =
∑︁m

i=1wi,ji ·D = PDT (S) ·D ≥ D.

By Observation 2.19, MCKP is NP-hard, even if every class contains at most
two items (of which one has no cost and no value). Because the above reduction is
computed in polynomial time, we conclude the following.

70

Corollary 3.8. 0
ci→ bi [2]-NAP is NP-hard, even on ultrametric phylogenetic trees

with heightT = maxλ = 1, and D = 1.

The X-tree that has been constructed in the reduction in the proof of Theo-
rem 3.3, is a star and therefore has a relatively high degree. In the following, we
show that GNAP is also W[1]-hard with respect to |X| on binary phylogenetic trees.

Corollary 3.9. GNAP is W[1]-hard with respect to |X|+D+heightT even on binary
phylogenetic trees with maxλ = 1.

Proof. Reduction. We reduce from GNAP, which by Theorem 3.3 is W[1]-hard with
respect to |X|, even if maxλ = heightT = D = 1. Let I = (T ,P , B,D) be an
instance of GNAP with D = 1. Define a phylogenetic tree T ′ := (V,E) as follows.
Let V be the union of X and a set of vertices {v1, . . . , v|X|, x

∗}. Let the edges
be E := {vixi, vivi+1 | i ∈ [|X| − 1]} ∪ {vnxn, vnx∗} and let every edge have a
weight of 1. Define a project-list Px∗ = (p∗,0 := (0, 0), p∗,1 := (1, 1)) for x∗. Finally,
let I ′ := (T ′,P ∪ Px∗ , B′ := B + 1, D′ := |X|+ 1) be an instance of GNAP.
Correctness. The reduction can be computed in polynomial time. We show that S
is a solution for instance I if and only if S ′ := S ∪{p∗,1} is a solution for instance I ′.
Clearly, Cost(S ′) =

∑︁
pi,j∈S′ ci,j = c∗,1+

∑︁
pi,j∈S ci,j = Cost(S)+1. Because w∗,1 = 1,

we conclude that the survival probability at each vertex vi is exactly 1. Thus, the
value of PDT ′(S ′) is

|X|−1∑︂
i=1

λ(vivi+1) · 1 + λ(v|X|x
∗) · 1 +

∑︂
pi,j∈S

λ(vixi) · wi,j = |X|+ PDT (S).

Hence, the set S satisfies Cost(S ′) ≤ B + 1 and PDT ′(S ′) ≥ |X| + 1 if and only
if Cost(S) ≤ B and PDT (S) ≥ 1. Therefore, S is a solution for I. We can assume
that a solution of I ′ contains p∗,1 because otherwise, we can exchange one project
with p∗,1 to obtain a better solution.

Algorithmic results

In Section 2.5, we presented algorithms solving MCKP. Many of these algorithms
can be adopted for instances of GNAP in which the phylogenetic tree T is a star.

71

Proposition 3.10. GNAP can be solved

(a) in O(D · 2w-code · ∥P∥+ |I|) time,

(b) in O(B · ∥P∥+ |I|) time,

(c) in O(C · ∥P∥ · |X|+ |I|) time, or

(d) in O(|X|varc −1 · ∥P∥+ |I|) time,

if the given phylogenetic tree is a star. Herein, ∥P∥ =
∑︁|X|

i=1 |Pi| is the number of
projects and |I| is the size of the input.

Proof. To see the correctness of the statement, we reduce an instance of GNAP with
a phylogenetic star tree to an instance MCKP and then use algorithms presented in
Section 2.5.1.
Reduction. Let I = (T , λ,P , B,D) be an instance of GNAP with heightT = 1. We
define an instance I ′ = (N, {N1, . . . , N|X|}, c, d, B′, D′) of MCKP. Without loss of
generality, each survival probability is in the form wi = w′

i/2
w-code with w′

i ∈ [2w-code]0.
For every taxon xi with project list Pi, we define a class Ni. We add an item ai,j
with cost c(ai,j) := ci,j and value d(ai,j) := w′

i,j · λ(ρxi) to Ni for every
project pi,j = (ci,j, wi,j) ∈ Pi. We set B′ := B and D′ := D · 2w-code.
Correctness. Let S = {p1,j1 , . . . , p|X|,j|X|} be a solution for the instance I of GNAP.
Define the set S ′ = {a1,j1 , . . . , a|X|,j|X|}. Clearly, cΣ(S ′) = Cost(S) ≤ B. Further,

|X|∑︂
i=1

d(ai,ji) =

|X|∑︂
i=1

w′
i,ji

· λ(ρxi)

= 2w-code ·
|X|∑︂
i=1

wi,ji · λ(ρxi)

= 2w-code · PDT (S) ≥ 2w-code ·D = D′.

Thus, S ′ is a solution for I ′. Analogously, one can show that if S ′ is a solution for
instance I ′ of MCKP, then S is a solution for instance I of GNAP.
Running time. The instance I ′ of MCKP is computed in O(|I|) time. We observe
that in I ′ the size of N equals the number of projects ∥P∥, the number of classes m
is the number of taxa |X|, and the budget B remains unchanged. Because all costs
are simply copied, the maximal cost C and the number of different costs varc remain
the same. Because the survival probabilities are multiplied with an edge weight, it
follows that vard ∈ O(varw ·maxλ). By definition, D′ = D · 2w-code.

72

Thus, after computing instance I ′, one can use any algorithm for solving MCKP
of which we saw some in Section 2.5.1 to compute an optimal solution in the stated
time.

By Proposition 3.10 and Theorem 2.4, we conclude that GNAP is FPT with
respect to varc +varw +maxλ when restricted to instances in which the phylogenetic
tree is a star. In the following, we present a better algorithm—a reduction from an
instance of GNAP in which the phylogenetic tree is a star to an instance of ILP-
Feasibility, in which the number of variables is bound in O(2varc +vard · varc). This
reduction uses a technique that was used to show that Knapsack is FPT with respect
to varc [EKMR17], which was not necessary for proving Theorem 2.4.

Theorem 3.4. There is a reduction from instances of GNAP in which the phy-
logenetic tree is a star to instances of ILP-Feasibility with O(2varc +vard · varc)
variables. Thus, GNAP is FPT with respect to varc +varw when restricting to in-
stances in which the phylogenetic tree is a star.

Proof. Description. Let I = (T , λ,P , B,D) be an instance of GNAP in which T is
a star and has root ρ.

We may assume that a project list Pi does not contain two projects of the same
cost or the same value. In the following, we call T = (C,W) a type, for sets C ⊆ C
and W ⊆ W with |C| = |W |, where C and W are the sets of different costs and sur-
vival probabilities, respectively. Let F be the family of all types. We say that the
project list Pi is of type T = (C,W) if C and W are the set of costs and survival
probabilities of Pi. For each T ∈ F , we define mT to be the number of classes of
type T .

Observe, for each type T = (C,W), project list Pi of type T , and a project p ∈ Pi,
we can determine the survival probability of p when we know the cost c of p. More
precisely, if c is the ℓth cheapest cost in C, then the survival probability of p is the ℓth
smallest survival probability in W . For a type T = (C,W) and i ∈ [varc], we define
the constant wT,i to be −n ·maxλ if ci ̸∈ C. Otherwise, let wT,i ∈ R[0,1] be the ℓth
smallest survival probability in W , if ci is the ℓth smallest cost in C.

For two taxa xi and xj with project lists Pi and Pj of the same type T , it
is possible that λ(ρxi) ̸= λ(ρxj). Hence, it can make a difference if a project is
selected for the taxon xi instead of xj. For a type T , let xT,1, . . . , xT,mT

be the taxa,
such that the project lists PT,1, . . . , PT,mT

are of type T and λ(ρxT,i) ≥ λ(ρxT,i+1)
for each i ∈ [mT − 1]. For each type T , we define a function fT : [mT]0 → N
by fT (0) := 0 and fT (ℓ) stores total value of the first ℓ edges. More precisely, that
is fT (ℓ) :=

∑︁ℓ
i=1 λ(ρxi).

73

The following describes an instance of ILP-Feasibility.

∑︂
T∈F

varc∑︂
i=1

yT,i · ci ≤ B (3.13)

∑︂
T∈F

varc∑︂
i=1

wT,i · gT,i ≥ D (3.14)

fT

(︄
varc∑︂
ℓ=i

yT,ℓ

)︄
− fT

(︄
varc∑︂

ℓ=i+1

yT,ℓ

)︄
= gT,i ∀T ∈ F , i ∈ [varc] (3.15)

varc∑︂
i=1

yT,i = mT ∀T ∈ F (3.16)

yT,i, gT,i ≥ 0 ∀T ∈ F , i ∈ [varc] (3.17)

The variable yT,i expresses the number of projects with cost ci that are chosen in a
project list of type T . We want to assign the most valuable edges that are incident
with taxa that have a project list of type T to the taxa in which the highest survival
probability is chosen. To receive an overview, in gT,j we store the total value of
the yT,j most valuable edges that are incident with a taxon that has a project list of
type T for j ∈ [varc].

For each type T , the function fT is not necessarily linear. However, for each fT
there are affine linear functions p

(1)
T , . . . , p

(mT)
T such that fT (i) = minℓ p

(ℓ)
T (i) for

each i ∈ [mT] [EKMR17].

Correctness. Observe that if ci ̸∈ C, then because we defined dT,i to be −n ·maxλ,
Inequality (3.14) would not be satisfied if gT,i > gT,i+1 and consequently yT,i = 0
if ci ̸∈ C for each type T = (C,W) ∈ F and i ∈ [varc]. Inequality (3.13) can
only be satisfied if the total cost is at most B. The correctness of Inequality (3.14):
The variable gT,i stores is the total weight of the edges towards the yT,i taxa with
projects of project lists of type T , in which a project of cost ci is selected. All these
projects a have survival probability of wT,i, and thus the phylogenetic diversity of
these projects is wT,i · (gT,i − gT,i+1). Consequently, Inequality (3.14) can only be
satisfied if the total phylogenetic diversity is at least D. Equation (3.15) ensures
that the value of gT,i is chosen correctly. Equation (3.16) can only be correct if
exactly mT projects are picked from the project lists of type T , for each T ∈ F . It
remains to show that the instance of the ILP-Feasibility has O(2varc +vard · varc)
variables. Because F ⊆ 2C × 2W , the size of F is O(2varc +vard). We follow that there
are O(2varc +vard · varc) different options for the variables yT,i and gT,i.

74

3.4 Restriction to Two Projects per Taxon

We finally study two special cases of ai
ci→ bi [2]-NAP—the special case of GNAP

where every project list contains exactly two projects. In this section, we write c(xi)
for the cost of the project with survival probability 1 in Pi.

3.4.1 Sure Survival or Extinction For Each Project

First, we consider 0
ci→ 1 [2]-NAP, the special case where each taxon xi survives

definitely if ci is paid and becomes extinct, otherwise. This special case was in-
troduced by Pardi and Goldman [PG07] under the name Budgeted NAP. They
also presented a pseudopolynomial-time algorithm that computes a solution for an
instance in O(B2 · n) time. Because we may assume that B ≤ C · |X|, we conclude
the following.

Corollary 3.11. 0
ci→ 1 [2]-NAP can be solved in O(C2 · n3) time.

We observe that 0
ci→ 1 [2]-NAP is FPT with respect to D, with an adaption of

the above-mentioned algorithm of Pardi and Goldman [PG07] for the parameter B.

Proposition 3.12. 0
ci→ 1 [2]-NAP can be solved in O(D2 · n) time.

Proof. Table definition. For a set A of vertices, a vertex v, and integers b and d, we
call a set of projects S an (A, v, d, b)-respecting set, if PDTv(S) ≥ d, and S contains
exactly one project of the projects lists of the offspring of A, and S contains at least b
projects with survival probability 1.

We describe a dynamic programming algorithm with two tables DP and DP′. We
want entry DP[v, d, b] for a vertex v ∈ V , an integer d ∈ [D]0, and a boolean b ∈ {0, 1}
to store the minimal cost of a ({v}, v, d, b)-respecting set. If v is an internal vertex
with children u1, . . . , ut and i ∈ [t], then we want entry DP′[v, i, d, b] to store the
minimal cost of an ({u1, . . . , ui}, v, d, b)-respecting set.

We use non-negative subtraction, −≥0, which for integers a and b is a−≥0b = a−b
if a ≥ b and a−≥0 b = 0, otherwise.
Algorithm. As a base case, for a leaf xi store DP[xi, 0, 1] = c(xi) and for each d > 0
store DP[xi, d, 1] = ∞. For any vertex v and each d ∈ [D]0 store DP[v, d, 0] = 0
and DP[v, i, d, 0] = 0.

For an internal vertex v, we define DP′[v, 1, d, 1] = DP[u1, d−≥0 λ(vu1), 1].
Now, let v be an internal vertex with children u1, . . . , ut and we assume that for a

fixed i ∈ [t] the values of DP′[v, i, d, b] and DP[ui+1, d, b] are known for each d ∈ [D]0

75

and b ∈ {0, 1}. To compute the value of DP′[v, i+ 1, d], we use the recurrence

DP′[v, i+ 1, d, 1] (3.18)
= min{DP′[v, i, d, 1]; min

d′∈[di+1]
{DP′[v, i, di+1 − d′, 1] + DP[ui+1, d

′, 1]}},

where di+1 := d−≥0 λ(vui+1). We store DP[v, d, 1] = DP′[v, t, d, 1], eventually.
We return yes if DP[ρ,D] ≤ B for the root ρ of T . Otherwise, we return no.

Correctness. The base case, as well as the computation of DP′[v, 1, d, 1], and the
computation of DP[v, d, 1] for an internal vertex v and integers d ∈ [D]0 are cor-
rect by definition. It remains to show that DP′[v, i + 1, d, 1] stores the correct
value if DP′[v, i, d, 1] and DP[ui+1, d, 1] store the correct value. We first show that
if S is an ({u1, . . . , ui+1}, v, d, 1)-respecting set, then DP′[v, i + 1, d, 1] ≤ Cost(S).
Afterwards, we show that if c is stored in DP′[v, i + 1, d, 1], then there is
an ({u1, . . . , ui+1}, v, d, 1)-respecting set S with Cost(S) = c.

Let S be an ({u1, . . . , ui+1}, v, d, 1)-respecting set. Let S1 be the set of
projects that are in one of the project lists of the offspring of ui+1. We
define S2 := S \ S1. Then DP′[v, i + 1, d, 1] = DP′[v, i, d, 1], if S2 only contains
projects with a survival probability of 0. Otherwise, let d′ := PDTv(S1).
Then, PDTv(S2) = PDTv(S) − PDTv(S1) ≥ d − d′. We conclude that S2 is
an ({u1, . . . , ui}, v, d − d′, 1)-respecting set, and S1 is an ({ui+1}, v, d′, 1)-respecting
set. Consequently,

DP′[v, i+ 1, d, 1] ≤ DP′[v, i, d− d′, 1] + DP[ui+1, d
′ −≥0 λ(vui+1), 1] (3.19)

≤ Cost(SG) + Cost(SF) = Cost(S). (3.20)

Here, Inequality (3.19) follows from the recurrence in Recurrence (3.18) and Inequal-
ity (3.20) follows from the induction hypothesis.

Conversely, we assume that DP′[v, i+1, d, 1] stores c. Unless DP′[v, i+1, d, 1] takes
the value of DP′[v, i, d, 1] there is an integer d′ ∈ [di+1]0, such
that DP′[v, i+1, d, 1] = DP′[v,i+1 , di+1−d′, 1]+DP[ui+1, d

′, 1]. By the induction hy-
pothesis, there is an ({u1, . . . , ui}, v, d−d′, 1)-respecting set S2 and an ({ui+1}, v, d′, 1)-
respecting set S1 such that DP[ui+1, d

′, 1] = Cost(S1) and DP′[v, i, d − d′, 1]
stores Cost(S2). We conclude that S := S1 ∪ S2 is an ({u1, . . . , ui+1}, v, d, 1)-
respecting set and c = Cost(S1) + Cost(S2) = Cost(S).
Running time. Table DP has O(D · n) entries and each entry can be computed in
constant time. Also, DP′ has O(D · n) entries. Entry DP′[v, i + 1, d] is computed
by checking at most D + 1 options for d′. Altogether, a solution can be found
in O(D2 · n) time.

76

We may further use this pseudopolynomial-time algorithm to obtain an algo-
rithm for the maximum edge weight maxλ: For an instance I of 0

ci→ 1 [2]-NAP
with

∑︁
e∈E λ(e) < D, we can return no since the desired diversity can never be

reached. Otherwise, we may assume D ≤
∑︁

e∈E λ(e) ≤ maxλ ·(n− 1). This gives the
following running time-bound.

Corollary 3.13. 0
ci→ 1 [2]-NAP can be solved in O((maxλ)

2 · n3) time.

3.4.2 Unit Costs For Each Project

Next, we consider unit-cost-NAP—the special case of GNAP in which every
project with a positive survival probability has the same cost. Observe, every in-
stance I = (T ,P , B,D) of 0

c→ bi [2]-NAP for each c ∈ N can be reduced to an
equivalent instance I ′ = (T ,P ′, B′, D) of 0

1→ bi [2]-NAP by setting the costs of
every project with a positive survival probability to 1, and B′ = ⌊B/c⌋. Thus, the
problem 0

1→ bi [2]-NAP can be considered as unit-cost-NAP.
In the remainder of this chapter, we use the term solution to denote only those

projects with a cost of 1 which have been chosen. Further, with w(xi) we denote the
survival probability of the project in Pi which a costs of 1.

We show that even in very restricted instances, unit-cost-NAP is NP-hard by
a reduction from Penalty Sum. Recall that in Penalty Sum we are given a set
of tuples T = {ti = (ai, bi) | i ∈ [n], ai ∈ Q≥0, bi ∈ R(0,1)}, two integers k, and Q,
and a number D ∈ Q+. It is asked whether there is a set of k tuples S ⊆ T , such
that

∑︁
ti∈S ai −Q ·

∏︁
ti∈S bi ≥ D. Penalty Sum is NP-hard by Theorem 2.6.

Theorem 3.5. unit-cost-NAP is NP-hard even on instances with a phylogenetic
tree with a height of 2 and a degree of 1 in the root.

Proof. Reduction. Let I = (T, k,Q,D) be an instance of Penalty Sum. Let bin(a)
and bin(1− b) be the maximum binary encoding length of ai and 1− bi, respectively,
and define t to be bin(a) + bin(1 − b). We define an instance I ′ = (T ,P , B,D′)
of unit-cost-NAP as follows. Let T contain the vertices V := {ρ, v, x1, . . . , x|T |}
and let the underlying undirected graph of T be a star with center v. Therefore, v
is the only child of the root ρ and x1, . . . , x|T | are the leaves. We define λ(ρv) = 2tQ
and λ(vxi) = 2t(ai/1−bi) for each ti ∈ T . For each tuple ti, we define a project
list Pi := ((0, 0), (1, 1 − bi)). Then, P is defined to be the set of these project lists.
Finally, we set B := k, and D′ := 2t(D+Q). The reduction can clearly be computed
in polynomial time.

77

Correctness. We show that instance I is a yes-instance of Penalty Sum if and
only if instance I ′ is a yes-instance of unit-cost-NAP.

First, let S be a solution of an instance I of Penalty Sum. We define a
set S ′ := {(1, w(xi)) | ti ∈ S}. Then,

∑︂
xi∈S′

λ(vxi) · w(xi) + λ(ρv) ·

(︄
1−

∏︂
xi∈S′

(1− w(xi))

)︄

=
∑︂
ti∈S′

2t · (ai/1−bi) · (1− bi) + 2tQ ·

(︄
1−

∏︂
ti∈S′

(1− (1− bi))

)︄
=

∑︂
ti∈S

2tai − 2tQ ·
∏︂
ti∈S

bi + 2tQ ≥ 2t · (D +Q) = D′.

Then, S ′ is a solution for the instance I ′, because |S ′| = |S| ≤ B.
Consequently, let S ′ be a solution for the instance I ′ of unit-cost-NAP. We

conclude
∑︁

xi∈S′ λ(vxi) ·w(xi) ≥ D′−λ(ρv) ·
(︁
1−

∏︁
xi∈S′(1− w(xi))

)︁
. Define S ⊆ T

to contain a tuple ti if and only if S ′ contains a project of the taxon xi.
Further, observe that ai = 2−t · λ(vxi) · (1− bi). Then,∑︂

ti∈S

ai −Q ·
∏︂
ti∈S

bi

=
∑︂
xi∈S′

2−t · λ(vxi) · (1− bi)− 2−t · λ(ρv) ·
∏︂
xi∈S′

(1− w(xi))

= 2−t ·

(︄∑︂
xi∈S′

λ(vxi) · w(xi)− λ(ρv) ·
∏︂
xi∈S′

(1− w(xi))

)︄

≥ 2−t ·

(︄
D′ − λ(ρv) ·

(︄
1−

∏︂
xi∈S′

(1− w(xi))

)︄
− λ(ρv) ·

∏︂
xi∈S′

(1− w(xi))

)︄
= 2−t · (D′ − λ(ρv)) = 2−t · (2t(D +Q)− 2tQ) = D.

Because |S ′| = |S| ≤ B, we conclude that S is a solution of instance I.

Recall that in an ultrametric tree, the weighted distance from the root to a
vertex is the same for all vertices. Observe that in an instance of unit-cost-NAP
in which the phylogenetic tree is ultrametric and has a height of at most 2, and
the root has only one child one can select the set of taxa that have the highest
survival probability. Therefore, we can solve general instances of unit-cost-NAP
with an ultrametric phylogenetic tree that has a height of at most 2 with a dynamic

78

programming algorithm which assigns each child of the root the number of taxa that
are saved in their offspring. We conclude the following.

Observation 3.14. unit-cost-NAP can be solved in polynomial time on instances
in which the phylogenetic tree is ultrametric and has a height of at most 2.

In the following theorem, we show that, however, unit-cost-NAP is NP-hard
even when restricted to ultrametric phylogenetic trees with a height of 3.

Theorem 3.6. unit-cost-NAP is NP-hard even if the given phylogenetic tree is
ultrametric and has a height of at most 3.

Proof. By Theorem 3.5, it suffices to reduce from unit-cost-NAP with the restric-
tion that the root has only one child and the height of the tree is 2.
Reduction. Let I = (T ,P , B,D) be an instance of unit-cost-NAP in which the
root ρ of T has only one child v and the height of T is 2. Without loss of generality,
assume λ(vxi) ≥ λ(vxi+1) for each i ∈ [|X| − 1] and there is a fixed s ∈ [|X|]
with w(xs) ≥ w(xj) for each j ∈ [|X|]. Observe, that by the reduction in Theorem 3.5
we may assume w(xj) ̸= 1 for each xj ∈ X.

Consider Figure 3.1 for an illustration of this reduction.
We define an instance I ′ := (T ′,P , B′, D′) of unit-cost-NAP. Let X1 ⊆ X be

the set of vertices xi with λ(vx1) = λ(vxi). If X1 = X, then I is already ultrametric
and simply output I. Otherwise, define X2 := X \ X1. Fix an integer t ∈ N
that is large enough such that 1 − 2−t > ws,1 and 2t · λ(vx|X|) > λ(vx1). Define a
tree T ′ = (V ′, E ′, λ′), in which V ′ contains the vertices V and add two vertices ui
and x∗i for every xi ∈ X2. Let X∗ be the set of leaves x∗i . The set of edges is defined
by E ′ = {ρv} ∪ {vxi | xi ∈ X1} ∪ {vui, uixi, uix∗i | xi ∈ X2}. Observe that the leaf
set of T is X ∪X∗. The weights of the edges are defined as:

• We set λ′(ρv) = λ(ρv) · 2t·|X2| · (2t − 1).

• For xi ∈ X1 we set λ′(vxi) = (2t − 1) · λ(vx1).
• For xi ∈ X2 we set λ′(vui) = 2t · (λ(vx1)− λ(vxi))

and λ′(uixi) = λ′(uix
∗
i) = (2t · λ(vxi))− λ(vx1).

Define project lists P ∗
i := ((0, 0), (1, 1 − 2−t)) for each taxa x∗i ∈ X∗. Then,

define P ′ := P ∪ {P ∗
i | x∗i ∈ X∗}. Finally, we set B′ := B + |X∗| and

D′ = (2t − 1) ·
(︁
D + |X2| · (2t − 1) · λ(vx1) +

(︁
2t|X1| − 1

)︁
· λ(wv)

)︁
.

Correctness. Observe that t can be chosen to be in O(w-code+maxλ). Hence, the
reduction can be computed in polynomial time. Moreover, the new phylogenetic tree

79

has a height of 3. Before showing that I is a yes-instance if and only if I ′ is a
yes-instance, we first prove that T ′ is ultrametric.

To show that T ′ is ultrametric, for each xi ∈ X and x∗i ∈ X∗ we show that the
paths from v to xi and from v to x∗i have the same length, as the edge from v to x1.
This is sufficient because every path from the root to a taxon visits v. By definition,
the claim is correct for every xi ∈ X1. For an xi ∈ X2, the path from v to xi is

λ′(vui) + λ′(uixi) = 2t · (λ(vx1)− λ(vxi)) + 2t · λ(vxi)− λ(vx1)

= (2t − 1) · λ(vx1) = λ′(vx1).

By definition, this is also the length of the path from v to x∗i ∈ X∗
i . We conclude

that T ′ is an ultrametric tree. We now show that I is a yes-instance of unit-cost-
NAP if and only if I ′ is a yes-instance of unit-cost-NAP.

Let S ⊆ X be a set of taxa. Define S ′ := S ∪X∗
i . We show that S is a solution

for I if and only if S ′ is a solution of I ′. First, |S ′| = |S|+ |X∗| and hence |S| ≤ B
if and only if |S ′| ≤ B′ = B + |X∗|. We compute the phylogenetic diversity of S ′

in T ′. Here, we first consider the diversity from the subtree that consists of v, ui, xi,
and x∗i for both options, whether S ′ contains xi or not. Afterward, we consider the
additional value from the edge ρv.

If S ′ contains x∗i but not xi, the contribution is

∑︂
xi∈X2\S

(λ′(vui) + λ′(uixi)) · w′(x∗i)

=
∑︂

xi∈X2\S

(2t · (λ(vx1)− λ(vxi)) + 2t · λ(vxi)− λ(vx1)) · (1− 2−t)

=
∑︂

xi∈X2\S

λ(vx1) · (2t − 1) · (1− 2−t).

For those vertices where S ′ contains xi and x∗i , the contributed phylogenetic

80

diversity is

∑︂
xi∈X2∩S

λ′(vui) · (1− (1− w′(x∗i)) · (1− w′(xi)))

+
∑︂

xi∈X2∩S

λ′(uixi) · w′(xi) +
∑︂

xi∈X2∩S

λ′(uix
∗
i) · w′(x∗i)

=
∑︂

xi∈X2∩S

2t · (λ(vx1)− λ(vxi)) · (1− 2−t · (1− w(xi)))

+
∑︂

xi∈X2∩S

(2t · λ(vxi)− λ(vx1)) · (w(xi) + 1− 2−t)

=
∑︂

xi∈X2∩S

(λ(vx1)− λ(vxi)) · (2t − (1− w(xi)))

+
∑︂

xi∈X2∩S

(2t · λ(vxi)− λ(vx1)) · (w(xi) + 1− 2−t)

=
∑︂

xi∈X2∩S

λ(vx1) · (2t − (1− w(xi))− w(xi)− 1 + 2−t))

+λ(vxi) · (−2t + (1− w(xi)) + 2t(w(xi) + 1− 2−t))

=
∑︂

xi∈X2∩S

λ(vx1) · (2t − 2 + 2−t) + λ(vxi) · ((2t − 1) · w(xi))

= (2t − 1) ·

(︄ ∑︂
xi∈X2∩S

λ(vx1) · (1− 2−t) + λ(vxi) · w(xi)

)︄
.

Finally, for the edge ρv the contribution is

λ′(ρv) ·

⎛⎝1−
∏︂

x∗
i∈X∗

(1− w′(x∗i)) ·
∏︂
xi∈S

(1− w′(xi))

⎞⎠
= λ(ρv) · 2t·|X2| · (2t − 1) ·

(︄
1− 2−t·|X2| ·

∏︂
xi∈S

(1− w(xi))

)︄
= λ(ρv) · 2t·|X2| · (2t − 1)− λ(ρv) · (2t − 1) ·

∏︂
xi∈S

(1− w(xi)).

81

Altogether, we conclude

PDT ′(S ′)

= λ′(ρv) ·
∏︂

x∗
i∈X∗

(1− w′(x∗i)) ·
∏︂
xi∈S

(1− w′(xi))

+
∑︂

xi∈X1∩S

λ′(vx1) · w′(xi)

+
∑︂

xi∈X2∩S

λ′(vui) · (1− (1− w′(x∗i)) · (1− w′(xi)))

+
∑︂

xi∈X2∩S

λ′(uixi) · w′(xi) +
∑︂

xi∈X2∩S

λ′(vx1) · (1− 2t)

+
∑︂

xi∈X2\S

(λ′(vui) + λ′(uixi)) · w′(x∗i)

= λ(ρv) · 2t·|X2| · (2t − 1)− λ(ρv) · (2t − 1) ·
∏︂
xi∈S

(1− w(xi))

+
∑︂

xi∈X1∩S

(2t − 1) · λ(vx1) · w(xi)

+(2t − 1) ·

(︄ ∑︂
xi∈X2∩S

λ(vx1) · (1− 2−t) + λ(vxi) · w(xi)

)︄
+

∑︂
xi∈X2\S

λ(vx1) · (2t − 1) · (1− 2−t)

= (2t − 1) ·

[︄
λ(ρv) · 2t·|X2| − λ(ρv) ·

∏︂
xi∈S

(1− w(xi))

+
∑︂
xi∈S

λ(vxi) · w(xi) +
∑︂
xi∈X2

λ(vx1) · (1− 2−t)

]︄

= (2t − 1) ·

[︄
λ(ρv) ·

(︄
1−

∏︂
xi∈S

(1− w(xi))

)︄
+
∑︂
xi∈S

λ(vxi) · w(xi)

+λ(ρv) · (2t·|X2| − 1) +
∑︂
xi∈X2

λ(vx1) · (1− 2−t)

]︄
= (2t − 1) ·

[︁
PDT (S) + (2t·|X2| − 1) · λ(ρv) + |X2| · (1− 2−t) · λ(vx1)

]︁
.

It follows from this equation that PDT ′(S ′) ≤ D′ if and only if PDT (S) ≤ D.

82

r

v

x1 x2

x3

x4

x5

1

6 6

4

2
1

29 · 7 = 3584

2

r

v

x1 x2 x3 x4 x5x∗3 x∗4 x∗5

u3

u4

u5

42 42

16

32

40

26

10

Figure 3.1: This figure shows an example of the reduction presented in Theorem 3.6,
where on the left side the tree of an example-instance I and on the right side the tree of
instance I ′ is depicted. Here, the survival probabilities are omitted and we used t = 3.

Conversely, we show that I ′ has a solution S ′ with X∗ ⊆ S ′. This then implies
that S ′ \X∗ is a solution for I by the argument we saw beforehand.

Let S ′ be a solution for I ′ that contains a maximum number of elements of X∗

among all solutions. If X∗ ⊆ S ′, then we are done. Assume otherwise and choose
some x∗i ̸∈ S ′. We show that there is a solution containing x∗i and all elements
of S ′ ∩ X∗, contradicting the choice of S ′. If xi is in S ′, then we consider the
set S1 := (S ′ \ {xi}) ∪ {x∗i }. Now, |S1| = |S ′| ≤ B′ and because we defined
that w(x∗i) = 1 − 2−t > w(xi), we conclude that PDT ′(S1) > PDT ′(S ′) ≥ D′.
If S ′ ⊊ X∗, then we consider the set S2 := X∗. Now, |S2| = |X∗| ≤ B′

and PDT ′(S2) ≥ PDT ′(S ′) ≥ D′. Finally, assume that xi, x∗i ̸∈ S ′ and xj ∈ S ′

for some j ̸= i. Again, w(x∗i) = 1 − 2−t > w(xi) and we know that the length of
the path from v to x∗i and xj is the same. Consider the set S3 := (S ′ \ {xj}) ∪ {x∗i }
and observe |S3| = |S ′| ≤ B′. Moreover, by the above, PDT ′(S3) > PDT ′(S ′) ≥ D′.
This completes the proof.

83

3.5 Discussion
In this chapter, we considered GNAP and three special cases of GNAP—namely,
0

ci→ 1[2]-NAP, unit-cost-NAP, and the case that the phylogenetic tree is a star—
and we provided several tractability and intractability results. Our most important
results are as follows. GNAP is W[1]-hard with respect to the number of taxa but
can be solved with an XP-algorithm when parameterized by the number of unique
costs plus survival probabilities, varc +varw. We presented some pseudo-polynomial
running-time algorithms for ai

ci→ bi [2]-NAP and GNAP restricted to trees is a star.
We finally showed that unit-cost-NAP is NP-hard even in very restricted cases.

Naturally, several open questions remain. We want to list some of them.
Most notably, we do not known whether GNAP is weakly or strongly NP-hard. We

therefore can not exclude a pseudo-polynomial running-time algorithm for GNAP
yet. While we showed that Penalty Sum can be solved in pseudo-polynomial
running-time by Proposition 2.21, it remains open whether such an algorithm exists
even for unit-cost-NAP.

Moreover, it remains open whether the result of Theorem 3.1 can be improved so
that GNAP is FPT with respect to varc +varw.

In Observation 3.4, we presented an easy reduction to show that GNAP—or more
precisely even the special case 0

ci→ b [2]-NAP—is already NP-hard when D = 1. In
this reduction, we, however, increase the encoding-length of each survival probability.
We therefore wonder if 0 ci→ b [2]-NAP or even GNAP are FPT when parameterized
withD plus the binary encoding size of the survival probabilities. In Proposition 3.10,
we showed that this holds at least in the case that the phylogenetic tree has a size
of 1.

84

Chapter 4

Phylogenetic Diversity with
Extinction Times

4.1 Introduction

In this chapter, we consider an extension of the classic Maximize Phylogenetic
Diversity (Max-PD) problem, in which species (taxa) have differing extinction
times, after which they will die out if they have not been saved. In Max-PD, we
are given a phylogenetic tree T and integers k, and D as input, and we are asked if
there exists a subset of k taxa whose phylogenetic diversity is at least D. Max-PD is
polynomial-time solvable by a greedy algorithm [Ste05, PG05]. However, already the
generalization Budgeted NAP of Max-PD, in which each taxon has an associated
integer cost which would be necessary to be paid to save the taxon, is NP-hard [PG07].

In this extension of Max-PD, the cost of a taxon may, just as well as financial or
space capacities, be used to represent the fact that different taxa may take a different
amount of time to save from extinction. However, to the best of our knowledge,
previously studied versions of Max-PD do not take into account that different taxa
may have different amounts of remaining time before extinction. Thus, to ensure that
a set of taxa can be saved with the available resources, it is not enough to guarantee
that their total cost is below a certain threshold. One also needs to ensure that there
is a schedule under which each taxon is saved before its moment of extinction.

We take the first step in addressing this issue by introducing two extensions
of Budgeted NAP, denoted Time Sensitive Maximization of Phylogenetic
Diversity (Time-PD) and Strict Time Sensitive Maximization of Phylo-
genetic Diversity (s-Time-PD), in which each taxon has an associated rescue
length (the amount of time it takes to save the taxon) and also an extinction time

85

(the time after which the taxon can not be saved anymore). In each problem, there
is a set of available teams that can work towards saving the taxa; under Time-PD
different teams may collaborate on saving a taxon while in s-Time-PD they may
not.

These problems have much in common with machine scheduling problems, insofar
as we may think of the taxa as corresponding to jobs with a certain due date and the
teams as corresponding to machines. One may think of Time-PD and s-Time-PD
as machine scheduling problems, in which the objective to be maximized is the
phylogenetic diversity (as determined by the input tree T) of the set of completed
tasks (which are the saved taxa).

Related Work in Scheduling. Scheduling problems are denoted by a three-field
notation introduced by Graham et al. [GLLK79]. Herein, many problems are written
as a triple α|β|γ, where α is the machine environment, β are job characteristics and
scheduling constraints, and γ is the objective function. For a more detailed view, we
refer to [GLLK79, MVB18].

The scheduling problem most closely related to the problems studied in this
chapter is Pt||

∑︁
wj(1− Uj). In this problem, we are given a set of jobs, each with

an integer weight, a processing time, and a due date. We are also given t identical
machines that can each process one job at a time. The task is to schedule jobs on the
available machines in such a way that we maximize the total weight of jobs completed
before the due date. (Here wj denotes the weight of job j, and Uj = 1 if job j is not
completed on time, and Uj = 0, otherwise). This is similar to s-Time-PD, in the
case that the t available teams have identical starting and ending times. We may
think of taxa as analogous to jobs, with the extinction times corresponding to due
dates. The key difference is that in s-Time-PD, rather than maximizing the total
weight of the completed jobs, we aim to maximize their phylogenetic diversity, as
determined by the input tree T .

Although approximation algorithms for scheduling problems are common, param-
eterized algorithms for scheduling problems are rare [MVB18]. The most commonly
investigated special case of s-Time-PD is 1||

∑︁
wj(1 − Uj)—that

is Pt||
∑︁
wj(1 − Uj) with only one machine. This problem is weakly NP-hard and

is solvable in pseudo-polynomial time [LM69, Sah76], while the unweighted ver-
sion 1||

∑︁
(1−Uj) is solvable in polynomial time [Moo68, Max70, Sid73]. Parameters

studied for 1||
∑︁
wj(1 − Uj) include the number of different due dates, the number

of different processing times, and the number of different weights. The problem
is FPT when parameterized by the sum of any two of these parameters [HKPS21].
When parameterized by one of the latter two parameters, it is W[1]-hard [HH24]

86

but XP [HKPS21]. Also a version has been studied in the light of parameterized
algorithms in which there are also few distinct deadlines [HHS23].

Our Contribution. With Time-PD and s-Time-PD we introduce problems in
maximizing phylogenetic diversity in which extinction times of taxa may vary. We
further provide a connection to the well-regarded field of scheduling.

Both problems turn out to be NP-hard; this result is perhaps unsurprising given
their close relation to scheduling problems, and we therefore analyze Time-PD and
s-Time-PD within the framework of parameterized complexity. Our most impor-
tant results are O∗(22.443·D+o(D))-time algorithms for Time-PD and s-Time-PD
(Section 4.3), and a O∗(26.056·D+o(D))-time algorithm for Time-PD (Section 4.4).
Moreover, both problems are FPT with respect to the available person-hours Hmaxex

(Proposition 4.15). A detailed list of known results for Time-PD and s-Time-PD
is given in Table 4.1. In the table and the rest of the chapter we use the conven-
tion n := |X|.

A key challenge for the design of FPT algorithms for Time-PD and s-Time-PD
is the combination of the tree structure and extinction time constraints. Tree-based
problems often suit a dynamic programming (DP) approach, where partial solutions
are constructed for subtrees of the input tree, (starting with the individual leaves and
proceeding to larger subtrees). Scheduling problems with due dates (such as our ex-
tinction times) may also suit a DP approach, where partial solutions are constructed
for subsets of tasks with due dates below some bound. These two DP approaches
have a conflicting structure for the desired processing order, which makes design-
ing a DP algorithm for Time-PD and s-Time-PD more difficult than it may first
appear. Our solution involves the careful use of color coding to reconcile the two ap-
proaches. We believe that this approach may also be applicable to other extensions
of Max-PD.

Structure of the Chapter. In Section 4.2, we formally define the two problems
Time-PD and s-Time-PD and prove some simple initial results. In Section 4.3,
we introduce an FPT algorithm for Time-PD and s-Time-PD parameterized by the
target D, and in Section 4.4, we give an FPT algorithm for Time-PD parameterized
by the acceptable loss of diversity D. In Section 4.5, we prove a number of other pa-
rameterized algorithms. In Section 4.6, we provide a brief outlook on future research
ideas.

87

Table 4.1: Parameterized complexity results for Time-PD and s-Time-PD.

Parameter Time-PD s-Time-PD
Diversity D FPT O∗(22.443·D+o(D)) Thm. 4.1 FPT O∗(22.443·D+o(D)) Thm. 4.1
Diversity loss D FPT O∗(26.056·D+o(D)) Thm. 4.2 NP-hard even if D = 0 [GJS76]
Taxa n FPT O∗(2n) Prop. 4.6a FPT O∗(n!) Prop. 4.6b
Teams |T | NP-hard even if |T | = 1 Prop. 4.4a NP-hard even if |T | = 1 Prop. 4.4a
Solution size k W[1]-hard Prop. 4.4b W[1]-hard Prop. 4.4b
Max time maxex open open
Unique times varex NP-hard even if varex = 1 Prop. 4.4a NP-hard even if varex = 1 Prop. 4.4a
Unique lengths varℓ open W[1]-hard [HH24]
Person-hours Hmax FPT O∗((|T |+ 1)2maxex) Prop. 4.15a FPT O∗(3|T |+maxex) Prop. 4.15c

FPT O∗((Hmaxex)
2 varex) Prop. 4.15b

varℓ +varex XP O(n2 varℓ · varex +1) Prop. 4.16 open

4.2 Preliminaries

In this section, we present the formal definition of the problems, and the parameter-
ization. We further start with some preliminary observations.

4.2.1 Definitions

Problem Definitions and Parameterizations. In the following, we are given
a set of taxa X and a phylogenetic X-tree T , which will be used to calculate the
phylogenetic diversity of any subset of taxa A ⊆ X. In addition, we are given an
integer extinction time ex(x) for each taxon x ∈ X representing the amount of time
remaining to save that taxon before it goes extinct, and an integer rescue length ℓ(x)
representing how much time needs to be spent in order to save that taxon. Thus, we
need to spend ℓ(x) units of time before ex(x) units of time have elapsed, if we wish
to save x from extinction.

In addition, we are given a set of teams T = {t1, . . . , t|T |} that are available to
work on saving taxa, where each team ti is represented by a pair of integers (si, ei)
with 0 ≤ si < ei. Here si and ei represent the starting time and the ending time of
team ti, respectively. Thus, team ti is available for (ei − si) units of time, starting
after si time steps. For convenience, we refer to the units of time in this paper as
person-hours, although of course in practice the units of time may be days or weeks.

We define HT := {(i, j) ∈ N2 | ti ∈ T, si < j ≤ ei}. That is, HT is the set of
all pairs (i, j) where team ti is available to work in timeslot j. For j ∈ [varex], we
define Hj := |{(i, j′) ∈ HT : j′ ≤ exj}|. That is, Hj is the number of person-hours
available until time exj.

Then, a T -schedule is a function f : HT → A∪ {none} for a set of taxa A ⊆ X.

88

x1

x2

x3

x4 x5
x6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t1

t2

t3

t4

ti t1 t2 t3 t4
si 0 2 3 4
ei 17 13 15 18

xi x1 x2 x3 x4 x5 x6
ℓ(xi) 10 9 13 8 7 5
ex(xi) 7 7 18 12 12 18

i = 1 2 3
exi 7 12 18
Hi 19 39 55

Figure 4.1: This is a hypothetical valid schedule saving the set of taxa {x1, . . . , x6}. Each
square marks a tuple (i, j) ∈ HT .

That is, a T -schedule is a mapping from the available timeslots for each team to the
taxa in A (or none). Intuitively, f shows which teams will work to save which taxa
in A, and at which times. See Figure 4.1 for an example.

We say that a T -schedule f is valid if ex(x) ≥ j for each x ∈ A, and (i, j) ∈ H
with f((i, j)) = x. That is, f does not assign a team to work on taxon x after its
extinction time. We say that f saves A if f is valid and |f−1(x)| ≥ ℓ(x) for all x ∈ A.
That is, a schedule f saves A ⊆ X if every taxon x ∈ A has at least ℓ(x) person-hours
assigned to x by its extinction time ex(x).

The definition of a valid schedule allows for several teams to be assigned to the
same taxon at the same time, so that for example the task of preserving a taxon can
be done in half the time by using twice the number of teams. Whether this is realistic
or not depends on the nature of the tasks involved in preservation. For instance the
task of preparing a new enclosure for animals might be completed faster by several
teams working in parallel, whilst the task of rearing infants to adulthood cannot be
sped up in the same way. Due to these concerns, we will consider two variations of
the problem, differentiating in whether a schedule must be strict.

A T -schedule f saving A is strict if |{i ∈ [|T |] : f((i, j)) = x}| = 1 for each x ∈ A.
That is, there is only one team ti assigned to save each taxon x. We state without
a proof that we may assume f−1(x) = {(i, j + 1), (i, j + 2), . . . , (i, j + ℓ(x)} for
some j ≥ si. That is, once started, team ti continuously works on x. We note that
in a non-strict schedule f , it is even possible that multiple teams may work on the
same taxa x at once.

89

Formally, the problems we regard in this chapter are as follows.

Time Sensitive Maximization of Phylogenetic Diversity
(Time-PD)
Input: A phylogenetic X-tree T = (V,E, λ), integers ex(x) and ℓ(x) for

each x ∈ X, a set of teams T , and a target diversity D ∈ N0.
Question: Is there a valid T -schedule saving S, for some S ⊆ X such

that PDT (S) ≥ D?

The problem s-Time-PD is the same as Time-PD, except for the restriction that
the valid T -schedule should be strict.

Strict Time Sensitive Maximization of Phylogenetic Diversity
(s-Time-PD)
Input: A phylogenetic X-tree T = (V,E, λ), integers ex(x) and ℓ(x) for

each x ∈ X, a set of teams T , and a target diversity D ∈ N0.
Question: Is there a strict valid T -schedule saving S, for some S ⊆ X such

that PDT (S) ≥ D?

A set S that satisfies these conditions for an instance I of Time-PD or s-Time-PD
is called a solution of I.

These two problem definitions only differ in the fact that valid T -schedule in the
latter needs to be strict while in the former it is not necessary.

Observe that if there is only one team, every valid schedule is also strict. Thus,
an instance I = (T , ℓ, ex, T,D) with |T | = 1 is a yes-instance of Time-PD if and
only if I is a yes-instance of s-Time-PD. Lemma 4.2 and 4.3 elaborate on the
conditions in these questions in more detail.

Additional Definitions. Now, we introduce some additional definitions that will
be helpful for the parameterizations and proofs that follow.

Definition 4.1 (varex and the Classes Yi and Zi). Let varex := |{ex(x) : x ∈ X}|
and maxex := max{ex(x) : x ∈ X}. That is, varex is the number of different extinc-
tion times for taxa in X, and maxex is the latest extinction time.

Let ex1 < ex2 < · · · < exvarex = maxex denote the elements of ex(X). For
each j ∈ [varex] the class Yj ⊆ X is the set of taxa x with ex(x) = exj and we
define Zj = Y1 ∪ · · · ∪ Yj. Further, we define ex∗(x) = j for each x ∈ Yj.

Along similar lines to varex and maxex, we define varℓ := |{ℓ(x) : x ∈ X}|
and maxℓ := |{ℓ(x) : x ∈ X}|. That is, varℓ is the number of different rescue lengths

90

of taxa, and maxℓ is the largest rescue length. We let ℓ1 < ℓ2 < · · · < ℓvarℓ = maxℓ
denote the elements of {ℓ(x) | x ∈ X}.

Given an instance I of Time-PD or s-Time-PD with target diversity D, we
define D := PDT (X) − D =

∑︁
e∈E λ(e) − D. Thus, D is the acceptable loss of

diversity—if we save a set of taxa A ⊆ X with PDT (A) ≥ D, then the amount of
diversity we lose from T as a whole is at most D.

We define Hj to be
∑︁

x∈Zj
ℓ(x) − Hj for each j ∈ [varex]. That is, Hj is the

difference between the number of person-hours needed to save all taxa in Zj, and the
number of person-hours available to save them.

4.2.2 Observations

In the following, we present some easy observations.

Lemma 4.2. There exists a valid T -schedule saving a set of taxa A ⊆ X if and only
if
∑︁

x∈A∩Zj
ℓ(x) ≤ Hj for each j ∈ [varex].

Proof. Recall that exj is the jth extinction time and ex∗(x) = j for each x ∈ Yj
Suppose first that f is a valid schedule saving A. Then, for each x ∈ A, the

set f−1(x) contains at least ℓ(x) pairs (i, j′) with j′ ≤ ex(x). It follows that f−1(Zj)
contains at least

∑︁
x∈A∩Zj

ℓ(x) pairs (i, j′) with j′ ≤ exj, and so for each j ∈ [varex],
we conclude

∑︁
x∈A∩Zj

ℓ(x) ≤ |{(i, j′) ∈ HT | j′ ≤ exj}| = Hj.
Conversely, suppose

∑︁
x∈A∩Zi

ℓ(x) ≤ Hj for each j ∈ [varex]. Then order the
elements of HT such that (i′, j′) appears before (i′′, j′′) if j′ < j′′, and order the
elements of A such that x appears before y if ex∗(x) < ex∗(y) (thus, all elements
of A∩ Yj appear before all elements of A∩ Yj+1). Now define f : HT → A∪{none}
by repeatedly choosing the first available taxon x of A, and assigning it to the first
available ℓ(x) elements of HT . Then, the first

∑︁
x∈A∩Zj

ℓ(x) ≤ Hj elements of HT

are used to save taxa in Zj, and these elements of HT are all of the form (i, j′)
for j′ ≤ exj. It follows that f is a valid schedule saving A.

By Lemma 4.2, we have that I is a yes-instance of Time-PD (or s-Time-PD
with |T | = 1) if and only if there exists a set S ⊆ X with PDT (S) ≥ D such
that

∑︁
x∈A∩Zi

ℓ(x) ≤ Hi for each i ∈ [varex]. The following lemma follows from the
definitions of valid and strict schedules.

Lemma 4.3. There exists a strict valid T -schedule saving A ⊆ X if and only if
there is a partition of A into sets A1 . . . , A|T | such that for each i ∈ [|T |], there is a
valid {ti}-schedule saving Ai.

91

For the parameterized point of view, we first show that Time-PD and s-Time-PD
are NP-hard, even for quite restricted instances. Our proof adapts the reduction of
Richard Karp used to show that the scheduling problem 1||

∑︁
wj(1 − Uj) is NP-

hard [Kar72]. While Karp gives a reduction from Knapsack, we use a reduction
from k-Subset Sum. This result was also observed by [PG07, HS06] for Budgeted
NAP—Max-PD with integer cost on taxa—which is a special case of Time-PD or
s-Time-PD.

Proposition 4.4 ([Kar72, PG07, HS06]).

(a) Time-PD and s-Time-PD are NP-hard.

(b) It is W[1]-hard with respect to k to decide whether an instance of Time-PD or
s-Time-PD has a solution in which k taxa are saved.

Both statements hold even if the tree in the input is a star and |T | = varex = 1.

Proof. We reduce from k-Subset Sum, which is NP-hard and W[1]-hard when param-
eterized by k, the size of the solution [DF95b]. In k-Subset Sum we are given a
multiset of integers Z = {z1, . . . , z|Z|} and two integers k and G. It is asked whether
there is a set S ⊆ Z of size k such that

∑︁
z∈S z = G.

Reduction. Let (Z, G) be an instance of k-Subset Sum. Let Q be an integer which
is bigger than the sum of all elements in Z.

We define an instance I = (T , ℓ, ex, T,D) with a star tree T that has a root ρ and
a set of leaves X = {x1, . . . , x|Z|}. For each xi ∈ X, we set edge-weights λ(ρxi) and
the rescue length ℓ(xi) to be zi + Q. Further, define an extinction time
of ex(xi) := G + kQ, which is the same for each taxon and the only team oper-
ates from s1 := 0 to e1 := G+ kQ. Finally, we set D := G+ kQ.
Correctness. The reduction is computed in polynomial time for a suitableQ. Because
there is only one team, I is a yes-instance of Time-PD if and only if I is a yes-
instance of s-Time-PD. It remains to show that any solution for I saves exactly k
taxa, and that I is a yes-instance of Time-PD if and only if (Z, G) is a yes-instance
of k-Subset Sum.

So let (Z, G) be a yes-instance of k-Subset Sum with solution S. Define a set
of taxa S ′ := {xi ∈ X | zi ∈ S}. Clearly, S ′ and S are of size k. Then,

PDT (S
′) =

∑︂
xi∈S′

λ(ρxi) =
∑︂
zi∈S

(zi +Q) = kQ+
∑︂
zi∈S

zi = G+ kQ = D,

and analogously
∑︁

xi∈S′ ℓ(xi) =
∑︁

zi∈S(zi +Q) = G+ kQ = H1. Consequently, S ′ is
a solution for I.

92

Let I be a yes-instance with solution S ′. Because

G+ kQ = D ≤ PDT (S
′) =

∑︂
xi∈S′

λ(ρxi) =
∑︂
zi∈S

(zi +Q) =
∑︂
xi∈S′

ℓ(xi) ≤ G+ kQ,

we conclude that G + kQ =
∑︁

zi∈S(zi + Q), from which it follows that |S ′| = k
and

∑︁
zi∈S zi = G. Therefore, S := {zi | xi ∈ S ′} is a solution of (Z, G).

The scheduling variant P3||Cmax in which it is asked for whether the given jobs
can be scheduled on three parallel machines such that the makespan (the maximum
time taken on any machine) is at most Cmax, is strongly NP-hard [GJS76, GJ78].
P3||Cmax can be seen as a special case of P3||

∑︁
wj(1−Uj) and therefore s-Time-PD

in which there are three teams, the tree is a star on which all weights are 1, and we
have to save every taxon in the time defined by the makespan.

Proposition 4.5 ([GJS76]). s-Time-PD is strongly NP-hard even if the tree is
a star, every taxon has to be saved (D = 0), there are three teams, maxλ = 1
and varex = 1.

Our final observation in this section is that for an instance of Time-PD and a set
of taxa S ⊆ X, we can compute the diversity PDT (S) and check whether there is a
valid T -schedule saving S in polynomial time (by Lemma 4.2). Therefore, checking
each subset of X yields an O∗(2n)-time-algorithm for Time-PD.

For an instance of s-Time-PD, in O∗(n!) time we can also guess the order of
the taxa and then assign taxa to the first team until they have no more capacity.
Afterward, assign the next taxa to the second team and so on. The instance is a yes-
instance if and only if for some order this assignment yields a strict valid T -schedule
of a set of taxa with diversity at least D. We conclude the following.

Proposition 4.6.

(a) Time-PD can be solved in 2n · poly(|I|) time.

(b) s-Time-PD can be solved in n! · poly(|I|) time.

4.3 The Diversity D

In this section, we show that Time-PD and s-Time-PD are FPT when parameterized
by the threshold of diversity D. When one tries to use the standard approach with a
dynamic programming algorithm over the vertices of the tree, one will struggle with

93

the question of how to handle the different extinction times of the taxa. While it
is straightforward how to handle taxa of a specific extinction time, already with a
second, it is not trivial how to combine sub-solutions. In order to overcome these
issues, we use the technique of color coding in addition to dynamic programming.

In the following, we consider colored versions of the problems, c-Time-PD and
c-s-Time-PD. In these, additionally to the input of the respective uncolored variant,
we are given a coloring c which assigns each edge e ∈ E a set of colors c(e): A subset
of [D] of size λ(e). For a taxon x ∈ X, we define c(x) to be the union of colors of the
edges on a path from the root to x. Further, for a set S of taxa, we define c(S) to
be
⋃︁

x∈S c(x). In c-Time-PD (respectively, c-s-Time-PD), we ask whether there is
a subset S of taxa and a (strictly) valid T -schedule saving S such that c(S) = [D].

Next, we show that c-Time-PD and c-s-Time-PD are FPT with respect to D.
The difficulty of combining sub-solutions for different extinction times also arises in
these colored versions of the problem. However, the color enables us to consider the
tree as a whole. We select taxa with ordered extinction time such that we are able
to check whether there is a (strictly) valid T -schedule which can indeed save the
selected set of taxa.

Lemma 4.7. c-Time-PD can be solved in O(2D ·D · var2ex ·n) time.

Proof. Let I = (T , ℓ, ex, T,D, c) be an instance of c-Time-PD. For p ∈ [varex], we
call a set S of taxa p-compatible if ℓ(S ∩ Zq) ≤ Hi for each q ∈ [p]. For a set of
colors C ⊆ [D] and p ∈ [varex], we call a set S of taxa (C, p)-feasible if

• C is a subset of c(S),

• S is a subset of Zp, and

• S is p-compatible.

Intuitively, the (C, p)-feasible sets S consist of taxa which overall cover the colors C
if saved and for which a valid T -schedule saving S exists.
Table definition. In the following dynamic programming algorithm with table DP,
for each C ⊆ [D] and p ∈ [varex] we want entry DP[C, p] to store the minimum
length ℓ(S) of a (C, p)-feasible set of taxa S ⊆ X, with DP[C, p] = ∞ if no (C, p)-
feasible set exists.
Algorithm. As a base case, we store DP[∅, p] = 0 for each p ∈ [varex].

To compute further values, we use the recurrence

DP[C, p] = min
x∈Zp,c(x)∩C ̸=∅

ψ(DP[C \ c(x), ex∗(x)] + ℓ(x), Hex∗(x)). (4.1)

94

Recall ex∗(x) = q for x ∈ Yq; and ψ(a, b) = a if a ≤ b and otherwise ψ(a, b) = ∞.
We return yes if DP[[D], varex] ≤ maxex, and otherwise we return no.

Correctness. Let I be an instance of c-Time-PD. From the definition of (C, p)-
feasible sets it follows that there exists a ([D], varex)-feasible set of taxa S if and only
if I is a yes-instance of c-Time-PD. It remains to show that DP[C, p] stores the
smallest length of a (C, p)-feasible set S.

As the set S = ∅ is (∅, p)-feasible for each p ∈ [varex], the base case is correct.
As an induction hypothesis, assume that for a fixed and non-empty set of col-

ors C ⊆ [D] and a fixed integer p ∈ [varex], entry DP[K, q] stores the correct value
for each K ⊊ C and q ≤ p. We prove that DP[C, p] stores the correct value by
showing that if a (C, p)-feasible set of taxa S exists then DP[C, p] ≤ ℓ(S) and that
if DP[C, p] = a <∞ then there is a (C, p)-feasible set S with ℓ(S) = a.

Let S ⊆ X be a (C, p)-feasible set of taxa. Observe that if c(x) ∩ C = ∅ for a
taxon x ∈ S then also S \ {x} is (C, p)-feasible. So, we assume that c(x) ∩ C ̸= ∅
for each x ∈ S. Let y ∈ S be a taxon such that ex(y) ≥ ex(x) for each x ∈ S.
Observe that the set S \ {y} is (C \ c(y), ex∗(y))-feasible. Thus, because y ∈ S ⊆ Zp

and c(y) ∩ C ̸= ∅, DP[C \ c(y), ex∗(y)] ≤ ℓ(S \ {y}) = ℓ(S) − ℓ(y) by the induction
hypothesis. We conclude DP[C \ c(y), ex∗(y)] + ℓ(y) ≤ ℓ(S) ≤ Hex∗(y) because S
is ex∗(y)-compatible. Hence, DP[C, p] ≤ DP[C \ c(y), ex∗(y)] + ℓ(y) ≤ ℓ(S).

Conversely, suppose DP[C, p] < ∞. Then, by Recurrence (4.1), a taxon x ∈ Zp

exists such that c(x) ∩ C ̸= ∅ and DP[C, p] = DP[C \ c(x), ex∗(x)] + ℓ(x). By the
induction hypothesis, there is a (C \ c(x), ex∗(x))-feasible set S ′ such
that DP[C \ c(x), ex∗(x)] = ℓ(S ′). Because c(x) ∩ (C \ c(x)) is empty, x is not
in S ′. Further, DP[C, p] = DP[C \ c(x), ex∗(x)] + ℓ(x) = ℓ(S ′) + ℓ(x) = ℓ(S ′ ∪ {x})
and S ′ ∪ {x} is the desired (C, p)-feasible set.

Running time. The table has O(2D · varex) entries. For each x ∈ X and every set
of colors C, we can compute whether c(x) and C have a non-empty intersection
in O(D) time. Then, we can compute the set C \ c(x) in O(D) time. Each entry
stores an integer that is at most Hmaxex (or ∞). In our RAM model, the addition
and the comparison in ψ can be done in constant time, and so the right side of Re-
currence (4.1) can be computed in O(D · varex ·n) time. Altogether, we can compute
a solution in O(2D ·D · var2ex ·n) time.

For the algorithm in Lemma 4.7 it is crucial that the (C, j)-feasibility of a set S de-
pends only on ℓ(S) and the values H1, . . . , Hj. This is not the case for c-s-Time-PD,
as the available times of the teams impact a possible schedule. Our solution for this
issue is that we divide the colors (representing the diversity) that are supposed to be

95

saved and delegate the colors to specific teams. The problem then can be solved indi-
vidually for the teams. This division and delegation happens in the Recurrence (4.3).

Lemma 4.8. c-s-Time-PD can be solved in O∗(2D ·D3) time.

Proof. Table definition. We define a dynamic programming algorithm with three
tables DP0, DP1 and DP2. Entries of table DP0 are computed with the idea of
Lemma 4.7. DP1 is an auxiliary table. A final solution can be found in table DP2,
then. For this lemma, similar to Hi, we define H(q)

i := |{(i, j) ∈ HT | j ≤ exq}|.
That is, H(q)

i are the person-hours of team ti until exq.
Let I be an instance of c-s-Time-PD. We define terms similar to Lemma 4.7.

For a team ti ∈ T (and an integer p ∈ [varex]), a set S ⊆ X is ti-compatible (respec-
tively, (p, ti)-compatible) if ℓ(S ∩ Zq) ≤ H

(q)
i for each q ∈ [varex] (q ∈ [p]). Inspired

by Lemma 4.3, for a i ∈ [|T |] we call a set S of taxa [i]-compatible if there is a
partition S1, . . . , Si of S such that Sj is tj-compatible for each j ∈ [i]. For a set
of colors C ⊆ [D], an integer p ∈ [varex] and a team ti ∈ T , we call a set S of
taxa (C, p, ti)-feasible if

• S is a subset of Zp,

• S is (p, ti)-compatible,

• C is a subset of c(S), and

• (S = ∅ or S ∩ Yp ̸= ∅).

Formally, for a set of colors C ⊆ [D], an integer p ∈ [varex] and a team ti ∈ T we
want that

• in DP0[C, p, i] the minimum length ℓ(S) of a (C, p, ti)-feasible set of taxa S ⊆ X
is stored,

• in DP1[C, i] stores 1 if there is a ti-compatible set S ⊆ X with c(S) ⊇ C and
0 otherwise, and

• in DP2[C, i] stores 1 if there is a [i]-compatible set S ⊆ X with c(S) ⊇ C and
0 otherwise.

Algorithm. As a base case, we store DP0[∅, p, i] = 0 for each p ∈ [varex] and i ∈ [|T |].
To compute further values of DP0, we use the recurrence

DP0[C, p, i] = min
x∈Yp,c(x)∩C ̸=∅,q≤p

ψ(DP[C \ c(x), q, i] + ℓ(x), H
(q)
i). (4.2)

96

Recall that ψ(a, b) = a if a ≤ b and otherwise ψ(a, b) = ∞. Once all values in DP0

are computed, we compute zC,i := minq∈[varex] DP[C, q, i] and set DP1[C, i] = 1

if zC,i ≤ H
(maxex)
i and DP1[C, i] = 0, otherwise.

Finally, we define DP2[C, 1] := DP1[C, 1] and compute further values with

DP2[C, i+ 1] = min
C′⊆C

DP2[C
′, i] ·DP1[C \ C ′, i+ 1]. (4.3)

We return yes if DP2[[D], |T |] = 1, and otherwise, we return no.
Correctness. Analogously as in Lemma 4.7, one can prove that the entries of DP0

store the correct value. It directly follows by the definition that the entries of DP1

store the correct value. Likewise DP2[C, 1] stores the correct value for colors C ⊆ [D]
be the definition.

Fix a set of colors C ⊆ [D] and an integer i ∈ [|T | − 1]. We assume as an in-
duction hypothesis that entry DP2[K, j] stores the correct value for each K ⊊ C
and j ≤ i. To conclude that DP2[C, j + 1] stores the correct value, we show
that DP2[C, i + 1] ≤ ℓ(S) for each [i + 1]-compatible set S ⊆ X with c(S) ⊇ C
and if DP2[C, i + 1] = a < ∞ then there is an [i + 1]-compatible set S ⊆ X
with c(S) ⊇ C and ℓ(S) = a.

Let S ⊆ X be an [i + 1]-compatible set with c(S) ⊇ C. Let S1, . . . , Si+1 be a
partition of S such that Sj is tj-compatible for each j ∈ [i + 1]. Define Ŝ to be
the union of the Sj and Ĉ := C ∩ c(Ŝ). Then, Ŝ is [i]-compatible with c(Ŝ) ⊇ Ĉ.
Therefore, entry DP2[Ĉ, i] stores at least ℓ(Ŝ) by the induction hypothesis. Be-
cause c(Si+1) ⊇ C \ Ĉ we conclude that DP1[C \ Ĉ, i + 1] ≤ ℓ(Si+1). We conclude
that DP2[C, i+ 1] ≤ DP2[Ĉ, i] + DP1[C \ Ĉ, i+ 1] ≤ ℓ(Ŝ) + ℓ(Si+1) = ℓ(S).

Let DP2[C, i + 1] store the value a < ∞. By Recurrence (4.3), there is a set of
colors C ′ ⊆ C such that a = DP2[C

′, i]+DP1[C \C ′, i+1]. By the induction hypoth-
esis, we conclude then that there is an [i]-compatible set S1 and a ti+1-compatible
set S2 such that DP2[C

′, i] = ℓ(S1) and DP1[C \ C ′, i + 1] = ℓ(S2). Assume first
that S1 and S2 are disjoint. We define S := S1 ∪ S2 and conclude with the disjoint-
ness that ℓ(S) = ℓ(S1)∪ ℓ(S2) = a. Further, we conclude that S is [i+1]-compatible
and c(S) = c(S1)∪c(S) = C ′∪(C \C ′) = C such that S is the desired set. It remains
to argue that non-disjoint S1 and S2 contradict the optimality of C ′.

Now, let A be the intersection of S1 and S2 and define Ĉ := c(S1) and Ŝ := S2\A.
Observe that Ŝ is a ti+1-compatible set with c(Ŝ) ⊇ (C\C ′)\c(A) = C\Ĉ. Therefore,

DP2[Ĉ, i] + DP1[C \ Ĉ, i+ 1] ≤ ℓ(S1) + ℓ(Ŝ)

= ℓ(S1) + ℓ(S2)− ℓ(A)

= DP2[C
′, i] + DP1[C \ C ′, i+ 1]− ℓ(A),

97

which contradicts the optimallity of C ′, unless A is empty.
Running time. By Lemma 4.7, in O(2D ·D ·var2ex ·n) time all entries of DP0 are com-
puted. Table DP1 contains 2D · |T | entries which in O(varex) time can be computed,
each.

To compute the values of table DP2 in Recurrence (4.3), we use convolutions.
Readers unfamiliar with this topic, we refer to [CFK+15, Sec. 10.3]. We define
functions fi, gi : 2[D] → {0, 1} where fi(C) := DP2[C, i] and gi(C) := DP1[C, i].
Then, we can express Recurrence (4.3) as DP2[C, i + 1] = fi+1(C) = (fi ∗ gi+1)(C).
Therefore, for each i ∈ [|T |] we can compute all values of DP2[·, i] = fi(·) in O(2D ·D3)
time [CFK+15, Thm. 10.15].

Altogether, in O(2D · D3 · |T | · var2ex ·n) time, we can compute a solution of an
instance of c-s-Time-PD.

Our following procedure in a nutshell is to use standard color coding techniques to
show that in O∗(2O(D)) time one can reduce an instance I of Time-PD (respectively,
s-Time-PD) to z ∈ O∗(2O(D)) instances I1, . . . , Iz of c-Time-PD (c-s-Time-PD),
which can be solved using Lemma 4.7 and Lemma 4.8. In particular, if S is a solution
for I then c(S) = D under the coloring c in at least one Ii. Then, I is a yes-instance,
if and only if any Ii is a yes-instance.

Theorem 4.1. Time-PD and s-Time-PD can be solved in O∗(22.443·D+o(D)) time.

For an overview of color coding, we refer the reader to [CFK+15, Sec. 5.2 and 5.6].
The key idea is that we construct a family C of colorings on the edges of T , where

each edge e ∈ E is assigned a subset of [D] of size λ(e). Using these, we generate |C|
instances of the colored version of the problem, which we then solve in O∗(2D · D)
time. Central for this will be the concept of a perfect hash family as defined in
Definition 2.14.

Proof. We focus on Time-PD and omit the analogous proof for s-Time-PD.
Reduction. Let I = (T , ex, ℓ, T,D) be an instance of Time-PD. We assume that
for each taxon x ∈ X some valid T -schedule saving {x} exists, as we can delete x
from T , otherwise. Therefore, if there is an edge e with λ(e) ≥ D, then {x} is a
solution for each x ∈ off(e) and we have a trivial yes-instance. Hence, we assume
that maxλ < D.

Now, order the edges e1, . . . , em of T arbitrarily and define integers W0 := 0
and Wj :=

∑︁j
i=1 λ(ei) for each j ∈ [m]. We set W := Wm. Let F be a (W,D)-perfect

hash family. Now, we define a family of colorings C as follows. For every f ∈ F , let cf
be the coloring such that cf (ej) := {f(Wj−1 + 1), . . . , f(Wj)} for each ej ∈ E(T).

98

For each cf ∈ C, let Icf = (T , ex, ℓ, T,D, cf) be the corresponding instance
of c-Time-PD. Now, solve every instance Icf using the algorithm described in
Lemma 4.8, and return yes if and only if Icf is a yes-instance for some cf ∈ C.
Correctness. For any subset of edges E ′ with λ(E ′) ≥ D, there is a corresponding
subset of [W] of size at least D. Since F is a (W,D)-perfect hash family, it follows
that cf (E ′) = [D], for some cf ∈ C. Thus, in particular, if S ⊆ X is a solution
for instance I, then cf (S) = [D], for some cf ∈ C, where cf (S) is the set of colors
assigned by cf to the edges between the root and a taxon of S. It follows that one
of the constructed instances of c-Time-PD is a yes-instance.

Conversely, it is easy to see that any solution S for one of the constructed instances
of c-Time-PD is also a solution for I.
Running Time. The construction of C takes eDDO(logD) ·W logW time, and for each
coloring c ∈ C, the construction of instance Ic of c-Time-PD takes time polynomial
in |I|. Solving instances of c-Time-PD takes O∗(2D ·D) time, and the number of
instances is |C| = eDDO(logD) · logW .

Thus, the total running time is O∗(eDDO(logD) logW · (W + (2D · D))). This
simplifies to O∗((2e)D · 2O(log2(D))), because W = PDT (X) < 2n ·D.

4.4 The Acceptable Loss of Diversity D

In this section, we show that Time-PD is FPT with respect to the acceptable loss
of phylogenetic diversity D. Recall that D is defined as PDT (X) − D. For a set
of taxa A ⊆ X, define Ed(A) := {e ∈ E | off(e) ⊆ A} = E \ ET (X \ A). That
is, Ed(A) is the set of edges that do not have offspring in X \ A. Then, one may
think of Time-PD as the problem of finding a set of taxa S such that there is a
valid T -schedule saving S and λΣ(Ed(X \ S)) is at most D.

In order to show the desired result, we again use the techniques of color coding
and dynamic programming. For an easier understanding of the following definitions
consider Figure 4.2.

We start by defining a colored version of the problem. With E≤D (or E>D) we
denote the set of edges e ∈ E with λ(e) ≤ D (or λ(e) > D). An extinction-D-
colored X-tree is a phylogenetic X-tree T = (V,E, λ, ĉ, c−), where ĉ assigns each
edge e ∈ E a key-color ĉ(e) ∈ [2D] and c− assigns edges e ∈ E≤D a set of col-
ors c−(e) ⊆ [2D] \ {ĉ(e)} of size λ(e)− 1. With c(e) we denote the union of the two
sets c−(e) ∪ {ĉ(e)} for each edge e ∈ E≤D.

Observe that while in Section 4.3 we wanted the set of edges with an offspring
in S to use every color at least once, here we want that the edges in Ed(S) use at

99

e ĉ(e) c−(e)
e1 2 {1, 7}
e2 9 {2, 3}
e3 12 ∈ Eb

e4 10 {9}
e5 6 {4, 11}
e6 3 {7}
e7 8 ∈ Eb

e8 4 ∅
e9 5 {3, 8}

e1 e2 e3

e4 e5 e6 e7 e8 e9

15 30 25 15 25 25

10 13 9 7 9 12ℓ(x)

ex(x)

v0

v1 v2 v3

x1 x2 x3 x4 x5 x6

Figure 4.2: A hypothetical extinction-6-colored X-tree is shown. The anchored taxa
set A := {(x1, v1, e5), (x2, v0, e3), (x6, v3, e8)} with c(E+(A)) = c({e1, e4, e5, e9}) = [11]
and ĉ(Es(A)) = ĉ({e3, e5, e8}) = {4, 6, 12} is color-respectful. The edges in E+(A) are blue
and dashed. The edges in Es(A) have a red arrow. In contrast to A, the anchored taxa
set A′ := {(x1, v0, e3), (x2, v1, e4), (x6, v3, e8)} does not have a valid ordering.

most a certain number of colors and therefore each color at most once.
The key idea behind our approach is as follows. We seek a solution S in which not

only the edges of Ed(X \S) use each color at most once, but also every highest edge
in Ed(X \ S) has a sibling edge with a key-color not in c(Ed(X \ S)). Suppose such
a set S exists, and let x1, . . . , x|X\S| be some ordering of X \ S. Observe now that
for any i ∈ [|X \S|], the set of edges in Ed({x1, . . . , xi}) \Ed({x1, , xi−1}) form a
path in T from some vertex vi to xi. Furthermore, as the incoming edge of vi is not
in Ed({x1, , xi}), there is an outgoing edge ei of vi not in Ed({x1, , xi}). We
may assume ĉ(ei) /∈ Ed({x1, , xi}), either because ei ∈ Ed(X \S) (and Ed(X \S)
uses each color at most once), or because ei /∈ Ed(X \ S) and so ei is a sibling edge
of a higest edge in Ed(X \ S).

Taking the tuple (xi, vi, ei) for each i ∈ [|X \ S|] gives us an anchored taxa set
that gives us all the information we need about Ed(X \ S). Formally speaking, an
anchored taxa set A is a set of tuples (x, v, e), where x ∈ X is a taxon, v is a strict
ancestor of x and e is an outgoing edge of v with x ̸∈ off(e). We plan not to select
taxa individually but to define an anchored set of taxa. If a tuple (x, v, e) is selected,
then we want to let taxon x go extinct and we also want to arrange that the diversity
of the edges on the path from v and x gets lost, but the edge e outgoing of v has an

100

offspring which gets saved, or will be selected to go extinct later. In the rest of the
section, whenever we refer to a tuple (x, v, e), we always assume x ∈ off(v) and e is
an outgoing edge of v with x ̸∈ off(e). We denote with X(A) := {x | (x, v, e) ∈ A}
the taxa of an anchored taxa set. For a phylogenetic X-tree T , a taxon x ∈ X, and
a vertex v ∈ anc(x), we denote Pv,x to be the set of edges on the path from v and x.

For an anchored taxa set A, we define two edge sets E+(A) :=
⋃︁

(x,v,e)∈A Pv,x

and Es(A) := {e | (x, v, e) ∈ A}. Informally, E+(A) is the set of edges that connect
the taxa of the anchored taxa set with the anchors, and the edges in Es(A) are sibling-
edges of the topmost edges of Pv,x for each (x, v, e) ∈ A. These sibling-edges e may
or may not be in Ed(X(A)), depending on whether e is part of Pu,y for some other
tuple (y, u, e′) ∈ A.

A set of edges E ′ has unique colors (or unique key-colors), if the sets c(e1)
and c(e2) (respectively, {ĉ(e1)} and {ĉ(e2)}) are disjoint for e1, e2 ∈ E ′, with e1 ̸= e2.
An anchored taxa set A has a valid ordering (x1, v1, e1), . . . , (x|A|, v|A|, e|A|)
if (xi, vi, ei) ∈ A, ex(xi) ≤ ex(xj) and ĉ(ej) ̸∈ c(E+(Aj)) for each pair i, j ∈ [|A|],
with i ≤ j. With a valid ordering we want to enforce that these tuples are selected in
an order such that when letting taxa x1, . . . , x|A| go extinct then at most λ(E+(A))
diversity is lost. We define Aj := {ti ∈ A | i ≤ j}. An anchored taxa set A is
color-respectful if

CR a) E+(A) has unique colors,
CR b) Es(A) has unique key-colors,
CR c) E+(A) and E>D are disjoint,
CR d) A has a valid ordering, and
CR e) Pv,x and Pu,y are disjoint for any tuples (x, v, e), (y, u, e′) ∈ A.

The existence of a color-respectful anchored taxa set will be used to show that
an instance of Time-PD is a yes-instance. To formally show this, we first define a
colored version of the problem.

extinction D-colored Time Sensitive Maximization of Phylo-
genetic Diversity (ex-D-c-Time-PD)
Input: An extinction-D-colored X-tree T = (V,E, λ, ĉ, c−), integers ℓ(x) and

ex(x) for every taxon x ∈ X, and a set of teams T .
Question: Is there an anchored taxa set A such that A is color-respectful,

|c(E+(A))| ≤ D and there is a valid T -schedule saving X \X(A)?

The following lemma shows how ex-D-c-Time-PD is relevant to Time-PD.

101

Lemma 4.9. Let I ′ = (T ′, ex, ℓ, T,D) with T ′ = (V,E, λ, ĉ, c−), be an instance of
ex-D-c-Time-PD and let I = (T , ex, ℓ, T,D) with T = (V,E, λ) be the instance
of Time-PD induced by I ′ when omitting the coloring. If I ′ is a yes-instance of
ex-D-c-Time-PD, then I is a yes-instance of Time-PD.

Proof. Let A be a solution for I ′. As there exists a T -schedule saving the set of
taxa S := X \X(A), it is sufficient to show that PDT (S) ≥ D.

Since every edge in T either has an offspring in S or is in Ed(X \ S), it follows
that λ(Ed(X \ S)) = PDT (X) − PDT (S). Thus, in order to show PDT (S) ≥ D it
remains to show that λ(Ed(X \ S)) ≤ PDT (X)−D = D.

We prove that Ed(X(Aj)) ⊆ E+(Aj) for each j ∈ [|A|] by an induction on j.
For the base case j = 1, we have that X(A1) = {x1} and Ed({x1}) consists of

the single incoming edge of x. As this edge is in Pv1,x1 , the claim is satisfied.
For the induction step, assume j > 1 and Ed(X(Aj−1)) ⊆ E+(Aj−1). It suffices

to show Ed(X(Aj)) \Ed(X(Aj−1)) ⊆ Pvj ,xj
, as E+(Aj) = E+(Aj−1) ∪ Pvj ,xj

. To see
this, consider the edge ej. Because A has a valid ordering, ĉ(ej) ̸∈ c(E+(Aj)),
which implies that ej is not in E+(Aj). By the inductive hypothesis, we con-
clude Ed(X(Aj−1)) ⊆ E+(Aj−1) ⊆ E+(Aj) and so ej /∈ Ed(X(Aj−1)). Thus, ej has
an offspring z which is not in X(Aj−1). By definition, xj /∈ off(ej). So, we conclude
that z /∈ X(Aj−1)∪{xj} = X(Aj). Furthermore, z ∈ off(e′) for any edge e′ incoming
at an ancestor of vj, and so e′ /∈ Ed(X(Aj)) for any such edge e′. It follows that the
only edges in Ed(X(Aj))\Ed(X(Aj−1)) must be between vj and xj, that is, in Pvj ,xj

.
We conclude that Ed(X(Aj)) ⊆ Ed(X(Aj−1))∪Pvj ,xj

⊆ E+(Aj−1)∪Pvj ,xj
= E+(Aj).

Letting j = |A|, we have Ed(X(A)) ⊆ E+(A). Thereby, we can conclude
that λ(Ed(X(A))) ≤ λ(E+(A)) =

∑︁
e∈E+(A) |c(e)| = |c(E+(A))|, where the last

equality holds because E+(A) has unique colors. We have λ(Ed(X(A))) ≤ D
since |c(E+(A))| ≤ D and so PDT (S) ≥ D, as required.

In the following, we continue to define a few more things. Then, we present
Algorithm (D) for solving ex-D-c-Time-PD. Afterward, we analyze the correctness
and the running time of Algorithm (D). And finally, we show how to reduce instances
of Time-PD to instances of ex-D-c-Time-PD to conclude the desired FPT-result.

Define Hp := ℓ(Zp) − Hp to be the number of person-hours one would need
additionally to be able to save all taxa in Zp (when not regarding the time con-
straints ex1, . . . , exp−1). A set of taxa A ⊆ X is ex-q-compatible for q ∈ [varex]
if ℓ(A ∩ Zp) ≥ Hp for each p ∈ [q − 1]. Note that for there to be a valid T -schedule
saving S ⊆ X, it must be satisfied that ℓ(S∩Zp) ≤ Hp, and so ℓ((X \S)∩Zp) ≥ Hp,

102

for each p ∈ [varex]. Thus, if A is ex-q-compatible then there is a valid T -schedule
saving (X\A)∩Zq−1. Observe that this schedule does not necessarily save (X\A)∩Zq.

In our dynamic programming algorithm, we need to track the existence of color-
respectful anchored taxa sets using particular sets of colors. To this end, we de-
fine the notion of ex-(C1, C2, q)-feasibility. For sets of colors C1, C2 ⊆ [2D] and an
integer q ∈ [varex], an anchored taxa set A is ex-(C1, C2, q)-feasible if

F a) A is color-respectful,
F b) c(E+(A)) is a subset of C1,
F c) ĉ(e) is in C2 ∪ c(E+(A \ {(x, v, e)})) for each (x, v, e) ∈ A,
F d) X(A) is a subset of Zq, and
F e) X(A) is ex-q-compatible.

Intuitively, we want anchored taxa sets A to be ex-(C1, C2, q)-feasible if it is
possible to save X \X(A) and only lose the colors in C1 and have the colors in C2

available for later actions. As an example, observe that the anchored taxa set A in
Figure 4.2 is ex-(C1, C2, q)-feasible for C1 = [11], C2 = {12}, and q = 3 if and only
if A is q-compatible (which we don’t know as the teams are not given). This would
be the case if and only if H1 ≥ 10, H2 ≥ 22, and H3 ≥ 35.

Our algorithm calculates for each combination C1, C2, and q the maximum rescue
length of the taxa of an ex-(C1, C2, q)-feasible anchored taxa set. In order to calculate
these values recursively, we declare which tuples (x, v, e) are suitable for consideration
in the recurrence of the algorithm.

A tuple (x, v, e) is (C1, C2)-good for sets of colors C1, C2 ⊆ [2D] if

G a) Pv,x has unique colors,
G b) c(Pv,x) is a subset of C1,
G c) ĉ(e) is in C2, and
G d) Pv,x and E>D are disjoint.

Let X(q) be the set of tuples (x, v, e) such that x ∈ Zq, Pv,x has unique colors,
Pv,x ⊆ E≤D and ĉ(e) ̸∈ c(Pv,x). Disjoint sets of colors C1, C2 ⊆ [2D] are q-grounding,
if c(Pv,x) ̸⊆ C1 or ĉ(e) ̸∈ C2 for every tuple (x, v, e) ∈ X(q). In Figure 4.2 the set X(1)

would be {(x1, v1, e5), (x1, v0, e3)}—because both paths Pv0,x4 and Pv1,x4 contain the
edge e7 ∈ E>D, and ĉ(e2) = 9 ∈ c(e4) so (x1, v0, e2) is not contained in X(1). There-
fore, the 1-grounding colors are any disjoint sets of colors C1 and C2 with (c(e4) ̸⊆ C1

or ĉ(e5) = 6 ̸∈ C2) and (c({e1, e4}) ̸⊆ C1 or ĉ(e3) = 12 ̸∈ C2). One non-trivial exam-
ple are the sets C1 = {6, 7, . . . , 11} and C2 = [5] ∪ {12}. The empty sets C1 and C2

are q-grounding for each q.

103

Algorithm (D).
Let I be an instance of ex-D-c-Time-PD. In the following, we define a dynamic
programming algorithm with table DP. For all disjoint sets of colors C1, C2 ⊆ [2D]
with |C1| ≤ D, and all q ∈ [varex], we compute a value DP[C1, C2, q]. The entries
of DP are computed in some order such that DP[C ′

1, C
′
2, q

′] is computed
before DP[C ′′

1 , C
′′
2 , q

′′] if C ′
1 ⊊ C ′′

1 . We want DP[C1, C2, q] to store the maximum
rescue length ℓ(X(A)) of an anchored taxa set A that is ex-(C1, C2, q)-feasible. If
there exists no ex-(C1, C2, q)-feasible anchored taxa set, we want DP[C1, C2, q] to
store −∞.

As a base case, given q ∈ [varex] and q-grounding sets of colors C1 and C2.
If Hp ≤ 0 for each p ∈ [q − 1], we store DP[C1, C2, q] = 0. Otherwise, if C1 and C2

are q-grounding but Hp > 0 for any p ∈ [q − 1], we store DP[C1, C2, q] = −∞.
To compute further values, we use the recurrence

DP[C1, C2, q] = max
(x,v,e)

DP[C ′
1, C

′
2, ex

∗(x)] + ℓ(x). (4.4)

Here, C ′
1 := C1 \ c(Pv,x) and C ′

2 := (C2 ∪ c(Pv,x)) \ {ĉ(e)}. The maximum
in Recurrence (4.4) is taken over (C1, C2)-good tuples (x, v, e) satisfying x ∈ Zq

and DP[C ′
1, C

′
2, ex

∗(x)] + ℓ(x) ≥ max{Hex∗(x), Hex∗(x)+1, . . . , Hq−1}. If no such tuple
exists, we set DP[C1, C2, q] = −∞. Recall that ex∗(x) = q for each x ∈ Yq.

We return yes if DP[C1, C2, varex] stores at least Hvarex for some disjoint sets of
colors C1, C2 ⊆ [2D] with |C1| ≤ D. Otherwise, if DP[C1, C2, varex] ≥ Hvarex for all
disjoint sets of colors C1 and C2, we return no.

We continue to analyze the algorithm by showing that DP[C1, C2, q] stores the
largest rescue length ℓ(X(A)) of an ex-(C1, C2, q)-feasible anchored taxa set A. We
start with the base case.

Lemma 4.10. For each q ∈ [varex] and all q-grounding sets of colors C1 and C2,
DP[C1, C2, q] stores the largest rescue length ℓ(X(A)) of an ex-(C1, C2, q)-feasible
anchored taxa set A if such an A exists, and −∞, otherwise.

Proof. Let q ∈ [varex] and let C1 and C2 be q-grounding sets of colors, and sup-
pose for a contradiction that some non-empty anchored taxa set A is ex-(C1, C2, q)-
feasible. Let (x, v, e) be the last tuple in a valid ordering of A. Such an order-
ing exists because A is color-respectful. Observe that ĉ(e) ̸∈ c(E+(A)), and in
particular ĉ(e) ̸∈ c(Pv,x). As A satisfies CR a), CR c) and F d), we also have
that c(Pv,x) is uniquely colored, Pv,x ⊆ E≤D and x ∈ Zq. Thus, (x, v, e) is in X(q).
Because A satisfies F b) we have c(Pv,x) ⊆ C1, and because A satisfies F c) we
have Ĉ2 ∪ c(e) ∈ c(E+(A)), which together with ĉ(e) ̸∈ c(E+(A)) implies ĉ(e) ∈ C2.

104

But then (x, v, e) is a tuple in X(q) with c(Pv,x) ⊆ C1 and ĉ(e) ∈ C2, a contradiction
to the assumption that C1 and C2 are q-grounding. It follows that no non-empty
anchored taxa set is ex-(C1, C2, q)-feasible.

Observe that the empty set is ex-(C1, C2, q)-feasible if and only if the empty set is
ex-q-compatible, as the empty set trivially satisfies all other conditions.
Since ℓ(∅ ∩ Zp) = ℓ(∅) = 0 for each p ∈ [varex], we observe that the empty set
is ex-q-compatible if and only if Hp ≤ 0 for each p ∈ [q − 1]. Exactly in these cases,
entry DP[C1, C2, q] stores at least ℓ(∅) = 0.

In the following, we show an induction over |C1|. Observe that C1 = ∅ and any
set of colors C2 ⊆ [2D] are q-grounding for each q ∈ [varex]. Therefore, Lemma 4.10
is the base case of the induction.

As an induction hypothesis, we assume that for a fixed set of colors C1 ⊆ [2D] and
a fixed q ∈ [varex], for each K1 ⊊ C1, K2 ⊆ [2D]\K1, and p ∈ [q], entry DP[K1, K2, p]
stores the largest rescue length ℓ(X(A)) of an ex-(K1, K2, p)-feasible anchored taxa
set A.

In Lemma 4.11 and Lemma 4.12, we proceed to show that with this hypothesis
we can conclude that DP[C1, C2, p] stores the desired value.

Lemma 4.11. If an anchored taxa set A is ex-(C1, C2, q)-feasible for disjoint sets of
colors C1 and C2 that are not q-grounding, then DP[C1, C2, q] ≥ ℓ(X(A)).

Proof. Let C1 and C2 be disjoint sets of colors that are not q-grounding. Furthermore,
let A be an ex-(C1, C2, q)-feasible anchored taxa set.

We prove the claim by an induction on |A|. First, consider A being empty.
Since C1 and C2 are not q-grounding, there is a tuple (x, v, e) ∈ X(q) such
that Pv,x ⊆ C1 and ĉ(e) ∈ C2. Because (x, v, e) ∈ X(q), the anchored taxa
set A′ := {(x, v, e)} is color-respectful, and by construction, A satisfies F b), F c),
and F d). It only remains to show that {x} is ex-q-compatible to prove that A′

is ex-(C1, C2, q)-feasible. Since A = ∅ is ex-(C1, C2, q)-feasible, ℓ(x) > ℓ(∅) ≥ Hp

for each p ∈ [q − 1]. Thus, A′ is ex-(C1, C2, q)-feasible. This is sufficient to show
that DP[C1, C2, q] ≥ ℓ(x). So, we may assume that A is not empty.

Now, let (x, v, e) be the last tuple in a valid ordering of A. Such an ordering
exists because A is color-respectful. Define an anchored taxa set A′ resulting from
removing (x, v, e) from A.

We first show that A′ is ex-(C ′
1, C

′
2, ex

∗(x))-feasible.
F a) [A is color-respectful]

Because A is color-respectful and x is the taxon of the largest order, we directly
conclude that A′ satisfies all properties of color-respectfulness.

105

F b) [c(E+(A)) ⊆ C1]
Because E+(A′) = E+(A) \ Pv,x and E+(A) has unique colors, we conclude
that c(E+(A′)) = c(E+(A)) \ c(Pv,x) ⊆ C1 \ c(Pv,x) = C ′

1.
F c) [ĉ(e) ∈ C2 ∪ c(E+(A \ {(x, v, e)})) for each (x, v, e) ∈ A]

Fix a tuple (y, u, e′) ∈ A′. We want to show that ĉ(e′) is in

C ′
2 ∪ c(E+(A′ \ {(y, u, e′)}))

= ((C2 ∪ c(Pv,x)) \ {ĉ(e)}) ∪ (c(E+(A \ {(y, u, e′)})) \ c(Pv,x))

= (C2 ∪ c(E+(A \ {(y, u, e′)})) \ {ĉ(e)}

It holds ĉ(e′) ∈ C2 ∪ c(E+(A \ {(y, u, e′)})), because A satisfies F c). Since Es(A)
has unique key-colors, ĉ(e′) ̸= ĉ(e). Therefore, ĉ(e′) ∈ C ′

2 ∪ c(E+(A′ \ {(y, u, e′)})).
F d) [X(A) ⊆ Zq]

X(A′) ⊆ X(A) ⊆ Zex∗(x) by the definition of x.
F e) [X(A) is ex-q-compatible]

Because X(A) is ex-q-compatible, ℓ(X(A′) ∩ Zp) = ℓ(X(A) ∩ Zp) ≥ Hp for
each p < ex∗(x). Consequently, X(A′) is ex-ex∗(x)-compatible.

Next, we show that (x, v, e) is (C1, C2)-good.
G a) [Pv,x has unique colors]

Because E+(A) has unique colors, Pv,x ⊆ E+(A) has unique colors, too.
G b) [c(Pv,x) ⊆ C1]

c(Pv,x) ⊆ c(E+(A)) ⊆ C1 because A satisfies F b).
G c) [ĉ(e) ∈ C2]

Because A satisfies F c) and X(A) has a valid ordering, ĉ(e) ∈ C2 ∪ c(E+(A′))
and ĉ(e) ̸∈ c(E+(A)). Therefore, especially ĉ(e) ̸∈ c(E+(A′)) ⊆ c(E+(A)) and we
conclude that ĉ(e) ∈ C2.

G d) [Pv,x and E>D are disjoint]
Because E+(A) has an empty intersection with E>D, also Pv,x ⊆ E+(A) has empty
intersection with E>D.

Since A′ is ex-(C ′
1, C

′
2, ex

∗(x))-feasible and |A′| < |A|, we have by the inductive
hypothesis that DP[C ′

1, C
′
2, ex

∗(x)] ≥ ℓ(X(A′)). Furthermore DP[C ′
1, C

′
2, ex

∗(x)] +
ℓ(x) ≥ ℓ(X(A′)) + ℓ(x) ≥ ℓ(X(A)). As X(A) is ex-(C1, C2, q)-compatible we
have ℓ(X(A) = ℓ(X(A) ∩ Zp) ≥ Hp for each p with ex∗(x) ≤ p < q, and so
DP[C ′

1, C
′
2, ex

∗(x)] + ℓ(x) ≥ max{Hex∗(x), Hex∗(x)+1, . . . , Hq−1}. This together with
the fact that (x, v, e) is (C1, C2)-good implies that (x, v) satisfies the conditions of Re-
currence (4.4), from which we can conclude that DP[C1, C2, q] ≥ DP[C ′

1, C
′
2, ex

∗(x)]+
ℓ(x) ≥ ℓ(X(A)).

106

Lemma 4.12. If DP[C1, C2, q] = a ≥ 0 for some disjoint sets of colors C1 and C2,
then there is an ex-(C1, C2, q)-feasible anchored taxa set A with ℓ(X(A)) = a.

Proof. Assume that DP[C1, C2, q] = 0. Then, C1 and C2 must be q-grounding, as
otherwise the algorithm would apply Recurrence (4.4), and then DP[C1, C2, q] would
store either −∞ or a value which is at least ℓ(x) > 0 for some x ∈ X. Lemma 4.10
shows the correctness of this case.

Now, assume that DP[C1, C2, q] = a > 0. By Recurrence (4.4), there is a
(C1, C2)-good tuple (x, v, e) such that x ∈ Zq and DP[C1, C2, q] = DP′ +ℓ(x). Here,
we define DP′ := DP[C ′

1, C
′
2, q

′] where (as in Recurrence (4.4)) C ′
1 := C1 \ c(Pv,x),

C ′
2 := (C2 ∪ c(Pv,x)) \ {ĉ(e)}, and q′ := ex∗(x). Further, we know that DP′ +ℓ(x) ≥

max{Hq′ , Hq′+1, . . . , Hq−1}. We conclude by the induction hypothesis that there is
an ex-(C ′

1, C
′
2, q

′)-feasible anchored taxa set A′ such that ℓ(X(A′)) = DP′. Define
A := A′ ∪ {(x, v, e)}. Clearly, a = DP′ +ℓ(x) = ℓ(X(A)). It remains to show that A
is an ex-(C1, C2, q)-feasible set.

F a) [A is color-respectful]
We show that A is color-respectful.

CR a) [E+(A) has unique colors]
As A′ satisfies CR a) and F b), E+(A′) has unique colors and c(E+(A′)) ⊆ C ′

1 =
C1 \ c(Pv,x). Consequently, the colors of E+(A′) and Pv,x are disjoint. We conclude
with the (C1, C2)-goodness of (x, v, e), that Pv,x has unique colors and so also E+(A).

CR b) [Es(A) has unique key-colors]
As A′ satisfies CR b), Es(A′) has unique key-colors. Observe Es(A) = Es(A′)∪{e}.
Because A′ satisfies F c), ĉ(Es(A′)) ⊆ C ′

2 ∪ c(E+(A′)) ⊆ C ′
1 ∪ C ′

2. Further, because
ĉ(e) ∈ C2 and C1∩C2 = ∅ we have ĉ(e) /∈ C1, which implies ĉ(e) ̸∈ C1∪(C2\{ĉ(e)}) =
C ′

1 ∪ C ′
2. Therefore, Es(A) has unique key-colors.

CR c) [E+(A) and E>D are disjoint]
E+(A′) and E>D are disjoint because A′ is color-respectful. Further, because (x, v, e)
is (C1, C2)-good, Pv,x and E>D are disjoint and so E+(A′) ⊆ E≤D.

CR d) [A has a valid ordering]
A′ has a valid ordering (y1, u1, e1), . . . , (y|A′|, u|A′|, e|A′|). As X(A′) ⊆ Zex∗(x) we
conclude ex(y) ≤ ex(x) for each y ∈ A′. Further, ĉ(e) ∈ C2 and c(Pv,x) ⊆ C1

because (x, v, e) is (C1, C2)-good. Since A′ satisfies F b), c(E+(A′)) ⊆ C ′
1 ⊆ C1.

Because C1 and C2 are disjoint, we conclude that ĉ(e) ̸∈ c(E+(A)). We conclude that
(y1, u1, e1), . . . , (y|A′|, u|A′|, e|A′|), (x, v, e) is a valid ordering of A.

CR e) [Pv,x and Pu,y are disjoint for any (x, v, e), (y, u, e′) ∈ A]
We know that A′ satisfies CR e). Further, as already seen, c(E+(A′)) and c(Pv,x)

107

are disjoint and therefore also Pv,x and Pu,y are disjoint for each (y, u, e′) ∈ A′.
It follows that A is color-respectful.

F b) [c(E+(A)) ⊆ C1]
c(E+(A)) = c(E+(A′)) ∪ c(Pv,x) ⊆ C ′

1 ∪ c(Pv,x) = C1.
F c) [ĉ(e) ∈ C2 ∪ c(E+(A \ {(x, v, e)})) for each (x, v, e) ∈ A]

Observe ĉ(e) ∈ C2 because (x, v, e) is (C1, C2)-good. Each (y, u, e′) ∈ A′ satis-
fies ĉ(e′) ⊆ C ′

2 ∪ c(E+(A′ \ {(y, u, e′)})), as A′ satisfies F c). Observe x ̸= y
and C ′

2 ⊆ C2 ∪ c(Pv,x) and therefore ĉ(e′) ⊆ C2 ∪ c(E+(A \ {(y, u, e′)})).
F d) [X(A) ⊆ Zq]

X(A) ⊆ Zq because X(A′) ⊆ Zq and x ∈ Zq.
F e) [X(A) is ex-q-compatible]

Because A′ is ex-q′-compatible, we conclude that ℓ(X(A)∩Zp) = ℓ(X(A′)∩Zp) ≥ Hp

for each p ∈ [q′−1]. Then, with DP′+ℓ(x) ≥ max{Hq′ , Hq′+1, . . . , Hq−1} we conclude
that ℓ(X(A)∩Zp) = ℓ(X(A)) ≥ Hp for each p ∈ {q′, . . . , q− 1}. Therefore, X(A) is
ex-q-compatible and ex-(C1, C2, q)-feasible.

Lemma 4.13. An instance I of ex-D-c-Time-PD is a yes-instance if and only if
disjoint sets of colors C1, C2 ⊆ [2D] with |C1| ≤ D and an ex-(C1, C2, varex)-feasible
anchored taxa set A with ℓ(X(A)) ≥ Hvarex exist.

Proof. Suppose first that I is a yes-instance of ex-D-c-Time-PD. That is, there
exists a color-respectful anchored taxa set A with |c(E+(A))| ≤ D such that there
is a valid T -schedule saving S := X \X(A). Let C1 := c(E+(A)) and let C2 be the
key-colors of the edges Es(A) that are not in C1. We show that A is ex-(C1, C2, varex)-
feasible. First, A satisfies F a), F b), and F d) by definition.

F c) [ĉ(e) ∈ C2 ∪ c(E+(A \ {(x, v, e)})) for each (x, v, e) ∈ A]
By the definition, ĉ(E(A)) ⊆ C2 ∪ C1 = C2 ∪ c(E+(A)). Fix a tuple (x, v, e) ∈ A.
Because A has a valid ordering, we conclude that ĉ(e) ̸∈ c(Pv,x). It follows that
if ĉ(e) is in c(E+(A)), then explicitly ĉ(e) ∈ c(E+(A \ {(x, v, e)})). Therefore, A
satisfies F c).

F e) [X(A) is ex-q-compatible]
Fix some q ∈ [varex]. Since S has a valid schedule, we conclude ℓ(S ∩ Zq) ≤ Hq for
each q ∈ [varex]. Consequently, ℓ(X(A) ∩ Zq) = ℓ(Zq) − ℓ(S ∩ Zq) ≥ Hq. Likewise
with ℓ(S) ≤ Hvarex , we conclude that ℓ(X(A)) ≥ Hvarex .

For the converse, suppose that A is an ex-(C1, C2, varex)-feasible anchored taxa
set with ℓ(X(A)) ≥ Hvarex for disjoint sets of colors C1, C2 ⊆ [2D] with |C1| ≤ D.
Observe that the rescue time of all taxa in S = X \ X(A) that are in Zq

108

e3

e1 e2 e4

15 30 25 15 30 25 30ex(x)

v3

v1 = v2 v4

x2 x1 x3 x4

Figure 4.3: Example of the construction of an anchored taxa set A (Theorem 4.2). Here
given X \ S = {x1, x2, x3, x4}, the constructed A is {(xi, vi, ei) | i ∈ [4]}. Blue dashed
edges are in Ed(X \ S) = E+(A) and edges with red arrow are in Es(A). A1 could have
been {(x1, v1, e2)} provoking that (x1, v1, e2) must have been replaced in step i = 2.

is ℓ(S ∩ Zq) = ℓ((X \ X(A)) ∩ Zq) = ℓ(Zq) − ℓ(X(A) ∩ Zq). Because A is
ex-varex-compatible, ℓ(X(A) ∩ Zq) ≥ Hq and so ℓ(S ∩ Zq) ≤ ℓ(Zq) − Hq = Hq.
Then, by Lemma 4.2, there is a valid T -schedule saving S. By definition, A is
color-respectful and |c(E+(A))| ≤ |C1| ≤ D. Therefore, I is a yes-instance of
ex-D-c-Time-PD

Lemma 4.14. Algorithm (D) computes solutions for instances of ex-D-c-Time-PD
in time O∗(9D ·D).

Proof. Since DP[C1, C2, q] is computed for C1 and C2 disjoint subsets of [2D], the
table DP contains 32D · varex entries.

For given q ∈ [varex] and color sets C1 and C2, we can compute whether C1 and C2

are q-grounding by testing the conditions for each tuple (x, v, e). Therefore, the test
can be done in O(D · n3) time. Here, the D-factor in the running time comes from
testing whether Pv,x ⊆ C1.

Analogously, for a given q ∈ [varex] and sets of colors C1 and C2, we can compute
whether a tuple (x, v, e) satisfies the conditions of Recurrence (4.4) in O(D · n)
time in our RAM model. We, however, want to note that we add two numbers of
size max{H1, H2, . . . , Hvarex}.

Theorem 4.2. Time-PD can be solved in O∗(26.056·D+o(D)) time.

Just like in the previous section, the key idea is that we construct a family of
colorings C on the edges of T , where each edge e ∈ E is assigned a key-color and
additionally for each e ∈ E≤D a subset c−(e) of [2D] of size λ(e) − 1. Using these,
we generate |C| instances of ex-D-c-Time-PD, which with Algorithm (D) we solve

109

in O∗(9D ·D) time. The colorings are constructed in such a manner that I is a yes-
instance if and only if at least one of the constructed ex-D-c-Time-PD instances is
a yes-instance. Central for this is the concept of a perfect hash family as defined in
Definition 2.14.

Proof of Theorem 4.2. Reduction. Let an instance I = (T , ex, ℓ, T,D) of Time-PD
be given. Let |E≤D| = m1 and |E>D| = m − m1. Order the edges e1, . . . , em1

of E≤D and the edges em1+1, . . . , em of E>D, arbitrarily. We define integers W0 := m

and Wj := m+
∑︁j

i=1(λ(ei)− 1) for each j ∈ [m1].
Let F be a (Wm, 2D)-perfect hash family. Now, we define the family C of colorings

as follows. For every f ∈ F , let ĉf and c−f be colorings such that ĉf (ej) = f(j) for
each ej ∈ E(T); and c−f (ej) := {f(Wj−1 + 1), . . . , f(Wj)} for each ej ∈ E≤D.

For each cf ∈ C, let If = (T , ex, ℓ, T,D, ĉf , c−f) be the corresponding instance
of ex-D-c-Time-PD. Now, solve each instance If using Algorithm (D) and return
yes if If is a yes-instance for some cf ∈ C. Otherwise, return no.
Correctness. If one of the constructed instances of ex-D-c-Time-PD is a yes-
instance, then I is a yes-instance of Time-PD, by Lemma 4.9.

For the converse, if S ⊆ X is a solution for I, then λ(E ′) ≥ D where E ′ is the set
of edges which have at least one offspring in S. Therefore, λ(E\E ′) ≤ λ(E)−D = D.
Define E1 := E \ E ′ = Ed(X \ S) and let E ′

2 be the set of edges e ∈ E ′ which have
a sibling-edge in E1. If e and e′ are sibling-edges and both are in E ′

2, then remove e′
from E ′

2. Continuously repeat the previous step to receive E2 in which any two
edges e, e′ ∈ E2 are not sibling-edges. Observe |E2| ≤ |E1| ≤ λ(E1) ≤ D.

Let Z ⊆ [Wm] be the set of colors of E1 and the key-colors of E2. More precisely,
Z := {j ∈ [m] | ej ∈ E1∪E2}∪{Wj−1+1, . . . ,Wj | ej ∈ E1}. Since F is a (Wm, 2D)-
perfect hash family and |Z| = λ(E1)+ |E2| ≤ 2D, there exists a function f ∈ F such
that f(z) ̸= f(z′) for distinct z, z′ ∈ Z. It follows that E1 has unique colors, E2 has
unique key-colors, and c(E1) ∩ ĉ(E2) = ∅ in the constructed instance If .

Let C1 = c(E1) and C2 = ĉ(E2). We claim that instance If has a color-respectful
anchored taxa set A with E+(A) = E1, Es(A) ⊆ E1 ∪ E2, and X(A) = X \ S.
Since |c(E1)| = |C1| ≤ D and there is a valid T -schedule saving S, this implies
that If is a yes-instance of ex-D-c-Time-PD.

We define A := {(xi, vi, ei) | 1 ≤ i ≤ |X \S|}, where xi, vi, and ei are constructed
iteratively as follows. Let x1, . . . , x|X\S| be an ordering of the set of taxa X \ S such
that ex(xi) ≤ ex(xj) if i ≤ j. Define E(i)

d := Ed({x1, . . . , xi}) for each 1 ≤ i ≤ |X \S|
and let E(0)

d be empty. For each i ∈ [|X \ S|], let e′ := viwi be the highest edge
in E(i)

d \E(i−1)
d . This completes the construction of xi and vi. Construct ei as follows.

110

If vj ̸= vi for each j > i, then let ei be an arbitrary outgoing edge of vi not in E
(i)
d .

Such an edge exists as viwi is the topmost edge of E(i)
d \ E(i−1)

d and therefore not
all edges outgoing of vi are in E

(i)
d . Otherwise, let ji be the minimum integer such

that ji > i and vji = vi. Then, let ei := viwji . Note that ei is not in E
(i)
d since ei is

the topmost edge of E(ji)
d \ E(ji−1)

d . See Figure 4.3 for an example.
It remains to show that A is color-respectful. A satisfies CR a) as by con-

struction E+(A) =
⋃︁|X\S|

i=1 Pvi,xi
= Ed(X \ S) = E1. Similarly, A satisfies CR b)

because Es(A) ⊆ E1 ∪E2. A satisfies CR c) by the fact that λ(E1) ≤ D. A satisfies
CR d), as (x1, v1, e1), . . . , (x|A|, v|A|, e|A|) is a valid ordering of A.

To see that A satisfies CR e), consider any (xi, vi, ei), (xj, vj, ej) for i < j. As
vertex vj is an ancestor of xj, every edge in Pvj ,xj

has an offspring not in {x1, . . . , xi}
and therefore Pvj ,xj

is disjoint from Ed(x1, . . . , xi), which contains all edges of Pvi,xi
.

It follows that Pvi,xi
and Pvj ,xj

are disjoint.

Running Time. The construction of C takes e2D(2D)O(log (2D)) · Wm logWm time,
and for each c ∈ C the construction of each instance of ex-D-c-Time-PD takes
time polynomial in |I|. By Lemma 4.14, solving an instance of ex-D-c-Time-PD
takes O∗(9D · 2D) time, and |C| = e2D(2D)O(log (2D)) · logWm is the number of con-
structed instances of ex-D-c-Time-PD.

Thus, O∗(e2D(2D)O(log (2D)) logWm · (Wm + (9D · 2D))) is the total running time.
Because Wm = λ(E≤D)+|E>D| ≤ |E|·D ≤ 2n·D, the running time further simplifies
to O∗((3e)2D · 2O(log2(D))) = O∗(26.056·D+o(D)).

4.5 Further Parameterized Complexity Results

4.5.1 Parameterization by the Available Person-hours

In this subsection, we consider parameterization by the available person-hoursHmaxex .
Observe we may assume that |T |,maxex ≤ Hmaxex ≤ |T | ·maxex.

Proposition 4.15. Time-PD and s-Time-PD are FPT when parameterized by the
available person-hours Hmaxex. More precisely,

(a) Time-PD can be solved in O((|T |+ 1)2·maxex · n) time,

(b) Time-PD can be solved in O((Hmaxex)
2 varex · n) time, and

(c) s-Time-PD can be solved in O(3|T |·maxex · |T | · n) time.

111

Proof of Proposition 4.15a. Table definition. Let I be an instance of Time-PD and
let a = (a1, . . . , amaxex) be a maxex-dimensional vector with ai ∈ [|T |]0.

We define a dynamic programming algorithm with a table DP. In entry DP[v, a, b],
for vertex v and integer b ∈ {0, 1}, we store 0 if b = 0; if b = 1, then we store the max-
imum value of PDTv(S) for a non-empty subset S ⊆ off(v) that can be saved when
having aj available teams in timeslot j ∈ [maxex]. That is, if for every j ∈ [varex]
we have

∑︁
x∈S∩Zj

ℓ(x) ≤
∑︁exj

i=1 ai. If there is no such non-empty S, we store −∞.
We define an auxiliary table DP′ in which in entry DP′[v, i, a, b] we only consider
non-empty sets S ⊆ off(u1) ∪ · · · ∪ off(ui) where u1, . . . , uz are the children of v.

Algorithm. As a base case, for each taxon x we store DP[x, a, b] = 0 if
∑︁ex(x)

i=1 ai ≥ ℓ(x)
or if b = 0. Otherwise, we store DP[x, a, 1] = −∞.

Let v be an internal vertex with children u1, . . . , uz.
We define DP′[v, a, b, 1] := DP[u1, a, b]+λ(vu1) · b and we compute further values

with the recurrence

DP′[v, i+ 1, a, b] = max
a′,b1,b2

DP′[v, i, a′, b1] + DP[ui+1, a− a′, b2] + λ(vui+1) · b2. (4.5)

Here, we select a′, b1, and b2 such that a′j ∈ [aj]0 for each j ∈ [maxex] and b1, b2 ∈ [b]0.
We finally set DP[v, a, b] := DP′[v, z, a, b].

We return yes if DP[ρ, a∗, 1] ≥ D where ρ is the root of the phylogenetic tree T
and a∗i is the number of teams tj = (sj, ej) with sj < i ≤ ej. Otherwise, return no.
Correctness. In vector a∗ the number of available teams per timeslot is stored, such
that I is a yes-instance if and only if DP[ρ, a∗, 1] ≥ D. It remains to show that DP
and DP′ stores the intended value.

If x is a leaf then the subtree Tx rooted at x does not contain edges and
so PDTx({x}) = PDTx(∅) = 0. As S = {x} is the only non-empty set of taxa
with S ⊆ off(x), in the case that b = 1, we need to ensure that in a, enough person-
hours are declared for {x}, which is

∑︁ex(x)
i=1 ai ≥ ℓ(x). Thus, the base case is correct.

Let v be a vertex with children u1, . . . , uz. To see that DP′[v, i, a, b], for i ∈ [q],
stores the correct value, observe that the diversity of edge vui can be added if and
only if at least one taxon in off(ui) survives, which is happening if and only if b2 = 1
(or b = 1 in the case of i = 1). Further, the available person-hours at v can naturally
be divided between the children v. Therefore, DP′ stores the correct value. The
correctness of DP[v, a, b] directly follows from the correctness of DP′[v, z, a, b].
Running time. The tables contain O(n · (|T |+1)maxex) entries. For a leaf x, the value
of DP[x, a, 1] can be computed in constant time, in our RAM model. For an internal
vertex v with z children, we need to copy the value of DP′[v, z, a, b] in constant time.

112

In Recurrence (4.5), there are O((|T | + 1)maxex) options to choose a′ and at
most 4 options to choose b1 and b2, and so the values of the entries can be com-
puted in O((|T |+ 1)maxex · n) time.

Finally, we need to iterate over the options for a∗. Altogether, we can compute
a solution for an instance of Time-PD in O((|T |+ 1)2·maxex · n) time.

We note that the table entries store values of O(D) and therefore the running
time is also feasible in more restricted RAM models.

Proof of Proposition 4.15b. Table definition. Let a = (a1, . . . , avarex) be a varex-
dimensional vector with values ai ∈ [Hi]0.

We define a dynamic programming algorithm with a table DP. In entry DP[v, a, b],
for a vertex v and an integer b ∈ {0, 1}, we store 0 if b = 0; if b = 1, then we store the
maximum value of PDTv(S) for a subset S of offspring of v such that

∑︁
x∈S∩Zj

≤ aj
for all j ∈ [varex]. We define an auxiliary table DP′ in which in entry DP[v, i, a, b]
we only consider non-empty sets S ⊆ off(u1) ∪ · · · ∪ off(ui) where u1, . . . , uz are the
children of v.
Algorithm. As a base case, for each leaf x we store DP[x, a, b] = 0 if b = 0 or ai ≥ ℓ(x),
for each i ≥ ex(x). Otherwise, we store DP[x, a, 1] = −∞.

Let v be an internal vertex with children u1, . . . , uz.
We define DP′[v, 1, a, b] := DP[u1, a, b]+λ(vu1) · b and we compute further values

with the recurrence

DP′[v, i+ 1, a, b] = max
a′,b1,b2

DP′[v, i, a′, b1] + DP[ui+1, a− a′, b2] + λ(vui+1) · b2. (4.6)

Here, we select a′, b1, and b2 such that a′j ∈ [aj]0 for each j ∈ [maxex] and b1, b2 ∈ [b]0.
We finally set DP[v, a, b] := DP′[v, z, a, b].

We return yes if DP[ρ, a∗, 1] ≥ D where ρ is the root of the given phylogenetic
tree T and a∗i = Hi. Otherwise, we return no.
Correctness. In the base case, it is enough to check whether ai ≥ ℓ(x) for i ≥ ex(x).
A visualization is given in Figure 4.4.

This algorithm is similar to the algorithm behind Proposition 4.15a. Instead of
remembering the available teams each timeslot, in a, we store the available person-
hours per unique remaining time. Therefore, the correctness proof is analogous to
the correctness proof of Proposition 4.15a.
Running time. The tables contain O(n · (Hmaxex)

varex) entries. Each entry in DP
can be computed in constant time. In Recurrence (4.6), there are O((Hmaxex)

varex)
options to choose a′ and at most 4 to choose b1 and b2, and so the value of each entry
can be computed in O((Hmaxex)

varex ·n) time. Altogether, we can compute a solution
for Time-PD in O((Hmaxex)

2 varex · n) time.

113

x1 x2 x3 x4 x5 x6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t1

t2

t3

ex1 ex2 ex3

ti t1 t2 t3
si 2 0 0
ei 15 15 11

xi x1 x2 x3 x4 x5 x6
ℓ(xi) 8 4 7 8 6 6
ex(xi) 4 7 7 15 15 15

i = 1 2 3
exi 4 7 15
Hi 10 19 49

Figure 4.4: This is a hypothetical schedule of taxa x1, . . . , x6. This schedule is only
possible, as x2 is already started before ex1. Thus, it is not sufficient to assign x2, x3 ∈ Y2
the person-hours between ex1 and ex2, which are H2 −H1 = 9.

Proof of Proposition 4.15c. Table definition. Let A = (A1, . . . , Amaxex) be a maxex-
tuple in which Ai are subsets of T .

We define a dynamic programming algorithm with a table DP. In entry DP[v,A, b],
for a vertex v and an integer b ∈ {0, 1}, we store 0 if b = 0; if b = 1, then we store the
maximum value of PDTv(S) for a subset of taxa S ⊆ off(v) that can be saved using
only teams from Aj at each timeslot j ∈ [maxex]. We define an auxiliary table DP′, in
which, in entry DP′[v, i, a, b] we only consider non-empty sets S ⊆ off(u1)∪· · ·∪off(ui)
where u1, . . . , uz are the children of v.
Algorithm. As a base case, for each leaf x we store DP[x,A, b] = 0 if b = 0 or if
there is a team tj ∈ T and an integer i ∈ [maxex −ℓ(x)]0 such that tj ∈ Ai+i′ for
each i′ ∈ [ℓ(x)]. Otherwise, we store DP[x,A, 1] = −∞.

Let v be an internal vertex with children u1, . . . , uz. We compute the entry with
the equation DP′[v, 1,A, b] := DP[u1,A, b]+λ(vu1) ·b and we compute further values
with the recurrence

DP′[v, i+1,A, b] = max
A′,b1,b2

DP′[v, i,A′, b1]+DP[ui+1,A−A′, b2]+λ(vui+1) ·b2. (4.7)

Here, we select A′, b1, and b2 such that A′
j ⊆ Aj for each j ∈ [maxex] and b1, b2 ∈ [b]0.

We finally set DP[v,A, b] := DP′[v, z,A, b].
We return yes if DP[ρ,A∗, 1] ≥ D where ρ is the root of the given phylogenetic

tree T and A∗
i for i ∈ [maxex] contains team tj = (sj, ej) ∈ T if and only if sj < i ≤ ej.

Otherwise, we return no.

114

Correctness. If DP stores the intended value, I is a yes-instance if and only
if DP[ρ,A∗, 1] ≥ D, where ρ is the root of the phylogenetic tree T . It remains
to prove that DP stores the intended value.

For a leaf x, if DP[x,A, b] = 0 then either b = 0 or there are ℓ(x) consecutive Ais
in which a team tj occurs. Thus, x can be saved and PDTx({x}) = 0. Likewise, we
show it the other way round and the base case is correct.

The correctness of the recurrence can be shown analogously to the correctness of
Proposition 4.15a.
Running time. Observe that for each i ∈ [maxex] there are 2|T | options to select Ai.
Thus, there are (2|T |)maxex = 2|T |·maxex options for A. Therefore, the tables con-
tain O(n · 2|T |·maxex) entries. For a leaf x, we need to iterate over the teams and the
timeslots to check whether there is a team contained in ℓ(x) consecutive Ais. Thus,
we can compute all entries of DP in O(2|T |·maxex · |T |1+maxex · n) time.

Observe that in Recurrence (4.7), A′
j is a subset of Aj, so there are O(3|T |·maxex)

viable options for A and A′. Thus, we conclude that all entries of DP′ can be
computed in O(3|T |·maxex · n).

Consequently, because |T |1+maxex ≤ 1.5|T |·maxex · |T | we can compute a solution for
an instance of s-Time-PD in O(3|T |·maxex · |T | · n) time.

4.5.2 Few Rescue Lengths and Remaining Times

The scheduling problem 1||
∑︁
wj(1−Uj) is FPT with respect to varℓ +varex [HKPS21].

In this subsection, we describe a dynamic programming algorithm, similar to the
approach in Theorem 3.1, to prove that Time-PD is at least XP when parameterized
by varℓ +varex. Here, varℓ and varex are the number of unique needed rescue lengths
and unique remaining times, respectively.

Let I be an instance of Time-PD, let ℓ(X) = {ℓ1, . . . , ℓvarℓ} for each ℓi < ℓi+1

with i ∈ [varℓ −1] be the unique rescue lengths, and let ex(X) = {ex1, . . . , exvarex}
with exi < exi+1 for each i ∈ [varex −1] be the unique remaining times.

Proposition 4.16. Time-PD can be solved in O(n2 varℓ · varex · (n+varℓ · var2ex)) time.

Proof. Table definition. By A we denote an integer-matrix of size varℓ × varex. Fur-
ther, we denote Ai,j to be the entry in row i ∈ [varℓ] and column j ∈ [varex] of A.
With A(i,j)+z we denote the matrix resulting from A in which in row i and column j,
the value z is added.

We define a dynamic programming algorithm with table DP. In entry DP[v,A, b],
we want to store 0 if b = 0. If b = 1, store in DP[v,A, b] the maximum diversity
that can be achieved in the subtree rooted at v in which at most Ai,j taxa x are

115

chosen with ℓ(x) = ℓi and ex(x) = exj. We define an auxiliary table DP′ in which in
entry DP[v,A, b, i] we only consider the first i children of v.
Algorithm. For each leaf x with ℓ(x) = ℓi and ex(x) = exj, we store DP[x,A, b] = 0
if b = 0 or Ai,j > 0. Otherwise, we store DP[x,A, b] = −∞.

Let v be an internal vertex with children u1, . . . , uz.
We define DP′[v, 1,A, b] := DP[u1,A, b]+λ(vu1)·b and we compute further values

with the recurrence

DP′[v, i+ 1,A, b] = max
B,b1,b2

DP′[v, i,B, b1] + DP[ui+1,A−B, b2] + λ(vui+1) · b2. (4.8)

Here, we select B such that Bi,j ≤ Ai,j for each i ≤ [varℓ], j ≤ [varex] and b1, and b2
are selected to be in [b]0. We finally set DP[v,A, b] := DP′[v, z,A, b].

We return yes if DP[ρ,A] ≥ D for the root ρ of T and a matrix A such
that (ℓ1, . . . , ℓvarℓ) ·A · 1i ≤ Hi for each i ∈ [varex]. Here, 1i is a varex-dimensional
vector in which the first i positions are 1 and the remaining are 0 for each i ∈ [vari].
Correctness. By the definition of DP, we see that an instance is a yes-instance of
Time-PD if and only if DP[ρ,A] ≥ D for the root ρ of T and a matrix A such
that (ℓ1, . . . , ℓvarℓ) ·A · 1i ≤ Hi for each i ∈ [varex]. It only remains to show that DP
stores the correct value.

Observe that a leaf x can be saved if and only if we are allowed to save a taxon
with ℓ(x) = ℓi and ex(x) = exj. Thus DP[x,A, b] should store 0 if b = 0 or if Ai,j ≥ 1.
The other direction follows as well. The correctness of the recurrence can be shown
analogously to the correctness of Proposition 4.15a.
Running time. The matrix A contains varℓ · varex entries with integers in [n]0. We
can assume that if Ai,j = n for some i ≤ [varℓ], j ≤ [varex], then Ap,q = 0 for
each p ̸= i and q ̸= j. Such that there are nvarex · varex + n options for a matrix A.
Therefore, the tables DP and DP′ contain O(n · nvarex · varex) entries.

Each entry in DP can be computed in linear time. To compute entries of DP′, in
Recurrence (4.8) we iterate over possible matrices B and booleans b1, b2. Therefore,
we can compute each entry in DP′ in O(n2 varex · varex +1) time.

For the initialization, we need to iterate over possible matrices A and compute
whether (ℓ1, . . . , ℓvarℓ) ·A · 1i ≤ Hi in O(nvarex · varex · varℓ · var2ex) time. That proves
the overall running time.

4.5.3 Pseudo-polynomial Running Time on Stars

In this subsection, we show that Time-PD can be solved in pseudo-polynomial time
if the input tree is a star. In the light of Proposition 4.5, such a result is unlikely to
hold for s-Time-PD.

116

Proposition 4.17. If the given input tree is a star, Time-PD can be solved

(a) in O((maxex)
2 · n) time,

(b) in O(D2 · n) time,

(c) in O(D
2 · n) time, or

(d) in O((maxλ)
2 · n3) time, where maxλ is the maximum edge weight.

Proof. Let I be an instance of Time-PD in which the given phylogenetic tree is a
star. With the help of Knapsack, we solve the problem separately on the different
classes Yi and use a dynamic programming algorithm to combine the solutions. In
Knapsack, we are given a set of items N , each with a weight λi and a profit pi, a
capacity C, and a desired profit P . The question is whether we can select a set of
the items S ∈ N such that the sum of profits pi in S is at least P while the sum of
weights is not exceeding C.

A solution for an instance of Knapsack can be found in O(C · |N |) time [Wei66,
GRR19] with a dynamic programming algorithm, indexing solutions by the
capacity C ′ ∈ [C] and the number of items i ∈ [|N |], and storing the maximum profit
for a subset of the first i items that has total weight of at most C ′. We note that such
an algorithm also computes the maximum profit for every capacity C ′ ∈ [C], and so
we may assume that in O(C · |N |) time it is possible to construct a table DPa such
that DPa[i, C

′] stores the maximum P such that (Yi, λ
′
j, pj, C, P) is a yes-instance

of Knapsack.
Along similar lines, there exists a dynamic programming algorithm with a run-

ning time of O(P · |N |2) [Wei66, GRR19], where entries are indexed by P ′ ∈ [P]
and i ∈ [|N |], and we store the minimum capacity C ′ for which there is a subset of
the first i items with a total profit of at least P ′. Adapting this algorithm, we receive
a running time of O(P · |N |2), where P =

∑︁
ai∈N pi − P and C =

∑︁
ai∈N λi − C. In

such an algorithm, we index solutions by P ′ ≤ P and i ≤ N , and store the maximum
total weight of a subset of the first i items whose total profit is at most P ′. If such
a set exists with a weight of at least C for P ′

= P , then the complement set is a
solution for the Knapsack instance.
Algorithms. We describe the algorithm with a running time of O((maxex)

2 · n) and
omit the similar cases for the other variants of the algorithm.

Recall that Yi is the set of taxa with ex(x) = i. In the following, for each set Yi
in I, we consider an instance of Knapsack with item set Yi in which xj ∈ Yi
with incoming edge ej has a weight of λ′j := ℓ(xj) and a profit of pj := λ(ej). We

117

define a table DP, in which for any i ∈ [varr] and C ∈ [exi], entry DP[i, C] stores the
maximum desired profit P such that (Yi, λ′j, pj, C, P) is a yes-instance of Knapsack.

We define a table DP′ in which we combine the sub-solutions on Zi, next. As a
base case, we store DP′[1, C] := DP[1, C] for each C ∈ [ex1], P ∈ [D], and P ∈ [D].
To compute further values, we can use the recurrence

DP′[i+ 1, C] = max
C′∈[C]0

DP′[i, C ′] + DP[i+ 1, C − C ′] (4.9)

Finally, we return yes if DP′[varex,maxex] ≥ D.
Correctness. For convenience, we will write λ(S) to denote

∑︁
x∈S λ(ρx) for a set S

of taxa. Observe that λ(S) = PDT (S), as T is a star. The correctness of the values
in DP follows from the correctness of the Knapsack-algorithms. Assume that for
some i ∈ [varex] the correct value is stored in DP′[i, C] for each C ∈ [D].

Let DP′[i + 1, C] store a ≥ 0. Then, by the construction there is an integer C ′

such that a = a1 + a2 = DP′[i, C ′] + DP[i + 1, C − C ′]. Consequently, there are
sets of taxa S1 ⊆ Zi and S2 ⊆ Yi+1 such that ℓ(S1) + ℓ(S2) = C ′ + (C − C ′) = C
and λ(S1) + λ(S2) = a1 + a2 = a. Therefore, S := S1 ∪ S2 is a set with ℓ(S) = C
and DP′[i+ 1, C] = λ(S).

Conversely, let S ⊆ Zi+1 be a set of taxa with ℓ(S) = C. Define S1 := S ∩ Zi

and S2 := S ∩ Yi+1 and let C ′ be ℓ(S1). We conclude that

λ(S) = λ(S1) + λ(S2) ≥ DP′[i, C ′] + DP[i+ 1, C − C ′].

Running time. Note that the algorithm solving the Knapsack-instance is also a dy-
namic programming algorithm, such that all the values of the table DP are computed
in O(maxex ·n) time.

The table DP′ has varex ·maxex entries. To compute a value with the recurrence,
we need to check the O(maxex) options to select C and add two numbers of size at
most D, and so we can compute all values of DP′ in O((maxex)

2 · varex) time.
For the other running times: We observe that Knapsack can be computed

in O(D2 · n), and in O(D
2 · n) time. The rest follows analogously.

We can assume that D ≤ n · maxλ, as we are dealing with a trivial no-instance
otherwise. Therefore, in O((n ·maxλ)

2 · n) = O((maxλ)
2 · n3) time we can solve this

special case of Time-PD.

4.6 Discussion
With Time-PD and s-Time-PD, we introduced two NP-hard generalizations of
Max-PD in which taxa may have distinct extinction times. Most relevantly, we

118

have proven that both problems are FPT when parameterized by the target diver-
sity D and that Time-PD is also FPT when parameterized by the acceptable loss of
phylogenetic diversity D. We have further proven that both problems are FPT when
parameterized by the available person-hours.

Time-PD is NP-hard, but it remains an open question whether Time-PD is solv-
able in pseudo-polynomial time. Indeed, we do not know if Time-PD or s-Time-PD
can be solved in polynomial time even when the maximum rescue length needed to
save a taxon is 2. We note that the scheduling problem 1||

∑︁
wj(1−Uj) is W[1]-hard

when parameterized by the unique number of processing times [HH24]; this implies
that even on stars s-Time-PD is W[1]-hard when parameterized by the unique number
of rescue lengths.

We further ask whether the O(2n) running time for Time-PD (Proposition 4.6)
can be improved to O(2o(n)), or whether this bound can be shown to be tight under
SETH or ETH. It also remains an open question whether Time-PD or s-Time-PD are
FPT with respect to the largest extinction time maxex.

We have not regarded kernelization algorithms. An interesting open question
therefore is whether Time-PD or Time-PD admit a kernelization of polynomial size
with respect to D or D.

119

120

Chapter 5

Phylogenetic Diversity with
Ecological Dependencies

5.1 Introduction

As we have seen in the previous chapters, the inherently limited amount of resources
that one may devote to the task of saving taxa, necessitates decisions on which con-
servation strategies to pursue. To support such decisions, one needs to incorporate
quantitative information on the possible impact and the success likelihood of con-
servation strategies. In this context, one task is to compute an optimal conservation
strategy in the light of this information.

To find a conservation strategy with the best positive impact, one would ideally
aim to maximize the functional diversity of the surviving taxa (species). However,
measuring this diversity even is impossible in many scenarios [MPC+18].

Luckily, Max-PD can be computed in polynomial time [Ste05, PG05] and there-
fore became the standard in measuring biodiversity [Cro97]. Computing an optimal
conservation strategy becomes much more difficult, however, when the success like-
lihood of a strategy is included in the model. One way to achieve this is to add
concrete survival probabilities for protected taxa, leading in its most general form
to the NP-hard Generalized Noah’s Ark Problem [HS06, KS23b], which has
been observed in Chapter 3. This problem formulation, however, still has a central
drawback: It ignores that the survival of some taxa may also depend on the survival
of other taxa. This aspect was first considered by Moulton et al. [MSS07] in the
Optimizing PD with Dependencies (PDD) problem.

Dependencies of taxa can take any thinkable form. One model of dependencies
are so called food-webs in which the relationship between predators and prey are

121

presented. Food-webs are especially relevant in the observation of an ecosystem
because, in them, one easily sees the role of a taxon within the outside world and
the overall flow of biomass [CDRG+18, Lin42].

Moulton et al. [MSS07] showed that PDD can be solved by the greedy algo-
rithm if the objective of maximizing phylogenetic diversity agrees with the viability
constraint in a precise technical sense. Later, PDD was conjectured to be NP-hard
in [SNM08]. This conjecture was confirmed by Faller et al. [FSW11], who showed
that PDD is NP-hard even if the food-web F is a tree. Further, Faller et al. [FSW11]
considered s-PDD, the special case where the phylogenetic tree is restricted to be a
star, and showed that s-PDD is NP-hard even for food-webs which have a bipartite
graph as underlying graph. Finally, polynomial-time algorithms were provided for
very restricted special cases, for example for PDD when the food-web is a directed
tree [FSW11].

Our contribution. Because PDD has been shown to be NP-hard already on very
restricted instances [FSW11], we turn to parameterized complexity in order to over-
come this intractability. Here, we consider the most natural parameters related to
the solution, such as the solution size k and the threshold of diversity D, and param-
eters that describe the structure of the input food-web F . We formally consider the
decision problem, where we ask for the existence of a viable solution with diversity
at least D, but our algorithms actually solve the optimization problem as well.

Our most important results are as follows. In Theorem 5.2, we prove that PDD is
FPT when parameterized with the solution size k plus the height of the phylogenetic
tree T . This also implies that PDD is FPT with respect to D, the diversity thresh-
old. However, both problems, PDD and s-PDD, are unlikely to admit a kernel of
polynomial size when parameterized by D. We also consider the dual parameter D,
that is, the amount of diversity that is lost from T , and show that PDD is W[1]-hard
with respect to D.

We then consider the structure of the food-web. In particular, we consider the spe-
cial case that each connected component of the food-web F is a complete digraph—so
called cluster graphs. As we will show, this case is structurally equivalent to the case
that each connected component of F is a star with one source vertex. Thus, this
case describes a particularly simple dependency structure, where taxa are either com-
pletely independent or have a common source. We further show that PDD is NP-hard
in this special case while s-PDD admits an FPT-algorithm when parameterized by the
vertex deletion distance to cluster graphs. Our results thus yield structured classes
of food-webs where the complexity of s-PDD and PDD strongly differ. Finally, we
show that s-PDD is FPT with respect to the treewidth of the food-web and therefore

122

Table 5.1: An overview over the parameterized complexity results for PDD and s-PDD.
“D.t. τ ” stands for “Distance to τ ”—the number of vertices that need to be removed to
obtain graph class τ .

Parameter s-PDD PDD
Budget k FPT Thm. 5.1 XP Obs. 5.9
Diversity D FPT Thm. 5.3 FPT Thm. 5.3

no poly kernel Thm. 5.4 no poly kernel Thm. 5.5
Species-loss k W[1]-hard, XP Prop. 5.19, Obs. 5.9 W[1]-hard, XP Prop. 5.19, Obs. 5.9
Diversity-loss D W[1]-hard, XP Prop. 5.19, Obs. 5.9 W[1]-hard, XP Prop. 5.19, Obs. 5.9
D.t. Cluster FPT Thm. 5.6 NP-h for 0 Thm. 5.7
D.t. Co-Cluster FPT Thm. 5.8 FPT Thm. 5.8
Treewidth FPT Thm. 5.9 NP-h for 1 [FSW11]
Max Leaf # FPT Thm. 5.9 NP-h for 2 Cor. 5.29
D.t. Dom.-Source NP-h for 1 Prop. 5.30 NP-h for 1 Prop. 5.30
D.t. Bipartite NP-h for 0 [FSW11] NP-h for 0 [FSW11]
Max Degree NP-h for 3 [FSW11] NP-h for 3 [FSW11]

can be solved in polynomial time if the food-web is a tree (Theorem 5.9). Our result
disproves a conjecture of Faller et al. [FSW11, Conjecture 4.2] stating that s-PDD is
NP-hard even when the food-web is a tree. Again, this result shows that s-PDD can
be substantially easier than PDD on some structured classes of food-webs.

Table 5.1 gives an overview over the results in this chapter. Here, Dom.-Source
stands for Dominant-Source; a graph class for DAGs F in which there is a single
source σ and an edge σx in F for each x ∈ V (F) \ {σ}. Figure 5.2 gives results for
structural parameters and sets these parameters into relation.

Structure of the Chapter. In Section 5.2, we formally define Optimizing PD
with Dependencies and prove some simple initial results. In Section 5.3 and
Section 5.4, we consider parameterization by the budget k and the threshold of
diversity D, the two integers of the input. In Section 5.5, we consider PDD with
respect to the number of taxa that go extinct and the acceptable loss of diversity. In
Section 5.6, we consider parameterization by structural parameters of the food-web.
Finally, in Section 5.7, we discuss future research ideas.

5.2 Preliminaries

In this section, we present the formal definition of the problems, and the parameter-
ization. We further start with some preliminary observations.

123

5.2.1 Definitions

Food-Webs. For a given set of taxa X, a food-web F = (X,E) on X is a
directed acyclic graph. If xy is an edge of E then x is prey of y and y is a predator of x.
The set of prey and predators of x is denoted with N<(x) and N>(x), respectively.
A taxon x with an empty set of prey is a source and sources(F) denotes the set of
sources in the food-web F .

For a given taxon x ∈ X, we define X≤x to be the set of taxa X which can reach x
in F . Analogously, X≥x is the set of taxa that can be reached from x in F .

For a given food-web F and a set Z ⊆ X of taxa, a set of taxa A ⊆ Z is Z-viable
if sources(F [A]) ⊆ sources(F [Z]). A set of taxa A ⊆ X is viable if A is X-viable. In
other words, a set A ⊆ Z ⊆ X is Z-viable or viable if each vertex with an in-degree
of 0 in F [A] also has in-degree 0 in F [Z] or in F , respectively.

Problem Definitions and Parameterizations. Formally, the main problem
we regard in this chapter is defined as follows.

Optimizing PD with Dependencies (PDD)
Input: A phylogenetic X-tree T , a food-web F on X, and integers k and D.
Question: Is there a viable set S ⊆ X such that |S| ≤ k, and PDT (S) ≥ D?

Additionally, in Optimizing PD in Vertex-Weighted Food-Webs (s-PDD)
we consider the special case of PDD in which the phylogenetic X-tree T is a star.

Throughout this chapter, we adopt the common convention that n is the number
of taxa |X| and we letm denote the number of edges in the food-web |E(F)|. Observe
that T has O(n) edges. Such a relation does not necessarily hold for m.

For an instance I = (T ,F , k,D) of PDD, we define the parameter D to
be PDT (X) − D =

∑︁
e∈E λ(e) − D. Informally, D is the acceptable loss of di-

versity: If we save a set of taxa A ⊆ X with PDT (A) ≥ D, then the total amount
of diversity we lose from T is at most D. Similarly, we define k := |X| − k. That is,
k is the minimum number of species that need to become extinct.

5.2.2 Preliminary Observations

We present some observations and reduction rules which we use throughout this
chapter.

Observation 5.1. Let F be a food-web. A set A ⊆ X is viable if and only if there
are edges EA ⊆ E(F) such that every connected component in the graph (A,EA) is
a tree with the root in sources(F).

124

Proof. If A is viable then sources(F [A]) is a subset of sources(F). It follows that for
each taxon x ∈ A, either x is a source in F or A contains a prey y of x.

Conversely, if a graph (A,EA) exists in which all connected components are trees,
then explicitly the sources of F [A] are a subset of sources(F).

Observation 5.2. Let I = (T ,F , k,D) be a yes-instance of PDD. Then, un-
less k > n, a viable set S ⊆ X with PDT (S) ≥ D exists which has a size of exactly k.

Proof. Let S be a solution for I. If S has a size of k, nothing remains to show.
Otherwise, observe that S ∪ {x} is viable and PDT (S ∪ {x}) ≥ PDT (S) for each
taxon x ∈ (N>(S)∪ sources(F))\S. Because (N>(S)∪ sources(F))\S is non-empty,
unless S = X, we conclude that S ∪ {x} is a solution and iteratively, there is a
solution of size k.

Observation 5.3. Let I = (T ,F , k,D) be an instance of PDD. In O(|I|2) time,
an equivalent instance I ′ = (T ′,F ′, k′, D′) of PDD with D′ ∈ O(D) and only one
source in F ′, can be computed.

Proof. Construction. Let I = (T ,F , k,D) be an instance of PDD. Add a new
taxon ⋆ to F and add edges from ⋆ to each taxon x of sources(F) to obtain F ′. To
obtain T ′, add ⋆ as a child to the root ρ of T and set λ′(ρ⋆) = D+1 and λ′(e) = λ(e)
for each e ∈ E(T). Finally, set k′ := k + 1 and D′ := 2 ·D + 1.
Correctness. All steps can be performed in O(|I|2) time. Because S ⊆ X is a solution
for I if and only if S∪{⋆} is a solution for I ′, the instance I ′ = (T ′,F ′, k+1, 2·D+1)
is a yes-instance of PDD if and only if I is a yes-instance of PDD.

Reduction Rule 5.4. Let R ⊆ X be the set of taxa which have a distance of at
least k to every source. Then, set F ′ := F −R and T ′ := T −R.

Lemma 5.5. Reduction Rule 5.4 is correct and in O(n + m) time can be applied
exhaustively.

Proof. By definition, each viable set of taxa which has a size of k is disjoint from R.
Therefore, the set R is disjoint from every solution. With a breadth-first search, the
set R can be found in O(n+m) time . This is also the total running time, since one
application of the rule is exhaustive.

Reduction Rule 5.6. Apply Reduction Rule 5.4 exhaustively. If maxλ ≥ D re-
turn yes.

125

After Reduction Rule 5.4 has been applied exhaustively, for any taxon x ∈ X
there is a viable set Sx of size at most k with x ∈ Sx. If edge e has a weight of at
least D, then for each taxon x which is an offspring of e, the set Sx is viable, has a
size of at most k, and PDT (Sx) ≥ PDT ({x}) ≥ D. So, Sx is a solution.

Reduction Rule 5.7. Given an instance I = (T ,F , k,D) of PDD with
edges vw, uw ∈ E(F) for taxa v, w and each u ∈ N<(v). If v is not a source,
then remove vw from E(F).

Lemma 5.8. Definition 5.7 is correct and can be applied exhaustively in O(n3) time.

Proof. Correctness. If I ′ is a yes-instance, then so is I.
Conversely, let I be a yes-instance of PDD with solution S. If v ̸∈ S, then S is

also a solution for instance I ′. If v ∈ S then because S is viable in F , some vertex u
of N<(v) is in S. Consequently, S is also viable in F − {vw}, as w still could be fed
by u (if w ∈ S).

Running time. For two taxa v and w, we can check N<(v) ⊆ N<(w) in O(n) time.
Consequently, an exhaustive application of Reduction Rule 5.7 takes O(n3) time.

5.3 The Solution Size k

In this section, we consider parameterization by the size of the solution k. First, we
observe that PDD is XP when parameterized by k and k. Recall that k := n − k is
the minimum number of taxa which need to go extinct. In Section 5.3.1, we show
that s-PDD is FPT with respect to k. We generalize this result in Section 5.3.2 by
showing that PDD is FPT when parameterized by k + heightT .

Observation 5.9. PDD can be solved in O(nk+2) and O(nk+2) time.

Proof. Algorithm. Iterate over the sets S ⊆ X of size k. Return yes if there is a
viable set S with PDT (S) ≥ D. Return no if there is no such set.

Correctness and Running time. The correctness of the algorithm follows from Ob-
servation 5.2. Checking whether a set S is viable and has diversity of at least D can
be done O(n2) time. The claim follows because there are

(︁
n
k

)︁
=
(︁

n
n−k

)︁
=
(︁
n
k

)︁
subsets

of X of size k.

126

5.3.1 s-PDD With k

We now show that s-PDD is FPT when parameterized by the size of the solution k.

Theorem 5.1. s-PDD can be solved in O(23.03k+o(k) · nm · log n) time.

In order to prove this theorem, we color the taxa and require that a solution
should contain at most one taxon of each color. Formally, the auxiliary problem
which we consider is defined as follows. In k-colored Optimizing PD in Vertex-
Weighted Food-Webs (k-c-s-PDD), alongside the usual input (T ,F , k,D) of
s-PDD, we are given a vertex-coloring c : X → [k] which assigns each taxon a
color c(x) ∈ [k]. We ask for whether there is a viable set S ⊆ X of taxa such
that PDT (S) ≥ D and c(S) is colorful. A set c(S) is colorful if c is injective on S.
Observe that each colorful set S satisfies |S| ≤ k. We continue to show how to
solve k-c-s-PDD before we apply tools of the color coding toolbox to extend this
result to the uncolored version.

Lemma 5.10. k-c-s-PDD can be solved in O(3k · n ·m) time.

Proof. Table definition. Let I = (T ,F , k,D, c) be an instance of k-c-s-PDD, and
by Observation 5.3 we assume that ⋆ ∈ X is the only source in F .

Given x ∈ X, a set of colors C ⊆ [k], and a set of taxa X ′ ⊆ X: A set S ⊆ X ′

is (C,X ′)-feasible if

• c(S) = C,
• c(S) is colorful, and
• S is X ′-viable.

We define a dynamic programming algorithm with tables DP and DP′. For a
taxon x ∈ X and a set of colors C ⊆ [k], we want entry DP[x,C] to store the
maximum PDT (S) of (C,X≥x)-feasible sets S. Recall that X≥x is the set of taxa
which x can reach in F . If no (C,X≥x)-feasible set S ⊆ X ′ exists, we want DP[x,C]
to store −∞. In other words, in DP[x,C] we store the biggest phylogenetic diversity
of a set S which is X≥x-viable and c bijectively maps S to C.

For a taxon x, let y1, . . . , yq be an arbitrary but fixed order of N>(x). In the
auxiliary table DP′, we want entry DP′[x, p, C] for p ∈ [q], and C ⊆ [k] to store the
maximum PDT (S) of (C,X ′)-feasible sets S ⊆ X ′, whereX ′ = {x}∪X≥y1∪· · ·∪X≥yp .
If no (C,X ′)-feasible set S ⊆ X ′ exists, we want DP′[x, p, C] to store −∞.
Algorithm. As a base case, for each x ∈ X and p ∈ [|N>(x)|] let entries DP[x, ∅]
and DP[x, p, ∅] store 0 and let entry DP[x,C] store −∞ if C is non-empty and c(x)

127

does not occur in C. For each x ∈ X withN>(x) = ∅, we store λ(ρx) in DP[x, {c(x)}].
Recall that ρx is an edge because T is a star.

Fix x ∈ X. For every Z ⊆ C \ {c(x)}, we set DP′[x, 1, {c(x)} ∪ Z] := DP[y1, Z].
To compute further values, once DP′[x, q, Z] for each q ∈ [p], and every Z ⊆ C is
computed, for Z ⊆ C \ {c(x)} we use the recurrence

DP′[x, p+ 1, {c(x)} ∪ Z] := max
Z′⊆Z

DP′[x, p, {c(x)} ∪ Z \ Z ′] + DP[yp+1, Z
′]. (5.1)

Finally, we set DP[x,C] := DP′[x, q, C] for every C ⊆ [k].
We return yes if DP[⋆, C] stores 1 for some C ⊆ [k]. Otherwise, we return no.

Correctness. The base cases are correct.
The tables are computed first for taxa further away from the source and with

increasing size of C. Assume that for a fixed taxon x with predators y1, . . . , yq
and a fixed p ∈ [q], the entries DP[x′, Z] and DP′[x, p′, Z], for each x′ ∈ N>(x),
for each p′ ∈ [p], and every Z ⊆ [k], store the desired value. Fix a set C ⊆ [k]
with c(x) ∈ C. We show that if DP′[x, p + 1, C] stores d then there is a (C,X ′)-
feasible set S ⊆ X ′ ∪ X≥yp+1 for X ′ := {x} ∪ X≥y1 ∪ · · · ∪ X≥yp with PDT (S) = d.
Afterward, we show that if S ⊆ X ′ ∪X≥yp+1 with PDT (S) = d is a (C,X ′)-feasible
set then DP′[x, p+ 1, C] stores at least d.

If DP′[x, p + 1, C] = d > 0, then, by Recurrence (5.1), a set Z ⊆ C \ {c(x)}
exists such that DP′[x, p, C \ Z] = dx and DP[yp+1, Z] = dy with d = dx + dy.
Therefore, there is a (C \ Z,X ′)-feasible set Sx ⊆ X ′ with PDT (Sx) = dx and
a (Z,X≥yp+1)-feasible set Sy ⊆ X≥yp+1 with PDT (Sy) = dy. Define S := Sx ∪ Sy and
observe that PDT (S) = d, because T is a star, and c(Sx) and c(Sy) are disjoint and
therefore Sx and Sy. It remains to show that S is a (C,X ′∪X≥yp+1)-feasible set. First,
observe that because C\Z and Z are disjoint, we conclude that c(S) is colorful. Then,
c(S) = c(Sx)∪c(Sy) = C\Z∪Z = C where the first equation is satisfied because c(S)
is colorful. The taxa x and yp+1 are the only sources in F [X≥x] and F [X≥yp+1],
respectively. Therefore, x is in Sx and yp+1 is in Sy, unless Sy is empty. If Sy = ∅
then S = Sx and S is X ′ ∪X≥yp+1-viable because S is X ′-viable. Otherwise, if Sy is
non-empty then because Sy is X≥yp+1-viable, we conclude sources(F [Sy]) = {yp+1}.
As x ∈ S and yp+1 ∈ N>(x), we conclude sources(F [S]) = {x} and so S isX ′∪X≥yp+1-
viable. Therefore, S is a (C,X ′ ∪X≥yp+1)-feasible set.

Conversely, let S ⊆ X ′ ∪ X≥yp+1 be a non-empty (C,X ′ ∪ X≥yp+1)-feasible set
with PDT (S) = d. Observe that X ′ and X≥yp+1 are not necessarily disjoint. We
define Sy to be the set of taxa of X≥yp+1 which are connected to yp+1 in F [X≥yp+1].
Further, define Z := c(Sy) and define Sx := S\Sy. As c(S) is colorful, especially c(Sx)
and c(Sy) are colorful. Thus, Sy is a (Z,X≥yp+1)-feasible time. Further, we conclude

128

that c(Sx) = C \ c(Sy) = C \Z. As sources(F [S]) = sources(F [X ′ ∪X≥yp+1]) = {x},
we conclude x ∈ S. Because F is acyclic and yi+1 is a predator of x, we conclude x
is not in X≥yp+1 and so x is in Sx. Each vertex of S which can reach yp+1 in F [S]
is in F≥yp+1 and therefore in Sy. Consequently, because S is X ′ ∪ X≥yp+1-viable
we conclude sources(F [Sx]) = {x}. Thus, Sx is (C \ Z,X ′)-feasible. Therefore,
DP[yp+1, Z] = PDT (Sx) and DP′[x, p, C \ Z] = PDT (Sy). Hence, DP′[x, p + 1, C]
stores at least PDT (S).
Running time. The base cases can be checked in O(k) time. As each c ∈ [k] in
Recurrence (5.1) can either be in Z ′, in {c(x)} ∪ Z \ Z ′ or in [k] \ ({c(x)} ∪ Z), all
entries of the tables can be computed in O(3k · n ·m) time.

We note that the table entries store values of O(D) and therefore the running
time is also feasible in more restricted RAM models.

For the following proof we construct a perfect hash family H which is defined in
Definition 2.14, Central for proving Theorem 5.1 is to define and solve an instance
of k-c-s-PDD for each function in H.

Proof of Theorem 5.1. Reduction. Let I = (T ,F , k,D) be an instance of PDD. We
assume that F only has one source, by Observation 5.3.

Let x1, . . . , xn be an order of the taxa. Compute an (n, k)-perfect hash family H.
For every f ∈ H, let cf be a coloring such that cf (xj) = f(j) for each xj ∈ X.

For every f ∈ H, construct an instance If = (T ,F , k,D, cf) of k-c-s-PDD and
solve If using Lemma 5.10 and return yes if and only if If is a yes-instance for
some f ∈ H.
Correctness. We show that if I has a solution S then there is an f ∈ H such
that If is a yes-instance of k-c-s-PDD. Let S be a solution for I. Thus, S is
viable, PDT (S) ≥ D, and S has a size of at most k. We may assume |S| = k
by Observation 5.2. By the definition of (n, k)-perfect hash families, there exists a
function f ∈ H such that cf (S) is colorful. So, S is a solution for If .

Conversely, a solution of If for any f ∈ H is a solution for I.
Running Time. The instances If can be constructed in ekkO(log k) · n log n time. An
instance of k-c-s-PDD can be solved in O(3k·n·m) time, and the number of instances
is |C| = ekkO(log k) ·log n. Thus, the total running time is O∗(ekkO(log k) log n·(3k ·nm))
which simplifies to O((3e)k · 2O(log2(k)) · nm · log n).

5.3.2 PDD With k + heightT

In this subsection, we generalize the result of the previous subsection by showing that
PDD is FPT when parameterized with the size of the solution k plus heightT , the

129

height of the phylogenetic tree. This algorithm uses the techniques of color coding,
data reduction by reduction rules, and the enumeration of trees.

Theorem 5.2. PDD can be solved in O∗(KK · 23.03K+o(K)) time. Herein, we
write K := k · heightT .

We define pattern-trees TP = (VP , EP , cP) to be a tree (VP , EP) with a vertex-
coloring cP : VP → [k ·heightT]. Recall that T ⟨Y ⟩ is the spanning tree of the vertices
in Y . To show the result of Theorem 5.3.2, we use a subroutine for solving the
following problem.

In Optimizing PD with Pattern-Dependencies (PDD-pattern), we are
given alongside the usual input (T ,F , k,D) of PDD a pattern-tree TP = (VP , EP , cP),
and a vertex-coloring c : V (T) → [k · heightT]. We ask whether there is a viable
set S ⊆ X of taxa such that S has a size of at most k, c(T ⟨S ∪ {ρ}⟩) is colorful,
and T ⟨S ∪ {ρ}⟩ and TP are color-equal. That is, there is an edge uv of T ⟨S ∪ {ρ}⟩
with c(u) = cu and c(v) = cv if and only if there is an edge u′v′ of TP with c(u′) = cu
and c(v′) = cv. Informally, given a pattern-tree, we want that it matches the colors
of the spanning tree induced by the root and a solution.

Next, we present reduction rules with which we can reduce the phylogenetic tree
in an instance of PDD-pattern to be a star which subsequently can be solved
with Theorem 5.1. Afterward, we show how to apply this knowledge to compute a
solution for PDD.

Reduction Rule 5.11. Let uv be an edge of T . If there is no edge u′v′ ∈ EP

with cP (u′) = c(u) and cP (v′) = c(v), then set T ′ := T −desc(v) and F ′ := F−off(v).

Lemma 5.12. Reduction Rule 5.11 is correct and can be applied exhaustively
in O(n3) time.

Proof. Correctness. Assume that S ⊆ X is a solution of the instance of PDD-
pattern. As there is no edge u′v′ ∈ EP with cP (u

′) = c(u) and cP (v
′) = c(v) we

conclude that S ∩ desc(v) = ∅ and so the reduction rule is safe.
Running Time. To check whether Reduction Rule 5.11 can be applied, we need to
iterate over both E(T) and EP . Therefore, a single application can be executed
in O(n2) time. In each application of Reduction Rule 5.11 we remove at least one
vertex so that an exhaustive application can be computed in O(n3) time.

Reduction Rule 5.13. Let u′v′ be an edge of TP . For each vertex u ∈ V (T)
with c(u) = cP (u

′) such that u has no child v with c(v) = cP (v
′), set T ′ := T −desc(v)

and F ′ := F − off(v).

130

u′

v′

(1)
6

1 3 1 2

4 5 2 4 2 3

1 1

2 2

2

(2)
6
1 3

4 5 2

1 1

4 2 4 2 4

2

Figure 5.1: An example for Reduction Rule 5.15. (1) An instance of PDD-pattern.
(2) The instance of (1) after an application of Reduction Rule 5.15 to the marked vertices.
In both instances, the pattern-tree is on the left and the phylogenetic tree is on the right.

Lemma 5.14. Reduction Rule 5.13 is correct and can be applied exhaustively
in O(n3) time.

Proof. Correctness. Let S be a solution for an instance of PDD-pattern. The
spanning tree T ⟨S∪{ρ}⟩ contains exactly one vertex w of color c(u). As c(w) = cP (u

′)
we conclude that w has a child w′ and c(w′) = c(v′). Consequently, S ∩ desc(u) = ∅
and w ̸= u.
Running Time. Like in Reduction Rule 5.11, iterate over the edges of T and TP .
Each application either removes at least one vertex or concludes that the reduction
rule is applied exhaustively.

Observe that the application of the previous two reduction rules may create leaves
in the phylogenetic tree which are not taxa. We can safely remove these from the
tree. Now, let us come to our final reduction rule.

Reduction Rule 5.15. Apply Reduction Rules 5.11 and 5.13 exhaustively.
Let ρ be the root of T and let ρP be the root of TP . Let v′ be a grand-child of ρP

and let u′ be the parent of v′.

(a) For each vertex u of T with c(u) = cP (u
′), add edges ρv to T for every child v

of u.

(b) Set the weight of ρv to λ(uv) if c(v) ̸= cP (v
′), or λ(uv)+λ(ρu) if c(v) = cP (v

′).

(c) Add edges ρPw′ to TP for every child w′ of u′.

(d) Set T ′
P := TP − u′ and T ′ := T − u.

Figure 5.1 depicts an application of Reduction Rule 5.15.

131

Lemma 5.16. Reduction Rule 5.15 is correct and can be applied exhaustively
in O(n3) time.

Proof. Correctness. Assume that I is a yes-instance of PDD-pattern with solu-
tion S. Because T ⟨S ∪ {ρ}⟩ and TP are color-equal also T ′⟨S ∪ {ρ}⟩ and T ′

P are
color-equal. Let u∗ and w1 be the unique vertices in T ⟨S ∪ {ρ}⟩ with c(u∗) = cP (u

′)
and c(w1) = cP (v

′). Let w2, . . . , wℓ be the other children of u∗. Because PDT ′(S) is
the sum of the weights of the edges of T ′⟨S ∪ {ρ}⟩, we conclude

PDT ′(S) = PDT (S)− (λ(ρu∗) +
ℓ∑︂

i=1

λ(u∗wi)) +
ℓ∑︂

i=1

λ′(ρwi).

Since λ′(ρw1) = λ(ρu∗)+λ(u∗w1) and λ′(ρwi) = λ(u∗wi) for i ∈ [ℓ]\{1}, we conclude
that PDT ′(S) = PDT (S) ≥ D. Therefore, S is a solution for I ′.

The other direction is shown analogously.
Running Time. For a given grand-child v′ of ρP , one needs to perform O(n) color-
checks and add O(n) edges to the tree. As the reduction rule can be applied at
most |TP | ∈ O(K) ∈ O(n) times, an exhaustive application takes O(n2) time. So,
the predominant factor in the running time is the exhaustive application of the other
reduction rules.

With these reduction rules, we can reduce the phylogenetic tree of a given instance
of PDD-pattern to only be a star and then solve PDD-pattern by applying The-
orem 5.1.

Lemma 5.17. PDD-pattern can be solved in O(3k · n ·m+ n3) time.

Proof. Algorithm. Let an instance I = (T ,F , k,D, TP = (VP , EP , cP), c) of PDD-
pattern be given. If there is a vertex v ∈ VP and cP (v) ̸∈ c(V (T)), then return no.
If c(ρ) ̸= cP (ρP) where ρ and ρP are the roots of T and TP respectively, return no.

Apply Reduction Rule 5.15 exhaustively. Then, both TP and T are stars. Return
yes if and only if (T ′,F ′, k,D, c) is a yes-instance of k-c-s-PDD.
Correctness. If TP contains a vertex v with cP (v) ̸∈ c(V (T)), or if c(ρ) ̸= cP (ρP),
then I is a no-instance. Then, the correctness follows by Lemma 5.16 and Lemma 5.10.
Running time. Reduction Rule 5.15 can be applied exhaustively in O(n3) time. With
the application of Lemma 5.10, the overall running time is O(3k · n ·m+ n3).

Now, we have everything to prove Theorem 5.2. We reduce from PDD to PDD-
pattern and apply Lemma 5.17. For this, we use the fact that there are nn−2 labeled

132

directed trees on n vertices [Sho95] which can be enumerated in O(nn−2) time [BH80].
To solve an instance I of PDD, we check each of these trees as a pattern-tree for
a given coloring of the phylogenetic tree. These colorings are defined with a perfect
hash family as defined in Definition 2.14. Recall that K = k · heightT .

Proof of Theorem 5.2. Algorithm. Let I = (T ,F , k,D) be an instance of PDD.
Let the vertices of T be ordered as v1, . . . , v|V (T)|. Iterate over i ∈ [min{K, |V (T)|}].
Compute a (|V (T)|, i)-perfect hash family Hi. Compute the set Pi of labeled directed
trees with i vertices.

For every TP = (VP , EP , cP) ∈ Pi, proceed as follows. Assume that the labels
of TP are in [i]. For every f ∈ Hi, let cf be a coloring such that cf (vj) = f(j) for
each vj ∈ V (T).

For every f ∈ Hi, solve instance ITP ,f := (T ,F , k,D, TP , cf) of PDD-pattern
using Lemma 5.17. Return yes if and only if ITP ,f is a yes-instance for some f ∈ Hi

and some TP ∈ Pi.
Correctness. Any solution of an instance ITP ,f of PDD-pattern is a solution for I.

Conversely, we show that if S is a solution for I, then there are TP and f such
that ITP ,f is a yes-instance of PDD-pattern. So let S be a viable set of taxa
with |S| ≤ k and PDT (S) ≥ D. Let V ∗ ⊆ V (T) be the set of vertices v that
have offspring in S. It follows that |V ∗| ≤ heightT ·|S| ≤ K. Then, there is a hash
function f ∈ HV ∗ mapping V ∗ bijectively to [|V ∗|]. Consequently, P|V ∗| contains a
tree TP which is isomorphic to T [V ∗] with labels cf . Hence, ITP ,f is a yes-instance
of PDD-pattern.
Running Time. For a fixed i ∈ [K], the set Hi contains eiiO(log i) · log n hash functions
and the set Pi contains O(ii−2) labeled trees. In O(ii−2 ·n log n) time, both of the sets
can be computed. Given a hash function and a tree, each instance ITP ,f of PDD-
pattern is constructed in O(n) time and can be solved in O(3k · n3) time. Thus,
the overall running time is O(K · eKKK−2+O(logK) · 3k · n3 log n), which summarizes
to O(KK · 21.44K+1.58k+o(K) · n3 log n).

5.4 The Diversity D

In this section, we consider parameterization with the required threshold of diver-
sityD. As the edge-weights are integers, we conclude that we can return yes if k ≥ D
or if the height of the phylogenetic tree T is at least D, after Reduction Rule 5.4
has been applied exhaustively. Otherwise, k + heightT ∈ O(D) and thus the FPT-
algorithm for k+heightT (Theorem 5.2) directly gives an FPT-algorithm for PDD in
that case.

133

In Section 5.4.1, we present a faster FPT-algorithm for the parameter D. After-
ward, we show that it is unlikely that PDD admits a polynomial kernel for D, even
in very restricted cases.

5.4.1 FPT-Algorithm For D

By Theorem 5.2, PDD is FPT with respect to the desired diversity D. Here, we
present another algorithm with a faster running time. To obtain this algorithm, we
implicitly subdivide edges of the phylogenetic tree according to their edge weights.
We then use color coding on the vertices of the subdivided tree.

Theorem 5.3. PDD can be solved in O(23.03(2D+k)+o(D) · nm+ n2) time.

We define D-colored Optimizing PD with Dependencies (D-c-PDD), a
colored version of PDD, as follows. In addition to the usual input of PDD, we receive
two colorings c and ĉ which assign each edge e ∈ E(T) a subset c(e) of [D], called a
set of colors, which is of size λ(e) and each taxon x ∈ X a color ĉ(x) ∈ [k]. We extend
the function c to also assign color sets to taxa x ∈ X by defining c(x) :=

⋃︁
e∈E′ c(e)

where E ′ is the set of edges with x ∈ off(e). In D-c-PDD, we ask whether there is
a viable set S ⊆ X of taxa such that c(S) = [D], and ĉ is colorful.

In the following we show how to solve D-c-PDD and then we show how to apply
standard color coding techniques to reduce from PDD to D-c-PDD.

Finding a solution for D-c-PDD can be done with techniques similar to the ones
used to prove Lemma 5.10.

Lemma 5.18. D-c-PDD can be solved in O(3D+k · n ·m) time.

Proof. Table definition. Let I = (T ,F , k,D, c, ĉ) be an instance of D-c-PDD and
we assume that ⋆ ∈ X is the only source in F by Observation 5.3.

Given x ∈ X, sets of colors C1 ⊆ [D], C2 ⊆ [k], and a set of taxa X ′ ⊆ X, a
set S ⊆ X ′ ⊆ X is (C1, C2, X

′)-feasible if

• C1 is a subset of c(S),
• ĉ(S) = C2,
• ĉ(S) is colorful, and
• S is X ′-viable.

We define a dynamic programming algorithm with tables DP and DP′. We want
entry DP[x,C1, C2], for x ∈ X and sets of colors C1 ⊆ [D], C2 ⊆ [k], to store 1 if
a (C1, C2, X≥x)-feasible set S exists. Otherwise, we want DP[x,C1, C2] to store 0.

134

For a taxon x ∈ X, let y1, . . . , yq be an arbitrary but fixed order of N>(x). In the
auxiliary table we want entry DP′[x, p, C1, C2], for p ∈ [q], C1 ⊆ [D], and C2 ⊆ [k], to
store 1 if a (C1, C2, X

′)-feasible set S ⊆ X ′ exists, whereX ′ := {x}∪X≤y1∪· · ·∪X≤yp .
If no (C1, C2, X

′)-feasible set S ⊆ X ′ exists, we want DP′[x, p, C1, C2] to store 0.
Algorithm. As a base case, for each x ∈ X and each p ∈ [|N>(x)|] let DP[x, ∅, ∅]
and DP′[x, p, ∅, ∅] store 1. Further, let DP[x,C1, C2] and DP′[x, p, C1, C2] store 0
if C1 ̸⊆ c(x), or ĉ(x) ̸∈ C2, or |C2| > |X≥x| for each x ∈ X, every C1 ⊆ [D], and
every C2 ⊆ [k]. For each taxon x ∈ X with no predators, we store 1 in DP[x,C1, C2]
if C1 = C2 = ∅ or if C1 ⊆ c(x) and C2 = {ĉ(x)}. Otherwise, we store 0.

Fix a taxon x ∈ X. Assume that DP[y, C1, C2] is computed for each y ∈ N>(x),
every C1 ⊆ [D], and every C2 ⊆ [k]. For C1 ⊆ [D] \ c(x) and C2 ⊆ [k] \ {ĉ(x)}, we
set

DP′[x, 1, c(x) ∪ C1, {ĉ(x)} ∪ C2] := DP[y1, C1, C2]. (5.2)

Fix an integer p ∈ [q]. We assume that DP′[x, p, C1, C2] is computed for ev-
ery C1 ⊆ [D], and every C2 ⊆ [k]. Then, for C1 ⊆ [D] \ c(x) and C2 ⊆ [k] \ {ĉ(x)}
we use the recurrence

DP′[x, p+ 1, c(x) ∪ C1, {ĉ(x)} ∪ C2] (5.3)
:= max

C′
1⊆C1,C′

2⊆C2

DP′[x, p, c(x) ∪ C1 \ C ′
1, {ĉ(x)} ∪ C2 \ C ′

2] ·DP[yp+1, C
′
1, C

′
2].

Finally, set DP[x,C1, C2] := DP′[x, q, C1, C2] for every C1 ⊆ [D], and every C2 ⊆ [k].
Return yes if DP[⋆, [D], C2] stores 1 for some C2 ⊆ [k]. Otherwise, return no.

Correctness. The correctness can be shown analogously to the correctness of
Lemma 5.10.
Running time. The tables DP and DP′ contain O(2D+k · n ·m) entries. Each entry
in the base case can be computed in O(D2 · n) time. In Recurrence (5.3), each color
can occur either in C ′

1, in c(x)∪C1 \C ′
1 or not in c(x)∪C1. Likewise, with {ĉ(x)}∪Z

and Z ′. Therefore, all values in Recurrence (5.3) can be computed in O(3D+k ·n ·m)
time which is thus also the overall running time.

We can now prove Theorem 5.3 by showing how the standard PDD can be reduced
to D-c-PDD via color coding. This proof is analogous to the proof of Theorem 5.1.

Proof of Theorem 5.3. Reduction. Let I = (T ,F , k,D) be an instance of PDD.
We assume that F only has one source by Observation 5.3 and that maxλ < D
by Reduction Rule 5.6.

135

Let e1, . . . , e|E(T)| and x1, . . . , xn be an order of the edges and taxa of T , respec-
tively. We define integers W0 := 0 and Wj :=

∑︁j
i=1 λ(ei) for each j ∈ [|E(T)|].

Set W := W|E(T)|.
Compute a (W,D)-perfect hash family HD and an (n, k)-perfect hash family Hk.

For every g ∈ Hk, let cg,2 be a coloring such that cg,2(xj) = g(j) for each xj ∈ X. For
every f ∈ HD, let cf,1 be a coloring such that cf,1(ej) = {f(Wj−1 + 1), . . . , f(Wj)}
for each ej ∈ E(T).

For hash functions f ∈ HD and g ∈ Hk, construct an instance If,g of D-c-PDD
with If,g := (T ,F , k,D, cf,1, cg,2). Solve every instance If,g using Lemma 5.18 and
return yes if and only if If,g is a yes-instance for some f ∈ HD, and some g ∈ Hk.

Correctness. We first show that if I is a yes instance then If,g is a yes-instance
for some f ∈ HD, g ∈ Hk. For any set of edges E ′ with λ(E ′) ≥ D, there is a
corresponding subset of [W] of size at least D. Since HD is a (W,D)-perfect hash
family, cf,1(E ′) = [D], for some f ∈ HD. Analogously, for each set X ′ of taxa of
size k there is a hash function g ∈ Hk such that cg,2(X ′) = [k]. Thus in particular,
if S ⊆ X is a solution of size k for instance I, then cf,1(S) = [D], for some f ∈ HD

and cg,2(S) = [k], for some g ∈ Hk. It follows that one of the constructed instances
of D-c-PDD is a yes-instance.

Conversely, a solution for If,g for some f ∈ HD, and some g ∈ Hk is also a
solution for I.

Running Time. We apply Reduction Rule 5.6 and Observation 5.3 in O(n2) time.
By Observation 5.3, k′ ≤ k + 1 and D′ ≤ 2D + 1. We can construct HD

and Hk in eD
′
D′O(logD′) · W logW time. By Lemma 5.18, instances of D-c-PDD

can be solved in O(3D
′+k′ · nm) time each, and the number of instances

is |HD′| · |Hk′ | = eD
′
D′O(logD′) · logW · ek′k′O(log k′) · log n ∈ eD

′+k′+o(D) · logW .
Thus, the total running time is O(e2D+k+o(D) · logW · (W + 32D+k · nm)). This

simplifies to O((3e)2D+k+o(D) · nm+ n2), as W = PDT (X) < 2n ·D.

5.4.2 No Poly Kernels For D

In this subsection, first, we give a reduction from Set Cover to s-PDD to show
that s-PDD does not admit a polynomial kernelization algorithm when parameter-
ized by D, assuming NP ̸⊆ coNP/poly (Theorem 5.4). This result also holds for
PDD. However, we afterward provide a compression from Graph Motif to PDD
to show the following stronger result. Even if F , is a directed forest, PDD does
not admit a polynomial kernelization algorithm when parameterized by D, assum-
ing NP ̸⊆ coNP/poly (Theorem 5.5).

136

In the following, we reduce from Set Cover to s-PDD. In Set Cover, an input
consists of a universe U , a family Q of subsets of U , and an integer k. It is asked
whether there exists a sub-family of sets Q′ ⊆ Q such that Q′ has a carnality of at
most k and the union of Q′ covers the entire universe. Assuming NP ̸⊆ coNP/poly,
Set Cover does not admit a polynomial kernel when parameterized by the size of
the universe |U| [DLS14, CFK+15].

Our reduction from Set Cover to s-PDD is similar to the reduction from Ver-
tex Cover to s-PDD presented in [FSW11].

Theorem 5.4. s-PDD does not admit a polynomial kernelization algorithm with
respect to D, assuming NP ̸⊆ coNP/poly.

Proof. Reduction. Let an instance I = (Q,U , k) of Set Cover be given. We define
an instance I ′ = (T ,F , k′, D) of s-PDD as follows. Let T be a star with root ρ
and leaves X := Q ∪ U . We set λ(ρQ) = 1 for each Q ∈ Q and λ(ρu) = 2 for
each u ∈ U . Further, the food-web F is a graph with vertices X and we add an
edge Qu to F if and only if u ∈ Q for u ∈ U and Q ∈ Q. Finally, we set k′ := k+ |U|
and D := k + 2|U|.
Correctness. We may assume that k ≤ |U|. Therefore, D is bounded in |U|.

Now, assume that Q′ is a solution for I. If necessary, add further sets to Q′

until |Q′| = k. Because Q′ is a solution for I, for each u ∈ U there is a Q ∈ Q′

such that u ∈ Q. Hence, S := Q′ ∪ U is viable, has a size of |S| = k + |U| = k′

and PDT (S) = |Q′|+ 2|U| = k + 2|U|.
Conversely, let S be a solution for instance I ′ and assume |S| = k′. Let SQ

be the intersection of S with Q. Define a := |SQ| and b := |S| − a. Then, we
have PDT (S) = a + 2b = |S| + b and PDT (S) ≥ k + 2|U| = k′ + |U|. We conclude
that b ≥ |U| and so a = |S| − b ≤ k′ − |U| = k. Since S is viable, for each u ∈ U
there is a Q ∈ SQ with u ∈ Q. Therefore, SQ is a solution for I.

For PDD we want to show the non-existence of a polynomial kernel even in the
case that the food-web is restricted to a forest. Here, we define a cross-composition
from Graph Motif, a problem in which one is given a graph G with vertex-
coloring χ and a multiset of colors M . It is asked whether G has a connected
set of vertices whose multiset of colors equals M . Graph Motif was shown to
be NP-hard even on trees [LFS06]. It remains NP-hard to compute a solution for an
instance of Graph Motif on trees of maximum vertex-degree three, even if each
item appears at most once in M , and there is a color c∗ ∈ M that only one vertex
of G takes [FFHV11].

137

Theorem 5.5. Even if the given food-web F is a directed forest, PDD does not admit
a polynomial kernelization algorithm with respect to D, assuming NP ̸⊆ coNP/poly.

Proof. We describe a cross-composition from Graph Motif to PDD. We refer
readers unfamiliar to cross-compositions to [CFK+15, Chapter 15.1].
Cross-Composition. Fix a set of colors M . Let I1, . . . , Iq be instances of Graph
Motif with Ii = (Gi = (Vi, Ei),M) such that all Gi are trees with maximum
vertex-degree of three. Let vi be the only vertex of Vi with χ(vi) = c∗ ∈M .

We define an instance I = (T ,F , k,D) of PDD as follows. Let T be a tree with
vertex set {ρ}∪M ∪X and leaves X :=

⋃︁q
i=1 Vi. Add an edge ρc to T for each c ∈M

and add an edge cv if and only if χ(v) = c. Each edge has a weight of 1. Orient each
edge in Gi away from vi to obtain Hi for each i ∈ [q]. Let F be the food-web which
is the union of H1, . . . , Hq. We define k := |M | and D := 2 · |M |.
Correctness. We show that some instance of I1, . . . , Iq is a yes-instance of Graph
Motif if and only if I is a yes-instance of PDD.

Let Ii be a yes-instance of Graph Motif for an i ∈ [q]. Consequently, there
is a set of vertices S ⊆ Vi such that |S| = |M |, χ(S) = M and Gi[S] is connected.
We conclude that vi ∈ S because vi is the only vertex with χ(vi) = c∗. Thus, Hi[S]
is a connected subtree of Hi which contains vi, the only source in Hi. We conclude
that S is viable in I. By definition, |S| = |M | and because each vertex in S has
another color we conclude that PDT (S) = 2 · |M |. Hence, S is a solution for I.

Conversely, let I be a yes-instance of PDD. Consequently, there is a viable set S
of taxa such that |S| ≤ |M | and PDT (S) ≥ 2 · |M |. We say that a taxon x ∈ X
has color c ∈ M if cx is an edge in T . Observe that PDT (A ∪ {x}) ≤ PDT (A) + 2
for any set of taxa A. Further, PDT (A ∪ {x}) = PDT (A) + 2 if and only if x has a
color that none of the taxa of A has. We conclude that the taxa in S have unique
colors. Fix j ∈ [q] such that vj ∈ S. The index j is uniquely defined because there
is a unique taxon in S with the color c∗. Because the vertices v1, . . . , vq are the
only sources in F and S is viable, we conclude u ∈ Vi can not occur in S for i ̸= j.
Therefore, we conclude S ⊆ Vj. Because S is viable, Hi[S] is connected and therefore
also Gi[S]. Thus, S is a solution for instance Ij of Graph Motif.

5.5 The Loss of Species k and Diversity D

5.5.1 Hardness For the Acceptable Diversity Loss D

In some instances, the diversity threshold D may be very large. Then, however,
the acceptable loss of diversity D would be relatively small. Recall, D is defined

138

as PDT (X) − D. Encouraged by this observation, recently, several problems in
maximizing phylogenetic diversity have been studied with respect to the acceptable
diversity loss [JS23b, JS24]. In this section, we show that, unfortunately, s-PDD
is W[1]-hard with respect to D even if edge-weights are at most two.

To show this result, we reduce from Red-Blue Non-Blocker. In Red-Blue
Non-Blocker, the input is an undirected bipartite graph G with vertex biparti-
tion V = Vr ∪ Vb and an integer k. The question is whether there is a set S ⊆ Vr of
size at least k such that the neighborhood of Vr \S is Vb. Red-Blue Non-Blocker
is W[1]-hard when parameterized by the size of the solution k [DF95b].

Proposition 5.19. s-PDD is W[1]-hard with respect to D, even if maxλ = 2.

Proof. Reduction. Let I := (G = (V = Vr ∪ Vb, E), k) be an instance of Red-Blue
Non-Blocker. We construct an instance I ′ = (T ,F , k′, D) of s-PDD as follows.
Let T be a star with root ρ ̸∈ V and leaves V . In T , an edge e = ρu has a weight of 1
if u ∈ Vr and otherwise λ(e) = 2, if u ∈ Vb. Define a food-web F with vertices V and
for each edge {u, v} ∈ E, and every pair of vertices u ∈ Vb, v ∈ Vr, add an edge uv
to F . Finally, set k′ := |V |−k and D := 2 · |Vb|+ |Vr|−k, or equivalently k = D = k.

Correctness. The reduction can be computed in polynomial time. We show that if I
is a yes-instance of Red-Blue Non-Blocker then I ′ is a yes-instance of PDD.
Afterward, we show the converse.

Assume that I is a yes-instance of Red-Blue Non-Blocker. Therefore, there
is a set S ⊆ Vr of size at least k such that NG(Vr \ S) = Vb. We assume |S| = k
as NG(Vr \ S) = Vb still holds if we shrink S. We define S ′ := V \ S and show
that S ′ is a solution for I ′. The size of S ′ is |V \ S| = |V | − |S| = k′. Further,
PDT (S) = 2 · |Vb|+ |Vr \S| = 2 · |Vb|+ |Vr| − k = D. By definition, the vertices in Vr
are sources. Further, because S is a solution for I, each vertex of Vb has a neighbor
in Vr \ S. So, S ′ is viable and I ′ is a yes-instance of s-PDD.

Conversely, let S ′ ⊆ V be a solution for instance I ′ of s-PDD. Without loss
of generality, S ′ contains r vertices from Vr and b vertices of Vb. Consequently,
|V | − k ≥ |S ′| = b + r and 2 · |Vb| + |Vr| − k = D ≤ PDT (S

′) = 2b + r. Therefore,
r ≤ |V |−k−b and so 2b ≥ 2·|Vb|+|Vr|−k−r ≥ 2·|Vb|+|Vr|−k−(|V |−k−b) = |Vb|+b.
We conclude b = |Vb| and Vb ⊆ S ′. Further, r = |Vr| − k. We define S := Vr \ S ′

and conclude |S| = |Vr| − r = k. Because S ′ is viable, each vertex in Vb has a
neighbor in S ′ \ Vb. Therefore, S is a solution for the yes-instance I of Red-Blue
Non-Blocker.

139

5.5.2 Parameter k When Each Taxon Has At Most One Prey

It is known that PDD remains NP-hard if the food-web is acyclic and every vertex
has at most one prey [FSW11]. By Proposition 5.19 we know that PDD is W[1]-hard
when parameterized by the acceptable loss of diversity D or the minimum number
of extincting taxa k. In the following, we show that in the special case that each
taxon has at most one prey, PDD is FPT when parameterized with k. Observe that
each taxon has at most one prey if and only if the food-web is an out-forest.

Proposition 5.20. PDD can be solved in time O(23k+o(k)n log n+n5), if each taxon
has at most one prey.

In order to show the claimed result we again resort to the technique of color
coding. We define a colored version of the problem, show how to solve it, and at the
end of the section, we show how to reduce instances of the uncolored problem to the
colored version.

We define 2-colored Optimizing PD with Dependencies (2-c-PDD), a
colored version of the problem, as follows. Additionally to the usual input T , F , k,
and D of PDD, we receive a coloring c which assigns each taxon x ∈ X either 0 or 1.
In 2-c-PDD, we ask whether there is a set S ⊆ X that holds each of the following

(a) the size of S is at most k,

(b) the phylogenetic diversity of S is at least D,

(c) S is viable,

(d) each taxon x ∈ X \ S satisfies c(x) = 0,

(e) each neighbor y of X \ S in the food-web F satisfies c(y) = 1, and

(f) If off(v) ⊆ X\S then off(u) ⊆ X\S or there is a taxon y ∈ off(u) with c(y) = 1
for each edge uv ∈ E(T).

Observe that if the color c(x) of a taxon x ∈ X is 1, then x has to be saved,
while x may be saved or may go extinct if the color c(x) is 0.

Observation 5.21. Given a yes-instance I = (T ,F , k,D, c) of 2-c-PDD with
solution S and a (possibly internal) vertex w ∈ V (T) with c(x) = 0 for
each x ∈ off(w). Then either off(w) ⊆ S or off(w) ⊆ X \ S.

140

Proof. If off(w) ⊆ S, we are done.
Let there be a taxon x ∈ off(w) which is not in S. Let v be the descendant of x

(possibly v = x) such that off(v) ⊆ X \ S and off(u) ∩ S ̸= ∅ for the parent u of v.
Because S is a solution, off(v) ⊆ X \S, and off(u)∩S ̸= ∅, we conclude that there is
a taxon y ∈ off(u) with c(y) = 1. Therefore, w is a descendant of v and we conclude
that off(w) ⊆ off(v) ⊆ X \ S.

Definition 5.22.

a) Given a set of taxa and a coloring c : X → {0, 1}, we define c−1(0) and c−1(1)
to be the subsets of X that c maps to 0 or 1, respectively.

b) Given a food-web F and a coloring c, we define Fc,0 to be the underlying
undirected graph of F induced by c−1(0).

Observation 5.23. Given a yes-instance I = (T ,F , k,D, c) of 2-c-PDD
with solution S and let C be a connected component of Fc,0. Then either V (C) ⊆ S
or V (C) ⊆ X \ S.

Proof. If V (C) ⊆ S, we are done.
Since S is a solution, each neighbor y of X \ S in the food-web satisfies c(y) = 1.

Therefore, if there is a taxon x ∈ V (C) which is not in S, then each neighbor of x is
in X \S or in c−1(1). By definition, C is a connected component and V (C) ⊆ c−1(0).
We conclude that V (C) ⊆ X \ S.

Lemma 5.24. 2-c-PDD can be solved in O(n4) time if each taxon has at most
one prey.

Proof. Intuition. We reduce an instance I = (T ,F , k,D, c) of 2-c-PDD to an
instance of Knapsack, in which the threshold of profit is limited in k. In Knapsack
we are given a set of items A, a cost-function c : A → N, a value-function d : A → N,
and two integers B—the budget—and D—the required value. It is asked whether
there is a set A ⊆ A such that cΣ(A) ≤ B and dΣ(A) ≥ D. Knapsack is NP-
hard [Kar72] and can be solved in O(D · |A|2) time [GRR19].
Algorithm. Compute the set Z of edges uv of T which hold that off(v) ⊆ c−1(0)
and there is a taxon y ∈ off(u) with c(y) = 1. For each e = uv ∈ Z, define
integers pv := | off(v)| and qv := λ(e) +

∑︁
e′∈E(Tv) λ(e

′), where Tv is the subtree of T
rooted at v. Intuitively, pv is the number of taxa and qv is the diversity that would
be lost if all taxa in off(v) would go extinct.

141

Define a graph G on the vertex set VG := {v | uv ∈ Z}. Compute the connected
components C1, . . . , Cℓ of Fc,0. Iterate over Ci. Compute the edges u1v1, . . . , uqvq ∈ Z
with off(vj) ∩ V (Ci) ̸= ∅ for j ∈ [q]. Make v1, . . . , vq a clique in G.

Compute the set A of connected components of G.
Iterate over v ∈ VG. If there is a taxon y ∈ c−1(1) and in F there is a path from

some taxon x ∈ off(v) to y, then remove the connected component A from A.
We define a Knapsack instance I ′ := (A, c′, d, B,D′) as follows. The set of

items is A, we define the budget B as D = PDT (X) −D and the desired profit D′

as k. The cost- and value-function are defined as follows. For an item A ∈ A, we
define c′(A) to be

∑︁
v∈V (A) qv, and d(A) to be

∑︁
v∈V (A) pv.

If I ′ is a yes-instance of Knapsack, we return yes. Otherwise, we return no.
Correctness. Observe that {off(v) | uv ∈ Z} and {C1, . . . , Cℓ} =: CF are both
partitions of c−1(0). We define the set X(A) := {x ∈ X | x ∈ off(v), v ∈ V (A)}, for
connected components A ∈ A of G. We show that the instance I of 2-c-PDD is a
yes-instance if and only if the instance I ′ of Knapsack is a yes-instance.

Let I ′ be a yes-instance of Knapsack. So, there is a set S ⊆ A with dΣ(S) ≥ k
and c′Σ(S) ≤ PDT (X) − D. Let P ⊆ VG be the union of the vertices V (A) for A
in S and let Q ⊆ X to be the set union of taxa X(A) for A in S. We want to show
that R := X \ Q is a solution of the instance I of 2-c-PDD. Because dΣ(S) ≤ k
we conclude k ≥

∑︁
v∈P pv =

∑︁
v∈P | off(v)| ≥ |Q|. Consequently, the size of R is at

most |X| − k = k. By the definition of Z, we know that each v ∈ P has a parent u
which satisfys that there is a taxon y ∈ off(u) with c(y) = 1. Consequently,

PDT (R) = PDT (X)−
∑︂
v∈P

qv = PDT (X)− dΣ(S) ≥ PDT (X)−D = D. (5.4)

Let x ∈ Q and y ∈ X be taxa which satisfy that y can be reached from x in F .
Because x is in Q, there is a connected component A ∈ S of G and a vertex v ∈ V (A)
that satisfies x ∈ off(v). By the construction, we know that each taxon that can be
reached from x, including y, are colored with 0 because A would have been removed
from A, otherwise. Consequently, y is in the same connected component as x in Fc,0

and thus there is a vertex v′ ∈ V (A) that satisfies y ∈ off(v′). Therefore, y is also in Q
and we conclude that R is viable. By the definition of A, we conclude Q ⊆ c−1(0).
By the construction the taxa of a connected component of Fc,0 are a subset of the
union

⋃︁
v∈V (A) off(v) for some unique A ∈ A. Therefore, the neighbors of Q in F are

colored with 1. So, R is a solution of the yes-instance I of 2-c-PDD.
Conversely, let I be a yes-instance of 2-c-PDD with solution S. Let Z be the set

of edges as defined in the algorithm and let C1, . . . , Cℓ be the connected components
of Fc,0. Let A be the set of connected components of G. By Observations 5.21

142

and 5.23, we conclude that for each connected component A in A either X(A) ⊆ S
or X(A) ⊆ X \ S. Now, let S ⊆ A be the set of connected components A of G that
satisfy X(A) ⊆ X \S. We observe that X \S has a size of k and PDT (S) ≥ D, as S is
a solution of I and so dΣ(S) =

∑︁
A∈S,v∈A pv =

∑︁
A∈S,v∈A | off(v)| = |X \S| ≥ k = D′.

Further, c′Σ(S) =
∑︁

A∈S,v∈A qv = PDT (X) − PDT (S) ≥ PDT (X) − D = B. Hence,
S is a solution to the yes-instance I ′ of Knapsack.
Running time. Observe that |E(F)| ∈ O(n) because each taxon has at most one
prey. The size of Z is at most n and therefore also the size of |A|. All steps in
the reduction can be computed in O(n4) time. Defining the instance I ′ is done
in O(n) time. Computing whether I ′ is a yes-instance of Knapsack can be done
in O(k · n2) time. Therefore, the overall running time is O(n4).

It remains to show how to utilize the result of Lemma 5.24 to compute a solution
for an instance of PDD. Other than in the proofs of Theorems 5.1, 5.2, and 5.3, we
resort on the concept of (n, k)-universal sets instead of (n, k)-perfect hash functions.

Proof (of Proposition 5.20). Algorithm. Let I = (T ,F , k,D) be an instance of
PDD. Let x1, . . . , xn ∈ X be an arbitrary order of the taxa.

Compute an (n, 3k)-universal set U . Iterate over A ∈ U and define 2-color-
ings cA : X → {0, 1} by setting cA(xi) := 1 if and only if i ∈ A. Then, solve the
instances IA := (T ,F , k,D, cA) of 2-c-PDD with Lemma 5.24. Return yes if there
is an A ∈ U , such that IA is a yes-instance. Otherwise, return no.
Correctness. If IA for some A ∈ U is a yes-instance of 2-c-PDD and let S ⊆ X be a
solution. Then, by the definition, S is viable, |S| ≤ k, and PDT (S) ≥ D. Therefore,
instance I is a yes-instance of PDD with solution S.

Assume that I is a yes-instance of PDD with solution S. Define Y := X\S—the
species that die out. Observe that |Y | = |X| − |S| ≥ |X| − k = k. Let u1v1, . . . , uℓvℓ
be the edges in E(T) that satisfy off(vi) ⊆ Y and there is a taxon x̄i ∈ off(ui) \ Y .
Define Z1 := {x̄1, . . . , x̄ℓ} and observe |Z1| ≤ ℓ ≤ |Y | ≤ k. Now, let Z2 be the set
of neighbors of Y in F . Because each taxon has at most one prey, we conclude that
if x ∈ Y then also N>(x) ⊆ Y . Therefore, each taxon in Z2 is the prey of at least
one taxon of Y . Consequently, |Z2| ≤ |Y | ≤ k. Define Z := Y ∪ Z1 ∪ Z2 and by the
previous, we know |Z| ≤ 3k. If necessary, add taxa to Z, such that contains 3k taxa.
Define sets Y ′ := {i | xi ∈ Y } and Z ′ := {i | xi ∈ Z}.

Because U is an (n, 3k)-universal set, {A ∩ S | A ∈ U} contains all 23k subsets
of S for any S ⊆ [n] of size 3k. Thus, there is an A∗ ∈ U such that A∩Z ′ = Z ′ \ Y ′.
Therefore, cA∗ maps each y ∈ Y to 0, each z ∈ Z1 ∪ Z2 to 1 and each other taxon
to any value of {0, 1}. We conclude that the instance IA∗ := (T ,F , k,D, cA∗) is a
yes-instance of 2-c-PDD.

143

Minimum Vertex Cover Max Leaf #Distance to
Clique

Distance to
Source-Dominant

Distance to
Cluster

Distance to
Co-Cluster

Distance to
disjoint Paths

Feedback
Edge Set BandwidthTreedepth

Feedback
Vertex Set

Maximum
DegreePathwidth

Treewidth
Distance to
Bipartite

PDD
s-PDD

Figure 5.2: This figure depicts the relationship between a structural parameter of the food-
web and the complexity of solving PDD and s-PDD. A parameter π is marked green () if
PDD admits an FPT-algorithm with respect to π, red () if s-PDD is NP-hard for constant
values of π, or red and green () if PDD is NP-hard for constant values of π while s-PDD
admits an FPT-algorithm with respect to π. Two parameters π1 and π2 are connected with
an edge if in every graph the parameter π1 further up van be bounded by a function in π2.
A more in-depth look into the hierarchy of graph-parameters can be found in [SWF+20].

Running Time. (n, 3k)-universal sets of size 23k(3k)O(log(3k)) log n = 23k2O(log2(k)) log n

are constructed in time 23k(3k)O(log(3k))n log n = 23k2O(log2(k))n log n [NSS95].
For a given A ∈ U , we can construct IA in O(|A|) = O(n) time. By Lemma 5.24,

we can compute whether IA is a yes-instance in O(n4) time. Therefore, the overall
running time is O(23k2O(log2(k))n log n+ n5) = O(23k+o(k)n log n+ n5).

5.6 Structural Parameters

In this section, we study how the structure of the food-web affects the complexity
of s-PDD and PDD. Figure 5.2 and Table 5.1 depict a summary of these complex-
ity results.

Some of these results are already shown by Faller et al. [FSW11]. These in-
clude that PDD remains NP-hard on instances in which the food-web is a bipartite
graph [FSW11] and s-PDD is already NP-hard if the food-web is a tree of height
three [FSW11]. Further, Faller et al. [FSW11] also gave a reduction from Vertex
Cover to PDD. Because Vertex Cover is NP-hard for graphs of maximum degree
three [Moh01], also the constructed food-web has a maximum degree of three.

In the next subsection, we have an in-depth look into the parameterization by
the distance to cluster, also called cluster vertex deletion number (dist-clust) of the

144

food-web. There, we show that PDD is NP-hard even if the underlying undirected
graph of the food-web is a cluster graph but s-PDD is FPT when parameterized
by dist-clust. Afterward, we show that PDD is FPT when parameterized by the
distance to co-cluster (dist-co-clust) and that s-PDD is FPT with respect to the
treewith (twF) of the food-web. Consequently, s-PDD can be solved in polynomial
time if the food-web is a tree, disproving Conjecture 4.2. in [FSW11].

5.6.1 Distance to Cluster

In this subsection, we consider the special case that given an instance of PDD or s-
PDD, we need to remove only a few vertices from the food-web F to obtain a cluster
graph in the underlying undirected graph. Recall that a graph is a cluster graph if
the existence of edges {u, v} and {v, w} imply the existence of the edge {u,w}.

Because F is acyclic, we have the following: Every clique in F has exactly one
vertex v0 ∈ V (C) such that v0 ∈ N<(v) for each v ∈ V (C) \ {v0}. In fact, after
applying Reduction Rule 5.7 exhaustively to any cluster graph, every connected
component is a star in which all edges are directed away from the center.

In this subsection, we further use the following classification of instances. Recall
that T ⟨Y ⟩ is the spanning tree of the vertices in Y .

Definition 5.25. An instance I = (T ,F , k,D) of PDD or s-PDD is source-
separating if T ⟨{ρ} ∪ sources(F)⟩ and T ⟨{ρ} ∪ (X \ sources(F))⟩ only have ρ as
common vertex. Here, ρ is the root of T .

Figure 5.3 depicts in (1) an example of a source-separating instance.
In Theorem 5.6, we show that s-PDD is FPT with respect to the distance to

cluster of the food-web. Afterward, we show that PDD, however, is NP-hard on
source-separating instances in which the food-web has a cluster graph as underlying
graph. Then, we show that PDD can be solved in polynomial time in a further
special case.

Theorem 5.6. s-PDD can be solved in O(6d · n2 ·m · k2) time, when we are given
a set Y ⊆ X of size d such that F − Y is a cluster graph.

To prove this theorem, we first consider a special case in the following auxiliary
lemma.

Lemma 5.26. Given an instance I = (T ,F , k,D) of s-PDD and a set Y ⊆ X of
size d such that F − Y is a source-dominant graph, we can compute whether there is
a viable set S ∪ Y with |S ∪ Y | ≤ k and PDT (S ∪ Y) ≥ D in O(3d · n · k2) time.

145

Proof. We provide a dynamic programming algorithm. Let C1, . . . , Cc be the con-
nected components of F − Y and let xi be the only source in Ci for each i ∈ [c].
Table definition. A set S ⊆ X \ Y of taxa is (ℓ, Z)-feasible, if |S| ≤ ℓ and S ∪ Z is
viable, for an integer ℓ and a set Z of taxa. The dynamic programming algorithm
has tables DP and DPi for each i ∈ [c]. We want entry DP[i, ℓ, Z], for i ∈ [c], ℓ ∈ [k]0,
and Z ⊆ Y , to store the largest phylogenetic diversity PDT (S) of an (ℓ, Z)-feasible
set S ⊆ C1 ∪ · · · ∪ Ci, and −∞ if no such set S exists.

The table entries DPi[j, b, ℓ, Z] additionally have a dimension b with b ∈ {0, 1}.
For b = 0, an entry DPi[j, b, ℓ, Z] stores the largest phylogenetic diversity PDT (S)

of an (ℓ, Z)-feasible set S ⊆ {x(i)1 , . . . , x
(i)
j }. For b = 1, additionally some vertex v(i)j′

with j′ < j needs to be contained in S.
Algorithm. Iterate over the edges of F . For each edge uv ∈ E(F) with u, v ∈ Y ,
remove all edges incoming at v, including uv, from E(F). After this removal, v is a
new source.

We initialize the base cases of DPi by setting DPi[j, 0, 0, Z] := 0 for each i ∈ [c],
each j ∈ [|Ci|], and every Z ⊆ sources(F). Moreover, DPi[1, b, ℓ, Z] := λ(ρv

(i)
1)

if ℓ ≥ 1 and Z ⊆ N>(v
(i)
1) ∪ sources(F); and DPi[1, b, ℓ, Z] := −∞, otherwise.

To compute further values for j ∈ [|Ci| − 1], b ∈ {0, 1}, and ℓ ∈ [k] we use the
recurrences

DPi[j + 1, b, ℓ, Z] = max{DPi[j, b, ℓ, Z],DPi[j, b
′, ℓ− 1, Z \N>(v

(i)
j+1)] + λ(ρv

(i)
j+1)},

(5.5)
where b′ = 0 if there is an edge from a vertex in Y to x(i)j+1 and otherwise b′ = 1.

Finally, we set DP[1, ℓ, Z] := DP1[|C1|, 0, ℓ, Z] and compute further values with

DP[i+ 1, ℓ, Z] = max
Z′⊆Z,ℓ′∈[ℓ]0

DP[i, ℓ′, Z ′] + DPi+1[|Ci+1|, 0, ℓ− ℓ′, Z \ Z ′]. (5.6)

There is a viable set S ∪ Y with |S ∪ Y | ≤ k and PDT (S ∪ Y) ≥ D if and only
if DP[c, k − |Y |, Z] ≥ D − PDT (Y).
Correctness. Assume that DP stores the intended values. Then, there is an (ℓ, Z)-
feasible set S ⊆ X \ Y , if DP[c, k − |Y |, Z] ≥ D − PDT (Y). First, this implies
that S∪Y is viable. Moreover, since S has size at most k−|Y |, we obtain |S∪Y | ≤ k.
Finally, because T is a star and S and Y are disjoint, PDT (S) ≥ D − PDT (Y)
implies PDT (S ∪ Y) ≥ D. The converse direction can be shown analogously.

It remains to show that DP and DPi store the right values. The base cases
are correct. Towards the correctness of Recurrence (5.5), as an induction hypothesis,
assume that DPi[j, b, ℓ, Z] stores the desired value for a fixed j ∈ [|Ci|−1], each i ∈ [c],
b ∈ {0, 1}, ℓ ∈ [k]0 and every Z ⊆ Y . Let DPi[j + 1, b, ℓ, Z] store d. We show that

146

there is an (ℓ, Z)-feasible set S ⊆ {x(i)1 , . . . , x
(i)
j+1} with PDT (S) = d. We conclude

with Recurrence (5.5) that DPi[j, b, ℓ, Z] stores d or DPi[j, 1, ℓ − 1, Z \ N>(v
(i)
j+1)]

stores d− λ(ρv
(i)
j+1). If DPi[j, b, ℓ, Z] stores d, then because there is an (ℓ, Z)-feasible

set S ⊆ {x(i)1 , . . . , x
(i)
j } ⊆ {x(i)1 , . . . , x

(i)
j+1} we are done. If DPi[j, 1, ℓ−1, Z \N>(v

(i)
j+1)]

stores d−λ(ρv(i)j+1) then there is an (ℓ−1, Z\N>(v
(i)
j+1))-feasible set S ′ ⊆ {x(i)1 , . . . , x

(i)
j }

containing x(i)1 or some x(i)j′ ∈ N>(Y). Consequently, also S ′∪{x(i)j+1} is (ℓ, Z)-feasible
and PDT (S

′ ∪ {x(i)j+1}) = d.

Now conversely, let S ⊆ {x(i)1 , . . . , x
(i)
j+1} be an (ℓ, Z)-feasible set. We show

that DPi[j + 1, b, ℓ, Z] stores at least PDT (S). If S ⊆ {x(i)1 , . . . , x
(i)
j } then we know

from the induction hypothesis that DPi[j, b, ℓ, Z] stores PDT (S) and
therefore also DPi[j + 1, b, ℓ, Z] stores PDT (S). If x

(i)
j+1 ∈ S, then S

contains x(i)1 or some x(i)j′ ∈ N>(Y). Define S ′ := S \ {x(i)j+1}. Then, |S ′| = ℓ − 1,
and S ′ ∪ (Z \ N>(x

(i)
j+1)) is viable because S is (ℓ, Z)-feasible. Consequently,

DPi[j, 1, ℓ − 1, Z \ N>(x
(i)
j+1)] ≥ PDT (S

′) = PDT (S) − λ(ρx
(i)
j+1) and therefore,

DPi[j + 1, b, ℓ, Z] ≥ PDT (S).
Now, we focus on the correctness of Recurrence (5.6). Let DP[i+1, ℓ, Z] store d.

We show that there is an (ℓ, Z)-feasible set S ⊆ C1 ∪ · · · ∪ Ci+1 with PDT (S) = d.
Because DP[i + 1, ℓ, Z] stores d, by Recurrence (5.6), there are Z ′ ⊆ Z and ℓ′ ∈ [ℓ]0
such that DP[i, ℓ′, Z ′] = d1, DPi+1[|Ci+1|, 0, ℓ − ℓ′, Z \ Z ′] = d2, and d1 + d2 = d.
By the induction hypothesis, there is an (ℓ′, Z ′)-feasible set S1 ⊆ C1 ∪ · · · ∪ Ci and
an (ℓ− ℓ′, Z \Z ′)-feasible set S2 ⊆ Ci+1 such that PDT (S1) = d1 and PDT (S2) = d2.
Then, S := S1 ∪ S2 satisfies |S| ≤ |S1|+ |S2| ≤ ℓ′ + (ℓ− ℓ′) = ℓ. Further, because Y
has no outgoing edges, Z ′ ⊆ N>(S1)∪ sources(F) and Z \Z ′ ⊆ N>(S2)∪ sources(F).
Therefore, Z ⊆ N>(S) ∪ sources(F) and S ∪ Z is viable. We conclude that S is the
desired set.

Let S ⊆ C1 ∪ · · · ∪ Ci+1 be an (ℓ, Z)-feasible set with PDT (S) = d. We show
that DP[i + 1, ℓ, Z] ≥ d. Define S1 := S ∩ (C1 ∪ · · · ∪ Ci) and Z ′ := N>(S1) ∩ Z.
We conclude that S1 ∩ Z ′ is viable. Then, S1 is (ℓ′, Z ′)-feasible, where ℓ′ := |S1|.
Define S2 := S∩Ci+1 = S \S1. Because S∪Z is viable and Z does not have outgoing
edges, we know that Z ⊆ N>(S) ∪ sources(F). So, Z \ Z ′ ⊆ N>(S2) ∪ sources(F)
and because |S2| = |S| − |S1| = ℓ− ℓ′, we conclude that S2 is (ℓ− ℓ′, Z \Z ′)-feasible.
Consequently, DP[i, ℓ′, Z ′] ≥ PDT (S1) and DPi+1[|Ci+1|, ℓ − ℓ′, Z \ Z ′] ≥ PDT (S2).
Hence, DP[i+ 1, ℓ, Z] ≥ PDT (S1) + PDT (S2) = PDT (S) because T is a star.

Running time. The tables DP and DPi for i ∈ [c] have O(2d · n · k) entries in
total. Whether one of the base cases applies can be checked in linear time. We can

147

compute the set Z \N>(x) for any given Z ⊆ Y and x ∈ X in O(d2) time. Therefore,
the O(2d ·n ·k) times we need to apply Recurrence (5.2) consume O(2dd2 ·n ·k) time
in total. In Recurrence (5.3), each x ∈ Y can be in Z ′, in Z \ Z ′ or in Y \ Z so that
we can compute all the table entries of DP in O(3d · n · k2) which is also the overall
running time.

Proof (of Theorem 5.6). Algorithm. We iterate over all the subsets Z of Y and
define R0 := Y \Z. We want that Z is the set of taxa that are surviving while the taxa
in R0 are going extinct. Compute the set R ⊆ X of taxa r for which in F each path
from r to s contains a taxon of R0, for each s ∈ sources(F). Compute TZ := T −R
and FZ := F −R. Continue with the next Z if Z ∩R ̸= ∅.

With Lemma 5.26, compute whether there is a viable set S ′ = S ∪ Z in in-
stance I = (TZ ,FZ , k,D) such that |S ′| ≤ k and PDT (S

′) ≥ D. Return yes, if such
a set exists. Otherwise, continue with the next subset Z of Y . After iterating over
all subsets Z of Y , return no.
Correctness. Let Z be a given subset of Y . Assume that there is a solution S
with Y ∩ S = Z. Let x be a vertex for which each path from x to a source s of F
contains a vertex of Y \ Z. Because S is viable, x is not in S.

The rest of the correctness follows by Lemma 5.26.
Running time. For each subset Z of Y , we can compute TZ and FZ in O(m ·n) time.
By Lemma 5.26, we can compute whether there is a solution S with Y ∩ S = Z
in O(3d · n · k2) time. Therefore, the overall running time is O(6d · n2 ·m · k2).

Next, we show that PDD, in contrast to s-PDD, is NP-hard even when the
food-web is restricted to have a cluster graph as an underlying undirected graph.
We obtain this hardness by a reduction from Vertex Cover on cubic graphs.
In cubic graphs, the degree of each vertex is exactly three. Recall, in Vertex
Cover we are given an undirected graph G = (V,E) and an integer k and we ask
whether a set C ⊆ V of size at most k exists such that u ∈ C or v ∈ C for each
edge {u, v} ∈ E. The set C is called a vertex cover. Vertex Cover is NP-hard on
cubic graphs [Moh01].

Theorem 5.7. PDD is NP-hard on source-separating instances in which the food-web
is a cluster graph and each connected component has at most four vertices.

Proof. Reduction. Let (G, k) be an instance of Vertex Cover, where G = (V,E)
is cubic. We define an instance I = (T ,F , k′, D) of PDD as follows. Let T have a
root ρ. For each vertex v ∈ V , we add a child v of ρ. For each edge e = {u, v} ∈ E,
we add a child e of ρ and two children [u, e] and [v, e] of e. Let N be a big integer.

148

We set the weight of ρe to N − 1 for each edge e in E. All other edges of T have
a weight of 1. Additionally, for each edge e = {u, v} ∈ E we add edges (u, [u, e])
and (v, [v, e]) to F . Finally, we set k′ := |E|+ k and D := N · |E|+ k.
Correctness. The instance I of PDD is constructed in polynomial time for a suit-
able N . The leaves in T are V ∪ {[u, e], [v, e] | e = {u, v} ∈ E}. The sources of F
are V . Therefore, I is source-separating. Let e1, e2, and e3 be the edges incident
with v ∈ V (G). Each connected component in F contains four vertices, v, and [v, ei]
for i ∈ {1, 2, 3}.1

We show that (G, k) is a yes-instance of Vertex Cover if and only if I is
a yes-instance of PDD. Let C ⊆ V be a vertex cover of G of size at most k.
If necessary, add vertices to C until |C| = k. For each edge e ∈ E, let ve be
an endpoint of e that is contained in C. Note that ve exists since C is a vertex
cover. We show that S := C ∪ {[ve, e] | e ∈ E} is a solution for I: The size of S
is |C|+ |E| = k+ |E| = k′. By definition, for each taxon [ve, e] we have ve ∈ C ⊆ S,
so S is viable. Further, as S contains a taxon [ve, e] for each edge e ∈ E, we conclude
that PDT (S) ≥ N · |E|+PDT (C) = N · |E|+k = D. Therefore, S is a solution of I.

Conversely, let S be a solution of instance I of PDD. Define C := S ∩ V (G) and
define S ′ := S \ C. Because PDT (S) ≥ D, we conclude that for each e ∈ E at least
one taxon [u, e] with u ∈ e is contained in S ′. Thus, |S ′| ≥ |E| and we conclude
that the size of C is at most k. Because S is viable we conclude that u is in C for
each [u, e] ∈ S ′. Therefore, C is a vertex cover of size at most k of G.

PDD is NP-hard even if each connected component in the food-web is a path of
length three [FSW11]. So, we wonder if the hardness still holds if we restrict the food-
web even more such that each connected component of the food-web contains at most
two vertices. We were not able to show that PDD is NP-hard for this special case.
However, in the next proposition, we show that PDD can be solved in polynomial
time if we restrict the instance further to be source-separating as well.

Proposition 5.27. PDD can be solved in O(k ·n2 · log2 n) time on source-separating
instances, if the food-web only has isolated edges.

Proof. In this algorithm, we use techniques similar to the way Bordewich et al.
showed that phylogeny across two trees can be computed efficiently [BSS09]. We
reduce a source-separating instance of PDD to O(k) instances of Minimum-Cost

1Observe that we only constructed the instance so that the connected components are stars, but
one could add edges ([v, e1], [v, e2]), ([v, e1], [v, e3]), and ([v, e2], [v, e3]) for each vertex v, to meet
the formal requirement of a cluster graph.

149

ρ

x0 x4 x5 x6 x9

x1 x2 x3 x7 x8

T =(1) F =

x7

x6

x8

x5

x9

x4

x2 x0

x3 x1

ρ1

t = ρ2

s ν

x0

x4 x5 x6 x9

x1 x2 x3

x7
x8

G =

(2)

Figure 5.3: This figure shows in (1) a hypothetical source-separating instance of PDD.
The sources are drawn in green and the predators in orange. In (2), the instance of MCNF is
shown, as it would have been constructed in Proposition 5.27. For the sake of readability, ca-
pacities and costs are omitted. The blue and solid edges mark how a solution {x0, x5, x6, x9}
transfer to a flow.

Network Flow (MCNF), which can be solved in O(n2 log2 n) time, each [Min86,
AMO95].

In MCNF one is given a directed graph G = (V,E) with two vertices s, t ∈ V—
the source s and the sink t—and two integers F and C, where each edge e ∈ E has
a positive capacity c(e) and a cost a(e). The cost may be negative and G may have
parallel edges.

A flow f assigns each edge e a non-negative integer value f(e). The cost of a
flow f is

∑︁
e∈E f(e) · a(e). A flow f is q-proper if q =

∑︁
w∈V f(sw) =

∑︁
u∈V f(ut),∑︁

u∈V f(uv) =
∑︁

w∈V f(vw) for each vertex v ∈ V \ {s, t}, and f(e) ≤ c(e) for each
edge e. For an instance (G, s, t, F, C, c, a) of MCNF, we ask whether G contains
an F -proper flow of cost at most C.

Algorithm. Let I = (T ,F , k,D) be a source-separating instance of PDD. Define T1

and T2 to be the subtree of T spanning over the vertices {ρ} ∪ sources(F), and,
respectively, {ρ}∪ (X \ sources(F)). To avoid confusion, for i ∈ {1, 2} the root of Ti

is called ρi. For an example of the following reduction, consider Figure 5.3.
Iterate over k′ ∈ [⌊k/2⌋]0. We define an instance I ′

k′ = (G, s, t, F, C, c, a) of
MCNF as follows. The set of vertices of G are the vertices of T1 and T2 and two new
vertices s and ν. The vertex s is the source and t := ρ2 is the sink of G. We add
edges sρ1 and sν, where c(sρ1) = k′ and c(sν) = k − 2k′. For each leaf x of T2, add
an edge νx of capacity k. For each edge xy of F , add an edge yx with a capacity
of 1. Each edge so far has a cost of 0. For each edge e = uv in T1, add two parallel
edges e and e′ where e has a capacity of 1 and a cost of −λ(e) and e′ has a capacity

150

of k− 1 and a cost of 0. For each edge uv in T2, add two parallel edges vu and (vu)′

(note that the edges are reversed) where vu has a capacity of 1 and a cost of −λ(uv)
and (vu)′ has a capacity of k − 1 and a cost of 0. To complete the instance, we
set F := k − k′ and C := −D.

We compute a solution for I ′
k′ and return yes if I ′

k′ is a yes-instance of MCNF.
If I ′

k′ is a no-instance of MCNF for each k′, then we return no.
Correctness. The correctness is shown similarly as the correctness of the algorithm
in [BSS09]. We show first that if I is a yes-instance of PDD then there is a k′ such
that I ′

k′ is a yes-instance of MCNF. Afterward, we show that if I ′
k′ is a yes-instance

of MCNF for specific k′ then I is a yes-instance of PDD.
Assume that I is a yes-instance of PDD with solution S ⊆ X. If necessary, add

vertices to S until |S| = k. Let S1 be the subset of vertices of S which are not sources.
Let k′ be the size of S1. Further, denote the set {x ∈ X | xy ∈ E(F), y ∈ S1}
with S2. Because S is viable and every connected component in F contains at
most two vertices, we conclude S2 ⊆ S. Then, we define S3 := S \ (S1 ∪ S2). We
define a flow f in I ′

k′ as follows. Let Ei be the set of edges on a path between ρ
and Si in T , for i ∈ [3]. We set f(e) = 1 for each e ∈ E1 and f(vu) = 1 for
each uv ∈ E2∪E3. So far we have defined the flow that ensures that the cost is −D.
Now, we ensure that the flow f is k−k′-proper. For each edge xy ∈ E(F) with y ∈ S1

we set f(yx) = 1. Further, for each x ∈ S3 we set f(νx) = 1. We then set f(sρ1) = k′

and f(sv) = k− 2k′. For each edge e of T1, we set f(e′) = | off(e)∩ S1| − 1. That is,
the f(e′) is the number of offspring e′ has in S1 minus 1. For each edge e = uv of T2

we set f((vu)′) = | off(e)∩ (S2 ∪S3)| − 1. It remains to show that f is k− k′-proper.
Claim: The flow f is k − k′-proper.
Proof. One can easily verify that f(e) ≤ c(e) for each e ∈ E(G).

Observe that the size of S3 is |S| − |S1 ∪ S2| = k − 2k′. The flow leaving s
is
∑︁

u∈V f(su) = f(sρ1) + f(sv) = k′ + k − 2k′ = k − k′. The flow entering t = ρ2
is
∑︁

w∈V f(wt) = |S2| + |S3| = k′ + (k − 2k′) = k − k′. By definition, the flow
entering and leaving ρ1 has size k′. The flow leaving ν is |S3| and so equals to the
flow entering ν, f(sν) = k − 2k′. Each leaf x has, if x ∈ S, a flow of 1 incoming and
leaving, and 0, otherwise. For an internal vertex v ̸= ρ of T with children w1, . . . , wz

and parent u, we observe off(uv) =
⋃︁z

i=1 off(vwi). With this observation we conclude
that f is k − k′-proper. ⋄

Conversely, assume now that f is a k − k′-proper flow of I ′
k′ . Let S be the set of

vertices that are corresponding to leaves in T and that have a positive entering flow.
We show that S is a solution for instance I of PDD. Since f(sρ1) ≤ k′, we conclude
that |S ∩ off(ρ1)| ≤ k′. We conclude |S ∩ off(ρ2)| ≤ k − 2k′ + |S ∩ off(ρ1)| ≤ k − k′,

151

because f(sν) ≤ k − 2k′. Thus, the size of S is at most k. If x ∈ off(ρ1) is in S
then x has a positive flow leaving x and we conclude that f(xy) > 0 for yx ∈ E(F).
Therefore, y is in S and S is viable. Let E1 be the set of edges e with f(e) > 0
and a(e) < 0. Recall that a(e) is the cost of e. Only edges corresponding to an edge
in T are in E1. Let E ′

1 be the corresponding edges of E1, especially, edges in T2 are
turned around. Then, we observe

PDT (S) ≥
∑︂
e∈E′

1

λ(e) = −
∑︂
e∈E1

f(e) · a(e) ≥ D. (5.7)

Therefore, S is a solution for instance I of PDD.
Running time. For a given k′, we can construct the instance I ′

k′ in linear time. A
solution for an instance of MCNF can be computed in O(n2 log2 n) time [Min86,
AMO95]. An instance I ′

k′ contains at most 2n vertices and at most 6n edges. So,
the overall running time is O(k · n2 · log2 n).

5.6.2 Distance to Co-Cluster

In this section, we show that PDD is FPT with respect to the distance to co-cluster
of the food-web. A graph is a co-cluster graph if its complement graph is a cluster
graph.

In our algorithm, we solve as a subroutine an auxiliary problem, called Hitting
Set with Tree-Profits, in which we are given a universe U , a family of subsets W
of U , a U -tree T , and integers k and D. We ask whether there is a set S ⊆ U of size
at most k such that PDT (S) ≥ D and S ∩W ̸= ∅ for each W ∈ W .

Lemma 5.28. Hitting Set with Tree-Profits can be solved in O(3|W| ·n) time.

Proof. We adopt the dynamic programming algorithm with which one can solve
Max-PD with weighted costs for saving taxa in pseudo-polynomial time [PG07].
Table definition. We define two tables DP and an auxiliary table DP′. We want
that entry DP[v, 0,M], for v ∈ V (T), and M ⊆ W , stores 0 if M is empty
and DP[v, 1,M] stores the biggest phylogenetic diversity PDTv(S) of a set S ⊆ off(v)
in the subtree Tv rooted at v where S ∩M ̸= ∅ for each M ∈ M. Otherwise, we
store −∞. For a vertex v ∈ V (T) with children w1, . . . , wj, in DP′[v, i, b,M] we only
consider sets S ⊆ off(w1) ∪ · · · ∪ off(wi).
Algorithm. For a leaf u ∈ U of T , in DP[u, 1,M] store 0 if u ∈M for each M ∈ M.
Otherwise, store −∞. For a given vertex v of T , in DP[v, 0,M] and DP′[v, i, 0,M]
store 0 if M = ∅. Otherwise, store −∞.

152

Let v be an internal vertex of T with children w1, . . . , wz. For each b ∈ {0, 1} and
every family M of subsets of W , we set DP′[v, 1, b,M] := DP[w1, b,M] + b · λ(vw1).
To compute further values, we use the recurrence

DP′[v, i+ 1, 1,M] = max
M′,b1,b2

DP′[v, i, b1,M′] + DP[wi+1, b2,M\M′] + b2 · λ(vwi+1).

(5.8)
Here, the maximum is taken over M′ ⊆ M and b1, b2 ∈ {0, 1} where we additionally
require b1 + b2 ≥ 1; and if M′ ̸= ∅ then b1 = 1; and if M′ ̸= M then b2 = 1. Finally,
we set DP[v, b,M] := DP′[v, z, b,M].

If DP[ρ, 1,W] ≥ D, return yes. Otherwise, return no.
Correctness. The base cases are correct. Overall, the correctness of Recurrence (5.8)
can be shown analogously to [PG07].
Running time. As a tree has at most 2n vertices, the overall size of DP and DP′

is O(2|W| · n). In Recurrence (5.8), there are three options for each M ∈ W .
Hence, the the total number of terms considered in the entire table can be com-
puted in O(3|W| · n) time.

In the following, we reduce from PDD to Hitting Set with Tree-Profits.
Herein, we select a subset of the modulator Y to survive. Additionally, we select the
first taxon xi which survives in X \Y . Because F −Y is a co-cluster graph, xi is in a
specific independent set I ⊆ X and any taxon X \(I∪Y) feed on xi. Then, by saving
a taxon xj ∈ X \ (I ∪ Y), any other taxon in X \ Y has some prey. Subsequently, a
solution is found by Lemma 5.28.

Theorem 5.8. PDD can be solved in O(6d ·n3) time, when we are given a set Y ⊆ X
of size d such that F − Y is a co-cluster graph.

Proof. Algorithm. Given an instance I = (T ,F , k,D) of PDD. Let x1, . . . , xn be a
topological ordering of X which is induced by F . Iterate over the subsets Z of Y .
Let PZ be the sources of F in X \ Y and let QZ be N>(Z) \ Y , the taxa in X \ Y
which are being fed by Z. Further, define RZ := PZ ∪QZ ⊆ X \ Y . Iterate over the
vertices xi ∈ RZ . Let xi be from the independent set I of the co-cluster graph F−Y .
Iterate over the vertices xj ∈ X \ (Y ∪ I).

For each set Z, and taxa xi and xj, with Lemma 5.28 we compute the optimal
solution for the case that Z is the set of taxa of Y that survive while all taxa of Y \Z
go extinct, xi is the first taxon in X \ Y , and xj the first taxon in X \ (Y ∪ I) to
survive. (The special cases that only taxa from I ∪ Y or only from Y survive are
omitted here.)

153

More formally, we define instances IZ,i,j of Hitting Set with Tree-Profits
for Z ⊆ Y , and i, j ∈ [n] with i < j as follows. Let the universe Ui,j be the
union of {xi+1, . . . , xj−1} ∩ I and {xj+1, . . . , xn} \ Y . In other words, we let the taxa
in Y and in {x1, . . . , xi} and in {x1, . . . , xj} \ I go extinct. For each taxon x ∈ Z
compute the set N<(x). If x ̸∈ sources(F) and N<(x) ∩ (Z ∪ {xi, xj}) = ∅, then
add N<(x) \ Y to the family of sets WZ,i,j. For each edge uv ∈ E(T) for which
in off(uv) a vertex of Z ∪ {xi, xj} is contained, add an edge uw for each child w of v
and remove v and its incident edges to obtain TZ,i,j. Finally, we set k′ := k− |Z| − 2
and D′ := D − PDT (Z ∪ {xi, xj}).

Solve IZ,i,j. If IZ,i,j is a yes-instance then return yes. Otherwise, continue with
the iteration. If IZ,i,j is a no-instance for every Z ⊆ Y , and each i, j ∈ [n], then
return no.
Correctness. We show that if the algorithm returns yes, then I is a yes-instance
of PDD. Afterward, we show the converse.

Let the algorithm return yes. Consequently, there is a set Z ⊆ Y , and there
are taxa xi ∈ X \ Y and xj ∈ X \ (Y ∪ V (I)) such that IZ,i,j is a yes-instance
of Hitting Set with Tree-Profits. As before, I is the independent set such
that xi ∈ V (I). Consequently, there is a set S ⊆ Ui,j of size at most k− |Z| − 2 such
that PDTZ,i,j

(S) ≥ D′ = D−PDT (Z ∪{xi, xj}) and S ∩W ̸= ∅ for each W ∈ WZ,i,j.
We show that S∗ := S ∪ Z ∪ {xi, xj} is a solution for instance I of PDD. Clearly,
|S∗| = |S| + |Z| + 2 ≤ k and PDT (S

∗) = PDTZ,i,j
(S) + PDT (Z ∪ {xi, xj}) ≥ D be-

cause TZ,i,j is the tree which results from T after saving Z ∪ {xi, xj}. Further,
by definition xi is a source, or is fed by Z. Because F − Y is a co-cluster graph
and xj is not in I, the independent set in which xi is, we conclude that xj ∈ N>(xi).
As S ∩W ̸= ∅ for each W ∈ WZ,i,j, each taxon x ∈ Z has a prey in Z ∪ {xi, xj} or
in S so that N<(x) ∩ S∗ ̸= ∅. Therefore, S∗ is viable and indeed a solution for I.

Assume now that S is a solution for instance I of PDD. We define Z := S ∩ Y
and let xi and xj be the taxa in S\Y , respectively S\(Y ∪I), with the smallest index.
As before, I is the independent set of xi. We show that instance IZ,i,j of Hitting
Set with Tree-Profits has S∗ := S \ (Z ∪ {xi, xj}) as a solution. Clearly, the
size of S∗ is |S| − |Z| − 2 ≤ k′ and by the definition of TZ,i,j, we also conclude
that PDTZ,i,j

(S∗) ≥ D′. Let M ∈ WZ,i,j. There is a taxon z ∈ Z that, by definition,
satisfies M = N<(z) \ Y , and z ̸∈ sources(F), and N<(z) ∩ (Z ∪ {xi, xj}) = ∅.
Consequently, as S is viable, there is a taxon x ∈ S ∩ N<(z) so that S ∩M ̸= ∅.
Hence, S∗ is a solution of instance IZ,i,j of Hitting Set with Tree-Profits.
Running time. For a given Z ⊆ Y , we can compute the topological order x1, . . . , xn
and the set RY in O(n2) time. The iterations over xi and xj take O(n2) time.
Observe, |WZ,i,j| ≤ |Z|. By Lemma 5.28, checking whether IZ,i,j is a yes-instance

154

takes O(3dn) time each. So, the overall running time is O(6d · n3) time.

5.6.3 Treewidth

Conjecture 4.2., formulated by Faller et al. [FSW11] supposes that s-PDD remains
NP-hard on instances where the underlying graph of the food-web is a tree. In this
subsection, assuming P ̸= NP, we disprove this conjecture by showing that s-PDD
can be solved in polynomial time on food-webs which are trees. We even show a
stronger result: s-PDD is FPT with respect to the treewidth of the food-web.

Theorem 5.9. s-PDD can be solved in O(9twF · nk) time.

To show Theorem 5.9, we define a dynamic programming algorithm over a tree-
decomposition of F . In each bag, we divide the taxa into three sets indicating that
they a) “are supposed to go extinct”, b) “will be saved” but “still need prey”, c) or “will
be saved” without restrictions. The algorithm is similar to the standard treewidth
algorithm for Dominating Set [CFK+15].

Proof. Let I = (T ,F , k,D) be an instance of s-PDD. We define a dynamic pro-
gramming algorithm over a nice tree-decomposition T of F = (VF , EF).

For a node t ∈ T , let Qt be the bag associated with t and let Vt be the union of
bags in the subtree of T rooted at t.
Definition of the Table. We index solutions by a partition R ∪ G ∪ B of Qt, and a
non-negative integer s. For a set of taxa Y ⊆ Vt, we call a vertex u ∈ Vt red with
respect to Y if u is in Y and u has a predator but no prey in Y . We call u green with
respect to Y if u is in Y and a) u is a source in F , or b) has prey in Y . Finally, we
call u black with respect to Y if u is not in Y .

For a node t of the tree-decomposition, a partition R ∪ G ∪ B of Qt, and an
integer s, a set of taxa Y ⊆ Vt is called (t, R,G,B, s)-feasible, if all the following
conditions hold.

(T1) Each vertex in Y \Qt is green with respect to Y .

(T2) The vertices R ⊆ Qt are red with respect to Y .

(T3) The vertices G ⊆ Qt are green with respect to Y .

(T4) The vertices B ⊆ Qt are black with respect to Y .

(T5) The size of Y is s.

155

In entry DP[t, A,R,G,B, s], we want to store the largest diversity PDT (Y)
of (t, R,G,B, s)-feasible sets Y . If there is no (t, R,G,B, s)-feasible sets Y , we
want −∞ to be stored. Let r be the root of the nice tree-decomposition T . Then,
DP[r, ∅, ∅, ∅, k] stores an optimal diversity. So, we return yes if DP[r, ∅, ∅, ∅, k] ≥ D
and no otherwise.

In the following, any time a non-defined entry DP[t, R,G,B, s] is called (in par-
ticular, if s < 0), we take DP[t, R,G,B, s] to be −∞.

We regard the different types of nodes of a tree-decomposition separately and
discuss their correctness.
Leaf Node. For a leaf t of T , the bags Qt and Vt are empty. We store

DP[t, ∅, ∅, ∅, 0] = 0. (5.9)

For all other values, we store DP[t, R,G,B, s] = −∞.
Recurrence (6.3) is correct by definition.

Introduce Node. Suppose that t is an introduce node, that is, t has a single child t′

with Qt = Qt′ ∪ {v}. We store DP[t, R,G,B, s] = DP[t′, R,G,B \ {v}, s] if v ∈ B.
If v ∈ G but v is not a source in F and v does not have prey in R ∪ G, then we
store DP[t, R,G,B, s] = −∞. Otherwise, we store

DP[t, R,G,B, s] = max
A⊆N>(v)∩(R∪G)

DP[t′, R′, G′, B, s− 1] + λ(ρv). (5.10)

Herein, we define R′ and G′ depending on A to be R′ := (R \ ({v} ∪N>(v)))∪A
and G′ := (G ∪ (N>(v) ∩ (R ∪G))) \ (A ∪ {v}).

If v ∈ B, then v ̸∈ Y for any (t, R,G,B, s)-feasible set Y . If v ∈ G but is not a
source and has no prey in R∪G, then v is not green with respect to Y for any Y . So,
these two cases store the desired value. Towards the correctness of Recurrence (6.4):
If v ∈ G ∪ R, then we want to select v and therefore we need to add λ(ρv) to the
value of DP[t, R,G,B, s]. Further, by the selection of v we know that the predators
of v could be green (but maybe are still stored as red) in t, but in t′ could be red
and therefore we reallocate N>(v) ∩ (R ∪G) and let A be red beforehand.
Forget Node. Suppose that t is a forget node, that is, t has a single child t′

with Qt = Qt′ \ {v}. We store

DP[t, R,G,B, s] = max{DP[t′, R,G ∪ {v}, B, s]; DP[t′, R,G,B ∪ {v}, s]}. (5.11)

Recurrence (6.6) follows from the definition that vertices in v ∈ Vt \ Qt, de-
pending on whether they are chosen or not, are either black or green with respect
to (t, R,G,B, s)-feasible sets.

156

B1 R1 G1

B2 B R G
R2 R R G
G2 G G G

Figure 5.4: This table shows the relationship between the three partitions R1 ∪G1 ∪B1,
R2∪G2∪B2 and R∪G∪B in the case of a join node, when R1∪G1∪B1 and R2∪G2∪B2 are
qualified for R∪G∪B. The table shows which of the sets R,G, or B an element v ∈ Qt will
be in, depending on its membership in R1, G1, B1, R2, G2, and B2. For example if v ∈ R1

and v ∈ B2, then v ∈ R.

Join Node. Suppose that t ∈ T is a join node, that is, t has two children t1 and t2
with Qt = Qt1 = Qt2 . We call two partitions R1 ∪ G1 ∪ B1 and R2 ∪ G2 ∪ B2

of Qt qualified for R ∪ G ∪ B if R = (R1 ∪ R2) \ (G1 ∪ G2) and G = G1 ∪ G2 (and
consequently B = B1 ∩B2). See Figure 5.4. We store

DP[t, R,G,B, s] = max
(π1,π2)∈Q,s′

DP[t1, R1, G1, B1, s
′]+DP[t2, R2, G2, B2, s−s′], (5.12)

where Q is the set of pairs of partitions π1 = R1 ∪ G1 ∪ B1 and π2 = R2 ∪ G2 ∪ B2

that are qualified for R ∪G ∪B, and s′ ∈ [s]0.
By Figure 5.4, we observe that in Recurrence (6.7) we consider the correct com-

binations of R, G, and B.
Running Time. The table contains O(3twF · nk) entries, as a tree decomposition
contains O(n) nodes. Each leaf and forget node can be computed in linear time. An
introduce node can be computed in O(2twF · n) time. In a join node, considering
only the qualified sets, (π1, π2) already define R, G, and B. Thus, all join nodes can
be computed in O(9twF · nk) time, which is also the overall running time.

5.6.4 Hardness Results

Max Leaf Number. Based on results of Faller et al. [FSW11], in Corollary 5.29
we show that PDD is NP-hard on instances in which the underlying undirected graph
of the food-web has a max leaf number of 2.

Corollary 5.29. PDD is NP-hard even if the food-web has max leaf number two.

Proof. When regarding the reduction of Faller et al. [FSW11, Theorem 5.1.] from
Vertex Cover to PDD we observe three things. The vertex x has been added
to ensue that y functions as a root in their unrooted definition of the problem.

157

P (0) P (1) P (2) P (q)

Figure 5.5: This figure shows an example of the food-web F ′ we reduce to in Corollary 5.29.
The vertices of X are blue and the vertices in Y are orange. Here, (despite 7 < |Y |+1) we
use N = 7.

Therefore, we do not need x for our definition of PDD, leaving paths with a length
of 3. Further, some edges in the reduction have a weight of 0 but it would have
not caused problems setting them to 1 and multiplying each other edge with a big
constant.
Reduction. Let I = (T ,F , k,D) be an instance of PDD in which the set of taxa
is X and each connected component of F is a path with a length of 3. We con-
struct an instance I ′ = (T ′,F ′, k,D′) of PDD as follows. Let P (0), P (1), . . . , P (q)

be the connected components of F where P (i) contains the taxa {xi,0, xi,1, xi,2} and
edges xi,0xi,1 and xi,1xi,2. Let N and M be constants bigger than |X| + 1 and such
that N · q < M .

Let Y be a set of new taxa yi,j for i ∈ [q] and j ∈ [N]. Our new set of taxa isX∪Y .
Multiply each edge-weight in T with M and add the taxa Y as children of the root ρ
to obtain T ′. Set the weight of the edges ρyi,j to 1 for each i ∈ [q], and j ∈ [N]. To
obtain F ′, we add Y as vertices to F and add edges yi,jyi,j+1, xi−1,0yi,1 and yi,Nxi,2
for each i ∈ [q], and each j ∈ [N]. Figure 5.5 depicts an example of how to create F ′.
Finally, we set k′ = k and set D′ := D ·M .
Correctness. The reduction can be computed in polynomial time. The underlying
graph of F ′ is a path and therefore has a max leaf number of two. Any solution for I
is also a solution for I ′.

Conversely, let I ′ be a yes-instance of PDD with solution S ⊆ X ∪ Y . De-
fine Y (i) to be the set of the taxa yi,j for j ∈ [N]. If xi,2 is in S but xi,1 is not
in S then, because S is viable, we know that Y (i) ⊆ S. Observe PDT (Y

(i)) = N
and PDT (xi,1) ≥ M . Thus, also S ′ := (S \ Y (i)) ∪ {xi,0, xi,1} is a solution for I ′.
Therefore, we assume that if xi,j is in S then also xi,j−1 for j ∈ {1, 2}. De-
fine sets SX = S ∩ X and SY = S ∩ Y . Then, PDT (SX) is dividable by M
and PDT (SY) ≤ q · N < M . We conclude PDT (SX) ≥ M · D and SX is a solu-
tion for instance I of PDD.

We observe that the construction in the previous corollary creates a food-web
with an anti-chain of size 2q + 1. We, therefore, ask whether PDD is still NP-hard if

158

the DAG-width of the food-web is a constant.

Distance to Source-Dominant. In this paragraph, we consider source-dominant
food-webs. A food-web is source-dominant, if there is a vertex v, which is a source
and every other vertex is a predator of v. Observe that if a directed acyclic graph G
has a clique graph as underlying undirected graph, then G is source-dominant.

In Theorem 5.6, we showed that s-PDD is FPT when parameterized with distance
to cluster. The algorithm can easily be adopted to the distance to stars. This raises
the question of whether s-PDD is also FPT with respect to the distance to source-
dominant. Here, we shortly want to discuss that such a result is unlikely.

First, if the food-web is a source-dominant, then it is necessary to save the only
source, after which all other taxa can be saved without further restrictions. Therefore,
after saving the source, we can run the greedy-algorithm for Max-PD.

Now, let I = (T ,F , k,D) be an instance of s-PDD. By Observation 5.3, we can
assume that F has a single source s. For a big integer N , we add N to λ(ρx) for
each taxon x ∈ X. Then, we add a new taxon ⋆ and add an edge from ⋆ to each
taxon x ∈ X \ {s}. We finally set λ(ρ⋆) := 1 and D′ := D + N · k and obtain an
instance I ′. By the construction, it is not possible to save ⋆ and so S ⊆ X is a
solution for I if and only if S is a solution for I ′. Also, observe that F ′ − {s} is
source-dominant.

We conclude the following.

Proposition 5.30.

(a) PDD can be solved in polynomial time if the food-web is source-dominant.

(b) s-PDD is NP-hard on instances in which the food-web has a distance to source-
dominant of 1.

5.7 Discussion
In this chapter, we studied the algorithmic complexity of PDD and s-PDD with
respect to various parameterizations. PDD is FPT when parameterized with the
solution size plus the height of the phylogenetic tree. Consequently, PDD is FPT
with respect to D, the threshold of diversity. However, both problems, PDD and
s-PDD, are unlikely to admit a kernel of polynomial size. Further, unlike some other
problems on maximizing phylogenetic diversity [JS23b, JS24], PDD probably does
not admit an FPT-algorithm with respect to D, the acceptable loss of phylogenetic
diversity.

159

We also considered the structure of the food-web. Among other results, we showed
that PDD remains NP-hard even if the food-web is a cluster graph. On the positive
side, we proved that PDD is FPT with respect to the number of vertices that need
to be removed from the food-web to obtain a co-cluster. We showed further that
s-PDD is FPT with respect to the treewidth of the food-web and therefore can be
solved in polynomial time if the food-web is a tree.

Unsurprisingly, several interesting questions remain open after our examination
of PDD and s-PDD. Arguably the most relevant one is whether PDD is FPT with
respect to k, the size of the solution. Also, it remains open whether PDD can be
solved in polynomial time if each connected component in the food-web contains at
most two vertices.

Clearly, further structural parameterizations can be considered. We only con-
sidered structural parameters which consider the underlying graph. But parameters
which also consider the orientation of edges, such as the longest anti-chain, could give
a better view on the structure of the food-web than parameters which only consider
the underlying graph.

Liebermann et al. [LHN05] introduced and analyzed weighted food-webs. Such
a weighted model may provide a more realistic view of a species’ effect on and
interaction with other species [CDRG+18]. Maximizing phylogenetic diversity with
respect to a weighted food-web in which one potentially needs to save several prey
per predator would be an interesting generalization for our work and has the special
case in which one needs to save all prey for each predator.

160

Chapter 6

Phylogenetic Diversity in Networks

6.1 Introduction

Phylogenetic Diversity (PD) as originally proposed by Faith is defined for phyloge-
netic trees. Assuming it is not possible to preserve all threatened species, e.g. due
to limited resources, we would like to find a subset of species that can be preserved,
for which the overall diversity is maximized.

However, when the evolution of the species under interest is also shaped by retic-
ulation events such as hybrid speciation, lateral gene transfer or recombination, then
the picture is no longer as rosy as for Max-PD. In reticulation events, a single species
may inherit genetic material and, thus, features from multiple direct ancestors and
its evolution should be represented by a phylogenetic network [HRS10] rather than
a tree. Several ways of extending the notion of PD for phylogenetic networks have
been proposed [WF18, BSW22], of which two are called AP-PDN and Net-PDN .

Unfortunately, unlike in phylogenetic trees, the optimization of phylogenetic di-
versity on phylogenetic trees is NP-hard for both cases [BSW22]. For this reason, we
study the problem from the perspective of parameterized complexity.

Related Work. All-paths phylogenetic diversity as a measure on networks was first
introduced in [WF18] under the name ‘phylogenetic subnet diversity’. Net-PDN has
been defined in [BSW22].

Phylogenetic diversity forms the basis of the Shapley Value, a measure that de-
scribes how much a single species contributes to overall biodiversity. The definition
of the Shapley Value involves the phylogenetic diversity of every possible subset of
species, and so is difficult to calculate directly. However, the Shapley Value is equiv-
alent to the Fair Proportion Index on phylogenetic trees [RM06, FJ15], and it can

161

be calculated in polynomial time. In the case of phylogenetic networks, it was shown
that this result also extends to Shapley Value based on the all-paths phylogenetic
diversity measure. This is in contrast to the NP-hardness result—while it is easy
to determine the individual species that contributes the most phylogenetic diversity
across all sets of species, it is NP-hard to find a set of species for which AP-PDN
or Net-PDN is maximal [BSW22].

The computational complexity of MapPD was first studied in [BSW22], where
the authors showed that the problem is NP-hard and cannot be approximated in
polynomial time with approximation ratio better than 1 − 1

e
unless P = NP, but is

polynomial-time solvable on level-1-networks. As Max-Net-PD is a generalization
of MapPD, the hardness result naturally extend. Moreover, Max-Net-PD remains
NP-hard even for the restricted class of phylogenetic networks called normal net-
works [BSW22]. Max-Net-PD, on a positive side, is FPT when parameterized by
the number of reticulations [vIJS+24], that is the number of vertices with at least
two incoming edges.

Extensions of phylogenetic diversity to phylogenetic networks have also been con-
sidered, both for splits systems [SNM08, MKvH07, MPKvH09].

Our Contribution and Structure of the Chapter. We study several param-
eterizations of the problems Max-All-Paths-PD (MapPD) and Max-Net-PD.
We formally define both problems in the next section. In Section 6.3 we establish
an equivalence between the solution size parameterizations of MapPD and a gen-
eralization of Set Cover that we call Item-Weighted Partial Set Cover.
Consequently, MapPD is W[2]-hard. We also show that MapPD is W[1]-hard with
respect to the minimum number of taxa that need to go extinct. On the positive side,
we show in Section 6.4.1 that MapPD is fixed-parameter tractable with respect to D,
the threshold of phylogenetic diversity and also with respect to the acceptable loss in
phylogenetic diversity. Afterward, we turn to structural parameters. In Section 6.4.2
we give single-exponential fixed-parameter algorithms for MapPD with respect to
the number of reticulations in the network, and with respect to the treewidth of
the underlying graph of the network. In the case of reticulations, this algorithm is
asymptotically tight under SETH.

Finally, in Section 6.6, we study Max-Net-PD and show that Max-Net-PD is
NP-hard even on networks with a level of 1. This result answers an open question
from [BSW22].

162

Table 6.1: An overview over the parameterized complexity results for MapPD and Max-
Net-PD.

Parameter Max-All-Paths-PD Max-Net-PD
Budget k W[2]-hard Thm. 6.1 W[2]-hard Thm. 6.1
Diversity D FPT Cor. 6.6 open
Species-loss k W[1]-hard Thm. 6.2 W[1]-hard Thm. 6.2
Diversity-loss D FPT Thm. 6.4 open
Number of FPT Thm. 6.5 FPT [vIJS+24]
reticulations retN poly-kernel open poly-kernel open
Number of FPT Thm. 6.5 FPT [vIJS+24]
ret.-edges e-retN poly-kernel Thm. 6.8 poly-kernel open
Level FPT Thm. 6.6 NP-hard for 1 Thm. 6.9
Treewidth FPT Thm. 6.6 NP-hard for 2 Thm. 6.9

6.2 Preliminaries
In this section, we present the formal definition of the problems, and the parameter-
ization. We further start with some preliminary observations.

6.2.1 Phylogenetic Diversity in Phylogenetic Networks

We assume that every edge e in a network N = (V,E) has an associated weight λ(e),
which is a positive integer.

All-Paths Phylogenetic Diversity. For a set of taxa Y , an edge e is affected
by Y if off(e) ∩ Y ̸= ∅ and strictly affected by Y if off(e) ⊆ Y . The sets TY and EY

are the strictly affected and affected edges by Y , respectively. For a set of taxa Y ,
the all-paths phylogenetic diversity AP-PDN (Y) of Y is

AP-PDN (Y) :=
∑︂
e∈EY

λ(e). (6.1)

That is, AP-PDN (Y) is the total weight of all edges uv in T so that there is a path
from v to a vertex in Y . If N is a phylogenetic tree, then this definition coincides
with the definition of phylogenetic diversity in Equation (2.1).

Network Diversity. The Net-PDN -measure of phylogenetic diversity in networks
allows the case that reticulations may not inherit all of the features from every par-

163

ent. This is modeled via an inheritance proportion p(e) ∈ [0, 1] on each reticulation
edge e = uv. Here, p(e) represents the expected proportion of features present in
u that are also present in v; or equivalently, p(e) is the probability that a feature
in u is inherited by v. We assume these probabilities are distributed independently
and identically at random. Non-reticulation edges can be considered as having an
inheritance proportion of 1.

For a subset of taxa Z ⊆ X, the measure Net-PDN (Z) represents the expected
number of distinct features appearing in taxa in Z [BSW22]. For each edge uv, this
measure is obtained by multiplying the number λ(uv) of features developed on the
branch uv (which is assumed to be proportional to the length of the branch) with
the probability γpZ(uv) that a random feature appearing in v or developed on uv will
survive when preserving Z.

Formally, we define γpZ(uv) as follows:

Definition 6.1. Given a phylogenetic X-network N = (V,E) with an edge weight
function λ : E → N, inheritance proportions p : E → [0, 1] and a set of taxa Z ⊆ X.
We define γpZ : E → [0, 1] for each edge uv ∈ E as follows:

• If v is a leaf, then γpZ(uv) := 1 if v ∈ Z, and γpZ(uv) := 0, otherwise.
Intuition: The features of v survive if and only if v is preserved by Z.

• If v is a reticulation with outgoing edge vw, then set γpZ(uv) := p(uv) · γpZ(vw).
Intuition: The features of v are a mixture of features of its parents and the
features of u have a certain inheritance proportion p(uv) of being included in
this mix and, thereby, survive in preserved descendants of x.

• If v is a tree vertex with children x1, . . . , xℓ.
We set γpZ(uv) := 1 −

∏︁ℓ
i=1(1 − γpZ(vxi)). In the special case that v has two

children, x1 and x2, this is equivalent to γpZ(vx1)+γ
p
Z(vx2)−γpZ(vx1) ·γ

p
Z(vx2).

Intuition: To lose a feature of v, it has to be lost in all children of v, which
are assumed to be independent events, since all copies of the feature developed
independently.

Further, we only consider values of p on edges incoming to leaves or reticu-
lations, so we may restrict the domain of p to those edges. We now define the
measure Net-PD(p)

N (Z) for a subset of taxa Z as follows:

Net-PD(p)
N (Z) :=

∑︂
e∈E

λ(e) · γpZ(e). (6.2)

We will omit the superscript (p) usually, as we do not operate with several inher-
itance proportions ps simultaneously.

164

Observe that γpZ(e) and Net-PDN (Z) are monotone, that is, γpZ′(e) ≤ γpZ(e) and
Net-PDp

N (Z ′) ≤ Net-PDp
N (Z) for all Z ′ ⊆ Z ⊆ X.

Observe that if a vertex has no reticulation descendants, then γpZ(e) = 1
if off(e) ∩ Z ̸= ∅, and otherwise γpZ(e) = 0. Therefore, Net-PDN coincides
with AP-PDN if N = T is a tree.

6.2.2 Problem Definitions and Parameterizations.

This chapter’s main object of study are the following two problems, introduced
in [WF18, BSW22]:

Max-All-Paths-PD (MapPD)
Input: A phylogenetic X-network N = (V,E, λ) and two integers k and D.
Question: Is there a subset Z ⊆ X with a size of at most k and AP-PDN (Z) ≥ D?

Max-Net-PD
Input: A phylogenetic X-network N = (V,E, λ) with inheritance propor-

tions p : E → [0, 1], and two integers k and D.
Question: Is there a subset Z ⊆ X with a size of at most k and Net-PDN (Z) ≥ D?

In Section 6.3, we show that there is a strong connection between MapPD and
the problem Item-Weighted Partial Set Cover, which we define as follows.

Item-Weighted Partial Set Cover (wpSC)
Input: A universe U , a family F of subsets over U , an integer weight λ(u) for

each item u ∈ U , and two integers k and D.
Question: Are there sets F1, . . . , Fk ∈ F such that the sum of the weights of the

elements in L :=
⋃︁k

i=1 Fi is at least D?

The condition in wpSC can be formalized as follows:
∑︁

u∈L λ(u) ≥ D. Observe, Set
Cover is a special case of wpSC with D = λΣ(U).

Parameters. We examine MapPD within the framework of parameterized com-
plexity. In addition to the parameters k and D, that are the number of saved taxa
and the threshold of preserved phylogenetic diversity, we also study the dual param-
eters which are the minimum number of species that will go extinct k := |X| − k
and the acceptable loss of phylogenetic diversity D := AP-PDN (X) −D. By retN ,
we denote the number of reticulations in N , and by twN we denote the treewidth

165

of the underlying undirected graph of N . By e-retN , we denote the number of
reticulation-edges that need to be removed such that N is a tree. More formally,
e-retN :=

∑︁
r∈R(deg

−(r)−1) = |E|−|V |+1, where R is the set of reticulations of N
and deg−(v) is the in-degree of a vertex v. By maxλ, we denote the biggest weight
of an edge.

Further, we show that Max-Net-PD is NP-hard on level-1-networks. Recall that
the level of a network N is the maximum reticulation number of a subgraph N [V ′]
for some V ′ ⊆ V (N) where we require that the underlying undirected graph of N [V ′]
is biconnected.

In this section, we use the convention that n is the number of vertices in the
network and m is the number of edges in the network. Unlike in trees, we can not
assume n ∈ O(|X|).

Binary Networks. A phylogenetic X-network is called binary if the root has a
degree of 2, each leaf has a degree of 1, and each other vertex has a degree of 3. In this
chapter, we do not assume networks to be binary; in particular, we allow tree vertices
to have an in-degree and an out-degree of 1. Bordewich et al. [BSW22] required that
the given network N is binary. In the following, we show that algorithmically, there
is hardly any difference for MapPD.

Lemma 6.2. When given an instance (N , k,D) of MapPD, in O(|E|) time an
equivalent instance (N ′, k′, D′) of MapPD with a binary network N ′, twN ′ = twN ,
and |E ′| ≤ 2|E| can be computed.

Proof. Algorithm. Let I := (N := (V,E, λ), k,D) be an instance of MapPD. We
set k′ := k and D′ := D · (|E| + 1). Iterate over E and set λ′(e) = λ(e) · (|E| + 1).
Iterate over the vertices v and compute the degree deg(v) of v. If deg(v) ∈ {1, 3}
then continue with the next vertex. If deg(v) = 2 and the edges e1 = uv and e2 = vw
are incident with v, then delete e1 and e2 and v from N and insert the edge uw with
weight λ′(uv) + λ′(vw).

If v is a reticulation with deg(v) > 3 and the edges ei = uiv for i ∈ [deg(v) − 1]
and ê = vw are incident with v. Then, replace v with vertices a1, . . . , adeg(v)−2 and
add edges u1a1, adeg(v)−2w, ai−1ai, and uiai−1 for i ∈ {2, 3, . . . , deg(v) − 1}, where
the weight of the outgoing edge of ui is λ′(uiv) and all other new edges have a weight
of 1. Otherwise, if deg(v) > 3 and v is a tree vertex or the root, proceed analogously
with inverted edges. Figure 6.1 depicts this procedure for a reticulation.
Correctness. The network N ′ is clearly binary. The treewidth is not effected by the
operations we did. We add O(deg(v)) edges for each vertex v to N ′ such that there
are at most |E|+

∑︁
v∈V deg(v) = 2|E| edges in N ′.

166

λu1

λu2
λui

λudeg(v)−1

λw (1)
v

λ′u1
λ′u2

λ′u3

λ′ui

λ′udeg(v)−1

λ′w

(2)

a1

a2

ai

adeg(v)−2

Figure 6.1: An example of the construction of N ′ in the case of a reticulation with multiple
incoming edges. We use the weights λ′

p := λp · (|E| + 1). Unlabeled edges have a weight
of 1.

It remains to show the correctness of the algorithm. Let Y be a solution for I and
let e1, . . . , eℓ ∈ E be the edges that are affected by Y , of which et+1, . . . , eℓ are incident
with a vertex with a degree of 2. Thus, e1, . . . , et are also edges in N ′ and there are
edges ê1, . . . , êp that are affected by Y with (|E| + 1) ·

∑︁ℓ
i=t+1 λ(ei) =

∑︁p
i=1 λ(êi).

Consequently,

D′ ≤ (|E|+ 1) · AP-PDN (Y)

= (|E|+ 1) ·
ℓ∑︂

i=1

λ(ei)

=
t∑︂

i=1

λ′(ei) +

p∑︂
i=1

λ(êi)

≤ AP-PDN ′(Y).

Analogously, let Y be a solution for I ′ and let e1, . . . , et be the edges with a
weight of higher than 1. We can find edges ê1, . . . , êp ∈ E that are affected by Y
with

∑︁t
i=1 λ

′(ei) = (|E|+ 1) ·
∑︁p

i=1 λ(ei). Observe that the edges with a weight of 1
are between the vertices ai and ai+1, such that there are O(|E|) of these edges. Thus,
D′ ≤

∑︁t
i=1 λ

′(ei) = (|E|+1) ·
∑︁p

i=1 λ(ei) = AP-PDN (Y). Hence, Y is also a solution
for instance I.

Running Time. For each vertex v, we perform at most O(deg(v)) operations. There-
fore, as |E| =

∑︁
v∈V deg(v), the overall running time is O(|E|).

167

6.3 MapPD and Item-Weighted Partial Set Cover
In this section, we showcase a relationship between MapPD and wpSC by presenting
reductions in both directions. Bordewich et al. already presented a similar reduction
from Set Cover to MapPD [BSW22].

Theorem 6.1. For every instance I = (U ,F , λ, k,D) of wpSC,

(a) an equivalent instance I ′ = (N , k′, D′) of MapPD with |X| = retN = |F|
and k′ = k can be computed in time polynomial in |U|+ |F|;

(b) an equivalent instance I ′
2 = (N = (V,E, λ′), k′, D′) of MapPD in which

k′ = k and each edge has a weights of 1 can be computed in time polynomial
in |U|+ |F|+maxλ.

This theorem has several applications for the complexity of MapPD. Because
Set Cover is W[2]-hard with respect to the size of the solution k [DF13], MapPD
is as well. This is in contrast to the fact that MapPD can be solved in polynomial
time when the network does not have reticulations and, therefore, is a phylogenetic
tree [Ste05].

Corollary 6.3. MapPD is W[2]-hard when parameterized with k, even if maxλ = 1.

Recall that in Red-Blue Non-Blocker an undirected bipartite graph G with
vertex bipartition V (G) = Vr∪Vb and an integer k are given. The question is whether
there is a set S ⊆ Vr of size at least k such that each vertex v of Vb has a neighbor
in Vr \ S. There is a standard reduction from Red-Blue Non-Blocker to Set
Cover: Let Vb be the universe. For each vertex v ∈ Vr add a set Fv := N(v)
to F and finally set k′ := |Vr| − k. Red-Blue Non-Blocker is W[1]-hard when
parameterized by the size of the solution [DF95b]. Hence, Set Cover is W[1]-hard
with respect to |F| − k, and with Theorem 6.1, we conclude as follows.

Theorem 6.2. MapPD is W[1]-hard when parameterized with k = |X| − k.

MapPD can be solved in O∗(2|X|) with a brute force algorithm that tries every
possible subset of species as a solution. In Theorem 6.5, we prove that MapPD
can be solved in O∗(2retN) time. In order to prove that these algorithms can not
be improved significantly, we apply the well-established Strong Exponential Time
Hypothesis (SETH).

Unless SETH fails, Set Cover can not be solved in O∗(2ϵ·|F |) time for any ϵ < 1
[CDL+16, Lin19]. Thus, Theorem 6.1 shows that under SETH, not a lot of hope

168

ρ

v1 v2 v3 v4 v5 v6

w1 w2 w3 w4 w5

x1 x2 x3 x4 x5

35
70

105 140
175

210

Figure 6.2: This figure depicts the network N that we reduce to from the instance
(U := {u1, . . . , u6},F := {F1, . . . , F5}, λ, k,D) of wpSC with λ(ui) = i, F1 := {u2, u3, u4},
F2 := {u1, u6}, F3 := {u1, u3, u4}, F4 := {u2, u5, u6}, F5 := {u1, u3, u5}. Unlabeled edges
have a weight of 1. Here n = 6,m = 5 and Q = 35. The value of k′ would be k and D′

would be 35D + 1.

remains to find faster algorithms for MapPD than these two algorithms. Thus,
these two algorithms, with respect to the number of taxa |X| and reticulations retN ,
for MapPD are tight with the lower bounds.

Corollary 6.4. Unless SETH fails, MapPD can not be solved in 2ϵ·|X| ·poly(|I|) time
or in 2ϵ·retN · poly(|I|) time for any ϵ < 1.

So now, without further ado, we prove Theorem 6.1.
Proof of Theorem 6.1. Reduction. Let I = (U ,F , k,D) be an instance of wpSC.
Let U consist of the items u1, . . . , un and let F contain the sets F1, . . . , Fm. We
may assume that for each ui there is a set Fj which contains ui. We define an
instance I ′ = (N , k,D′) of MapPD as follows. Let k stay unchanged and de-
fine D′ := D ·Q+1 for Q := m(n+1). We define a network N with leaves x1, . . . , xm,
and further vertices ρ, v1, . . . , vn, w1, . . . , wm.

Let the set of edges consist of the edges ρvi for i ∈ [n], wjxj for j ∈ [m], and
let viwj be an edge if and only if ui ∈ Fj. We define the weight of ρvi to be λ(ui) ·Q
for each i ∈ [n] and 1 for each other edge. Figure 6.2 depicts an example of this
reduction.

This completes the construction of instance I ′ in case (a) of the theorem. We
now describe how to construct an instance I ′

2 from I ′ in which the maximum weight
of an edge is 1, completing the construction for case (b). For each edge e = ρvi
with w(e) > 1, make λ(e)− 1 subdivisions and attach a new leaf as the child of each
subdividing vertex. We call these newly added leaves false leaves, in contrast to the
other leaves of N , that we call true leaves.

169

Correctness. The instance I ′ is computed in time polynomial in |U| + |F| and the
instance I ′

2 is computed in time polynomial in |U| + |F| + maxλ. Clearly, in I ′ we
observe k′ = k and |X| = retN = |F|; and in I ′

2 we observe k′ = k and maxω′ = 1.
It remains to show the equivalence of the instances.

Without loss of generality, let S := {F1, . . . , Fℓ} with ℓ ≤ k be a solution for the
instance I of wpSC that covers the items u1, . . . , up. We show that Y := {x1, . . . , xℓ}
is a solution for the instances I ′ and I ′

2 of MapPD. Clearly, the size of Y is at most k.
Now, consider the phylogenetic diversity of Y in the network of I ′. Let Ê be the
edges in N between two vertices of v1, . . . , vp, w1, . . . , wℓ. Then,

AP-PDN (Y) =
ℓ∑︂

i=1

λ′(wixi) +
∑︂
e∈Ê

λ′(e) +

p∑︂
i=1

λ′(ρvi) ≥ λ′(w1x1) +

p∑︂
i=1

λ′(ρvi)

= 1 +

p∑︂
i=1

λ(ui) ·Q = 1 +Q ·
p∑︂

i=1

λ(ui) ≥ 1 +QD = D′.

Here, the first inequality holds because the sets in S cover the items u1, . . . , up and
the last inequality holds because S is a solution. It is easy to see that the phylogenetic
diversity of the set Y in the network of I ′

2 is identical. Hence, Y is a solution of I ′

and I ′
2.

Without loss of generality, let Y := {x1, . . . , xℓ} with ℓ ≤ k be a solution for
the instance I ′ of MapPD. We show that S := {F1, . . . , Fℓ} is a solution of wpSC.
Clearly, the size of S is at most k. Without loss of generality, let v1, . . . , vp be the
ancestors of Y that are children of ρ. Thus, there is a path from vi to a taxon xj ∈ Y ,
for each i ∈ [p]. By the construction of I ′, we conclude ui ∈ Fj. Again, letting Ê be
the edges between two vertices of v1, . . . , vp, w1, . . . , wℓ, we have

D′ ≤ AP-PDN (Y) =
ℓ∑︂

i=1

λ′(wixi) +
∑︂
e∈Ê

λ′(e) +

p∑︂
i=1

λ′(ρvi) ≤ m+ nm+

p∑︂
i=1

λ′(ρvi).

Consequently,
∑︁p

i=1Q ·λ(ui) =
∑︁p

i=1 λ
′(ρvi) ≥ D′−Q = Q(D− 1)+1. We conclude

that
∑︁p

i=1 λ(ui) ≥ D − 1 + 1/Q. Since the weights of ui are integers, it follows
that

∑︁p
i=1 λ(ui) ≥ D.

It remains to show that for each solution Y of instance I ′
2, an equivalent solution

of I ′ exists. If Y does not contain false leaves, then as previously observed, the phylo-
genetic diversity of Y is the same in I ′ as in I ′

2. Assume now otherwise and let z be a
false leaf in Y and let pz be the parent of z. We consider two different cases; That pz
has an offspring in Y \{z}, or not. In the former case, pz has an offspring in Y \{z},

170

we observe AP-PDN (Y) = AP-PDN (Y \ {z}) + λ(pzz) = AP-PDN (Y \ {z}) + 1.
Consequently, we can replace z with any true leaf that is not yet in Y to obtain
another solution of I ′

2. In the second case, let the true leaf xi be an offspring of pz.
Because of the assumption, xi ̸∈ Y .

Then, AP-PDN (Y)−λ(pzz) ≤ AP-PDN ((Y \{z})∪{xi})−λ(wixi). Consequently,
Y \ {z} ∪ {xi} is also a solution. Therefore, we can remove all false leaves and then
we are done.

In the proof of Theorem 6.1, we can see that in the root ρ, we model an operation
that ensures that at least D of the children of ρ are selected and further, these tree
vertices ensure that at least one of the reticulations below them are selected. It
might appear that by adding more layers of reticulations and tree vertices to the
construction of N , one could reduce from problems even more complex than wpSC,
and thereby show that MapPD has an an even higher position in the W-hierarchy.
This, however, is unlikely, because of the following reduction to wpSC.

Theorem 6.3. For every instance I = (N , k,D) of MapPD, we can compute an
equivalent instance (U ,F , λ, k′, D′) of wpSC with k′ = k, D′ = D and maxλ′ = maxλ
in time polynomial in |I|.

Proof. Reduction. Let I = (N , k,D) be an instance of MapPD. We define an
instance I ′ = (U ,F , λ′, k,D) of wpSC as follows. Let k and D stay unchanged. For
each edge e of N , define an item ue with a weight of λ′(ue) = λ(e) and let U be the
set of these ue. For each taxon x, define a set Fx which contains item ue if and only
if e is affected by {x}. Let F be the family of these sets.
Correctness. Clearly, the reduction is computed in polynomial time. We show
the equivalence of the two instances. Let Y be a solution for the instance I of
MapPD. Without loss of generality, assume Y = {x1, . . . , xℓ} with ℓ ≤ k. We
show that F1, . . . , Fℓ is a solution for instance I ′ of wpSC. We know by definition
that ℓ ≤ k. Let EY be the edges affected by Y . Observe that e is in EY if and only
if ue is in F+ :=

⋃︁ℓ
i=1 Fi. Then, D ≤ AP-PDN (Y) =

∑︁
e∈EY

λ(e) =
∑︁

ue∈F+ λ′(ue).
Hence, F1, . . . , Fℓ is a solution for instance I ′ of wpSC.

Now, without loss of generality, let F1, . . . , Fℓ be a solution for instance I ′ of
wpSC. Let ue1 , . . . , uep be the items in the union of F1, . . . , Fℓ. By the construction,
the edges e1, . . . , ep are affected by Y = {x1, . . . , xℓ}. Then,

AP-PDN (Y) ≥
p∑︂

i=1

λ(ei) =

p∑︂
i=1

λ′(uei) ≥ D.

The size of Y is at most k. Hence, Y is a solution for I of MapPD.

171

To the best of our knowledge, it is unknown if wpSC is W[2]-complete, like
Set Cover. Nevertheless, we obtain the following connection between wpSC and
MapPD.

Corollary 6.5. MapPD is W[i]-complete with respect to k if and only if wpSC
is W[i]-complete with respect to k.

6.4 Fixed-Parameter Tractability of MapPD

6.4.1 Preserved and Lost Diversity

In this subsection, we show that MapPD is FPT with respect to D, the threshold of
phylogenetic diversity, andD := AP-PDN (X)−D, the acceptable loss of phylogenetic
diversity.

Let I be an instance of MapPD. If there is an edge e with λ(e) ≥ D and k ≥ 1,
then for each offspring x of e we have AP-PDN ({x}) ≥ λ(e) ≥ D, and so {x} is a
solution for I. So, we may assume that maxλ < D. Therefore, each edge e can be
subdivided λ(e) − 1 times in O(D ·m) time such that λ′(e) = 1 for each edge e of
the new network N ′. Bläser showed that wpSC can be solved in O∗(2O(D)) time
when λ(u) = 1 for each item u ∈ U [Blä03]. Consequently, with Theorem 6.3 and
the result from Bläser we conclude the following.

Corollary 6.6. MapPD can be solved in O∗(2O(D)) time.

As Set Cover is a special case of wpSC with D =
∑︁

u∈U λ(u), wpSC is para-
NP-hard with respect to the dual

∑︁
u∈U λ(u) − D. Observe D > k := |X| − k. By

contrast, we show in the following that MapPD is FPT with respect to D. More
precisely, we show the following.

Theorem 6.4. MapPD can be solved in O(2D+k+o(D) · n log n) time.

To this end, we use the technique of color coding. Recall that off(e) = off(w) for
each edge e = vw. We define the following auxiliary problem, in which we assign a
color, red or green, to each taxon. A set Y ⊆ X is color-fitting if each taxon x ∈ Y is
red and for each vertex v ∈ V (N), at least one of the following conditions is satisfied:

• v has a green offspring,

• all offspring of v are in Y , or

• all offspring of v are in X \ Y .

172

5 4
6

2
3

(1)

5 4
6

2
3

(2)

3
2

5 4
6

C1 C2

(3)

Figure 6.3: In this figure, an example for the transformation in the proof of Lemma 6.7 is
given. A hypothetical network N with a coloring is given in (1). In (2), the graphs G, and
in (3) the graph G′ is depicted. Some edges are labeled (to increase readability). Unlabeled
edges have weight 1. The connected components C1 and C2 have weight 13 and 3 and
value 1 and 2, respectively.

We define the colored version of MapPD as follows.

colored-Max-All-Paths-PD (colored-MapPD)
Input: A phylogenetic X-network N , integers k and D, and a coloring on the

taxa c : X → {red, green}.
Question: Is there a subset S ⊆ X of taxa such that |S| ≤ k, AP-PDN (S) ≥ D,

and X \ S is color-fitting?

Lemma 6.7. colored-MapPD can be solved in O(D ·m) time.

Proof. Algorithm. Let I := (N := (V,E, λ), k,D, c) be an instance of colored-
MapPD. Delete all edges uv for which v has a green offspring, and then delete all
isolated vertices. For any vertex u with an in-degree of 0 with children v1, . . . , vq,
replace u with q vertices u1, . . . , uq and add an edge uivi with a weight of λ(uvi),
for each i ∈ [q]. Each in-degree-0 vertex has one child, now. Let G′ be the resulting
graph. An example of this transformation is depicted in Figure 6.3.

Compute the set of connected components of the underlying graph of G′. For
connected components C = (VC , EC), proceed as follows. Define an item IC with a
weight of λ(EC) and a value of |YC |, where YC is the set of taxa in VC .

Let M be the set of these items. Now, return yes if there is a subset of items in M
whose total weight is at most D and whose total value is at least k = |X| − k, and
no, otherwise. Here, k and D are taken from the original network N . Observe that
this can be determined by solving an instance of Knapsack with a set of items M ,
budget D, and target value k. This can be done in O(D · |M |) ∈ O(D · |X|)
time [Wei66, GRR19].

173

Correctness. We show first that if I is a yes-instance of colored-MapPD, then
the algorithm return yes and secondly we show the converse.

Assume that I is a yes-instance of colored-MapPD. Thus, there is a set S ⊆ X
of size at most k with AP-PDN (S) ≥ D andX\S is color-fitting. We claim thatX\S
is also color-fitting in G′. Indeed, suppose for a contradiction that this is not the
case. Then, there exists some vertex v in G′ that v has an offspring in X \ S and
an offspring in S. Let v be a lowest vertex satisfying this condition. Then, v does
not have an in-degree of 0 in G′, as in this case v has a unique child with the same
offspring. Furthermore, v does not have any green offspring in N , as the incoming
edges of v were not deleted in the construction of G′. Then, in fact, v has the same
offspring in N as in G′, implying that X \ S is not color-fitting.

Since X\S is color-fitting in G′, and G′ has no green taxa, every vertex v in G sat-
isfies off(v) ⊆ X\S or off(v) ⊆ S. Each edge e in N that is not affected by S is strictly
affected by X \ S. Because S is a solution we conclude each taxon in X \ S is red
and so e is still an edge in G′. Let Ce be the connected component of the underlying
undirected graph of G′ that contains e. Observe that every edge in Ce is also strictly
affected by X \S—indeed, for any edge uv in C, u has all its offspring in X \S if and
only if v has all its offspring in X \ S. Thus, Ce satisfies the conditions to be in M
for each edge e that is not affected by S. Let C1, . . . , Ct be the unique connected
components that contain the edges that are not affected by S. We now conclude
that λ(C1 ∪ · · · ∪ Ct) ≤ D and C1 ∪ · · · ∪ Ct contain the leaves X \ S, which are
at least k. Hence, IC1 , . . . , ICt is a solution for the Knapsack-instance and the
algorithm returns yes.

For the converse, assume that the algorithm returns yes and let IC1 , . . . , ICt be
a solution for the Knapsack-instance. Let Yi be the set of taxa of Ci and define
the set Y :=

⋃︁t
i=1 Yi. We prove that S := X \ Y is a solution for the instance I

of colored-MapPD. By the construction, we conclude that Yi are colored red
and Yi and Yj are disjoint for any i ̸= j. Each vertex v ∈ N that has some but
not all offspring in Yi has at least one green offspring. Consequently, Y is color-
fitting. Further, for any edge e = uv that is strictly affected by Y in N , we have
that v has no green offspring, and therefore e is not deleted in the construction
of G′. Moreover, as v has offspring in Yi for some i ∈ [t], we conclude that e is
in Ci. Because

∑︁t
i=1 λ(ECi

) ≤ D, we conclude that the phylogenetic diversity of S
is AP-PDN (S) = AP-PDN (X) −

∑︁t
i=1 λ(ECi

) ≥ AP-PDN (X) − D = D. Likewise,
because

∑︁t
i=1 |Yi| ≥ k, we conclude |S| = |X| −

∑︁t
i=1 |Yi| ≤ |X| − k = k.

Running Time. The graph G′ can be computed from N in O(m) time. The con-
nected components of the underlying graph of G′ can be computed in O(m) time as
well. For each connected component C = (VC , EC) the item IC of N is computed

174

in O(|EC |) time. Consequently, we can compute N in O(m) time. As the instance
of Knapsack can be solved in O(D · |X|) time [Wei66, GRR19], we have an overall
running time of O(m+D · |X|) ∈ O(D ·m).

To show that MapPD is FPT with respect to D, we present an reduction from
MapPD to colored-MapPD using standard color coding techniques. In particu-
lar, we show that there exists a family F of 2-colorings c : E → {red, green}, with |F|
bounded by a function of D times a polynomial in n, such that (N , k,D) is a yes-
instance of MapPD if and only if (N , k,D, c) is a yes-instance of colored-MapPD
for some c ∈ F .

Recall that an (n, k)-universal set is a family U of subsets of [n] such that
for any S ⊆ [n] of size k, {A ∩ S | A ∈ U} contains all 2k subsets of S. For
any n, k ≥ 1, one can construct an (n, k)-universal set of size 2kkO(log k) log n in
time 2kkO(log k)n log n [NSS95].

Proof of Theorem 6.4. Algorithm. Let I := (N := (V,E, λ), k,D) be an instance of
MapPD. Arbitrarily order the taxa x1, . . . , xn. Construct an (n, k + D)-universal
set U .

Now, for each A ∈ U , construct a 2-coloring cA : X → {red, green} where xi is
colored green if and only if i ∈ A, and solve colored-MapPD on (N , k,D, cA).
Return yes, if (N , k,D, cA) is a yes-instance for some A ∈ U . Otherwise, return no.
Correctness. First observe that if (N , k,D, c) is a yes-instance of colored-MapPD
for any coloring c : X → {red, green}, then (N , k,D) is also a yes-instance of
MapPD.

Now, suppose (N , k,D) is a yes-instance. Let S ⊆ X be a subset of taxa of size
at most k and with AP-PDN (S) ≥ D. If necessary, add taxa to S until |S| = k.
Consequently, X\S has a size of k. Let VY be the set of vertices u of N which have an
offspring xu in S and have a child v with off(v) ⊆ X \S. Define Y := {xu | u ∈ VY }.
Observe that if we can define a coloring which colors the taxa in X \ S in red and
the taxa in Y in green, then X \ S would be color-fitting.

Define an operation ind : 2X → 2[n] by ind(X ′) := {i | xi ∈ X ′} for sets X ′ ⊆ X.
For each u ∈ VY and each child v of u with off(v) ⊆ X \ S, the edge uv is

strictly affected by X \ S. We conclude |Y | ≤ |VY | ≤
∑︁

u∈VY
λ(uv) ≤ D. Therefore,

Z := Y ∪ (X \ S) ⊆ X is a set of size at most k +D. If necessary, add taxa until Z
has a size of D + k. Consequently, there is a set A ∈ U with A ∩ ind(Z) = ind(Y).
So, S is a solution for the instance (N , k,D, cA) of colored-MapPD.

Running Time. The construction of U takes 2D+k+O(log2(D))n log n time, and for each
of the 2D+k+O(log2(D)) log n sets in U we solve an instance of colored-MapPD. This

175

can be done in O(D ·m) time by Lemma 6.7.
The overall running time is O(2D+k+o(D) · n log n).

6.4.2 Proximity to Trees

MapPD can be solved in polynomial time with Faith’s Greedy-Algorithm, if the
given network is a tree [Fai92, Ste05]. Therefore, in this subsection, we examine
MapPD with respect to two parameters that classify the network’s proximity to a
tree, the number of reticulations retN and the smaller parameter treewidth twN .

Theorem 6.5. MapPD can be solved in O(2retN · k ·m) time.

Observe that by Corollary 6.4, MapPD can not be solved in O∗(2ϵ·retN) time for
any ϵ < 1, unless SETH fails. Therefore, the running time of this theorem is tight, to
some extent.

Proof. Algorithm. For a reticulation v in a network N with child u, let E(↑vu) be the
set of edges of N that are between two vertices of anc(v)∪{u}. Recall that off(e) ⊆ X
is the set of offspring of w for an edge e = vw and the strictly affected edges TY for
a set of taxa Y ⊆ X is the set of edges e with off(e) ⊆ Y . Define two operations,
called take and leave, that for an instance I = (N , k,D) and a reticulation v of N
return another instance of MapPD. Every subset of taxa Y that does contain an
offspring of v should be a solution for I if and only if Y is a solution for take(I, v).
Similarly, every subset of taxa Y that does not contain an offspring of v should be a
solution for I if and only if Y is a solution for leave(I, v).

We define leave(I, v) to be the instance I ′ = (N ′, k,D) of MapPD, in which k
andD are unchanged and N ′ is the network that results from deleting the edges Toff(v)
and the resulting isolated vertices from N . Recall that D :=

∑︁
e∈E λ(e) − D. We

define take(I, v) to be the instance I ′ = (N ′, k,D′) of MapPD with an unchanged k
and D′ := D + D. Here, N ′ is the network that results from N by deleting the
edges E(↑vu), merging all the ancestors of v to a single vertex ρ, adding an edge ρu,
and setting the weight of ρu to λ(E(↑vu)) + D. For each vertex w ̸= u with t ≥ 1
parents u1, . . . , ut in anc(v), we add an edge ρw that has a weight of

∑︁t
i=1 λ(uiw).

Observe that AP-PDN ′(X) = AP-PDN (X) + D. Figure 6.4 depicts an example of
the operations take and leave.

Now, we are at the position to define the branching algorithm. Let I = (N , k,D)
be an instance of MapPD. If N is a phylogenetic tree, solve the instance I with
Faith’s Algorithm [Ste05, Fai92]. Otherwise, let v be a reticulation of N . Then, re-
turn yes if take(I, v) or leave(I, v) is a yes-instance of MapPD and no, otherwise.

176

3
2

2 3 4
2

2

(1)

v

u

k = 3

D = 28 3
2

2 4
2

(2)k = 3

D = 28

42 4
12

2

(3)

w

k = 3

D = 31

Figure 6.4: In this figure, an example for the usage of leave and take is given. A hypo-
thetical instance I is given in (1). Here, the value of D is 3. In (2), the instance leave(I, v),
and in (3) the instance take(I, v) is depicted. Unlabeled edges have a weight of 1. Observe
in (3), the weight of the edge ρw is 4, as w has two edges from ancestors of v in I which
have a weight of 2 each. The weight of ρu is 12, as in I the edges of E(↑vu) have a combined
weight of 9.

Correctness. The correctness of the base case is given by the correctness of Faith’s
Algorithm. We show that if N contains a reticulation v, then I is a yes-instance of
MapPD if and only if take(I, v) or leave(I, v) is a yes-instance of MapPD.

Consider any set of taxa Y ⊆ X. Firstly, we claim that if Y ∩ off(e) = ∅,
then AP-PDN ′(Y) = AP-PDN (Y), where N ′ is the network in leave(I, v). In-
deed, N ′ contains all the vertices and edges of N that have an offspring outside
of off(v). Therefore, AP-PDN ′(Y) = AP-PDN (Y). Secondly, we claim that if Y
contains a vertex of off(v), then AP-PDN ′(Y) = AP-PDN (Y) +D, where N ′ is the
network in take(I, v). Recall that each edge e = u1u2 with u1 ̸= ρ of E(N ′) is also
an edge of N and λ′(e) = λ(e). Further, for each edge e = ρu2 with u2 ̸= u of E(N ′)
there are edges e1 = ui1u2, . . . , et = uitu2 of E(N) with λ′(e) =

∑︁t
i=1 λ(ei). Now,

let Q = Q1 ∪Q2 ∪ {ρu} be the edges of N ′ that have at least one offspring in Y , of
which edges in Q1 have both endpoints in V (N ′) \ {ρ}, and Q2 are outgoing edges
of ρ. Further, let P = P1 ∪ P2 ∪ E(↑vu) be the edges of N that have at least one
offspring in Y , of which edges in P1 have both endpoints in V (N ′), and P2 are edges
with one endpoint in anc(v) \ {v} and one endpoint in V (N ′) \ {ρ}. Observe that
since any vertex in V (N ′) has the same offspring in N as in N ′, we know Q1 = P1,
and λ′Σ(Q1) = λΣ(P1). Further, λ′Σ(Q2) = λΣ(P2) as for each u2 ∈ V (N ′) \ {ρ}, the
total weight of edges u1u2 with u1 ∈ anc(v) \ {v} in N is equal to the weight of the
edge ρu2 in N ′. It follows that

AP-PDN ′(Y) = λ′Σ(Q1) + λ′σ(Q2) + λ′(ρu)

= λΣ(P1) + λΣ(P2) + λΣ(E
(↑vu)) +D

= AP-PDN (Y) +D.

By the above it follows that if Y is a solution for I, then either Y is a solution

177

for leave(I, v) or Y is a solution for take(I, v). Conversely, if Y is a solution
for leave(I, v) then Y ∩off(e) = ∅ and thus AP-PDN (Y) = AP-PDN ′(Y) ≥ D, so Y
is also a solution for I. Finally, if Y is a solution for take(I, v) then Y ∩ off(e) ̸= ∅,
as otherwise

AP-PDN ′(Y) ≤ AP-PDN ′(X)− λ′(ρy)

= D + 2D − (λΣ(E
(↑vu)) +D) ≤ D +D − 1 < D′.

Then, AP-PDN ′(Y) = AP-PDN (Y)+D. It follows that AP-PDN (Y) ≥ D′−D = D
and Y is also a solution for I.
Running Time. Let I be an instance of MapPD that contains a reticulation v. The
number of reticulations in I is greater than the number of reticulations in take(I, v)
and leave(I, v), because at least the reticulation v is removed and no new retic-
ulations are added. Therefore, the search tree contains O(2retN) nodes. It can be
checked in O(m) time, if N contains a reticulation. Faith’s Algorithm takes O(k ·m)
time [Ste05].

The sets off(v) and anc(v) for a vertex v, and TY for a set Y can be computed
in O(m) time. Once anc(v) is computed, we can iterate over E to find the edges
that are outgoing from anc(v) and in O(m) time we can compute the value for an
edge ρw in N ′, which is also the time needed to compute λ(ρu) which needs D and
the weight of E(↑vu). Therefore, the instances take(I, v) and leave(I, v) can be
computed in O(m) time.

Thus, a solution for MapPD can be computed in O(2retN · k ·m) time.

Bordewich et al. showed that MapPD can be solved in polynomial time on
level-1-networks [BSW22]. We extend this result by showing that MapPD is fixed-
parameter tractable with respect to treewidth.

Theorem 6.6. MapPD can be solved in O(9twN · twN · k2 ·m) time.

We first provide a sketch of the main ideas, here. This algorithm has many
similarities with Theorem 5.9, however, here we have a tree-decomposition over a
network and not a food-web.

We aim to find a set of edges E ′ that have an overall weight of at least D and that
are incident with at most k leaves. Further, for each edge e = uv ∈ E ′ we require
that either v is a leaf or there is an edge vw ∈ E ′. In this dynamic program algorithm
over a nice tree decomposition, we index feasible partial solutions by a 3-coloring of
the vertices. At a given node of the tree decomposition, a vertex v is colored:

• red, if it is still mandatory that we select an outgoing edge of v (because we
have selected an incoming edge of v),

178

• green, if we can select incoming edges of v and do not need to select an outgoing
edge of v (because v is a leaf or we have already selected an outgoing edge of v),

• black, if we have to not yet selected an edge incident with v (such that only
the selection of an incoming edge of v makes the selection of an outgoing edge
of v necessary).

We introduce each leaf as a green vertex and the other vertices as black vertices. In
order to consider only feasible solutions, a vertex must be green or black when it
is forgotten. The most important step of the algorithm is in the introduction of an
edge, where colors may be adjusted depending on whether or not the new edge is
included in E ′.

Proof. We define a dynamic programming algorithm over a nice tree-decomposition T
of the underlying undirected graph of an X-network N = (V,E, λ) in which vertices
are introduced without incident edges and all edges are induced exactly once. We
note that at every join bag the graph Nt[Qt] is edgeless, if we only introduce edges
right before we forget one of the incident vertices. Here, Nt is the graph with ver-
tices Vt and edges Et that are introduced at t or at decedants of t and are not
forgotten.

Definition of the Table. Let I = (N , k,D) be an instance of MapPD and let T be
a nice tree decomposition of N . We index solutions by a partition R ∪G ∪B of Qt,
and a non-negative integer s. For a set of edges F ⊆ Et, we call a vertex u ∈ Vt
green with respect to F if u is a leaf or has an outgoing edge in F . We call u red
with respect to F if u is not a leaf and has an incoming but no outgoing edge in F .
Finally, we call u black with respect to F if u is not a leaf and has no incident edges
in F . For a node t ∈ T , a partition R ∪G ∪ B of Qt and an integer s, we call a set
of edges F over Vt feasible for t, R, G, B, and s, if all the following conditions hold:

(F1) If uv is an edge in F and v /∈ Qt, then v is a leaf of N or v has an outgoing
edge in F .

(F2) The vertices R ⊆ Qt are red with respect to F .

(F3) The vertices G ⊆ Qt are green with respect to F .

(F4) The vertices B ⊆ Qt are black with respect to F .

(F5) The number of leaves in N with an incoming edge in F is s.

179

We define S∗
t,R,G,B,s to be the family of all sets F that are feasible for t, R, G, B,

and s.
We define a dynamic programming algorithm over a nice tree decomposition T . In

a table entry DP[t, A,R,G,B, s], we store the greatest weight λΣ(F) of a set F that
is feasible for t, R, G, B, and s. If there is no feasible F , then we store a big negative
value. Let r be the root of the nice tree-decomposition T . Then, DP[r, ∅, ∅, ∅, k]
stores the greatest phylogenetic diversity that can be preserved with a budget of k.
Hence, we can return yes if DP[r, ∅, ∅, ∅, k] ≥ D and no, otherwise.

Now, we have everything we need to define the dynamic programming algo-
rithm. In the calculations that follow, any time a value DP[t, R,G,B, s] is called for
which DP[t, R,G,B, s] is not defined (in particular, if s < 0), we take DP[t, R,G,B, s]
to be a large negative value. For our purposes a value of −m ·maxλ −1 suffices, as
even if every edge would be chosen, the entry at the root of the tree decomposition
is still negative.
Leaf Node. For a leaf t of T the bags Qt and Vt are empty. So if s = 0, we trivially
store

DP[t, ∅, ∅, ∅, s] = 0. (6.3)

Otherwise, we store DP[t, R,G,B, s] = −m ·maxλ −1.
Introduce Vertex Node. Suppose now that t is an introduce vertex node, i.e. t has a
single child t′, Qt = Qt′ ∪ {v}, and v is an isolated vertex in Nt. If either v ∈ B,
or v ∈ G and v is a leaf, we store

DP[t, R,G,B, s] = DP[t′, R,G \ {v}, B \ {v}, s]. (6.4)

Otherwise, we store DP[t, R,G,B, s] = −m ·maxλ −1.
Introduce Edge Node. Suppose now that t is an introduce edge node, i.e. t has a
single child t′, Qt = Qt′ , and e = vw is introduced at t′. The algorithm must decide
whether e is affected by the solution, or not. If v /∈ G or w ∈ B, edge e can not be
an affected edge and so we store DP[t, R,G,B, s] = DP[t′, R,G,B, s]. Otherwise, we
store

DP[t, R,G,B, s] = max{DP[t′, R,G,B, s]; max
R′,G′,B′

DP[t′, R′, G′, B′, s′] + λ(e)}, (6.5)

where the second maximum is over all possible partitions R′ ∪ G′ ∪ B′ of Qt, such
that S \ {v, w} = S ′ \ {v, w} for all S ∈ {R,G,B} (i.e. the two partitions agree
on QT \ {v, w}), and such that if w ∈ G′ then w ∈ G; and w ∈ R, otherwise.
Here, s′ = s− 1 if w is a leaf, and s′ = s if not.

180

B1 R1 G1

B2 B R G
R2 R R G
G2 G G G

Figure 6.5: This table shows the relationship between the three partitions R1 ∪G1 ∪B1,
R2∪G2∪B2 and R∪G∪B in the case of a join node, when R1∪G1∪B1 and R2∪G2∪B2 are
qualified for R∪G∪B. The table shows which of the sets R, G, or B an element v ∈ Qt will
be in, depending on its membership in R1, G1, B1, R2, G2, and B2. For example if v ∈ R1

and v ∈ B2, then v ∈ R.

Forget Node. Suppose now that t is forget node, i.e. t has a single child t′

and Qt = Qt′ \ {v}. We store

DP[t, R,G,B, s] = max{DP[t′, R,G,B ∪ {v}, s]; DP[t′, R,G ∪ {v}, B, s]}. (6.6)

Join Node. Suppose now that t ∈ T is an join node, i.e. t in T has two children t1
and t2 with Qt = Qt1 = Qt2 . We call two partitions R1 ∪G1 ∪B1 and R2 ∪G2 ∪B2

of Qt qualified for R ∪ G ∪ B if R = (R1 ∪ R2) \ (G1 ∪ G2) and G = G1 ∪ G2 (and
consequently B = B1 ∩B2). See Figure 6.5. We store

DP[t, R,G,B, s] = max
(π1,π2)∈Q,s′

DP[t1, R1, G1, B1, s
′]+DP[t2, R2, G2, B2, s−s′], (6.7)

where s′ ∈ [s]0, and Q is the set of pairs of partitions π1 = R1 ∪ G1 ∪ B1

and π2 = R2 ∪G2 ∪B2 that are qualified for R,G,B.
Correctness. Let t be a node of the nice tree-decomposition T , s an integer,
and R ∪ G ∪ B a partition of Qt. We show that the value of DP[t, R,G,B, s] is
correct, for each type of node individually.

If t is a leaf node, then Qt and Vt are empty. Consequently, R = G = B = ∅ and
any feasible set F is also empty. Therefore, we also conclude with (F5) that s = 0
and λΣ(F) = 0 for any F ∈ S∗

t,R,G,B,s. Hence, we store the correct value in Recur-
rence (6.3).

Let t be an introduce vertex node with child t′ and Qt = Qt′ ∪ {v}. Then, the
graph Nt is the graph Nt′ with an additional isolated vertex v. Thus, v is black with
respect to any F ⊂ Et, unless v is a leaf in which case v is green. Thus, there is no
feasible set F for S∗

t,R,G,B,s unless either v ∈ B or v ∈ G and v is a leaf. Assuming
this is the case, any set F ⊆ Et is feasible for t, R, G, B, and s if and only if it is
feasible for t′, R, G \ {v}, B \ {v}, and s. Hence, we store the right value.

181

Let t be an introduce edge node with child t′ and Qt = Qt′ and Nt − e = Nt′ .
Define e := vw. Clearly, every set F ⊆ Et \ {e} is feasible for t, R, G, B, and s if
and only if F is also feasible for t′, R, G, B, and s, because then Nt[F] is isomorphic
to Nt′ [F]. Now, consider a set F ⊆ Et with vw ∈ F . Note that v is green, and w
cannot be black, with respect to any such set F . Therefore, such an F only exists
if v ∈ G and w /∈ B. Now, let F ′ be F \ {vw}. Every vertices u, that is not v or w,
is red/green/black with respect to F if and only if u is red/green/black with respect
to F ′. Observe that if w is green with respect to F if and only if it is green with
respect to F ′ (as it has the same outgoing edges in F and F ′). If w is red or black
with respect to F ′, then it is red with respect to F (as it has an incoming edge and
no outgoing edges). On the other hand, v could be any color with respect to F ′, but
is necessarily green with resepct to F . Likewise, we can show the correctness of s′.
Thus, the correct value is stored.

Let t be a forget node with child t′ and Qt = Qt′ \ {v}. We show that a set F is
feasible for t, R, G, B, and s if and only if F is also feasible for t′, R, G, B ∪ {v},
and s or for t′, R, G∪{v}, B, and s. It then follows that DP[t, R,G,B, s] stores the
correct value.

To this end, let F be a set of edges that is feasible for t, R, G, B, and s.
Since v /∈ Qt and condition (F1) satisfies, v either has an outgoing edge in F , is a
leaf, or does not have any incoming edge in F . It follows that v is green or black
with respect to F . From this it is straightforward to confirm that F is feasible
for t′, R, G, B ∪ {v}, and s, or for t′, R, G ∪ {v}, B, and s. Conversely, if F is
feasible for t′, R, G, B ∪ {v}, and s, or for t′, R, G ∪ {v}, B, and s, then F also
satisfies condition (F1) for t′, R, G, B ∪ {v}, and s (in particular, the condition
is satisfied for v as v is green or black with respect to F). It is straightforward to
confirm that F the remaining conditions to be feasible with respect to S∗

t,R,G,B,s.
Let t be a join node with children t1 and t2. We show that there is an F ∈ S∗

t,R,G,B,s

if and only if there are partitions R1 ∪G1 ∪B1 and R2 ∪G2 ∪B2, qualified for R, G,
and B and s′ ≤ s such that there are F1 ∈ S∗

t1,R1,G1,B1,s′
and F2 ∈ S∗

t2,R2,G2,B2,s−s′

with F1 ∪ F2 = F .
First, let F be feasible for t, R, G, B, and s. Let Fi be the subset of edges of F

that occur in Nti for i ∈ {1, 2}. Because every edge is introduced exactly once, the
sets F1 and F2 are disjoint. We define s′ to be the number of edges of F1 that are
incident with a leaf. Further, we define Ri to be the set of vertices in Qt that are
not leaves in N and have an incoming but no outgoing edge in Fi for i ∈ {1, 2}.
Similarly, we define Gi to be the set of vertices that are leaves or have an outgoing
edge in Fi for i ∈ {1, 2}. We show that F1 ∈ S∗

t1,R1,G1,B1,s′
and F2 ∈ S∗

t2,R2,G2,B2,s−s′ .
Let e = uv be an edge in Fi and let v be an internal-vertex and v ̸∈ Qti for i ∈ {1, 2}.

182

Because Qt = Qti , we conclude that v ̸∈ Qt. Thus, with (F1) we conclude that v
has an outgoing edge e∗ in F . Because v is not in Qt and v is in Vti , the vertex
v is not in Vt3−i

. Thus, the edge e∗ is also in Fi and so F1 and F2 satisfy (F1).
By definition, F1 and F2 satisfy conditions (F2) to (F4). Also by definition, F1

satisfies (F5). As F2 contains the edges of F that are not in F1, there are s−s′ edges
in F2 that are incident with a leaf. Hence, F2 satisfies (F5) and F1 ∈ S∗

t1,R1,G1,B1,s′

and F2 ∈ S∗
t2,R2,G2,B2,s−s′ . It remains to show that R1 ∪ G1 ∪ B1 and R2 ∪ G2 ∪ B2

are qualified for R, G, and B. If v is a leaf, we conclude that v is in G1, G2 and G.
Further, v has an outgoing edge in F , if and only if v has an outgoing edge in F1

or F2. We conclude that G = G1 ∪G2. For each v ∈ R there is an incoming edge e
but no outgoing edge in F . Consequently, if v ∈ R then v ̸∈ G1 ∪ G2. Further,
without loss of generality, e ∈ F1. However, there is no outgoing edge of v in F1.
Thus, v ∈ R1 and so R ⊆ (R1 ∪ R2) \ (G1 ∪ G2). If v ∈ (R1 ∪ R2) \ (G1 ∪ G2) then
there is an incoming edge of v in F1 or F2 and therefore in F , but no outgoing edges.
Thus, v is red and in R.

Secondly, assume that there are R1, G1, R2, and G2 qualified for R and G,
and s′ ≤ s such that there are F1 ∈ S∗

t1,R1,G1,B1,s′
and F2 ∈ S∗

t2,R2,G2,B2,s−s′ . We
show that F := F1 ∪ F2 is feasible for t, R, G, B, and s. Let e = uv be an edge
in F with v is not a leaf and v ̸∈ Qt. Without loss of generality, e ∈ F1. Be-
cause Qt = Qt1 , we conclude that v ̸∈ Qt1 . Thus, v has an outgoing edge in F1

and therefore in F , we know F satisfies condition (F1). Let v be a vertex of Qt.
If v ∈ R = (R1 ∪R2) \ (G1 ∪G2), then there is an edge e incoming at v in F1 or F2,
but F1 and F2 do not contain an outgoing edge of v. Consequently, v has an incoming
edge in F but no outgoing edges. Analogously, we can see that if v ∈ G = G1 ∪ G2

then v has an outgoing edge in F and if v ∈ B = B1∩B2, then v is not incident with
edges. Because that covers all options, F satisfies conditions (F2) to (F4). Let Ê1

and Ê2 be the edges of F1 and F2, respectively, that are incident with a leaf. Thus,
|Ê1| = s′ and |Ê2| = s − s′. Because every edge is introduced exactly once, the
sets F1 and F2 and therefore Ê1 and Ê2 are disjoint. Consequently, Ê1∪ Ê2 contains
the s edges that are incoming at leaves. Thus, F satisfies condition (F5). Hence, the
value that is stored with Recurrence (6.7) is correct.

Running Time. The tree decomposition T has O(m) nodes.
For a leaf node, an introduce vertex nodes and a forget node, the value of each

entry DP[t, R,G,B, s] can clearly be computed in time linear in twN . Checking
the conditions in an introduce edge node requires checking the colors of v and w.
Further, the partition R′ ∪G′ ∪B′ agrees on all vertices but v and w. Therefore, we
can also compute the values of entries in time linear in twN for an introduce edge
node. Altogether, we can compute the value of all entries of nodes that are not join

183

nodes in O(3twN · twN · k ·m) time.
For the computation in a join node t, we first store a big negative integer in

each entry DP[t, R,G,B, s] for partitions R ∪ G ∪ B of Qt and an integer s ∈ [k]0.
Then, iterate over partitions R1 ∪G1 ∪ B1 and R2 ∪G2 ∪ B2 of Qt. From the part-
itions R1 ∪ G1 ∪ B1 and R2 ∪ G2 ∪ B2, compute the implicitly defined part-
ition R ∪ G ∪ B of Qt in O(twN) time. See Figure 6.5. Iterate over s ∈ [k]0
and s′ ∈ [s]0. If DP[t1, R1, G1, B1, s

′] + DP[t2, R2, G2, B2, s − s′] exceeds the value
of DP[t, R,G,B, s], then replace it. Otherwise, let DP[t, R,G,B, s] stay unchanged.
After the iterations, we have computed the values of DP[t, R,G,B, s] for all parti-
tions R ∪ G ∪ B of Qt and integer s ∈ [k]0. Therefore, O(9twN · twN · k2) time is
required to compute all values of entries for each join node t.

Hence, a solution for MapPD can be computed in O(9twN · twN ·k2 ·m) time.

6.5 A Kernelization for Reticulation-Edges
In Theorem 6.5, we presented a branching algorithm that proves that MapPD is
FPT when parameterized by the number of reticulations, retN . In this section, we
show that MapPD admits a kernelization algorithm of polynomial size with respect
to e-retN . Recall that e-retN is the number of reticulation-edges which need to be
removed such that N is a tree. Observe e-retN ≥ retN and in binary networks they
are equal.

We first show how to bound the number of vertices and edges by a polynomial
in e-retN , without giving any such bound on the weights of the edges. Afterwards,
we will apply a result from [EKMR17, FT87] to get an appropriate bound on the
edge weights.

Theorem 6.7. Given an instance I = (N , k,D) of MapPD, an equivalent in-
stance I∗ = (N ∗ = (V ∗, E∗, λ∗), k∗, D∗) of MapPD with |V ∗|, |E∗| ∈ O(e-retN

2)
and k∗ ∈ O(e-retN) can be computed in O(m2 log2m · logmaxλ) time.

Throughout this section, assume that I = (N = (V,E, λ), k,D) is an instance
of MapPD with ρ being the root of N . Let R ⊆ V be the set of reticulation
vertices of N . We apply the following reduction rules exhaustively, and each rule
is applied only if none of the previous rules apply. After any of the reduction rules
let N ′ = (V,E ′, w′) denote the new network.

Reduction Rule 6.8. Let v ∈ V be a vertex with children x and y that are leaves.
Assume λ(vx) ≥ λ(vy). If v ̸= ρ, then replace the edge vy with an edge ρy of
weight λ′(ρy) = λ(vx).

184

Lemma 6.9. Reduction Rule 6.8 is correct and can be applied in O(n) time.

Proof. Correctness. We first show that if I is a yes-instance of MapPD
then I ′ := (N ′, k,D) is a yes-instance of MapPD. Afterward, we show the con-
verse. If I is a yes-instance then let S ⊆ X be a solution. If y ∈ S but x ̸∈ S,
then define S ′ := (S ∪ {x}) \ {y}. We conclude that S ′ is also a solution
because AP-PDN (S ′) = AP-PDN (S) + λ(vx) − λ(vy) ≥ AP-PDN (S). Therefore,
we may assume without loss of generality that x ∈ S or y /∈ S. If x /∈ S and y /∈ S,
then observe that AP-PDN (S) = AP-PDN ′(S) since all edges affected by S ap-
pear in both networks with the same weight. Similarly, if x ∈ S and y /∈ S,
then AP-PDN (S) = AP-PDN ′(S). Finally if x ∈ S and y ∈ S, then any
edge e ∈ E(N) \ {vy} is affected by S in N if and only if it is affected by S in N ′

(in particular, if y is an offspring of e in N then x is an offspripng of e in N ′). It
follows that AP-PDN (S) = AP-PDN ′(S)− λ′(ρy) + λ(vx) = AP-PDN ′(S). Thus, S
is a solution of I ′ in all cases.

Conversely, observe that if an edge e ∈ E(N ′) \ {ρy} is affected by S ⊆ X
in N ′ then it is also affected by S in N . Thus, AP-PDN ′(S) ≤ AP-PDN (S) and
consequently each solution for I ′ is also a solution for I. Thus, if I ′ is a yes-instance
of MapPD, then so is I.
Running Time. In O(n) time, we can determine whether there exists a vertex v
which has two children in X. If such a vertex v exists, we only need to compare λ(vx)
and λ(vy) in O(logmaxλ) time.

Note that Reduction Rule 6.8 might create degree-2-vertices; these are handled
by the next reduction rule.

Reduction Rule 6.10. Let v ∈ V be a vertex of degree-2. Let u be the parent and w
be the child of v. Remove v, its incident edges and create an edge uw with a weight
of λ′(uw) = λ(uv) + λ(vw).

Lemma 6.11. Reduction Rule 6.10 is correct and can be applied in O(n) time.

Proof. Correctness. The correctness follows from the observation that for any S ⊆ X
we have AP-PDN (S) = AP-PDN ′(S).
Running Time. In O(n) time, we can find out whether there exists a vertex with
a degree of 2. If such a vertex v exists, it takes constant time to remove v and its
incident edges and create the new edge uw with the appropriate weight.

To evaluate the size of the network after applying reduction rules, we adapt the
language of network generators. We refer the reader to [GBP09, vIKK+09] for an
in-depth study.

185

Definition 6.12.

(a) A vertex v ∈ V \ R is a core-vertex if v has two children, u1 and u2,
where u1 ̸= u2, and desc(ui) ∩R ̸= ∅ for each i ∈ {1, 2}.

(b) Let Q be the set of core-vertices of N .

(c) A side-path in N is a path from u to w for two vertices u,w ∈ R ∪Q with no
internal vertices in R∪Q. The internal vertices of a side-path are side-vertices.

(d) Let Z be the set of side-vertices of N .

Note that after applying Reticulation Rules 6.8 and 6.10, every non-leaf vertex
is either a reticulation or has at least one reticulation as a descendant. Therefore,
every non-leaf vertex is in Q, in R, or in Z. Every side-vertex has exactly one child
which is a leaf. The following result is similar to one in [GBP09]. For completeness
we prove it here.

Observation 6.13. Every network N has O(e-retN) side-paths. Further, it is sat-
isfied that |R|+ |Q| ∈ O(e-retN).

Proof. Observe that |R| = retN ≤ e-retN . As every side-path in N ends at a core
vertex or reticulation, we have that the number of side-paths is at most∑︂

v∈Q∪R

deg−(v) =
∑︂
r∈R

(deg−(r)− 1) + |Q|+ |R| (6.8)

= e-retN + |Q|+ |R| ≤ 2 · e-retN + |Q|. (6.9)

Conversely, each core-vertex has at least two side-paths leaving it, from
which it follows that the number of side-paths is at least 2 · |Q|. We conclude
that 2 · |Q| ≤ 2 · e-retN + |Q| and so |Q| ≤ 2 · e-retN . This implies that the number
of side-paths is at most 4 · e-retN .

Reduction Rule 6.14. Let v and w be side-vertices and let v be the parent of w. Fur-
ther, let xv and xw be leaves which are children of v and w, respectively.
If λ(vxv) ≤ λ(wxw) + λ(vw) then replace the edge vxv with an edge ρxv with a
weight of λ′(ρxv) = λ(vxv).

Lemma 6.15. Reduction Rule 6.14 is correct and can be applied in O(n) time.

186

Proof. Correctness. The proof follows similar lines as the proof of Lemma 6.9.
Let S ⊆ X be a solution of I. Assume that xv ∈ S but S ∩ off(w) = ∅. Then,
let S ′ := (S ∪ {xw}) \ {xv}. Observe that wxw and vw are affected by S ′

but not by S, while the only edge affected by S and not by S ′ is vxv.
Thus, AP-PDN (S ′) = AP-PDN (S) − λ(vxv) + λ(wxw) + λ(vw), which by the con-
dition of the reduction rule is at least AP-PDN (S). Therefore, also S ′ is a solution
of I with xv ̸∈ S. Thus, we may now assume that S contains a taxon from off(w)
or xv ̸∈ S. In either case, we can observe that AP-PDN (S) = AP-PDN ′(S).

Conversely, observe that any edge e ∈ E(N ′) \ {ρxv} affected by S in N ′ is also
affected by S in N . Thus AP-PDN ′(S) ≤ AP-PDN (S) for any S ⊆ X, and so each
solution for I ′ is also a solution for I.

Running Time. In O(n) time, we can find out whether there exists a vertex satisfying
the conditions of v in Reduction Rule 6.14, and if so edit the network accordingly.

Reduction Rule 6.16. Let u and w be core-vertices or reticulations with u ̸= ρ
and for some ℓ > 1 let v1, . . . , vℓ be side-vertices such that uv1, vℓw, vivi+1 ∈ E for
each i ∈ [ℓ − 1]. Remove the edge v1v2 and add edges ρv2 and v1w with a weight
of λ′(ρv2) = λ(v1v2), and λ′(v1w) = 0.

An application of this reduction rule is depicted in Figure 6.6. Here, we slightly
bend our own definitions in which we required that λ(e) > 0 for each edge e and that
each vertex either has an in-degree of 1 or an out-degree of 1. We note that after
applying the reduction rules exhaustively, we can adjust the instance to ensure these
requirements are met. First, we can replace each vertex v which has an in-degree and
an out-degree of larger than 1 with vin receiving all the incoming edges of v and vout

receiving v in all the outgoing edges and adding an edge vinvout with a weight of 0.
Furthermore, we can multiply each weight and D by m + 1. Then, we can set the
edges with a weight of 0 to a weight of 1.

Lemma 6.17. Reduction Rule 6.16 is correct and can be applied in O(m) time.

Proof. Correctness. Observe that if an edge e ∈ E(N ′) \ {ρv2, v1w} is affected
by S ⊆ X in N ′ then e is also affected by S in N . Furthermore, ρv2 is affected by S
in N ′ if and only if v1v2 is affected by S in N . Therefore, for every set S ⊆ X we
have AP-PDN ′(S) ≤ AP-PDN (S) +w(v1w) = AP-PDN (S), and each solution for I ′

is also a solution for I.
We now show the converse. We first observe some facts. Let xi denote the leaf

child of vi for each i ∈ [ℓ]. We observe that due to Reduction Rule 6.14, we may

187

u

v1

x1 v2

x2 vℓ

xℓ w

ρ (1) ρ

v2

v3

vℓ

w xℓ

x3

x2

u

v1

x1

λ(uv1)

0

(2)

Figure 6.6: This figure in (1) depicts the path from a core-vertex v to another core
vertex w and in (2) an application of Reduction Rule 6.16 to the path depicted in (1).

assume that λ(vixi) ≥ λ(vivi+1) + λ(vi+1xi+1) for each i ∈ [ℓ− 1]. Consequently,

λ(v1x1) ≥ λ(v2x2) + λ(v1v2) (6.10)
≥ λ(v3x3) + λ(v2v3) + λ(v2v1) (6.11)

≥ λ(vixi) +
i−1∑︂
j=1

λ(vjvj+1) (6.12)

for each i ∈ [ℓ− 1].
Let S be a solution of I. Observe that if S contains x1 or an offspring of w,

then AP-PDN (S) = AP-PDN ′(S). Similarly, if S does not contain one of the
taxa x1, . . . , xℓ then AP-PDN (S) = AP-PDN ′(S). So, assume now that S does
not contain x1 nor an offspring of w but xi ∈ S for some i ∈ [ℓ] with i > 1. De-
fine S ′ := (S ∪ {x1}) \ {xi}. Then,

AP-PDN (S ′) ≥ AP-PDN (S) + λ(v1x1)− λ(vixi)−
i−1∑︂
j=1

λ(vjvj+1), (6.13)

which by the observation above is at least AP-PDN (S). As x1 ∈ S ′, we have
that AP-PDN ′(S ′) = AP-PDN (S ′), and so S ′ is a solution for I ′.
Running Time. To find the vertices u and w we iterate over the vertices in Q as
vertex u and consider each outgoing edge as a path to u. Therefore, all possible
combinations of u and w are found in O(m) time. Each operation can be executed
in constant time.

We now categorize the vertices in some sets to be able to easier refer to them.

188

Definition 6.18.

(a) Define A to be the intersection of X with children of ρ.

(b) Define B to be the set of vertices which can be reached from R ∪ (Q \ {ρ}).

(c) Define Y to be the side-vetices which are children of ρ and define YX to be the
intersection of X with the children of Y .

(d) Define Z to be the side-vetices which are not in B ∪Y and define ZX to be the
intersection of X with the children of Z.

(e) Define a∗ := maxx∈A λ(ρx) and x∗ := argmaxx∈A λ(ρx).

(f) Define c∗ := maxy∈YX
λ(vyy) and y∗ := argmaxy∈YX

λ(vyy) where vy is the
parent of y.

In the following, for a taxon x ∈ X, we use an operation remove x when we
delete x from X and V as well as the incoming edge of x from E. Further, we use
an operation save x consisting of these steps:

• Reduce k by 1,
• reduce D′ by AP-PDN ({x}),
• delete x from X,
• remove all edges in E{x}, and
• identify all vertices with no incoming edge to a single root.

Lemma 6.19. For a given instance I of MapPD and a taxon x,

(a) I has a solution S with x ∈ S if and only if S\{x} is a solution for the instance
after x is saved, and

(b) I has a solution S with x /∈ S if and only if S is a solution for the instance
after x is removed.

Proof. To see the first claim, let N ′ be the network after saving x. Any edge in N ′

affected by some S ⊆ X \ {x} has a corresponding edge in E(N) \ E{x} with the
same offspring, from which it follows that AP-PDN (S ∪ {x}) ≥ AP-PDN ′(S) +D′.
Conversely, if x ∈ S ⊆ X then any edge in ES \E{x} has a corresponding edge in N ′

affected by S\{x}, from which it followed that AP-PDN ′(S\{x}) ≥ AP-PDN (S)−D′.
The second claim follows immediately from the definition of AP-PDN (S).

189

Reduction Rule 6.20. If k > |B|+ |Y | and a∗ > c∗, then save x∗. If k > |B|+ |Y |
and a∗ ≤ c∗, then save y∗.

Lemma 6.21. Reduction Rule 6.20 is correct and can be applied in O(m) time.

Proof. Correctness. Let v1,1, v2,1, . . . v|Y |,1 denote the vertices of Y . Let vj,1vj,2, . . . vj,ℓj
be the side-vertices on the path from vj,1 to a core vertex for each j ∈ [|Y |]. Let zj,i
be the leaf child of vj,i for each j ∈ [|Y |], and i ∈ [ℓj]. This mapping is unique
after Reduction Rule 6.8 has been applied exhaustively. Observe that Z is the
set {vj,i | 2 ≤ j ≤ |Y |, i ∈ [ℓj]}.

Similarly, we have λ(vj,1yj,1) ≥ λ(vj,iyj,i) +
∑︁i−1

h=1 λ(vj,hvj,h+1) for each j ∈ [|Y |],
and each i ∈ [ℓj]. Consequently, we may assume that if yj,i is in a solution for
some i > 1, then so is yj,1.

Furthermore, for any solution that contains yj,i and yj,1 for i > 1, we can assume
the solution contains y∗ as otherwise replacing yj,i with y∗ gives another solution,
because w(vy∗y∗) ≥ λ(vj,iyj,i) where vy∗ the parent of y∗ and for each j ∈ [|Y |], and
each i ∈ [ℓj]. Thus, if a solution S contains any element of ZX we can assume S also
contains y∗.

Now, suppose k > |B|+ |Y |. Then, any solution S contains at least one element
of A∪ZX . This implies that S contains at least one taxon of A∪{y∗} as S contains y∗
if it contains any taxon in ZX . If a∗ > c∗, then S contains x∗, as otherwise we could
replace a taxon from (A \ {x∗}) ∪ {y∗}. So, in this case, S contains x∗, and we can
save x∗ by Lemma 6.19. Otherwise, we may assume S contains y∗, as otherwise we
can replace an element from A with y∗.
Running Time. We can compute the size of B and Y and find a∗ and c∗ in O(n)
time. Saving x∗ or y∗ takes O(m) time.

Reduction Rule 6.22. Let x1, . . . , x|A| be the taxa in A such that λ(ρxi) ≥ λ(ρxi+1)
for each i ∈ [|A| − 1]. If k > |A|, then remove xk+1, . . . , x|A| and their incident edges
from N if |A| > k.

Lemma 6.23. Reduction Rule 6.22 is correct and can be applied in O(n log n) time.

Proof. Correctness. Clearly, any solution for the instance I ′ is also a solution for I.
Therefore, let S be a solution for I. If S ∩ {xk+1, . . . , x|A|} = ∅, then S is also a
solution for I ′. Assume that xi ∈ S for some i ∈ {k + 1, . . . , |A|}. As |S| ≤ k we
conclude that there is a taxon xj for j ∈ [k] with xj ̸∈ S. Because λ(ρxj) ≥ λ(ρxi),
we conclude that (S ∪ {xj}) \ {xi} is also a solution for I. Thus, we may assume
that S ∩ {xk+1, . . . , x|A|} = ∅.
Running Time. We can sort A in O(n log n) time.

190

Reduction Rule 6.24. Let z0, . . . , zk+1 ∈ Y ∪Z be vertices with zi being the parent
of zi+1 for i ∈ [k]0. Add an edge zk−1zk+1 of weight λ(zk−1zk) + λ(zkzk+1). Remove
the vertices which are reachable by zk but not by zk+1 and the incident edges from N .

Lemma 6.25. Reduction Rule 6.24 is correct and can be applied in O(n) time.

Proof. Correctness. Let x be a taxon which is reachable by zk but not by zk+1.
Because we applied Reduction Rules 6.8 and 6.14 exhaustively, each vertex zi contains
at most one child xi in X and λ(zixi) > λ(zi+1xi+1) + λ(zizi+1). Consequently, we
can assume that if xi is in a solution then so are x0, . . . , xi−1. Therefore, xk can not
be in a solution, and an application of Lemma 6.19 is correct.
Running Time. We can find an appropriate vertex zk in O(n) time and edit the
network in constant time.

Finally, we have everything to proof this section’s main theorem.

Proof of Theorem 6.7. For a given instance I apply all of the reduction rules ex-
haustively to receive instance I∗ = (N ∗ = (V ∗, E∗), k∗, D∗) of MapPD. We denote
with R, Q, and so the respective set in the original instance and with R∗, Q∗, and
so the respective set in I∗.

The correctness follows from the correctness of the reticulation rules.
Running time. Observe that Reduction Rules 6.20, 6.22, and 6.24 reduce |X| by 1,
while Reduction Rules 6.8 and 6.14 reduce |X\A| by 1. As none of the reduction rules
increase |X| or |X\A|, these rules are applied at most |X|+|X\A| ≤ 2n times in total.
For Reduction Rule 6.10, we note that only Reduction Rules 6.8, 6.14, 6.20, 6.22,
and 6.24 can create a degree-2 vertex. Thus, every application of Reduction Rule 6.10
occurs after one of these other rules, and thus Reduction Rule 6.10 is applied at
most 2 · |X| times.

For Reduction Rule 6.16, we observe that each application of this rule reduces
the number of side-paths starting at a non-root vertex of length of at least 2. None
of the reduction rules increase this measure, and so the number of application of
Reduction Rule 6.16 is bounded by the number of side-paths in the original network,
which is O(e-retN) by Observation 6.13.

So, the total number of applications of all reduction rules is O(|X| + e-retN).
Observe that a single application of any reduction rule is done in O(m+n log n) time
by Lemmas 6.9, 6.11, 6.15, 6.17, 6.21, 6.23, and 6.25. We conclude that applying
all rules exhaustively takes O((|X|+ e-retN) · (m+ n log n) · logm · logmaxλ) time,
which can be summarized as O(m2 log2m · logmaxλ).

191

Size. Each application of Reduction Rule 6.16 increases the number of reticulation-
edges by one. Therefore, observe that with e-retN we refer to the parameter in the
original network.

Observe that none of the reduction rules (except for Reduction Rule 6.16) change
the number of reticulations or core vertices in the network. Reduction Rule 6.16
may turn some core vertices into reticulations but otherwise does not create new
core vertices or reticulations. Therefore, we have |R∗|+ |Q∗| = |R|+ |Q| ∈ O(e-retN)
by Observation 6.13.

As Reduction Rule 6.16 is exhaustively applied, we have that each side-path in N ∗

not leaving the root has at most one internal vertex, and this vertex has one leaf
child. There are O(e-retN) side-paths in N ∗ by Observation 6.13 and the fact that
none of the reduction rules increase the number of side-paths not leaving the root.
Thus, we have that the total number of vertices reachable from R∗ ∪ (Q \ ρ) is at
most |R∗|+ |Q∗|+O(e-retN) = O(e-retN). That is, |B∗| ∈ O(e-retN).

The size of Y ∗ is the number of paths from ρ to a core-vertex or a reticulation.
There are at most |Q|+e-retN such paths in the original instance. Each application
of Reduction Rule 6.16 adds one such path. We saw that |Q| ∈ O(e-retN) and
Reduction Rule 6.16 can be applied O(e-retN) times. We conclude |Y ∗| ∈ O(e-retN).

After Reduction Rule 6.20 has been applied exhaustively, we may conclude
that k∗ ≤ |B∗| + |Y ∗| ∈ O(e-retN). After Reduction Rule 6.22 has been applied
exhaustively, there are at most k∗ vertices in A∗ and after Reduction Rule 6.24
has been applied exhaustively, each path in Z∗ has length of most k∗ − 1 such
that |Y ∗|+ |Z∗| ≤ |Y ∗| · k∗ ∈ O(e-retN

2). We conclude |V ∗| ∈ O(e-retN
2).

We have e-retN ∗ ≤ e-retN + |Q∗| + |R∗| ∈ O(e-retN) because e-retN = |E| − |V |
in any network. Hence, we conclude |E∗| = e-retN ∗ +|V ∗| ∈ O(e-retN

2).

From Theorem 6.7, we have that in polynomial time we can reduce any instance I
of MapPD to an equivalent instance I∗ = (N ∗ = (V ∗, E∗, λ∗), k∗, D∗) in which |V ∗|,
|E∗|, and k∗ are all bounded by a polynomial in e-retN . This does not guarantee
a polynomial kernel, as the encoding size of D∗ or maxλ∗ could be much larger
than |V ∗| or |E∗|. Fortunately, we can apply a result of [EKMR17, FT87] to bound
these values, as follows.

Let e1, . . . , em∗ be an order of the edges after applying all reduction rules. We
define wi := λ∗(ei) for each i ∈ [m∗] and W := D∗. In polynomial time, we can
compute positive numbers w′

1, . . . , w
′
m∗ , and W ′ such that the total encoding length

is O((m∗)4) ∈ O(e-retN
8) with

∑︁
i∈S wi ≥ W if and only if

∑︁
i∈S w

′
i ≥ W ′ for

every S ⊆ [m∗] by [EKMR17, Corollary 2].
We directly conclude the following.

192

QM2

q/2

q/(2− q)

x

v1x

v2x

x−

x∗

Figure 6.7: Illustration of the leaf-gadget. Omitted edge-weights are 1 and q(x) is abbre-
viated to q.

Theorem 6.8. MapPD admits a polynomial size kernelization algorithm for the
number of reticulation-edges e-retN .

6.6 Hardness of Max-Net-PD

In this section, we examine another measure of phylogenetic diversity on phylogenetic
networks than MapPD, namely Max-Net-PD. Recall that in Max-Net-PD, each
reticulation-edge is given an inheritance proportion. Similar to the computation
of diversity in GNAP, also in Max-Net-PD we consider expected phylogenetic
diversity.

In this section, we present a polynomial-time reduction from unit-cost-NAP
to Max-Net-PD, in which the level of the phylogenetic network is 1. Recall that in
unit-cost-NAP, we are given a phylogenetic tree, a survival probability for every
taxon, and two integers k and D, and it is asked whether there is a set S of size at
most k taxa such that has an expected phylogenetic diversity of at least D.

By Theorem 3.5, unit-cost-NAP is NP-hard even if the phylogenetic tree has a
height of 2. We conclude the following.

Theorem 6.9. Max-Net-PD is NP-hard even if the input network has a level of 1
and the distance between the root and each leaf is 4.

Proof. By Theorem 3.5, unit-cost-NAP is NP-hard on trees with a height of 2.
Let T be an X-tree with a height of 2 for some set of taxa X and let an
instance I = (T , λ, q, k,D) of unit-cost-NAP be given.

We define a leaf-gadget which is illustrated in Figure 6.7. Let x ∈ X be a
leaf of T with survival probability q(x). Add four vertices v1x, v2x, x∗, and x−, and
edges xv1x, xv2x, v1xv2x, v1xx−, and v2xx∗. The only reticulation in this gadget is v2x with
incoming edges xv2x and v1xv

2
x. We set inheritance proportions of these reticulation

193

edges p(xv2x) := q(x)/(2 − q(x)) and p(v1xv
2
x) := q(x)/2 which are both in R[0,1]

because q(x) ∈ R[0,1].
Let N be the network which results from replacing each leaf of T with the corre-

sponding leaf-gadget. The leaves of N are X ′ := {x∗, x− | x ∈ X}. Let d denote the
largest denominator of a survival probability q(x) for some x ∈ X, so that every q(x)
is expressible as c′/d′ for some pair of integers c, and d such that d′ ≤ d. Let M
and Q be large integers, such that M is bigger than PDT (X) ≥ |X| ≥ k, and Q ·D
and Q · d−k are both bigger than 3.

Observe that the number of bits necessary to write M and Q is polynomial in the
size of I. We set the weight of edges e ∈ E(T) in N to λ′(e) = kQ · λ(e). For each
taxon x ∈ X, set λ′(v2xx∗) := Q·M2 and λ′(e) := 1 for each e ∈ {xv1x, xv2x, v1xv2x, v1xx−}.

Finally, let I ′ := (N , λ′, p, k,D′ := kQ(M2 + D)) be an instance of Max-Net-
PD. Each leaf-gadget is a level-1-network. As the leaf-gadgets are connected by a
tree, N is a level-1-network. Recall that the height of the tree T is 2, and as such
the distance between the root and each leaf in in N is 4.

We first show that γpZ(e) = q(x) for the edge e incoming at x, if Z contains x∗ but
not x−. Indeed, because x− ̸∈ Z, we conclude γpZ(xv

2
x) = p(xv2x) = q(x)/(2 − q(x))

and γpZ(xv
1
x) = γpZ(v

1
xv

2
x) = p(v1xv

2
x) = q(x)/2. Subsequently,

γpZ(e) = 1−
(︁
1− γpZ(xv

1
x)
)︁ (︁

1− γpZ(xv
2
x)
)︁

(6.14)

= 1− 2− q(x)

2
· 2− 2q(x)

2− q(x)

= 1− 2− q(x)

2− q(x)
· 2− 2q(x)

2

= 1− 2− 2q(x)

2
= q(x).

We now show that if I is a yes-instance of unit-cost-NAP, then I ′ is a yes-
instance of Max-Net-PD. Afterward, we show the converse.

Suppose that I is a yes-instance of unit-cost-NAP and that S ⊆ X is a
solution of I, that is |S| ≤ k and PDT (S) ≥ D. Let S ′ := {x∗ | x ∈ S} be a
subset of X ′. Clearly, |S ′| = |S| ≤ k. Because T does not contain reticulation edges
and γpZ(e) = q(x) with e being the edge incoming at x, we conclude that

Net-PDN (S ′) ≥ kQ · PDT (S) + k · λ′(v2xx∗) ≥ kQ · (D +M2) = D′. (6.15)

Hence, S ′ is a solution of I ′.
Conversely, let S ′ be a solution of I ′. We define S− = S ∩ {x− | x ∈ X}

and S∗ = S ∩ {x∗ | x ∈ X}. Towards a contradiction, assume that S− is non-empty.

194

Then however, using 3 < Q ·D,

Net-PDN (S ′) ≤
∑︂

x−∈S−

(λ′(v1xx
−) + λ′(xv1x)) + |S∗| · (QM2 + 3) +

∑︂
e∈E(T)

λ′(e)

≤ 2 · |S−|+ |S∗| · (QM2 + 3) + kQM

≤ 2 + (k − 1)(QM2 + 3) + kQM

< kQM2 −QM2 + kQM + 3k

< k(QM2 + 3) < k(QM2 +QD) = D′

contradicts that S ′ is a solution. Therefore, we conclude that S ′ ⊆ {x∗ | x ∈ L} and
we assume that the size of S ′ is k. Define S := {x | x∗ ∈ S ′}. Subsequently, with
Equation (6.14) we conclude

kQ(M2 +D) = D′ ≤ Net-PDN (S ′)

= k ·QM2 +
∑︂
x∈S

(︃
q(x)

2
+
q(x)

2
+

q(x)

2− q(x)⏞ ⏟⏟ ⏞
≤3

)︃
+ kQ · PDT (S).

It follows that PDT (S) ≥ 1
kQ

· (kQ(M2 +D)− kQM2 − 3k) = D − 3/Q.
It remains to show that PDT (S) cannot take any values between D−3/Q and D,

and therefore PDT (S) ≥ D−3/Q implies PDT (S) ≥ D. To this end, let cx, and dx be
the unique positive integers such that q(x) = cx/dx for each taxon x ∈ X. Then, q(x)
and (1− q(x)) are multiples of 1/dx, by construction. It follows that for any edge e
of the tree T that γ′S(e) = (1−

∏︁
x∈off(e)∩S(1−q(x))) is a multiple of 1/(

∏︁
x∈S dx). As

all edge-weights are integers, we also have that PDT (S) is a multiple of 1/(
∏︁

x∈S dx).
It follows that either PDT (S) ≥ D or D − PDT (S) ≥ 1/(

∏︁
x∈S dx). Because dx ≤ d

for any x, this difference is at least d−k > 3/Q. It follows that if PDT (S) ≥ D− 3/Q
then in fact PDT (S) ≥ D.

We conclude PDT (S) ≥ D. And therefore with |S| = |S ′| = k we follow that S
is a solution of I. Hence, I is a yes-instance of unit-cost-NAP.

6.7 Discussion
In this chapter, we considered two problems, Max-All-Paths-PD and Max-Net-
PD, in maximizing phylogenetic diversity in networks, and analyzed them within the
framework of parameterized complexity.

We showed that MapPD is W[2]-hard parameterized by k, the size of the solution.
We further were able to show an equivalence between MapPD parameterized by k

195

and Item-Weighted Partial Set Cover parameterized by the size of the solu-
tion. Thus, establishing the exact complexity class of Item-Weighted Partial
Set Cover, would also establish the exact complexity class of MapPD. On the
positive side, we showed that MapPD is FPT when parameterized with the number
of reticulations retN and with respect to the treewidth twN of the network. We
further showed that MapPD admits a kernelization algorithm with respect to the
number of reticulation-edges e-retN . Finally, we have shown that Max-Net-PD
remains NP-hard on phylogenetic networks with a level of 1.

Because retN is smaller than e-retN , it is natural to ask if the kernelization result
can also be shown for retN . We also ask whether MapPD parameterized by k
is W[2]-complete.

For Max-Net-PD we also raise some questions. We have proven that MapPD
is FPT when parameterized by the threshold of diversity D and the acceptable loss
of diversity D. Also, we showed that MapPD admits a kernelization algorithm of
polynomial size with respect to e-retN . It is natural to ask, if these positive results
transfer to Max-Net-PD. Further, based on the presented hardness for Max-Net-
PD we ask for some improvements. First of all, can Max-Net-PD be solved in
pseudo-polynomial time on level-1-networks? Secondly, is Max-Net-PD polynomial
time solvable on level-1-networks if we require the network to be ultrametric, i.e.
when all root-leaf paths have the same length? Finally, does Max-Net-PD remain
W[1]-hard when the parameter is the number of species k to save plus the level of the
network?

196

Chapter 7

Conclusion

We studied several problems concerning the maximization of preserved phylogenetic
diversity within the constraint of limited resources, which allow for the selection
of only a few taxa. The considered problem definitions model biological processes
more realistically compared to the basic problem of maximization phylogenetic di-
versity, Max-PD. For these problem definitions, within the framework of parame-
terized algorithms, we presented several lower and upper running time bounds for
algorithms.

Before presenting a broader perspective on this work, we will briefly review the
different problem definitions and the results obtained. Finally, we will offer an out-
look on potential future research directions.

7.1 Summary of Problems and Results

The first problem we considered is Generalized Noah’s Ark Problem, in Chap-
ter 3. With GNAP one is able to model different costs for saving taxa and also an
uncertainty as to whether an intervention actually saves a taxon.

We showed that GNAP is XP with respect to the number of unique costs plus the
number of unique survival probabilities. We further proved that GNAP is W[1]-hard
with respect to the number of taxa. We also showed that unit-cost-NAP, the
special case of GNAP in which all projects with a positive survival probability have
a cost of 1, is NP-hard even on phylogenetic trees with a height of 2. It remains open
if GNAP, or even unit-cost-NAP, is strongly NP-hard or if GNAP can be solved
in pseudo-polynomial running time.

In Chapter 4 we considered Time-PD and s-Time-PD. These problems are
motivated by the concern that some taxa need to be treated earlier than others

197

because not all taxa go extinct at the same point in time. As it is necessary for a
solution of an instance of either of the two problems to indicate how to schedule the
available time in order to save all of these taxa, a connection to the field of scheduling
is given.

Both problems, Time-PD and s-Time-PD, are FPT with respect to the target
diversity D. Further, Time-PD is also FPT when parameterized by the acceptable
loss of phylogenetic diversityD. In contrast, this result does not hold for s-Time-PD,
unless P ̸= NP. It remains open whether Time-PD is solvable in pseudo-polynomial
time.

With Max-PD it is not possible to check whether taxa in a selected set have
crucial dependencies to taxa which are not selected. In Optimizing PD with
Dependencies, which we studied in Chapter 5, one not only searches for a phy-
logenetically diverse set of taxa but also for one where in the given food-web each
taxon either is a source or has an edge from another saved taxon. Therefore, with
PDD it is possible to compute a small set of taxa that has a phylogenetic diversity
above a certain threshold and each selected is self-sufficient in the ecological system
or feeds on the saved set of taxa.

We presented algorithms with a color-coding approach to show that PDD is FPT
when parameterized with the solution size plus the height of the phylogenetic tree.
s-PDD—the special case of PDD in which the phylogenetic tree is a star—is W[1]-
hard when parameterized by the acceptable loss of phylogenetic diversity. We also
considered the structure of the food-web. Here, we proved that PDD remains NP-
hard if every connected component of the food-web is a star or a clique. However,
PDD is FPT with respect to the distance to co-cluster of the food-web. We showed
further that s-PDD is FPT with respect to the treewidth of the food-web. It is open
whether PDD is FPT with respect to the size of the solution, or if PDD can be solved
in polynomial time if every connected component in the food-web contains at most
two vertices.

In some constellations, the evolutionary history of taxa may be explained better
with a phylogenetic network than with a phylogenetic tree. Models for generalizing
phylogenetic diversity on explicit phylogenetic networks have been defined rather
recently [WF18, BSW22]. In Chapter 6, we considered two corresponding prob-
lems, Max-All-Paths-PD and Max-Net-PD.

We presented reductions to showcase an equivalence between MapPD and a
special case of Set Cover, both parameterized by the size of the solution and
thereby establishing a W[2]-hardness of MapPD with respect to k. We further showed
that MapPD is FPT when parameterized with the number of reticulations or with the
treewidth of the network. Finally, Max-Net-PD remains NP-hard on phylogenetic

198

networks of level 1. These results have the practical implications that exact solutions
can be computed in a reasonable time if the phylogenetic network is relatively treelike.
It remains open whether MapPD admits a kernelization of polynomial size for retN .
Further, we wonder if Max-Net-PD is FPT when parameterized by k plus the level
of the phylogenetic network.

7.2 A Broader View on Our Results
Let us now provide a broader view of the results of this work. Firstly, we want to
observe that the regarded problems can be distinguished between two categories.
While Budgeted NAP, Time-PD, and s-Time-PD are primarily extending Max-
PD in a direction to better model interventions of men, PDD, MapPD, and Max-
Net-PD solely model biological processes.

The algorithms that we presented are predominantly dynamic programming al-
gorithms or use the technique of color-coding. It is rather not surprising to have a
lot of dynamic programming approaches when dealing with a tree-structure. In the
color-coding algorithms, we mostly used perfect hash-families and sometimes uni-
versal sets. While these techniques provide the desired FPT-results, representative
sets [CFK+15, Mon85, Chapter 12.3] actually yield faster running times for other
problems. We, therefore, ask whether it is possible to apply representative sets to at
least improve some of the running times.

We observe that certain hardness results, both NP-hardness and W[i]-hardness,
were mostly given even on phylogenetic trees or networks that only have a constant
height. On the contrary, it seemed that if a certain algorithm works on trees of
height three or four, then the approach also generalizes to arbitrary heights. As
phylogenetic trees tend to have significant height in practice, this is a rather positive
observation because some algorithmic ideas are not strongly impeded by tall trees.

The unit-cost-NAP problem presented itself as an interesting problem for re-
ductions. This is for example utilized in Theorem 6.9. We have been able to prove
that unit-cost-NAP is NP-hard in Theorem 3.5. However, we did not succeed in
presenting a pseudo-polynomial running-time algorithm for unit-cost-NAP, nor in
showing that unit-cost-NAP is strongly NP-hard. If unit-cost-NAP was strongly
NP-hard, then we could also exclude pseudo-polynomial running-time algorithms for
GNAP and Max-Net-PD restricted to level-1-networks, unless P = NP.

We now have a look into some specific parameters considered in this work. The
parameterization by the acceptable loss of phylogenetic diversity, D, is to the best of
our knowledge introduced by us. Considering the fact that we are probably interested
in preserving the majority of available phylogenetic diversity, we may assume D to be

199

relatively small in real-world instances. Considering D as a parameter proved to be
fruitful, as Time-PD and MapPD are FPT with respect to D. Both these algorithms
use the technique of color-coding. Theorem 4.2, in which we prove that Time-PD is
FPT when parameterized withD, is arguably the most technically advanced algorithm
in this thesis.

Most of the considered problems are W[1]-hard with respect to the size of the solu-
tion. This results from the fact that these problems are generalizations of Knapsack
or Set Cover, which are known to be W[1]-hard for the solution size. Further, most
of the problems can be solved with trivial O(2|X|) running-time algorithms. One
can wonder if any improvements can be made to these algorithms. At least for
MapPD, we know that the algorithm running in O(2|X|) time is tight under SETH,
by Corollary 6.4.

7.3 Research Ideas Based on This Work
In the remainder of the discussion, we want to delve a bit into general ideas for fur-
ther research. Within this thesis, we presented many algorithmic ideas and discussed
their correctness and running time upper bounds. Given the theoretical nature of
this work, it would be valuable to evaluate the practical efficiency of these algo-
rithms. Therefore, one would need to implement some of the algorithmic ideas to
evaluate their practical efficiency. For instance, the branching algorithm for MapPD
(Theorem 6.5) and the algorithms for the parameterization with D (Theorems 4.1
and 5.3) or with D (Theorems 4.2 and 6.4) would be recommendable. Implemented
algorithms could do both, give further insight into the complexity of the problems,
and also act as a bridge between theory and practical decision-making in conservation
projects.

In some real-world preservation actions, decision-makers choose to preserve nat-
ural reservoirs instead of specific taxa, for example be due to political pressure. In
Optimizing Diversity with Coverage (ODC), one may select regions for pro-
tection in which all taxa are preserved [MSS07]. ODC is NP-hard by a reduction from
Set Cover [MSS07] and a generalization has been studied from an approximation
point-of-view [BS08, BS11]. It would be interesting to see whether ODC is FPT for
reasonable parameters.

Naturally, one could ask to combine the aspects of the individual problems. Given
the presented individual hardness results for the problems, this attempt seems rather
not so fruitful—and extremely technical. Nevertheless, the consideration of ecolog-
ical constraints, as done in PDD, is indeed important to consider in conservation
interventions. It could present an interesting study to combine these viability con-

200

straints with phylogenetic networks. Do the resulting problems become much harder
than PDD?

In Chapter 6, we considered two existent definitions of phylogenetic diversity
on phylogenetic networks. We have not discussed how well these problems model
biological processes. One of the most important tasks in this field now would be
to assess which variants of phylogenetic diversity on networks are biologically most
accurate. This could of course depend on the type of species considered and in
particular on the type of reticulate evolutionary events. Even if the maximization
problem cannot be solved efficiently, having a good measure of phylogenetic diversity
can still be of great practical use by measuring how diverse a given set of species is.

Finally, we observe that we have considered problems in maximizing phylogenetic
diversity. When it comes to the preservation of taxa we are arguably very interested
in the different features of a selected set of taxa and therefore rather in feature or
functional diversity. Computing functional diversity, however, is even impossible
in cases [MPC+18] and so we use phylogenetic diversity as somewhat fitting albeit
imperfect proxy of functional diversity [WDS13]. We wonder if in special cases pa-
rameterized algorithms could be a tool to handle the intractability. Further, it has
been reported that maximizing phylogenetic diversity is only marginally better than
selecting a random set of species when it comes to maximizing the functional diversity
of the surviving species [MPC+18]. The situation could be different, however, when
some constraints of this thesis, especially the biological constraints considered in the
last two chapters, are incorporated. Here, investigating the following two questions
seems fruitful: First, do randomly selected viable species sets have a higher functional
diversity than randomly selected species? Second, do viable sets with maximal phy-
logenetic diversity have a higher functional diversity than randomly selected viable
sets?

201

Bibliography

[AB04] Arthur O. L. Atkin and Daniel J. Bernstein. Prime sieves using binary
quadratic forms. Mathematics of Computation, 73:1023–1030, January
2004. (Cited on p. 51)

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009. (Cited on p. 32)

[AMO95] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
flows: theory, algorithms and applications. Prentice Hall, 1995. (Cited
on pp. 150, 152)

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. Journal
of the Association for Computing Machinery (JACM), 42(4):844–856,
1995. (Cited on p. 40)

[BBC23] BBC. Biodiversity: Almost half of animals in decline, research shows,
2023. BBC: https://www.bbc.com/news/uk-northern-ireland-656
81648, visited on June 3rd, 2024. (Cited on p. 17)

[BH80] Terry Beyer and Sandra Mitchell Hedetniemi. Constant Time Genera-
tion of Rooted Trees. SIAM Journal on Computing, 9(4):706–712, 1980.
(Cited on p. 133)

[Bil13] Alain Billionnet. Solution of the Generalized Noah’s Ark Problem. Sys-
tematic Biology, 62(1):147–156, 2013. (Cited on pp. 21, 59)

[Bil17] Alain Billionnet. How to Take into Account Uncertainty in Species
Extinction Probabilities for Phylogenetic Conservation Prioritization.
Environmental Modeling & Assessment, 22(6):535–548, 2017. (Cited
on pp. 21, 59)

203

[BJK14] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernel-
ization lower bounds by cross-composition. SIAM Journal on Discrete
Mathematics, 28(1):277–305, 2014. (Cited on p. 39)

[Blä03] Markus Bläser. Computing small partial coverings. Information Pro-
cessing Letters, 85(6):327–331, 2003. (Cited on p. 172)

[BS08] Magnus Bordewich and Charles Semple. Nature Reserve Selection Prob-
lem: A Tight Approximation Algorithm. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 5(2):275–280, 2008. (Cited
on p. 200)

[BS11] Magnus Bordewich and Charles Semple. Budgeted Nature Reserve Se-
lection with diversity feature loss and arbitrary split systems. Journal
of Mathematical Biology, 64:69–85, 02 2011. (Cited on p. 200)

[BSS09] Magnus Bordewich, Charles Semple, and Andreas Spillner. Optimizing
phylogenetic diversity across two trees. Applied Mathematics Letters,
22(5):638–641, 2009. (Cited on pp. 149, 151)

[BSS23a] Matthias Bentert, Jannik Schestag, and Frank Sommer. On the Com-
plexity of Finding a Sparse Connected Spanning Subgraph in a Non-
Uniform Failure Model. In Proceedings of the 18th International Sympo-
sium on Parameterized and Exact Computation (IPEC 2023). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2023. (Cited on p. X)

[BSS23b] Matthias Bentert, Jannik Schestag, and Frank Sommer. On the com-
plexity of finding a sparse connected spanning subgraph in a non-
uniform failure model. arXiv preprint arXiv:2308.04575, 2023. (Cited
on p. X)

[BSW22] Magnus Bordewich, Charles Semple, and Kristina Wicke. On the com-
plexity of optimising variants of phylogenetic diversity on phylogenetic
networks. Theoretical Computer Science, 917:66–80, 2022. (Cited
on pp. 24, 25, 161, 162, 164, 165, 166, 168, 178, 198)

[BV04] Mukul Subodh Bansal and Vadlamudi China Venkaiah. Improved Fully
Polynomial time Approximation Scheme for the 0-1 Multiple-choice
Knapsack Problem. International Institute of Information Technology
Tech Report, pages 1–9, 2004. (Cited on p. 43)

204

[CDL+16] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper
Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and
Magnus Wahlström. On Problems as Hard as CNF-SAT. ACM Trans-
actions on Algorithms (TALG), 12(3):1–24, 2016. (Cited on p. 168)

[CDRG+18] Alyssa R. Cirtwill, Giulio Valentino Dalla Riva, Marilia P. Gaiarsa,
Malyon D. Bimler, E. Fernando Cagua, Camille Coux, and D. Matthias
Dehling. A review of species role concepts in food webs. Food Webs,
16:e00093, 2018. (Cited on pp. 122, 160)

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Loksh-
tanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket
Saurabh. Parameterized Algorithms. Springer, 2015. (Cited
on pp. 32, 38, 39, 40, 98, 137, 138, 155, 199)

[CKvHM16] Olga Chernomor, Steffen Klaere, Arndt von Haeseler, and Bui Quang
Minh. Split Diversity: Measuring and Optimizing Biodiversity using
Phylogenetic Split Networks, pages 173–195. Springer International
Publishing, Cham, 2016. (Cited on p. 24)

[CME17] Eileen Crist, Camilo Mora, and Robert Engelman. The interaction of
human population, food production, and biodiversity protection. Sci-
ence, 356(6335):260–264, 2017. (Cited on p. 17)

[CNP+22] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Jo-
han M.M. Van Rooij, and Jakub Onufry Wojtaszczyk. Solving connec-
tivity problems parameterized by treewidth in single exponential time.
ACM Transactions on Algorithms (TALG), 18(2):1–31, 2022. (Cited
on p. 30)

[Cro97] Rossiter H. Crozier. Preserving the information content of species:
Genetic Diversity, Phylogeny, and Conservation Worth. Annual
Review of Ecology and Systematics, 28(1):243–268, 1997. (Cited
on pp. 18, 19, 59, 121)

[DF95a] Rodney G. Downey and Michael R. Fellows. Fixed-Parameter Tractabil-
ity and Completeness I: Basic Results. SIAM Journal on Computing,
24(4):873–921, 1995. (Cited on pp. 36, 47)

[DF95b] Rodney G. Downey and Michael R. Fellows. Fixed-Parameter
Tractability and Completeness II: On Completeness for W[1].

205

Theoretical Computer Science, 141(1-2):109–131, 1995. (Cited
on pp. 36, 41, 92, 139, 168)

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parame-
terized Complexity. Texts in Computer Science. Springer, 2013. (Cited
on pp. 32, 36, 38, 41, 168)

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate
texts in mathematics. Springer, 2012. (Cited on p. 28)

[DJ22] Katy Daigle and Julia Janicki. Extinction crisis puts 1 million species
on the brink, 2022. Reuters: https://www.reuters.com/lifestyle/
science/extinction-crisis-puts-1-million-species-brink-202
2-12-23/8, visited on June 3rd, 2024. (Cited on p. 17)

[DLS14] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization
Lower Bounds Through Colors and IDs. ACM Transactions on Algo-
rithms (TALG), 11(2):1–20, 2014. (Cited on pp. 41, 137)

[Dus99] Pierre Dusart. The kth prime is greater than k(ln k + ln ln k − 1) for
k ≥ 2. Mathematics of Computation, 68(225):411–415, 1999. (Cited
on p. 51)

[EKMR17] Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin.
Polynomial kernels for weighted problems. Journal of Computer and
System Sciences, 84:1–10, 2017. (Cited on pp. 43, 73, 74, 184, 192)

[Fai92] Daniel P. Faith. Conservation evaluation and phylogenetic diversity.
Biological Conservation, 61(1):1–10, 1992. (Cited on pp. 18, 19, 59, 176)

[FFHV11] Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and Stéphane
Vialette. Upper and lower bounds for finding connected motifs in vertex-
colored graphs. Journal of Computer and System Sciences, 77(4):799–
811, 2011. (Cited on p. 137)

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2006.
(Cited on p. 32)

[FGR12] Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond. Param-
eterizing by the Number of Numbers. Theory of Computing Systems,
50(4):675–693, 2012. (Cited on p. 62)

206

[FJ15] Michael Fuchs and Emma Yu Jin. Equality of Shapley value and fair
proportion index in phylogenetic trees. Journal of Mathematical Biol-
ogy, 71:1133–1147, 2015. (Cited on p. 161)

[FR12] Daniel P. Faith and Zoe T. Richards. Climate Change Impacts on the
Tree of Life: Changes in Phylogenetic Diversity Illustrated for Acropora
Corals. Biology, 1(3):906–932, 2012. (Cited on p. 19)

[FSW11] Beáta Faller, Charles Semple, and Dominic Welsh. Opti-
mizing Phylogenetic Diversity with Ecological Constraints.
Annals of Combinatorics, 15(2):255–266, 2011. (Cited
on pp. 22, 23, 122, 123, 137, 140, 144, 145, 149, 155, 157)

[FT87] András Frank and Éva Tardos. An application of simultaneous dio-
phantine approximation in combinatorial optimization. Combinatorica,
7(1):49–65, 1987. (Cited on pp. 42, 184, 192)

[GBP09] Philippe Gambette, Vincent Berry, and Christophe Paul. The structure
of level-k phylogenetic networks. In Proceedings of the Annual Sympo-
sium on Combinatorial Pattern Matching, pages 289–300. Springer, 06
2009. (Cited on pp. 185, 186)

[GCJW+15] Pille Gerhold, James F. Cahill Jr., Marten Winter, Igor V. Bartish,
and Andreas Prinzing. Phylogenetic patterns are not proxies of com-
munity assembly mechanisms (they are far better). Functional Ecology,
29(5):600–614, 2015. (Cited on p. 19)

[GJ78] Michael R. Garey and David S. Johnson. “Strong” NP-Completeness
Results: Motivation, Examples, and Implications. Journal of the ACM,
25(3):499–508, 1978. (Cited on p. 93)

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability.
A Guide to the Theory of NP-Completenes. W. H. Freeman, 1979.
(Cited on pp. 32, 50)

[GJS76] Michael R. Garey, David S. Johnson, and Ravi Sethi. The complexity of
flowshop and jobshop scheduling. Mathematics of Operations Research,
1(2):117–129, 1976. (Cited on pp. 88, 93)

[GKLS24] Jaroslav Garvardt, Christian Komusiewicz, Ber Lorke, and Jannik
Schestag. Protective and Nonprotective Subset Sum Games: A Param-
eterized Complexity Analysis. In Proceedings of the 8th International

207

Conference on Algorithmic Decision Theory (ADT 2024). Springer,
2024. (Cited on p. X)

[GLLK79] Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra,
and AHG Rinnooy Kan. Optimization and approximation in deter-
ministic sequencing and scheduling: a survey. In Annals of Discrete
Mathematics, volume 5, pages 287–326. Elsevier, 1979. (Cited on p. 86)

[GRR19] Frank Gurski, Carolin Rehs, and Jochen Rethmann. Knapsack prob-
lems: A parameterized point of view. Theoretical Computer Science,
775:93–108, 2019. (Cited on pp. 117, 141, 173, 175)

[GRSW23] Jaroslav Garvardt, Malte Renken, Jannik Schestag, and Mathias Weller.
Finding degree-constrained acyclic orientations. In Proceedings of the
18th International Symposium on Parameterized and Exact Computa-
tion (IPEC 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2023. (Cited on p. X)

[Har13] Klaas Hartmann. The equivalence of two Phylogenetic Diodiversity
measures: the Shapley value and Fair Proportion index. Journal of
Mathematical Biology, 67:1163–1170, 2013. (Cited on p. 19)

[HB06] Daniel H. Huson and David Bryant. Application of Phylogenetic
Networks in Evolutionary Studies. Molecular Biology and Evolution,
23(2):254–267, 2006. (Cited on pp. 23, 24)

[HH24] Klaus Heeger and Danny Hermelin. Minimizing the Weighted Number
of Tardy Jobs is W[1]-hard. arXiv preprint arXiv:2401.01740, 2024.
(Cited on pp. 86, 88, 119)

[HHS23] Klaus Heeger, Danny Hermelin, and Dvir Shabtay. Single Machine
Scheduling with Few Deadlines. In Proceedings of the 18th Interna-
tional Symposium on Parameterized and Exact Computation (IPEC
2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023. (Cited
on p. 87)

[Hic20] Jason Hickel. Quantifying national responsibility for climate break-
down: an equality-based attribution approach for carbon dioxide emis-
sions in excess of the planetary boundary. The Lancet Planetary Health,
4(9):e399–e404, 2020. (Cited on p. 17)

208

[HKPS21] Danny Hermelin, Shlomo Karhi, Michael Pinedo, and Dvir Shabtay.
New algorithms for minimizing the weighted number of tardy jobs on
a single machine. Annals of Operations Research, 298:271–287, 2021.
(Cited on pp. 86, 87, 115)

[HKS08] Claus-Jochen Haake, Akemi Kashiwada, and Francis Edward Su. The
Shapley value of phylogenetic trees. Journal of Mathematical Biology,
56(4):479–497, 2008. (Cited on p. 19)

[HRS10] Daniel H. Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic
Networks: Concepts, Algorithms and Applications. Cambridge Univer-
sity Press, 2010. (Cited on pp. 24, 161)

[HS06] Klaas Hartmann and Mike Steel. Maximizing Phylogenetic Diver-
sity in Biodiversity Conservation: Greedy Solutions to the Noah’s
Ark Problem. Systematic Biology, 55(4):644–651, 2006. (Cited
on pp. 20, 59, 92, 121)

[HS07] Klaas Hartmann and Mike Steel. Phylogenetic diversity: from combi-
natorics to ecology. Reconstructing Evolution: New Mathematical and
Computational Advances., 2007. (Cited on p. 59)

[HWVW95] Christopher J. Humphries, Paul H. Williams, and Richard I. Vane-
Wright. Measuring biodiversity value for conservation. Annual review
of Ecology and Systematics, 26(1):93–111, 1995. (Cited on p. 18)

[IPCC23] IPCC 2023; Core Writing Team, H. Lee and J. Romero (eds.). Climate
Change 2023: Synthesis Report. Contribution of Working Groups I, II
and III to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change. 2023. (Cited on p. 17)

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which
Problems Have Strongly Exponential Complexity? Journal of Com-
puter and System Sciences, 63(4):512–530, 2001. (Cited on p. 39)

[ITC+07] Nick J.B. Isaac, Samuel T. Turvey, Ben Collen, Carly Waterman, and
Jonathan E.M. Baillie. Mammals on the EDGE: Conservation Priorities
Based on Threat and Phylogeny. PLOS ONE, 2(3):1–7, 03 2007. (Cited
on p. 19)

209

[JS23a] Mark Jones and Jannik Schestag. How Can We Maximize Phylogenetic
Diversity? Parameterized Approaches for Networks. archive.org, 2023.
(Cited on p. VIII)

[JS23b] Mark Jones and Jannik Schestag. How Can We Maximize Phylogenetic
Diversity? Parameterized Approaches for Networks. In Proceedings of
the 18th International Symposium on Parameterized and Exact Compu-
tation (IPEC 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2023. (Cited on pp. VIII, 139, 159)

[JS24] Mark Jones and Jannik Schestag. Maximizing Phylogenetic Diversity
under Time Pressure: Planning with Extinctions Ahead. arXiv preprint
arXiv:2403.14217, 2024. (Cited on pp. VIII, 20, 22, 139, 159)

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In
Proceedings of a Symposium on the Complexity of Computer Com-
putations, pages 85–103. Plenum Press, New York, 1972. (Cited
on pp. 39, 41, 42, 92, 141)

[KLB+17] Vikas Kumar, Fritjof Lammers, Tobias Bidon, Markus Pfenninger, Ly-
dia Kolter, Maria A. Nilsson, and Axel Janke. The evolutionary History
of Bears is characterized by Gene flow across Species. Scientific Reports,
7(1):46487, 2017. (Cited on p. 24)

[KLMS23] Christian Komusiewicz, Simone Linz, Nils Morawietz, and Jannik
Schestag. On the Complexity of Parameterized Local Search for the
Maximum Parsimony Problem. In Proceedings of the 34th Annual
Symposium on Combinatorial Pattern Matching (CPM 2023). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2023. (Cited on p. X)

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems.
Springer, 2004. (Cited on pp. 42, 43, 47)

[KS23a] Christian Komusiewicz and Jannik Schestag. A Multivariate Complex-
ity Analysis of the Generalized Noah’s Ark Problem. arXiv preprint
arXiv:2307.03518, 2023. (Cited on p. VII)

[KS23b] Christian Komusiewicz and Jannik Schestag. A Multivariate Complex-
ity Analysis of the Generalized Noah’s Ark Problem. In Proceedings of
the 19th Cologne-Twente Workshop on Graphs and Combinatorial Opti-
mization, pages 109–121. Springer, 2023. (Cited on pp. VII, IX, 48, 121)

210

[KS24a] Christian Komusiewicz and Jannik Schestag. Maximizing Phylogenetic
Diversity under Ecological Constraints: A Parameterized Complexity
Study. arXiv preprint arXiv:2405.17314, 2024. (Cited on p. VIII)

[KS24b] Christian Komusiewicz and Jannik Schestag. Maximizing Phyloge-
netic Diversity under Ecological Constraints: A Parameterized Com-
plexity Study. In Proceedings of the 44th IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2024). Schloss-Dagstuhl-Leibniz Zentrum für Infor-
matik, 2024. (Cited on p. VIII)

[LFS06] Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot. Motif
Search in Graphs: Application to Metabolic Networks. IEEE/ACM
transactions on computational biology and bioinformatics, 3(4):360–368,
2006. (Cited on p. 137)

[LHN05] Erez Lieberman, Christoph Hauert, and Martin A. Nowak. Evolution-
ary dynamics on graphs. Nature, 433(7023):312–316, 2005. (Cited
on p. 160)

[Lin42] Raymond L. Lindeman. The trophic-dynamic aspect of ecology. Ecol-
ogy, 23(4):399–417, 1942. (Cited on p. 122)

[Lin19] Bingkai Lin. A simple gap-producing Reduction for the parameterized
Set Cover Problem. arXiv preprint arXiv:1902.03702, 2019. (Cited
on p. 168)

[LJ83] Hendrik Willem Lenstra Jr. Integer programming with a fixed number
of variables. Mathematics of Operations Research, 8(4):538–548, 1983.
(Cited on p. 42)

[LLS15] Michael J. Lynch, Michael A. Long, and Paul B. Stretesky. Anthro-
pogenic development drives species to be endangered: Capitalism and
the decline of species. In Green Harms and Crimes, pages 117–146.
Springer, 2015. (Cited on p. 17)

[LM69] Eugene L. Lawler and J. Michael Moore. A functional equation and its
application to resource allocation and sequencing problems. Manage-
ment Science, 16(1):77–84, 1969. (Cited on p. 86)

[Mar20] Luiz Marques. Capitalism and Environmental Collapse. Springer, 2020.
(Cited on p. 17)

211

[Max70] William L. Maxwell. On sequencing n jobs on one machine to minimize
the number of late jobs. Management Science, 16(5):295–297, 1970.
(Cited on p. 86)

[May90] Robert M. May. Taxonomy as destiny. Nature, 347(6289):129–130,
1990. (Cited on pp. 17, 18)

[MBR+23] Joseph J. Merz, Phoebe Barnard, William E. Rees, Dane Smith, Mat
Maroni, Christopher J. Rhodes, Julia H. Dederer, Nandita Bajaj,
Michael K. Joy, Thomas Wiedmann, and Rory Sutherland. World sci-
entists’ warning: The behavioural crisis driving ecological overshoot.
Science Progress, 106(3):00368504231201372, 2023. PMID: 37728669.
(Cited on p. 17)

[Min86] Michel Minoux. Solving integer minimum cost flows with separable
convex cost objective polynomially. Netflow at Pisa, pages 237–239,
1986. (Cited on pp. 150, 152)

[MKvH06] Bui Quang Minh, Steffen Klaere, and Arndt von Haeseler. Phylogenetic
Diversity within Seconds. Systematic Biology, 55(5):769–773, 10 2006.
(Cited on p. 20)

[MKvH07] Bui Quang Minh, Steen Klaere, and Arndt von Haeseler. Phylogenetic
Diversity on Split Networks. Technical report, 12 2007. (Cited on p. 162)

[Moh01] Bojan Mohar. Face Covers and the Genus Problem for Apex Graphs.
Journal of Combinatorial Theory, Series B, 82(1):102–117, 2001. (Cited
on pp. 41, 144, 148)

[Mon85] Burkhard Monien. How to find long paths efficiently. In North-Holland
Mathematics Studies, volume 109, pages 239–254. Elsevier, 1985. (Cited
on p. 199)

[Moo68] J. Michael Moore. An n job, one machine sequencing algorithm for
minimizing the number of late jobs. Management Science, 15(1):102–
109, 1968. (Cited on p. 86)

[Mor97] Bernard M. E. Moret. The theory of computation. Addison-Wesley,
1997. (Cited on p. 50)

212

[MP08] Georgina M. Mace and Andy Purvis. Evolutionary biology and practical
conservation: bridging a widening gap. Molecular Ecology, 17(1):9–19,
2008. (Cited on p. 19)

[MPC+18] Florent Mazel, Matthew W. Pennell, Marc W. Cadotte, Sandra
Diaz, Giulio Valentino Dalla Riva, Richard Grenyer, Fabien Leprieur,
Arne O. Mooers, David Mouillot, Caroline M. Tucker, and William D.
Pearse. Prioritizing phylogenetic diversity captures functional diver-
sity unreliably. Nature Communications, 9(1):2888, 2018. (Cited
on pp. 19, 121, 201)

[MPKvH09] Bui Minh, Fabio Pardi, Steffen Klaere, and Arndt von Haeseler. Bud-
geted Phylogenetic Diversity on Circular Split Systems. IEEE/ACM
transactions on computational biology and bioinformatics / IEEE,
ACM, 6:22–9, 04 2009. (Cited on p. 162)

[MSS07] Vincent Moulton, Charles Semple, and Mike Steel. Optimizing phy-
logenetic diversity under constraints. Journal of Theoretical Biology,
246(1):186–194, 2007. (Cited on pp. 20, 22, 121, 122, 200)

[MVB18] Matthias Mnich and René Van Bevern. Parameterized complexity of
machine scheduling: 15 open problems. Computers & Operations Re-
search, 100:254–261, 2018. (Cited on p. 86)

[NBP19] Rama Krishna Nimmakayala, Surinder K. Batra, and Moorthy P. Pon-
nusamy. Unraveling the journey of cancer stem cells from origin to
metastasis. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,
1871(1):50–63, 2019. (Cited on p. 23)

[Nic23] Taylor Nicioli. New analysis identifies largest threat to thousands of
species facing extinction, 2023. CNN: https://edition.cnn.com/20
23/11/08/europe/analysis-europe-plants-animals-face-extin
ction-scn/index.html, visited on June 3rd, 2024. (Cited on p. 17)

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
Lecture Series in Mathematics and Its Applications. OUP Oxford, 2006.
(Cited on p. 32)

[NSS95] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters
and near-optimal derandomization. Proceedings of IEEE 36th An-
nual Foundations of Computer Science, pages 182–191, 1995. (Cited
on pp. 40, 144, 175)

213

[NW92] Kevin C. Nixon and Quentin D. Wheeler. Measures of phylogenetic di-
versity. Extinction and Phylogeny, pages 216–234, 1992. (Cited on p. 18)

[Pap07] Christos H. Papadimitriou. Computational complexity. Academic In-
ternet Public, 2007. (Cited on p. 32)

[Par09] Fabio Pardi. Algorithms on Phylogenetic Trees. PhD thesis, University
of Cambridge Cambridge, 2009. (Cited on pp. 20, 59)

[PF13] Pavol Prokop and Jana Fančovičová. Does colour matter? The influ-
ence of animal warning coloration on human emotions and willingness
to protect them. Animal conservation, 16(4):458–466, 2013. (Cited
on p. 18)

[PG05] Fabio Pardi and Nick Goldman. Species Choice for Comparative Ge-
nomics: Being Greedy Works. PLoS Genetics, 1(6):e71, 2005. (Cited
on pp. 19, 85, 121)

[PG07] Fabio Pardi and Nick Goldman. Resource-Aware Taxon Selection for
Maximizing Phylogenetic Diversity. Systematic Biology, 56(3):431–444,
2007. (Cited on pp. 20, 59, 63, 64, 75, 85, 92, 152, 153)

[Pis95] David Pisinger. A minimal algorithm for the Multiple-Choice Knapsack
Problem. European Journal of Operational Research, 83(2):394–410,
1995. (Cited on p. 43)

[PLS14] Benjamin Planque, Ulf Lindstrøm, and Sam Subbey. Non-Deterministic
modelling of food-web dynamics. PloS One, 9(10):e108243, 2014. (Cited
on p. 23)

[PZZ+21] Pavol Prokop, Martina Zvaríková, Milan Zvarík, Adam Pazda, and Pe-
ter Fedor. The Effect of Animal Bipedal Posture on Perceived Cuteness,
Fear, and Willingness to Protect Them. Frontiers in Ecology and Evo-
lution, 9:681241, 2021. (Cited on p. 18)

[RM06] David W. Redding and Arne Ø. Mooers. Incorporating Evolution-
ary Measures into Conservation Prioritization. Conservation Biology,
20(6):1670–1678, 2006. (Cited on pp. 19, 161)

[Ros41] Barkley Rosser. Explicit bounds for some functions of prime num-
bers. American Journal of Mathematics, 63(1):211–232, 1941. (Cited
on p. 51)

214

[RWN+17] William J. Ripple, Christopher Wolf, Thomas M. Newsome, Mauro
Galetti, Mohammed Alamgir, Eileen Crist, Mahmoud I. Mahmoud,
William F. Laurance, and 364 scientist signatories from 184 countries
15. World Scientists’ Warning to Humanity: A Second Notice. Bio-
Science, 67(12):1026–1028, 11 2017. (Cited on p. 17)

[Sah76] Sartaj K. Sahni. Algorithms for Scheduling Independent Tasks. Journal
of the ACM, 23(1):116–127, 1976. (Cited on p. 86)

[SGKS22] Jannik Schestag, Niels Grüttemeier, Christian Komusiewicz, and Frank
Sommer. On Critical Node Problems with Vulnerable Vertices. In Pro-
ceedings of the 33rd International Workshop on Combinatorial Algo-
rithms (IWOCA 2022), pages 494–508. Springer, 2022. (Cited on p. X)

[SGKS24] Jannik Schestag, Niels Gruettemeier, Christian Komusiewicz, and
Frank Sommer. On Critical Node Problems with Vulnerable Vertices.
Journal of Graph Algorithms and Applications, 28(1):1–26, 2024. (Cited
on p. X)

[Sho95] Peter W. Shor. A New Proof of Cayley’s Formula for Counting Labeled
Trees. Journal of Combinatorial Theory, Series A, 71(1):154–158, 1995.
(Cited on p. 133)

[Sid73] Jeffrey B. Sidney. An extension of Moore’s due date algotithm. In
Proceedings of a Symposium on the Theory of Scheduling and its Appli-
cations, pages 393–398. Springer, 1973. (Cited on p. 86)

[SM12] Luis Santamaría and Pablo F. Mendez. Evolution in biodiversity policy
– current gaps and future needs. Evolutionary Applications, 5(2):202–
218, 2012. (Cited on p. 19)

[SNM08] Andreas Spillner, Binh T. Nguyen, and Vincent Moulton. Computing
Phylogenetic Diversity for Split Systems. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 5(2):235–244, 2008. (Cited
on pp. 122, 162)

[SPSS23] Gregory W. Stull, Kasey K. Pham, Pamela S. Soltis, and Douglas E.
Soltis. Deep reticulation: the long legacy of hybridization in vascu-
lar plant evolution. The Plant Journal, 114(4):743–766, 2023. (Cited
on p. 23)

215

[Ste59] G. Ledyard Stebbins. The role of hybridization in evolution. Proceedings
of the American Philosophical Society, 103(2):231–251, 1959. (Cited
on p. 23)

[Ste05] Mike Steel. Phylogenetic Diversity and the Greedy Algo-
rithm. Systematic Biology, 54(4):527–529, 2005. (Cited
on pp. 19, 85, 121, 168, 176, 178)

[SWF+20] Manuel Sorge, Mathias Weller, Florent Foucaud, Ondřej Suchỳ, Pas-
cal Ochem, Martin Vatshelle, and Gerhard J. Woeginger. The Graph
Parameter Hierarchy. URL: https://manyu.pro/assets/parameter-
hierarchy.pdf, 2020. (Cited on p. 144)

[vIJS+24] Leo van Iersel, Mark Jones, Jannik Schestag, Celine Scornavacca, and
Mathias Weller. Maximizing Network Phylogenetic Diversity. arXiv
preprint arXiv:2405.01091, 2024. (Cited on pp. VIII, IX, 162, 163)

[vIKK+09] Leo van Iersel, Judith Keijsper, Steven Kelk, Leen Stougie, Ferry Ha-
gen, and Teun Boekhout. Constructing level-2 phylogenetic networks
from triplets. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 6(4):667–681, 2009. (Cited on p. 185)

[VMM+14] Logan Volkmann, Iain Martyn, Vincent Moulton, Andreas Spillner, and
Arne O. Mooers. Prioritizing Populations for Conservation Using Phy-
logenetic Networks. PloS one, 9(2):e88945, 2014. (Cited on p. 24)

[VWHW91] Richard I. Vane-Wright, Christopher J. Humphries, and Paul H.
Williams. What to Protect?—Systematics and the Agony of Choice.
Biological Conservation, 55(3):235–254, 1991. (Cited on p. 18)

[WDS13] Marten Winter, Vincent Devictor, and Oliver Schweiger. Phylogenetic
diversity and nature conservation: where are we? Trends in Ecology &
Evolution, 28(4):199–204, 2013. (Cited on pp. 19, 201)

[Wei66] H. Martin Weingartner. Capital budgeting of interrelated projects: sur-
vey and synthesis. Management Science, 12(7):485–516, 1966. (Cited
on pp. 117, 173, 175)

[Wei92] Martin L. Weitzman. On Diversity. The quarterly Journal of Eco-
nomics, 107(2):363–405, 1992. (Cited on p. 18)

216

[Wei98] Martin L. Weitzman. The Noah’s ark problem. Econometrica, pages
1279–1298, 1998. (Cited on pp. 20, 59)

[Wes00] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edi-
tion, 2000. (Cited on p. 28)

[WF18] Kristina Wicke and Mareike Fischer. Phylogenetic diversity and bio-
diversity indices on phylogenetic networks. Mathematical Biosciences,
298:80–90, 2018. (Cited on pp. 24, 161, 165, 198)

[Wil84] Edward O. Wilson. Biophilia: the human bond with other species. 1984.
(Cited on p. 18)

[WMS21] Kristina Wicke, Arne Mooers, and Mike Steel. Formal Links be-
tween Feature Diversity and Phylogenetic Diversity. Systematic Biology,
70(3):480–490, 2021. (Cited on p. 18)

[Yap83] Chee K. Yap. Some consequences of non-uniform conditions on uni-
form classes. Theoretical computer science, 26(3):287–300, 1983. (Cited
on p. 38)

217

