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Preface

This thesis summarizes my results on (connected) subgraph problems. I study the
complexity of these problems and I provide efficient algorithms for them. The results
contained in this thesis were obtained from November 2017 to June 2022 at the
Philipps-Universität Marburg at the Fachbereich Mathematik und Informatik in the
Algorithmics research group lead by Christian Komusiewicz.

Most of the results presented in this thesis are contained in conference and journal
publications that were developed in close collaboration with other coauthors. Before
I roughly describe which chapters are based on which publications, I give a short
overview on the other publications were I was a coauthor which are not included in
this thesis. These publications are ordered alphabetically.

• “Approximation Algorithms for BalancedCC Multiwinner Rules”, with Markus
Brill, Piotr Faliszewski, and Nimrod Talmon. Conference: 18th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS ’19) [33].

• “Colored Cut Games”, with Nils Morawietz, Niels Grüttemeier, and Chris-
tian Komusiewicz. Journal: Theoretical Computer Science [175]. Conference:
40th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS ’20) [173].

• “Destroying Bicolored P3s by Deleting Few Edges”, with Niels Grüttemeier,
Christian Komusiewicz, and Jannik Schestag. Journal: Discrete Mathematics
& Theoretical Computer Science [99]. Conference: 15th Conference on Com-
putability in Europe (CIE ’19) [98].

• “Destroying Multicolored Paths and Cycles in Edge-Colored Graphs”, with Nils
Jakob Eckstein, Niels Grüttemeier, and Christian Komusiewicz. ArXiv: [65].

• “Essentially Tight Kernels For (Weakly) Closed Graphs” with Tomohiro Koana,
and Christian Komusiewicz. Conference: 32nd International Symposium on
Algorithms and Computation (ISAAC ’21) [140].

• “Exploiting c-Closure in Kernelization Algorithms for Graph Problems”, with
Tomohiro Koana, and Christian Komusiewicz. Journal: SIAM Journal on
Discrete Mathematics [141]. Conference: 28th Annual European Symposium
on Algorithms (ESA ’20) [139].

• “Multi-Parameter Analysis of Finding Minors and Subgraphs in Edge Periodic
Temporal Graphs”, with Emmanuel Arrighi, Niels Grüttemeier, Nils Morawi-
etz, and Petra Wolf. Conference: Accepted at 48th International Conference on
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Current Trends in Theory and Practice of Computer Science (SOFSEM ’23).
ArXiv: [10].

• “On Critical Node Problems with Vulnerable Vertices”, with
Jannik Schestag, Niels Grüttemeier, and Christian Komusiewicz. Conference:
33rd International Workshop on Combinatorial Algorithms (IWOCA ’22) [207].

• “Preventing Small (s, t)-Cuts by Protecting Edges”, with Niels Grüttemeier,
Christian Komusiewicz, and Nils Morawietz. Conference: 47th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG ’21) [97].

• “Refined Parameterizations for Computing Colored Cuts in Edge-Colored
Graphs”, with Nils Morawietz, Niels Grüttemeier, and Christian Komusiewicz.
Journal: Theory of Computing Systems [176]. Conference: 46th International
Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM ’20) [174].

• “String Factorizations Under Various Collision Constraints”, with Niels
Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Conference: Thirty-
First Annual Symposium on Combinatorial Pattern Matching (CPM ’20) [96].

In the following paragraphs, I describe which chapters are based on which publi-
cations. Furthermore, I describe my own contribution to these publications.

Chapter 3 is based on the publication “Enumerating connected induced sub-
graphs: Improved delay and experimental comparison” written with Christian Ko-
musiewicz, which appeared in Discrete Applied Mathematics [148]. A preliminary
version of this publication appeared in the Proceedings of the 45th International Con-
ference on Current Trends in Theory and Practice of Computer Science
(SOFSEM ’19) [146]. Initially, the aim of this project initiated by Christian and
myself was to find a suitable enumeration algorithm for FixCon (see Chapter 4).
During this study I discovered that improving the current best delay for the problem
of enumerating all connected induced subgraphs of size exactly k was possible by
an adoption of one of the algorithms included in our study. Furthermore, after the
publication of the conference version we came across with a similar problem: the enu-
meration of all connected induced subgraphs of size at most k [4]. We also improved
the delay for this problem in the journal version. Both coauthors jointly worked out
the details of the improved delay for enumerating all connected induced subgraphs of
size exactly k. I worked out the details of the improved delay for the enumeration of
all connected induced subgraphs of size at most k and I implemented all algorithms
considered in this study and evaluated the results. Furthermore, I prepared the draft
of the manuscript. Chapter 3 also contains some new results discovered by me re-
garding related enumeration problems which are not contained in the journal version.
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More precisely, it contains also results for the delay of enumerating all edge-induced
subgraphs, and the enumeration of all (not necessarily induced) subgraphs.

Chapter 4 is based on the publication “FixCon: A Generic Solver for Fixed-
Cardinality Subgraph Problems” written with Christian Komusiewicz which ap-
peared in the Proceedings of the Twenty-Second Workshop on Algorithm Engineering
and Experiments (ALENEX ’20) [147]. Christian proposed to implement FixCon, a
generic solver for Connected Fixed-Cardinality Optimization. The pruning
and data reduction to speed up the solver were jointly discovered by both coauthors.
Christian implemented the neighborhood-based rules and the problem-specific prun-
ing rules. I implemented the rest of the solver. Furthermore, Christian implemented
the ILP formulations which we used to evaluate FixCon. I did the comparison of
FixCon and the ILP formulations. The manuscript was prepared by both coauthors.

Chapter 5 is based on parts of the publication “Computing Dense and Sparse
Subgraphs of Weakly Closed Graphs” written with Tomohiro Koana and Christian
Komusiewicz which appeared in the Proceedings of the 31st International Symposium
on Algorithms and Computation, (ISAAC ’20) [137]. A full version is available on
ArXiv [138]. Christian and I proposed to study the parameterized complexity of
classic graph problems with respect to the c-closure and the weak γ-closure during a
research retreat of the AKT group of TU Berlin 2019 in Prignitz. During this retreat,
Tomohiro joined the project and we studied clique relaxations such as s-Plex and
problems related to bicliques. Tomohiro provided the results for the algorithms
with running time nO(

√
s) for s-Defective Clique. All other results were jointly

discovered by all coauthors. The hardness-result for 2-Club discovered by me is not
contained in the conference version. The manuscript was prepared by all coauthors.

Chapter 6 is based on the publication “The Parameterized Complexity of s-Club
with Triangle and Seed Constraints” written with Jaroslav Garvardt and Christian
Komusiewicz which appeared in the Proceedings of the 33rd International Workshop
on Combinatorial Algorithms, (IWOCA ’22) [88]. The full version is available on
ArXiv [89]. Christian proposed to study Vertex Triangle s-Club. During the
study of this problem, Jaroslav and me proposed to also introduce and study the
problems Edge Triangle s-Club and Seeded s-Club. Jaroslav and myself
worked out the details for Vertex Triangle s-Club and Edge Triangle s-
Club for ℓ = 1. I extended these results to general ℓ. All three coauthors developed
the dichotomy for Seeded 2-Club. Furthermore, I generalized some of these results
to general s. Also, I prepared the draft of the manuscript.

Chapter 7 is based on the paper “Efficient Branch-and-Bound Algorithms for
Finding 2-Clubs with Triangle Constraints” written with Niels Grüttemeier, Philipp
Heinrich Keßler and Christian Komusiewicz which is available on ArXiv [95]. Chris-
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tian and I proposed algorithm engineering forVertex Triangle 2-Club and ℓ = 1
as the topic for Philipp’s bachelor thesis [129]. Afterwards, we decided to extend
this implementation to Edge Triangle 2-Club and to general ℓ. For this, Philipp
worked as a research assistant in our group. Christian, Niels, and I discovered several
speed-ups for the implementation and showed their correctness. Philipp provided the
implementation. Philipp and I evaluated our experiments. Christian, Niels, and I
prepared the draft.

Chapter 8 is based on the publication “Covering Many (or Few) Edges with k
Vertices in Sparse Graphs” written with Tomohiro Koana, Christian Komusiewicz,
and André Nichterlein which appeared in the Proceedings of the 39th International
Symposium on Theoretical Aspects of Computer Science, (STACS ’22) [135]. A full
version is available on ArXiv [136]. During our other works on problems parameter-
ized by c-closure and weak γ-closure Tomohiro proposed to study the parameterized
complexity of Partial Vertex Cover with respect to c. Later, Tomohiro found
the problem Max α-FCGP [29] generalizing Partial Vertex Cover. We de-
cided to study this generalized problem. The details of the annotated version and
the positive results for the maximum degree ∆ where developed jointly by all au-
thors. Christian provided the details for the negative results for the maximum degree;
André and Christian provided the details for the parameters h-index and vertex cover
number. Tomohiro provided the positive results for the c-closure and the degener-
acy d and I provided the complementing negative results for both parameters. The
manuscript was written jointly by all coauthors.

Acknowledgements. I want to thank Christian Komusiewicz for giving me to
opportunity to work as a PhD student in his group. Furthermore, I want to thank
Christian for proposing interesting problems to study, and that his door was always
open for endless discussions with me. Also, I really enjoyed the productive and
pleasant atmosphere with my colleagues and friends (in lexicographic order) Jaroslav
Garvardt, Niels Grüttemeier, and Nils Morawietz and I am grateful for the time we
spend together. Furthermore, I want to thank all of my co-authors (in lexicographic
order): Emmanuel Arrighi, Markus Brill, Nils Jakob Eckstein, Piotr Faliszewski,
Jaroslav Garvardt, Niels Grüttemeier, Philipp Heinrich Keßler, Tomohiro Koana,
Christian Komusiewicz, Nils Morawietz, André Nichterlein, Jannik Schestag, Nimrod
Talmon, and Petra Wolf. I am also grateful for the financial support by the Deutsche
Forschungsgemeinschaft projects Multivariate Algorithmics for Graph and String
Problems in Bioinformatics (MAGZ) and Algorithms for Group Centrality (EAGR)
during my PhD. Finally, I want to express my gratitude for my parents Mandy
Sommer and Ralf Sommer for all their love and support throughout the years.
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Abstract

We study various subgraph problems with applications for example in community
detection. In these applications vertices represent agents in a social network or
genes in a biological network, and edges represent interactions of the agents or genes,
respectively. All of the problems studied in this thesis fit into one of two categories:
finding one subgraph fulfilling some specific property, or enumerating all subgraphs
of a certain type. We study these problems both theoretically, for example with
respect to their classic- and parameterized complexity, and practically, by providing
efficient implementations. We study three types of problems:

In many applications like the detection of network motifs, it is important to enu-
merate all connected induced subgraphs. We compare several implementations for
this task and improve upon the best delay due to Elbassioni (JGAA ’15). Then, we
use the fastest algorithms for this task as a baseline for an exact solver for Con-
nected Fixed Cardinality Optimization. In this problem, one aims to find
a set of k vertices maximizing an objective function. We provide several generic
pruning rules to speed-up our solver and show for eight example problems that our
approach outperforms standard Integer Linear Programs (ILPs) for small values of k.

Community detection is an important task in the analysis of networks. Clique
relaxations are a popular tool to model communities. We study the parameterized
complexity of finding or enumerating different clique relaxations with respect to the
(weak) closure. These parameters were recently discovered by Fox et al. (SIAM J.
Comput. ’20) and are observed to be small in social networks. Then, we study the
diameter-based clique relaxation 2-Club with triangle or seed constraints. For the
variants with triangle constraints we provide a dichotomy into cases which admit an
FPT-algorithm and those which are W[1]-hard for k. Next, we provide a branch-and-
bound algorithm which outperforms an ILP by Almeida and Brás (Comput. Oper.
Res. ’19). For the seeded variant, we identify several cases which admit an FPT-
algorithm and cases which are W[1]-hard for k depending on the structure of the seed.

Finally, we also investigate a local graph partitioning problem generalizing many
classic graph problems like Densest k-Subgraph, Maximum Partial Vertex
Cover (MaxPVC) and Maximum (k, n − k)-Cut. We study the parameterized
complexity of this generic graph problem with respect to the solution size k plus one
additional structural graph parameter like the maximum degree or the c-closure. We
show, for example, that MaxPVC and Maximum (k, n− k)-Cut not only behave
similarly in terms of fixed-parameter tractability, but also the techniques to obtain
them are similar. One of our results is a so-called kernel of size kO(c) for MaxPVC,
thereby answering an open question of Kanesh et al. (STACS ’22).
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Zusammenfassung

Wir untersuchen verschiedene Subgraphprobleme mit Anwendungen etwa im Finden
von Communities. In diesen Anwendungen repräsentieren Knoten Akteure in sozialen
Netzwerken oder Gene in einem biologischem Netzwerk und Kanten repräsentieren
Interaktionen der Akteure beziehungsweise der Gene. Alle Probleme, welche in
dieser Dissertation untersucht werden, gehören zu zwei Kategorien: finden eines
Subgraphen, welcher eine bestimmte Eigenschaft erfüllt, oder Aufzählen aller Sub-
graphen eines bestimmten Typs. Wir untersuchen diese Probleme sowohl theoretisch,
zum Beispiel bezüglich deren klassischer oder parametrisierten Komplexität, als auch
praktisch, indem wir effiziente Implementierungen entwickeln.

In vielen Anwendungen, wie zum Beispiel dem Finden von Netzwerkmotiven,
ist es wichtig alle zusammenhängenden induzierten Subgraphen aufzuzählen. Wir
vergleichen verschiedene Implementierungen für diese Aufgabe und verbessern den
besten Delay für dieses Problem, welcher von Elbassioni (JGAA ’15) nachgewisen
wurde. Danach nutzen wir die schnellsten Algorithmen für diese Aufgabe als Grund-
lage für einen exakten Solver für Connected Fixed Cardinality Optimiza-
tion. In diesem Problem möchte man eine Menge von k Knoten finden, welche
eine Zielfunktion maximiert. Wir stellen viele generische Pruningregeln zur Beschle-
unigung unseres Solvers zur Verfügung und zeigen für acht Beispielprobleme, dass
unser Ansatz für kleine Werte von k schneller ist als Standardformulierungen von
Ganzzahligen Linearen Programmen (ILPs).

Das Finden von Communities ist eine wichtige Aufgabe in der Analyse von Net-
zwerken. Cliquerelaxierungen sind ein weit verbreiteter Ansatz um Communities zu
modellieren. Wir untersuchen die parametrisierte Komplexität bezüglich der (weak)
closure, um verschiedene Cliquerelaxierungen zu finden oder aufzuzählen. Diese
Parameter wurden kürzlich von Fox et al. (SIAM J. Comput. ’20) entdeckt und
sind klein in sozialen Netzwerken. Danach untersuchen wir die durchmesserbasierte
Cliquerelaxierung 2-Club mit Dreiecks- oder Seedconstraint. Für die Varianten
mit Dreiecksconstraints beweisen wir eine Dichotomie in Fälle, welche einen FPT-
Algorithmus für k zulassen, und solche, welche W[1]-schwer für k sind. Außerdem
entwickeln wir einen Branch-and-Bound Algorithmus, welcher schneller ist als ein
ILP von Almeida and Brás (Comput. Oper. Res. 2019). Für die Variante mit Seed-
constraint finden wir viele Fälle, welche einen FPT-Algorithmus für k zulassen und
solche, welche W[1]-schwer für k sind. Diese Klassifikation hängt von der Struktur
des Seeds ab.

Schließlich untersuchen wir ein lokales Graphpartitionierungsproblem, welches
viele klassische Graphprobleme wie Densest k-Subgraph, Maximum Partial
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Vertex Cover (MaxPVC) und Maximum (k, n− k)-Cut verallgemeinert. Wir
untersuchen die parametrisierte Komplexität von diesem generischen Graphproblem
bezüglich der Lösungsgröße k sowie einem zusätzlichen strukturellen Graphparam-
eter wie dem Maximalgrad oder der c-Closure. Zum Beispiel zeigen wir, dass sich
MaxPVC und Maximum (k, n − k)-Cut nicht nur gleich verhalten im Sinne von
FPT-Algorithmen, sondern auch die Techniken, um diese Ergebnisse zu erzielen,
identisch sind. Eines unserer Ergebnisse ist ein sogenannter Kern der Größe kO(c)

für MaxPVC. Dieses Resultat beantwortet eine offene Frage von Kanesh et al.
(STACS ’22).
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Chapter 1

Introduction

Network analysis has a huge variety of applications. In this thesis, we briefly mention
three of these applications. For example, it is essential to identify important actors
in a social network. One such application is the selection of influencers [117]: A
company may have money to pay up to k persons which can advertise their product.
Now, the task is to determine k persons such that the number of persons noting the
advertisement is maximized. In other words, one searches for k persons with many
connections to other persons in the network. Another essential task in social network
analysis is the detection of communities [81, 83, 223]. Here, a community is a set of
persons with many relations between each other. For example, one may ask what is
the biggest community which contains a specific person. Community detection is also
essential in computational finances [26, 27, 120] and bioinformatics [211, 215, 232].
A third application is the detection of good teams of k persons [154]: A project
requires several skills to be completed. Each person may have a set of skills necessary
to complete a project. Furthermore, a set of persons S may form a team each team
member can work together with each other team member. Now, the question is
whether there exists a team of k persons fulfilling all skills necessary for the project.
Network analysis is not only important in social science. For example, also in biology
network analysis [103, 123, 132] is important.

All these applications have the common property of being NP-hard [80, 87, 126,
154]. Hence, it is very likely that these problems can only be solved in exponential
time in the input size. From a theoretic perspective, often the parameterized com-
plexity of such problems is studied [29, 70, 143, 205], and from a practical perspective
Integer Linear Programs (ILPs) [14, 185, 203] or branch-and-bound algorithms are
provided [43, 109, 145].

In this thesis we continue both of these research directions: In the theoretical
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Chapter 1. Introduction

part, we study the (parameterized) complexity of various subgraph problems. We
provide both positive and the negative results. The positive results are shown by
concrete algorithms and the negative results are based on standard, widely believed
complexity assumptions. Furthermore, we show that some of the algorithmic ideas
lead to fast implementations which beat the state of the art in terms of running time.
In the following, we discuss three different types of problems which we study in this
thesis.

1.1 Connected Subgraph Problems

One very important property is connectivity: A standard concept of being a com-
munity is that all its members can interact with each other. In other words, two
persons cannot be part of a community if they do not interact. Interactions are
modelled via connectivity. Hence, it is an important task to find connected commu-
nities or groups (induced connected subgraphs) [39, 127, 227]. Connectivity is also
important for reachability [48, 105]. Many of these reachability problems are special
cases of Connected Fixed-Cardinality Optimization (CFCO) [39, 205]. In
this generic problem one searches for a connected vertex set of size k maximizing an
objective function. One example is Connected Densest k Subgraph [39]. In
this problem one searches for connected vertex set S of size k maximizing the num-
ber of edges having both endpoints in S. Another application in which connected
groups are important is in the identification of statistically overrepresented induced
subgraphs of small size, so-called network motifs [127, 227].

In Chapter 3, we study the task of enumerating all connected induced subgraphs
of size exactly k. This task is essential for the above-mentioned problems relying on
connectivity, like the identification of network motifs [127, 227]. The running time
of algorithms for this task is linear in the input size and the number of connected
induced subgraphs of size exactly k [150]. But even in very sparse graphs, the
number of connected induced subgraphs of size exactly k is exponentially large [28].
Thus, also the running time of such algorithms is exponential in the input size.
Hence, to judge the effectiveness of such algorithms, one studies the delay, the time
spend between two consecutive outputs. In Chapter 3, we improve upon the best
known delay due to Elbassioni [67] for enumerating all connected induced subgraphs
of size exactly k. Furthermore, we perform extensive experiments to evaluate the
performance of our algorithms and existing algorithms for this task. Also, we study
related enumeration problems; for example the enumeration of all connected induced
subgraphs of size at most k.

In Chapter 4, we present a generic solver for CFCO. As noted above, many
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1.2. Community Detection

classic graph problems are special cases of CFCO [39, 205]. These special cases
have applications in the design of wildlife corridors [48] and in oil field leasing [105].
Currently, the state of the art for such problems relies on ILPs [47, 197]. A different
approach, followed by Komusiewicz et al. [150, 151] for a problem called µ-Clique,
relies on the enumeration of all connected induced subgraphs of size exactly k, evalu-
ating the objective function for this problem for each induced subgraph of size k, and
providing some problem-specific pruning rules. In Chapter 4, we lift this approach to
a generic solver of CFCO with pruning rules applying to large subclasses of CFCO.
In our framework, a user only has to implement the objective function and check
whether our generic pruning rules apply for his specific problem. We were able to
show that our algorithm outperforms standard ILP formulations for eight example
problems for k up to 20 on real-world instances with up to 500 000 vertices.

1.2 Community Detection

As discussed above, community detection is essential in many domains [27, 211, 223].
Informally, the following properties are highly desirable for a community, for example
a social group [40, 223]: First, each member of the community should know many
other members of the community, that is, the degree of each vertex in the community
should be high. Second, many members of the community should know each other,
that is, there should be many edges within the community. Third, the members of
the community should know each other directly, or over at most z other members
of the community. In other words, the diameter of the community should be small.
The most strict model for all these three properties are cliques.

Definition 1.1. A vertex set S is a clique if each two distinct vertices u,w ∈ S are
adjacent.

A clique fulfills all of the three informal properties above perfectly: Each vertex
has degree |S| − 1, the number of edges with both endpoints in S is

(︁|S|
2

)︁
, and the

diameter of G[S], the subgraph induced by S, is one. The clique model leads to the
following natural problem in which we aim to find a clique of size at least k.

Clique

Input: An undirected graph G = (V,E) and an integer k.
Question: Does G contain a clique of size k?

Clique is NP-hard [87, 126]. and has applications in computational finances [26,
115], identification of web communities [81] computational biochemistry [57], and
bioinformatics [215].
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In many applications the clique model, however, is too strict. In other words,
less strict definitions of being a community are desirable for example in social net-
works [21]. One main reasons for this is noise in the input data [7]: The edges in
a graph represent, for example, relations between persons. These relations are ob-
served by experiments and thus some relations can be overseen by these experiments.
Consequently, two vertices may be non-adjacent despite being in a community. In
consequence, to overcome these issues, a community model should allow for some
non-edges.

To overcome the above-mentioned issues of the clique model, one popular ap-
proach is to consider clique relaxations. As the name suggests in these models [168,
191, 193] at least one clique-defining property is relaxed, for example the diameter.
Because of the importance of clique relaxations there is a large number of works
considering such problems. For an overview on different clique relaxations we refer
to the surveys of McClosky [168] and of Pattillo et al. [193]. For an overview on
results of the computational complexity and results on the approximation hardness
we refer to the survey of Balasundaram and Pajouh [15]. Pattillo et al. [192] pro-
vided a historical overview in which chronological ordering these concepts and results
have been discovered. Furthermore, Komusiewicz [143] provided a survey about the
parameterized complexity for clique relaxations. In the following, we present some
clique relaxation, which will be studied in further detail in this thesis.

One option to relax the clique model is to relax the vertex-degree. Clearly, a
vertex set S is a clique if every vertex in S has exactly |S| − 1 neighbors in S. This
property can be relaxed as follows:

Definition 1.2. A vertex set S is an s-plex if every vertex in S has at least |S| − s
neighbors in S.

Observe that cliques are 1-plexes. The s-plex model was introduced by Seidman
and Foster [208]. This definition leads to the following problem in which one aims
to detect an s-plex of size at least k.

s-Plex
Input: A graph G and an integer k.
Question: Does G contain an s-plex of size at least k?

The NP-hardness of s-Plex follows from a result of Lewis and Yannakakis [156].
The s-plex model has many applications, for example in finding profitable diversified
portfolios on the stock market [27], in the analysis of social networks [13], and in
graph-based text mining [16].
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Another option to relax the clique model is to relax the total number of edges
within the community. Clearly, a vertex set S forms a clique if the subgraph induced
by S has exactly

(︁|S|
2

)︁
edges. This property can be relaxed as follows:

Definition 1.3. A vertex set S is an s-defective clique if the number of edges in the
subgraph induced by S is at least

(︁|S|
2

)︁
− s.

Observe that cliques are 0-defective cliques and each s-defective clique is also
an s-plex. This model was introduced by Yu et al. [232]. This definition leads to the
following decision problem:

s-Defective Clique

Input: A graph G and an integer k.
Question: Does G contain an s-defective clique of size at least k?

Similar to s-Plex, the NP-hardness of s-Defective Clique follows from a
result of Lewis and Yannakakis [156]. Furthermore, s-Defective Clique has ap-
plications in predicting interactions in protein networks [232], representation of stock
mark dynamics [120], and cancer prognosis [201].

Another option to relax the clique model is to allow greater distances within the
vertices in a group. Clearly, a vertex set S is a clique if each two distinct vertices
in S have distance 1. This property can be relaxed as follows:

Definition 1.4. A set of vertices S of G is an s-club if each pair of vertices in S has
distance at most s in G[S], the subgraph induced by S.

In other words, S is an s-club if G[S] has diameter at most s. Observe that cliques
are 1-clubs. This clique relaxation was proposed by Mokken [170]. This definition
leads to the following decision problem:

s-Club
Input: A graph G and an integer k.
Question: Does G contain an s-club of size k?

The NP-hardness of s-Club for s ≥ 2 was proven by Bourjolly et al. [31]. Fur-
thermore, s-Club has applications in community mining [83], and in the detection
of protein complexes [190].

In Chapter 5 we study the clique relaxations s-Plex, s-Defective Clique and
s-Club in terms of their parameterized complexity with respect to k plus the (weak)
closure. Our aim is to extend previous results on the parameterized complexity for
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these three clique relaxations with respect to structural graph parameters like the
maximum degree ∆ or the degeneracy d (plus the solution size k) [110, 131, 143,
198]. The (weak) closure is a newly discovered graph parameter [84] and bounds the
number of common neighbors of non-adjacent vertices. Both parameters are observed
to be small in social networks [84] and are motivated by the so-called triadic-closure
principle. For a formal definition of these parameters we refer to Chapter 5. For
many clique relaxations, for example s-plexes, we show that the enumeration of all
maximal vertex sets being this clique relaxation can be done efficiently in weakly
closed graphs. But not all clique relaxations behave that nicely: the detection of a
2-club of size at least k remains NP-hard even on graphs with constant closure, as
we show.

In Chapter 6, we study three different variants of the s-club model: Vertex
Triangle s-Club, Edge Triangle s-Club, and Seeded s-Club. These mod-
els are motivated by some undesirable behaviour of the s-club model in real-world
instances: The largest s-club is usually very sparse [109]. This is especially true
for s = 2: often the largest 2-club in a graph is the vertex v of maximum degree to-
gether with its neighbors [109]. To overcome this issue, many different augmentations
of the s-club model have been studied [41, 145, 193, 222]. In the first two variants
(Vertex Triangle s-Club and Edge Triangle s-Club) we additional require
that each vertex or edge, respectively, is contained in at least ℓ triangles. Here, ℓ is
a parameter which is part of the input. In the third variant we require that a fixed
set of vertices, denoted as seed, is contained in the solution. The Vertex Trian-
gle s-Club problem was studied in the literature before [3, 41], and the other two
problems are introduced by us. The variant with seeds can be used in community
detection, where we are often interested in finding communities containing some set
of fixed vertices [124, 230]. In Chapter 6, we study the classic and the parameterized
complexity of these problems with respect to the number of triangles or the structure
of the seed, respectively. We show, for example, that in contrast to s-Club all three
problems do not admit in all cases an FPT-algorithm with respect to k.

In Chapter 7 we present an exact branch-and-bound algorithm for Vertex Tri-
angle 2-Club and Edge Triangle 2-Club. Our work builds on ILPs [14, 185,
203], and branch-and-bound algorithms [43, 109] for 2-Club We provide new re-
duction rules and one new lower bound for both problems. Furthermore, we adapt
techniques to find lower bounds from an existing exact solver for a 2-Club variant
by Komusiewicz et al. [145] for the two above mentioned problems. We evaluated our
implementations for Vertex Triangle 2-Club and Edge Triangle 2-Club on
a large number of real-world instances. Furthermore, we showed that our implemen-
tation outperforms an existing ILP for Vertex Triangle 2-Club [3].
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1.3 Subgraph Problems Depending on the Entire

Graph

In Chapter 8, we study the parameterized complexity of a problem generalizing the
NP-hard problems Maximum Partial Vertex Cover, and Max (k, n−k)-Cut.
In all models and problems discussed so far, the property such as being connected,
being a clique or being an s-club only depends on the structure of G[S] where S is
the vertex set of the solution. In many problems, like Maximum Partial Vertex
Cover (see discussion below), this is not sufficient, that is, also the structure of the
remaining vertices V \ S and the structure of the edges having exactly one endpoint
in S is relevant: For example in Maximum Partial Vertex Cover one aims to
find a set S of k vertices such that the number of edges having at least one endpoint
in S is as large as possible [101, 133]. Another example is Max (k,n−k)-Cut where
one asks for a set S of k vertices such that the number of edges having exactly one
endpoint in S is as large as possible [38, 204]. In Partial Dominating Set one
asks for a set S of k vertices such that the size all vertices with distance at most 1
to S is as large as possible [134, 178]. Another example is Group Closeness
Centrality, where one searches a set S of k vertices such that the sum of the
distances from each vertex in the graph to the set S is minimal [73].

In Chapter 8, we study a local graph partitioning problem generalizingMaximum
Partial Vertex Cover, and Max (k, n − k)-Cut. The common feature of
all these problems is that one takes the sum of the number of edges having both
endpoints in S and the number of edges having exactly one endpoint in S multiplied
with some problem specific weights into account. We investigate the parameterized
complexity of this generic graph problem with respect to the size k of the vertex
set S plus one additional structural graph parameter like the maximum degree ∆
or the degeneracy d. One surprising result is that we obtain identical results for
the problems Maximum Partial Vertex Cover and Max (k, n− k)-Cut, for
example a tight kernel of size kO(d), and that these results are obtained by the same
techniques.
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Chapter 2

Preliminaries

In this chapter, we present our notation and we give an overview of the central
techniques and concepts of graph theory and (parameterized) complexity theory
that we use in this work.

By N we denote the set of positive integers and by N0 we denote the set of non-
negative integers. For p ≤ q ∈ N, we write [p, q] for the set {p, p + 1, . . . , q} and
[q] for [1, q]. A partition P := (P1, . . . , Pℓ) of a set P is a family of pairwise disjoint
subsets of P whose union is P . A function f is bounded by another function g
if f(x) ∈ O(g(x)).

2.1 Graph Theory Notation

We consider simple and undirected graphs. Next, we provide the main graph-
theoretic notation we use throughout this work. For a more detailed introduction
into graph theory we refer to the standard textbooks [58, 229].

An undirected simple graph is a tuple G := (V,E) where V denotes the set of
vertices and E ⊆ {{u, v} ⊆ V | u ̸= v} denotes the set of edges. Furthermore,
by V (G) we denote the set of vertices of G and by E(G) we denote the set of
edges of G. We let n and m denote the order of G and the number of edges in G,
respectively. For simplicity we denote an edge {u, v} by uv. Furthermore, u and v are
the endpoints of uv. The order of a graph is the number of its vertices. Two vertices u
and v are called adjacent if uv ∈ E(G). Two edges e1 and e2 are incident if they have
exactly one common endpoint. By E(V,W ) := {vw ∈ E(G) | v ∈ V and w ∈ W} we
denote the set of edges between V and W . For simplicity, we use E(V ) := E(V, V ).

A graph G′ := (V ′, E ′) is a subgraph of G if V ′ ⊆ V , and E ′ ⊆ E. For a
vertex set S, by G[S] := (S, {uv ∈ E(G) | u, v ∈ S}) we denote the subgraph of G
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induced by S. Similarly, for an edge set F we define the edge-induced subgraph
of G as the graph G′ := (VF , F ), where VF is the set of endpoints of the edges
in F . Furthermore, the size of the edge-induced subgraph of an edge set F is |F |,
the number of edges. Let X, Y ⊆ V (G) be vertex subsets. For X ∩ Y = ∅, we
use G[X, Y ] := (X ∪Y, {xy ∈ E(G) | x ∈ X, y ∈ Y }) to denote the bipartite subgraph
of G induced by X, Y . We let G−X := G[V \ S] denote the subgraph obtained by
removing the vertices in X.

A set of vertices {vi | i ∈ [p]} is a non-induced path if vivi+1 ∈ E(G) for each i ∈
[p − 1]. Its length is p − 1. Furthermore, a vertex set S = {vi | i ∈ [p]} is an
induced path if E(G[S]) = {vivi+1 | i ∈ [p − 1]}. In the following, an induced
path with p vertices is denoted by Pp and simply called path. Similar, a set of
vertices {vi | i ∈ [p]} is a cycle Cp if E(G[S]) = {vivi+1 | i ∈ [p − 1]} ∪ {vpv1} The
length of Cp is p. The distance distG(u, v) between two vertices u and v in a graph G
is the length of a shortest path between u and v. Furthermore, for a set W ⊆ V (G)
we define distG(u,W ) := minw∈W dist(u,w). Hence, two vertices in Cp have distance
at most ⌊p/2⌋. We denote by diamG(G) := maxu,v∈V (G) distG(u, v) the diameter of G.

Let S ⊆ V (G) be a vertex set. We denote byNi(S) :=
⋃︁

w∈S Ni(w)\(
⋃︁

j<iNj(w)∪
S) the open i-neighborhood of S and by Ni[S] :=

⋃︁
j≤iNi(S) ∪ S the closed i-

neighborhood of S. For simplicity, by N(S) := N1(S) we denote the open neighbors
and by N [S] := N1[S] the closed neighbors of S. For simplicity, we use Ni(v) :=
Ni({v}) and Ni[v] := Ni[{v}] We also use the notation N∩

G(X) :=
⋂︁

x∈X N(x) to
denote the common neighbors of a vertex set X.

If X is a singleton {x} we may write G−x instead of G−{x}. Let v ∈ V (G). We
denote the degree of v by degG(v) := |N(v)|. We call v isolated if degG(v) = 0 and
non-isolated otherwise. We also say that v is a leaf vertex if degG(v) = 1 and a non-
leaf vertex if degG(v) ≥ 2. Moreover, we say that v is simplicial if N(v) is a clique.
The maximum and minimum degree of G are ∆G := maxv∈V (G) degG(v) and δG :=
minv∈V (G) degG(v), respectively. The degeneracy of G is dG := maxS⊆V (G) δG[S].
The hG-index of a graphG is the largest integer h such thatG has at least h vertices of
degree at least h [71]. The closure number clG(v) of v is maxu∈V (G)\N [v] |N(v)∩N(u)|.
We say that G is c-closed if clG(v) < c for each vertex v ∈ V (G). Furthermore, the
closure number of a graph G is the smallest integer c such that G is c-closed [84].
We say that G is weakly γ-closed if every induced subgraph G′ of G has a ver-
tex v ∈ V (G′) such that clG′(v) < γ. Furthermore, the weak closure number of a
graph G is the smallest integer γ such that G is weakly γ-closed [84]. We denote the
size of a smallest vertex cover (a set of vertices that covers all edges) of a graph G
by vcG. We drop the subscript ·G when it is clear from context.

A graph G has girth g if the shortest cycle in G has length g. Two vertices u and v
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are connected if there exists a path P such that u, v ∈ P . A connected component
of G is a maximal subgraph where any two vertices are connected to each other.
Furthermore, a graph G = (V,E) is called k-edge-connected if G − F is connected
for each F ⊆ E of size at most k. Also, G = (V,E) is called k-vertex-connected
if G− F is connected for each F ⊆ V of size at most k. Observe that a graph G is
1-edge-connected if and only if G is 1-vertex-connected if and only if G has exactly
one connected component. An edge e is a bridge if G − e has one more connected
component than G. A graph G is complete if any two vertices of G are adjacent and
a vertex set S is a clique if each two distinct vertices in S are adjacent. A clique
consisting of three vertices is referred to as a triangle. A graph G is edgeless if any
two vertices of G are non-adjacent and a vertex set S is an independent set if each two
distinct vertices in S are non-adjacent. Two graphs G := (V1, E1) and H := (V2, E2)
are isomorphic if there exists a bijective function f : V1 ↦→ V2 such that uv ∈ E1 if
and only if f(u)f(v) ∈ E2 for each u, v ∈ V1. Furthermore, a graph G is called H-free
if G does not contain an induced subgraph isomorphic to H. A graph is r-regular if
every vertex has degree r.

Ramsey numbers. Ramsey’s theorem states that for every p, q ∈ N, there exists
an integer R(p, q) such that any graph on at least R(p, q) vertices contains either a
clique of size p or an independent set of size q. The numbers R(p, q) are referred
to as Ramsey numbers. Although the precise values of Ramsey numbers are not
known, some upper bounds have been proven. For instance, it holds that R(p, q) ≤(︁
p+q−2
p−1

)︁
[122]. The proof for this upper bound is constructive. More precisely, given

a graph G on at least
(︁
p+q−2
p−1

)︁
vertices, we can find in time nO(1) either a clique of

size p or an independent set of size q.

2.2 Classic Computational Complexity

Now, we provide the main computational complexity theoretic tools. For more de-
tails on the theory of NP-hardness and NP-completeness we refer to the standard
textbooks [9, 87, 188].

Up to now, we only considered decision problems. Nonetheless, the algorithms
we describe in this work are also capable of solving the natural optimization problem
that corresponds to the decision problem. Usually this is accompanied with a small
running time overhead.

Many of the computational problems in this work are formulated as decision
problems. Formally, a decision problem is defined as a language L ⊆ Σ∗ where Σ is
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a finite alphabet. The question is whether for a given input x ∈ Σ∗ we have x ∈ L
or x /∈ L. An instance x such that x ∈ L is called yes-instance and an instance x
such that x /∈ L is called a no-instance. In this work, we only deal with decidable
problems. These are problems for which there exists an algorithm that terminates
for each input.

We focus on the amount of computational resources which are necessary to solve
a problem. These resources are called complexity measures. Here, we only focus
on the standard complexity measures running time, that is, the time needed to
terminate on the input, and space, that is, the maximal space used by the algorithm.
Given an algorithm A that decides if x ∈ L, the running time and the space of A is
measured as a function of the input size |x| for all x ∈ Σ∗. In the following, we say
that an algorithm needs polynomial space, if the total space used by the algorithm
is poly(|x|). Furthermore, if the space usage is linear in |x|, we say that the algorithm
needs linear space.

The two most prominent classes of decidable decision problems are P and NP.
The class P contains all problems that can be decided in polynomial time by a
deterministic Turing machine and the class NP contains all problems that can be
decided in polynomial time by a non-deterministic Turing machine. It is widely
believed that P ̸= NP. In other words, it is widely believed that there are problems
in NP that can not be solved by a deterministic Turing machine in polynomial time.

A very important complexity class in this context is the class of NP-hard prob-
lems. These are defined by polynomial-time reductions between problems. A prob-
lem A ⊆ Σ∗ reduces to a problem B ⊆ Σ∗ if there is a function f : Σ∗ ↦→ Σ∗ which
can be computed in polynomial-time such that x ∈ A if and only if f(x) ∈ B. The
existence of such a reduction is abbreviated as A ≤p B. In other words, problem B
is at least as hard as problem A with respect to polynomial-time solvability. Now,
a problem B is NP-hard if A ≤p B for all problems A ∈ NP. Hence, an NP-hard
problem is at least as hard as any problem in NP with respect to polynomial-time
solvability. Furthermore, an NP-hard problem that is also contained in NP is called
NP-complete. A prominent NP-complete problem is Clique.

Clique

Input: An undirected graph G = (V,E) and an integer k.
Question: Does G contain a clique of size at least k?

This is a hint that P is not equal to NP.
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2.3 Parameterized Complexity

In this thesis, one of our main objectives is the study of the parameterized complexity
of NP-hard graph problems. Next, we describe the main definitions and the most
common techniques of parameterized complexity. For a more detailed introduction
we refer to the standard textbooks [53, 63, 82, 183].

Fixed-Parameter Tractability. The main idea of fixed-parameter algorithms is
to allow for a super-polynomial running time as long as it only depends on a pa-
rameter k. Hence, parameterized decision problems consist of two components, the
language and the parameter.

Definition 2.1. A parameterized problem is a language L ⊆ Σ∗ × N0, where Σ is
a finite alphabet. The first component is referred to as the input and the second
component is referred to as the parameter.

In the following, we call an instance (x, k) ∈ Σ∗×N0 a yes-instance of L if (x, k) ∈
L, and otherwise, (x, k) is called a no-instance.

Definition 2.2. A parameterized problem L is fixed-parameter tractable if there
is a deterministic algorithm that decides in f(k) · poly(|x|) time for every input
instance (x, k) of L whether (x, k) ∈ L. Here, f is a computable function only
depending on k. The complexity class of all parameterized problems that are fixed-
parameter tractable is called FPT.

Next, we define the class of problems which are polynomial-time solvable for
constant k.

Definition 2.3. A parameterized problem L ⊆ Σ∗×N0 is called slice-wise polynomial
if there exist a computable function g : N0 ↦→ N0, and an algorithm that decides
whether (x, k) ∈ L in |(x, k)|g(k) time for a given instance (x, k). The complexity
class of all parameterized problems that are slice-wise polynomial is called XP.

Since each fixed-parameter tractable algorithm is also slice-wise polynomial, the
class FPT is contained in the class XP.

TheW-Hierarchy. If P ̸= NP and all parameterized problems are fixed-parameter
tractable, then parameterizing any NP-hard problem by any constant parameter
would result in a deterministic algorithm with a polynomial running-time. Since
it is widely believed that P ̸= NP it is thus also widely assumed that not each
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parameterized problem is contained in FPT. More interestingly, there are many slice-
wise polynomial problems for which it is still unknown whether they are also fixed-
parameter tractable. Downey and Fellows developed the so-called W-Hierarchy to
show that some problems in XP are unlikely to be in FPT [61, 62, 63]. Downey and
Fellows introduced a complexity class W[i] for each integer i. It is widely believed
that FPT ⊊ W[1] ⊊ W[2] ⊊ . . . ⊊ XP. To show that a problem is hard for for a class
W[i] for some integer i, Downey and Fellows introduced a parameterized variant of
reductions.

Definition 2.4. Let L1 and L2 be two parameterized problems and let f and g be two
computable functions only depending on k. A parameterized reduction from L1 to L2

is an algorithm that, for each instance (x, k) of L1 computes in f(k) · poly(|x|) time
an instance (x′, k′) of L2 such that k′ ≤ g(k) and (x, k) is a yes-instance if and only
if (x′, k′) is a yes-instance.

Let L be a parameterized problem and let L′ be another parameterized problem
which is W[i]-hard such that there exists a parameterized reduction from L′ to L.
Then, L is also hard for the class W[i]. Furthermore, a parameterized problem is
W[i]-complete if it is W[i]-hard, and contained in W[i]. It is widely assumed that a
W[i]-hard problem for any integer i is not fixed-parameter tractable.

Many of our hardness results are shown by a reduction from Clique, which is
known to beW[1]-hard with respect to the standard parameter solution size k [53, 63].

Data Reduction and Problem Kernelization. A general technique which is
often used in practice to solve NP-hard problems is polynomial-time preprocessing.
In general, the hope is that after the preprocessing the instance is “smaller” and can
then be solved in super-polynomial time. In classic complexity theory there is no
measurement of the effect of the preprocessing since any algorithm that reduces an
instance x of a NP-hard problem to an instance x′ of the same problem in polynomial
time such that |x| > |x′| implies a polynomial-time algorithm for this problem since
this algorithm may be repeat this preprocessing |x| times until an instance of constant
size remains.

For parameterized problems, the existence of the parameter allows us to be cap-
ture this notion. The basic idea is that if the instance is “too big” in terms of k,
then the preprocessing can be applied and decreases the size of the instance. This
idea is captured in the following definition.

Definition 2.5. Let L be a parameterized problem and let (x, k) and (x′, k′) be
two instances of L. A reduction to a (problem) kernel for L is a polynomial-time
algorithm that computes an instance (x′, k′) such that
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1. k′ + |x′| ≤ g(k) for some computable function g only depending on k, and

2. (x, k) is a yes-instance of L if and only if (x′, k′) is a yes-instance of L.

The instance (x′, k′) obtained by the kernelization algorithm is referred to as
the problem kernel. Furthermore, if g is a polynomial, we say that the kernel is a
polynomial problem kernel. Also, there is a nice relation between problems which are
fixed-parameter tractable and problems which have a kernel.

Theorem 2.6 ([53]). Let L be a parameterized problem. The problem L is fixed-
parameter tractable if and only if L admits a problem kernel.

To obtain problem kernels often data reduction rules are used. A data reduction
rule is an algorithm that transforms an instance (x, k) of a parameterized problem L
into an instance (x′, k′) of L. A reduction rule is correct if (x, k) is a yes-instance
of L if and only if (x′, k′) is a yes-instance of L. A data reduction rule has been
exhaustively applied if any further application of the data reduction rule on the
instance (x, k) results in the same instance (x, k). Furthermore, an instance (x, k)
of a parameterized problem is reduced with respect to a set of reduction rules if the
rules have been exhaustively applied on the instance (x, k).

Despite every fixed-parameter tractable problem admitting a problem kernel,
there exist problems which are unlikely to admit a polynomial problem kernel [53].
All results showing no polynomial kernel for a problem admitting an FPT-algorithm
are based on the assumption that coNP ̸⊆ NP/poly. The fact that a parameterized
problem does not admit a polynomial problem kernel can be transferred to other
problems with the following reduction.

Definition 2.7. Let L1 and L2 be two parameterized problems and let p be a poly-
nomial. A polynomial parameter transformation (PPT) is an algorithm that maps
in polynomial time an instance (x, k) of L1 to an instance (x′, k′) of L2 such that

1. (x, k) is a yes-instance of L1 if and only if (x′, k′) is a yes-instance of L2, and

2. k′ ≤ p(k).

Now, if L1 does not admit a polynomial kernelization unless coNP ⊆ NP/poly and
there is a PPT from L1 to L2, then L2 does not admit a polynomial kernelization
unless coNP ⊆ NP/poly. Another way to exclude polynomial kernels under the
assumption coNP ̸⊆ NP/poly relies on cross-compositions. For this, the following
definition is necessary.
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Definition 2.8. An equivalence relation R on Σ∗ is called a polynomial equivalence
relation if the following two conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y
belong to the same equivalence class in (|x|+ |y|)O(1) time, and

2. for any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into at most (maxx∈S |x|)O(1) classes.

Now, we can define cross-compositions.

Definition 2.9 ([25]). Let L1 be a language and let L2 be a parameterized problem.
The problem L1 cross-composes into L2 if there is a polynomial equivalence rela-
tion R and an algorithm which, given 2t strings x1, x2, . . . , x2t belonging to the same
equivalence class of R, computes an instance (x∗, k∗) ∈ Σ∗ ×N in time polynomial

in
∑︁2t

i=1 |xi| such that:

1. (x∗, k∗) ∈ L2 if and only if xi ∈ L1 for some i ∈ [2t], and

2. k∗ is bounded by a polynomial in max2
t

i=1 |xi|+ t.

The tools presented so far only show super-polynomial lower-bounds under the
standard assumption coNP ̸⊆ NP/poly. Next, a more refined technique is presented.
This approach allows showing polynomial lower-bounds under the standard assump-
tion coNP ̸⊆ NP/poly. First, we extend PPTs to also show polynomial lower bounds.

Definition 2.10 ([112]). Let L1 and L2 be two parameterized problems. A lin-
ear parameter reduction is an algorithm that maps an instance (x, k) of L1 to an
instance (x′, k′) of L2 such that

1. (x, k) is a yes-instance of L1 if and only if (x′, k′) is a yes-instance of L2, and

2. k′ ∈ O(k).

Linear parameter reductions can be used as follows.

Lemma 2.11 ([112]). Let L1 and L2 be two parameterized problems and let q be a
fixed integer. If L1 admits a linear parameter reduction to L2 and L1 has a kernel of
size O(kd), then L2 also has a kernel of size O(kd).

Second, we lift cross-compositions to show polynomial lower bounds.
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Definition 2.12 ([56, 112]). Let q ≥ 1 be an integer, let L1 ⊆ {0, 1}∗ be a decision
problem, and let L2 ⊆ {0, 1}∗×N be a parameterized problem. A weak q-composition
from L1 to L2 is a polynomial time algorithm that on input x1, . . . , xtq ∈ {0, 1}n
outputs an instance (x′, k′) ∈ {0, 1}∗ ×N such that:

1. (x′, k′) ∈ L2 ⇔ xi ∈ L1 for some i ∈ [tq], and

2. k′ ≤ t · nO(1).

Now, the existence of a weak q-composition allows us to show a polynomial lower
bound. These lower bounds hold for compressions.

Definition 2.13. A polynomial compression of a parameterized language L ⊆ Σ∗×N
into an language L′ ⊆ Σ∗ is an algorithm that takes as input an instance (x, k) ∈
Σ∗ ×N and returns a string y in time polynomial in |x|+ k such that

1. |y| ≤ P (k) for some polynomial p, and

2. y ∈ L′ if and only if (x, k) ∈ L.

Lemma 2.14 ([53, 56, 112]). Let q ≥ 1 be an integer, let L1 ⊆ {0, 1}∗ be an NP-
hard problem, and let L2 ⊆ {0, 1}∗ × N be a parameterized problem. If there is a
weak q-composition from L1 to L2, then L2 has no compression of size O(kq−ϵ) for
any ϵ > 0, unless coNP ⊆ NP/poly.

Relations between Parameters. Because of relations between parameters some
results transfer to different parameters. Let x be the input of a parameterized prob-
lem and let k and ℓ be two parameters corresponding to the input. We say that
parameter k is bounded by parameter ℓ if f : (x, k) ↦→ k is bounded by g : (x, ℓ) ↦→ ℓ.
Recall, that a function f is bounded by another function g if f(x) ∈ O(g(x)). Now,
a “positive” result for the smaller parameter k transfers to the lager parameter ℓ.
For example, if (x, k) admits an FPT-algorithm, then also (x, ℓ) admits an FPT-
algorithm. Analogously, “negative” results for the larger parameter ℓ transfer to
the smaller parameter k. For example, if (x, ℓ) does not admit a polynomial ker-
nel for parameter ℓ under standard assumptions, then also (x, k) does not admit a
polynomial kernel for k under the same assumption.

Turing Kernelization. In kernels we create a single instance. In Turing Kernels
the algorithm can query an oracle to decide the answer to small instances of a specific
problem in constant time. This concept is captured in the following definition.
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Definition 2.15. Let L be a parameterized problem and let f : N → N be a
computable function. A Turing kernelization of size f for L is an algorithm that
decides whether a given instance (x, k) ∈ Σ∗×N is contained in L in time polynomial
in |x| + k, when given access to an oracle that decides membership in L for any
instance (x′, k′) with |x′|+ k′ ≤ f(k) in a single step.

2.4 Concepts for Enumeration Problems

In this thesis, we also study enumeration problems, that is, problems in which all so-
lutions have to be output. For more details on enumeration problems we reefer to the
book of Marino [165] and to the PhD thesis of Strozecki [213]. An enumeration prob-
lem is a relation R ⊆ Σ∗×Σ∗. Let R(x) := {y ∈ Σ∗ | (x, y) ∈ R} be the strings which
are in relation with x. Note that R(x) is not necessarily finite. A string y ∈ R(x) is
a solution. All enumeration problems are special cases of the following problem.

Enumerate-R
Input: An instance x ∈ Σ∗.
Task: Output R(x) := {y ∈ Σ∗ | (x, y) ∈ R}.

Usually, the total time to output all solutions is considered. Since the number
of solutions might be exponential in the input size, enumeration algorithms often
need exponential time. Hence, different to decision problems, also other running-
time measures are used for enumeration problems: An algorithm is called output-
polynomial if its running-time is (|x|+ |R(x)|)O(1). Let s1, . . . , s|R(x)| be the ordering
of the elements of R(x) enumerated by an algorithm A. We say that A is incremental
polynomial if si is output in (|x|+ i)O(1) time. The delay of A is the maximum of

1. the time needed to compute s1,

2. the time needed between the output of si and si+1, and

3. the time needed to terminate after the output of the last solution s|R(x)|.

Furthermore, A is called a polynomial delay algorithm, if the delay of A is |x|O(1).
Note that each polynomial-delay algorithm is also incremental polynomial and that
each incremental polynomial algorithm is also output-polynomial.

One general paradigm to obtain a polynomial delay algorithm for an enumeration
problem is the reverse search framework introduced by Avis and Fukuda [11]. The
basic idea is to construct a tree where each node represents a unique solution of
the enumeration process. By traversing this tree from the root, each element is
enumerated exactly once.
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Enumerating Connected Induced
Subgraphs: Improved Delay and
Experimental Comparison

The enumeration of connected subgraphs is important in many applications. It is
used, for example in the identification of network motifs (statistically overrepresented
induced subgraphs of small size): a straightforward algorithm to find such motifs is
to enumerate all connected induced subgraphs and to count how often each subgraph
of order k occurs [127, 227]. A further application arises when semantic web data is
searched using only keywords instead of structured queries [68]. In this application
important triples are created and then these triples are incorporated into a graph.
Furthermore, in this application, one is interested in all connected subgraphs not
only induced ones. The enumeration of connected induced subgraphs can be used
as a subroutine here, however, since all connected subgraphs can be obtained by
enumerating all connected subgraphs of each connected induced subgraph. Finally,
many fixed-cardinality optimization problems can be solved by an algorithm whose
first step is to enumerate connected induced subgraphs of order k [150]. This algo-
rithm can solve, for example, Connected Densest-k-Subgraph, the problem of
finding a connected vertex set S of order k with a maximum number of edges having
both endpoints in S. Experiments showed that enumeration-based algorithms can
be competitive with Integer Linear Programs [151] underlining the importance of
fast enumeration algorithms for connected induced subgraphs.

A closely related problem is the enumeration of all connected edge-induced sub-
graph. Recall that for an edge set F the edge-induced subgraph is the graph G′ :=
(VF , F ), where VF is the set of endpoints of the edges in F . This problem is an impor-
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tant subtask for determining frequent subgraphs in a given multilayer graph [202].
A multilayer graph G with r layers consists of one layer Gi for each i ∈ [r]. All
layers have the same vertex set. A subgraph H is called frequent in G if in at least t
layers H is a subgraph of Gi. The enumeration of frequent subgraphs in graphs with
edge (and vertex) labels is an important task in bioinformatics [181, 182].

The fundamental graph problem of enumerating all connected induced subgraphs
can be formalized as follows.

Exact Connected Induced Subgraph Enumeration (E-CISE)

Input: An undirected graph G = (V,E) and an integer k.
Task: Enumerate all connected induced subgraphs of order k of G.

We call a connected subgraph of order k a solution in the following. At first
sight, providing any non-trivial upper bounds on the running time of E-CISE seems
hopeless: As evidenced by a clique on n vertices, graphs may have up to

(︁
n
k

)︁
E-

CISE solutions. Even very sparse graphs may have
(︁
n−1
k−1

)︁
E-CISE solutions as

evidenced by a star graph with n− 1 leaves. It is maybe due to these lower bounds
that, despite its importance, E-CISE has not received too much attention from the
viewpoint of worst-case running time analysis.

One way to achieve relevant running time bounds is to consider degree-bounded
graphs. Here, the number of solutions is much smaller than in general as shown by
the following bound due to Bollobás [28].

Lemma 3.1 ([28, Equation 7]). Let G be a graph with maximum degree ∆. Then
the number of connected induced subgraphs of order k that contain some vertex v is
at most (e(∆ − 1))(k−1). Hence, the overall number of connected induced subgraphs
of order k in G is O((e(∆− 1))(k−1) · (n/k)) where n is the number of vertices of G.

This observation can be exploited to obtain an algorithm for E-CISE that runs
in O((e(∆− 1))(k−1) · (∆ + k) · (n/k)) time [150].

A second approach to provide non-trivial running time bounds is to prove upper
bounds on the delay of the enumeration. A reverse search algorithm (see Section 2.4),
however, achieves delay O(kmin(n− k, k∆)(k(∆ + log k) + log n)) [67].

Thus, k and ∆ appear to be central parameters governing the complexity of E-
CISE. Motivated by this observation, we aim to make further progress at exploiting
small values of ∆ and k.

Previous Work. Most known E-CISE algorithms follow the same strategy: start-
ing from an initial vertex set S := {v} for some vertex v, build successively larger
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connected induced subgraphsG[S] until an order-k subgraph is found. Wernicke [227]
describes a very simple procedure following this paradigm. The idea is to branch into
the different possibilities to add one vertex u from N(S). We refer to this procedure
as Simple. Another popular enumeration algorithm is Kavosh [127] which also con-
siders adding vertices of N(S) but creates one branch for each subset of N(S) that
has size at most k − |S|.

A slightly different strategy is to first pick a vertex p of the current set S whose
neighbors are added in the next step and then branch on the up to (∆−1) possibilities
for adding a neighbor of this vertex. The vertex p is called the active vertex of the
enumeration. The corresponding algorithm, which we call Pivot, has worst-case
running time O((4(∆ − 1))k · (∆ + k) · n) [149]. A variant of Pivot achieves the
running time of O((e(∆ − 1))(k−1) · (∆ + k) · n/k) mentioned above [150]. This
variant, which we call Exgen, generates exhaustively all subsets S ′ of N(p) \S of size
at most k−|S| and creates for each such set S ′ one branch in which S ′ is added to S.

Another variant is BDDE [167]. For a fixed vertex v, BDDE enumerates the con-
nected subgraphs containing v for increasing subgraph orders. The main idea is to use
two functions, one to discover new graph edges and one to copy already enumerated
parts of the enumeration tree.

An output-sensitive algorithm for E-CISE with running time O(
∑︁

G∗∈S |G∗|),
where S is the set of all E-CISE solutions and |G∗| is the total size of G∗ was
presented by Ferreira [79]. This overall running time is optimal when the task is to
fully output all solutions, not only their vertex sets. The basic idea of this algorithm,
which is closely related to Simple, is to create a binary search tree whose nodes
represent connected sets S of G and whose leafs represent solutions. In each search
tree node, the algorithm selects a vertex from v from N(S) and branches into two
cases: it first enumerates the solutions that contain S ∪ {v}, and then those that
contain S but not v. In addition, a certificate is used to ensure that in each node of
the search tree, there exists at least one solution that contains S. Ferreira [79] does
not bound the delay of this algorithm.

The known algorithms with polynomial delay [67] work differently. They use
reverse search and the supergraph method [11]. There, for a given graph G and
parameter k, the supergraph G contains a node for each E-CISE solution in G. Fur-
thermore, two nodes in G are connected if and only if the corresponding connected
subgraphs differ in exactly one vertex. The basic idea of reverse search is to explore
the supergraph G efficiently. Let |G| denote the number of vertices in G, that is, the
number of E-CISE solutions. By using reverse search (see Section 2.4), one can enu-
merate all induced subgraphs of order at most k with polynomial delay [11]. When
we are interested only in solutions of order exactly k, this algorithm is not output-
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polynomial, that is, the running time is not bounded by a polynomial in the input
and output size. Consequently, it does not achieve polynomial delay either. How-
ever, Elbassioni described two algorithms with polynomial delay for E-CISE [67]:
The first variant, which we refer to as RwD (Reverse Search with Dictionary) has
a delay of O(kmin (n− k, k∆)(k(∆ + log k) + log n)) and requires O(n+m+ k|G|)
space where m is the number of edges in the input graph G. The second vari-
ant, which we refer to as RwP (Reverse Search with Predecessor), has a delay
of O((kmin (n− k, k∆))2(∆ + log k)) and requires O(n+m) space [67]. Hence, the
RwD algorithm has a better delay but requires exponential space, since G may grow
exponentially with the size of G.

Another related important problem is the enumeration of all connected subgraphs
of order at most k.

Bounded Connected Induced Subgraph Enumeration (B-CISE)

Input: An undirected graph G = (V,E) and an integer k.
Task: Enumerate all vertex sets of connected induced subgraphs of order

at most k of G.

Note that here we focus on enumerating the vertex sets instead of enumerating
the subgraphs since the minimal delay for the subgraph enumeration problem is
bounded by the maximal size of a solution which is k ·min(k,∆). For the vertex set
enumeration problem, however, smaller delays are possible.

Avis and Fukuda described the first algorithm with polynomial delay for B-
CISE. This algorithm is based on reverse search and has a delay of O(nm) [11].
Recently, the RSSP algorithm achieved a delay of O(nc) [4], where nc is the order
of the largest connected component of G, for the special case when k ≥ nc, that is,
when there is no size restriction. The basic idea of RSSP is also to use the reverse
search framework but with a more strict neighborhood definition than Avis and
Fukuda [11]. Furthermore, Haraguchi and Nagamochi [108] presented algorithms
with polynomial delay and polynomial space for enumerating all vertex sets which
induce an ℓ-edge-connected (ℓ-vertex-connected) subgraph. Observe that for ℓ = 1
these two problems corresponds to B-CISE.

Finally, when the running time to output the solution is not counted, then all con-
nected induced subgraphs can be enumerated in amortized time O(1) per connected
induced subgraph [219].

Another, important problem is the enumeration of all connected edge-induced
subgraphs of a graph. Salem et al. [202] provided an algorithm with delay O(mc) to
enumerate all edge-induced subgraphs of a graph G. Here, mc is the largest number
of edges of any connected component of G.
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Our Results. We show how to adapt Simple and Pivot for E-CISE in such
a way that the worst-case delay between the output of two solutions is O(k2∆)
and that the algorithms require O(n + m) space. This improves over the previous
best delay bound of RwD [67] while requiring only linear space. As a side result,
we show that these variants of Simple and Pivot achieve an overall running time of
O((e(∆−1))(k−1) ·(∆+k) ·n/k) and O((e(∆−1))k−1 ·∆ ·n), respectively. For Simple
this is the first running time bound, for Pivot, this is a substantial improvement over
the previous bound. In addition, we further explore the connections between Simple

and Pivot and show that a certain implementation of Pivot is in fact only a variant
of Simple. Furthermore, we improve the delay of RwP to O(k2min (n− k, k∆) ·
min (k∆, (n− k)(∆ + log k))) while still requiring only O(n+m) space.

W also give delay bounds for B-CISE. More precisely, we show that Simple

and Pivot achieve a delay of O(k + ∆). Since k ≤ nc and ∆ < nc where nc is the
order of the largest connected component of the graph, we achieve the same delay
of O(k + ∆) = O(nc) if k ∈ O(nc) or ∆ ∈ O(nc), that is, in particular for k = nc.
If k ≪ nc and ∆ ≪ nc then we improve upon the best delay. Furthermore, observe
that the best delay for B-CISE is much lower than for E-CISE.

Afterwards, we show that Simple and Pivot can also be used to enumerate all
connected edge-induced subgraphs of size exactly (and also at most) k. We achieve
the same delay for the edge-induced variants as we did for the vertex-induced variants.
In particular, for the problem of enumerating all connected edge-induced subgraphs,
our algorithms achieve a delay of O(∆ + k) which improves upon the previous best
delay of O(mc) for this problem [202]. Here, mc is the maximal number of edges of
any connected component.

Finally, we show that Simple and Pivot can be adapted to enumerate all con-
nected subgraphs with exactly (at most) k vertices. In these problems, we do not
require the subgraphs to be induced.

We then evaluate the performance of different algorithms for E-CISE. For this,
we implemented Simple and Pivot in Python and compare them experimentally with
our own Python implementations of Kavosh [127], Exgen [150], BDDE [167], RwD [67],
and RwP [67]. For k ≤ 10, we observe that RwD and RwP are significantly slower
than the other algorithms, which behave quite similarly in terms of overall running
time. For very large k, that is, for k close to the order of the largest connected
component nc of G, RwD and RwP are again slower than the other algorithms and the
differences between these algorithms are larger in this case. Here, Pivot has the best
overall running times.

We also perform experiments for B-CISE. For these experiments we included
RSSP in the comparison and excluded RwD and RwP since they were not designed for
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this variant. The main result is that all algorithms behave roughly similar for this
problem.

Overview. We first adapt Simple and Pivot to achieve polynomial delay for E-
CISE. For this we provide in Section 3.1 a main algorithm loop which enumerates
all connected induced subgraphs containing some vertex v and deletes v afterwards.
Then, in Sections 3.2 (Simple) and 3.3 (Pivot) we provide obtain the claimed delay
for E-CISE. Afterwards, in Section 3.4 we show that the delay of one of the algorithm
of Elbassioni [67] can be improved slightly. In Section 3.5 we adapt Simple and Pivot

to also achieve polynomial delay forB-CISE. Afterwards, in Section 3.6 we show that
Simple and Pivot can also be used to enumerate connected edge-induced subgraphs.
Then, in Section 3.7 we adapt these algorithms to the enumeration of connected
)not necessarily induced) subgraphs. In Section 3.8 we provide experiments for the
running times of several algorithms for E-CISE and B-CISE. Finally, in Section 3.9
we conclude this chapter with some open questions.

3.1 Main Principle of the Algorithm

Enumeration Trees and the Main Algorithm Loop. With the exception of
RwD and RwP, the enumeration algorithms Simple, Pivot, Exgen, Kavosh, and BDDE

use a search tree method which is called from a main loop whose pseudocode is given
in Algorithm 3.1. Different algorithms, for example Simple or Pivot, can be used as
Enum-Algo in Line 4 in Algorithm 3.1. For each vertex in the graph, Algorithm 3.1
creates a unique enumeration tree. In other words, Algorithm 3.1 produces |V |−k+1
enumeration trees. To avoid confusion, we refer to the vertices of the enumeration
trees as nodes. Each node represents a connected subgraph G[P ] of order at most k.
We refer to the vertex set S of this subgraph as subgraph set of the enumeration tree
node. Roughly speaking, a node N is a child of another node M if the subgraph
corresponding to M is an induced subgraph of the subgraph corresponding to N .
The exact definition of child depends on the choice of Enum-Algo. A leaf is a node
without any children. Furthermore, a leaf is interesting if P has size k; otherwise it
is boring. A node leads to an interesting leaf if at least one of its descendants is an
interesting leaf.

In the main algorithm loop, we enumerate for each vertex v of the input graph
all E-CISE solutions containing v by calling the respective enumeration procedures;
the first call of the enumeration procedure is the root of the enumeration tree and it
represents the connected subgraphG[v]. After enumerating all solutions containing v,
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Algorithm 3.1: The main loop for calling the enumeration algorithms;
Enum-Algo can be any of Simple, Pivot, Exgen, Kavosh, and BDDE.

1 Algorithm Enumerate(G = (V,E))
2 while |V (G)| ≥ k do
3 choose vertex v from V (G)
4 enumerate all E-CISE solutions containing v with Enum-Algo

5 remove v from G

the vertex v is removed from the graph.

Cleaning the Graph. Observe that it is necessary to delete vertices of components
with less than k vertices after one call of Enumerate to obtain a delay which is
polynomial in k+∆: Otherwise, after some calls to Enum-Algo we may end up with
a graph containing many vertices which are not contained in solutions (up to O(n)).
Starting the enumeration from these vertices one after the other would not give a
delay that is polynomial in k and ∆. Hence, we show how to remove these connected
components quickly. In the following we denote a connected component as small if
it has at most k − 1 vertices.

Lemma 3.2. Let G be a graph such that each connected component has order at
least k and let v be an arbitrary vertex of G. In O(k2∆) time we can delete every
vertex of G− v that is in a small connected component.

Proof. The only vertices of G− v that are in small connected components, are those
that are in the same connected component as v in G. We may thus check for each
connected component of G−v which contains at least one neighbor of v whether this
connected component is small. Using depth-first search, this check needs O(k2) time
per neighbor. Moreover, for each neighbor which is in a small connected component,
we can remove the connected component from G in O(k2) time. Since v has at
most ∆ neighbors in G, the total running time of the algorithm is O(k2∆).

3.2 Polynomial Delay with Simple

We now adapt the Simple algorithm of Wernicke [227] to obtain a polynomial delay
algorithm; the pseudocode is shown in Algorithm 3.2. In Simple, we start with a
single vertex v and find successively larger connected subgraphs containing v. The
subgraph set is denoted by P . Furthermore, the set X ⊆ N(P ), called extension set,
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Algorithm 3.2: The Simple algorithm; the initial call is
Simple({v}, N(v)).

1 Algorithm Simple(P,X)

2 if |P | = k then
3 output P
4 return True

5 hasIntLeaf := False

6 while X ̸= ∅ do
7 u := choose last vertex from X
8 delete u from X ▷ The current set P will be extended
9 X ′ := X ∪ (N(u) \N [P ])

10 if Simple(P ∪ {u}, X ′)= True then
11 hasIntLeaf := True

12 else
13 return hasIntLeaf
14 ▷ Stop recursion if no new solution found

15 return hasIntLeaf

contains those neighbors of P which can be added to P to enlarge the subgraph G[P ].
In Lines 7-9, when putting u ∈ X in the set P , we remove u from X and add to X
each neighbor of u which is not in N [P ]. Removing u from X implies that u cannot
be added to the subgraph set again within the subtree rooted in this node.

Next, we describe our change to this algorithm. Lines 4, 5, and 10–15 of Algo-
rithm 3.2 and the use of the boolean flag variable hasIntLeaf are not part of the plain
version of Simple [227]. In these lines, a new pruning rule is performed; this rule is
necessary to establish polynomial delay for E-CISE. In the following, we describe
the idea of this rule.

Consider a path T1, . . . , Ti from the root T1 to a node Ti of the enumeration tree.
We denote the subgraph set of a node Ti by Pi and its extension set by Xi. To
avoid unnecessary recursions, we check after each recursive call of Simple in node Ti

whether this call reported a new solution. If not, we return in Ti to its parent Ti−1.
First, we prove that this pruning rule is correct. Recall that a leaf Tj is called
interesting if the corresponding subgraph set Pj is a solution for E-CISE(that is,
if |Pj| = k) and that Tj is called boring otherwise.

Lemma 3.3. Let Ti be a node in the enumeration tree of Simple. If the output of
a recursive call of Simple in node Ti is empty, then no subsequent recursive call of
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Simple in node Ti leads to an interesting leaf.

Proof. Let Ti, . . . , Tj denote the path in the enumeration tree from node Ti to a
leaf Tj, where node Tℓ+1 is the first child of node Tℓ for each ℓ ∈ {i+1, . . . , j−1}. By
assumption, the leaf Tj is boring, that is, |Pj| < k. This implies that Tj has an empty
extension set Xj. Hence, the number j− i of vertices that are added between node Ti

and leaf Tj is equal to the number of those vertices in the graph G − (N [Pi] \ Xi)
which are in the same connected component as Pi. In other words, adding all possible
vertices in node Ti does not give a connected subgraph of order at least k.

Observe that vertex u that was added to the subgraph set Pi+1 of node Ti+1 is
removed from Xi after the creation of Ti+1 and cannot be part of the subgraph set in
any node rooted in Ti again. Hence, the number of vertices in G− (N [Pi]\Xi) which
are in the same connected component as Pi is at least one more than the number
of vertices in G− (N [Pi] \ {Xi \ {u}}) which are in the same connected component
as Pi. Thus, also the next child of node Ti and any further child of Ti will not lead
to an interesting leaf.

By the above, we can abort the enumeration in node Ti and return to the par-
ent Ti−1 of Ti as soon as one of the recursive branches fails to output a solution.

To check efficiently whether the pruning rule applies, we do the following: Each
enumeration tree node T has a boolean variable hasIntLeaf initialized with False

in Line 5. As soon as at least one recursive call has an interesting leaf, the vari-
able hasIntLeaf is set to True. Therefore, the algorithm correctly returns whether
or not T leads to an interesting leaf. If some recursive call does not lead to an inter-
esting leaf, then the algorithm returns immediately to the parent of node T which is
correct due to Lemma 3.3. The overall overhead for performing the pruning is only
a constant factor.

With this pruning rule at hand we now show that Simple achieves a polynomial
delay. To achieve the claimed delay of O(k2∆), we present a new data structure to
store the extension set during the algorithm. In the following, we denote by pi the
vertex which was added to the subgraph set Pi when Ti is created. In other words,
if Ti−1 is the parent of Ti, then Pi \Pi−1 = {pi}. First, we prove that for a node Ti in
the enumeration tree we need O(∆) time to either compute the sets Pi+1 and Xi+1

of its next child Ti+1 or to restore the sets Pi−1 and Xi−1 of its parent node Ti−1.

Lemma 3.4. Simple can be implemented in such a way that for every node Ti of
the enumeration tree, we need O(∆) time to either compute the next child Ti+1 or to
restore the parent Ti−1 and that the overall space needed is O(n+m).
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u1 u2 u3 u4 u5 u6 u7 u8 u9

π(A, 4)
π(A, 6)π(A, 3)π(A, 5)π(A, 1)

null

π(A, 2)

11233

Figure 3.1: An example for the pointer movement: Pointer π(A, 6) points to u9, an
exclusive neighbor of p6. Before adding u9 to the subgraph set P6, we move pointer π(A, 6)
to the left to u8, an exclusive neighbor of vertex p3. Since T5 is the parent of T6 we
move π(A, 6) to u3 which is the position of pointer π(A, 5). Next, we create a child of T6

by adding u9 to the subgraph set P6. The next time we are in node T6, we move π(A, 6)
one step to the left to vertex u2 and create a child of T6 by adding u3 to P6. After returning
from this child, we move π(A, 6) to vertex u1 which is an exclusive neighbor of vertex p1.
Since T2 is the parent of T3 we move π(A, 6) to the position of π(A, 2). Afterwards, we
create a child by adding u2 to P6. The next time we come back to node T6, we delete
pointer π(A, 6), since π(A, 6) points to null, and return to the parent T5 of node T6.

Proof. We describe the data structures that we use to fulfill the running time and
space bounds of the lemma. To check whether a vertex is in some extension set, we
color some vertices of G with k+1 colors c0, . . . , ck as follows. Following the notation
of Wernicke [227], for a node Ti, we call the vertices which are in N [Pi] \ N [Pi−1]
where Ti−1 is the parent of Ti the exclusive neighbors of pi. These are exactly the
vertices that are added to Xi−1 in Line 9 of Algorithm 3.2 to construct the extension
setXi for the node Ti. Throughout the algorithm we maintain the following invariant:

Let T1, . . . , Ti for i ≤ k be the path from the root T1 to a node Ti. The
vertex p1 has color c0. A vertex v has color ci, i ≥ 1, if and only if v is
an exclusive neighbor of pi.

Altogether, for 0 ≤ j ≤ k, the colors c0, . . . , cj represent the vertices in N [Pj]. It is
necessary to use k+1 different colors to determine in which node a vertex was added
to the extension set. Note that every vertex may have at most one color.

The extension sets of all nodes on the path from the root T1 to an enumeration
tree node Ti are represented by an array A of length k∆ with up to k pointers
pointing to positions of A. There is one pointer π(A, i) corresponding to Ti and one
pointer π(A, j) for each ancestor Tj of Ti. An entry of A is either empty or contains
a pointer to a vertex of the extension set Xi. In Line 9 of Algorithm 3.2 when the
new extension set X ′ is created from X, the new vertices of N(u) \N [P ] replace the
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left-most empty entries of A. Pointer π(A, i) points to the vertex x in the extension
set Xi which will be added to Pi in the next recursive call of Simple in node Ti. If
at node Ti already all children of Ti have been created, then π(A, i) points to null.
Hence, we may check in constant time whether Ti has further children and restore
the sets Pi−1 and Xi−1 to the parent Ti−1 if this is not the case.

In addition to A, we use two further simple data structures: The subgraph set Pi

at a node Ti is implemented via a stack Q that is modified in the course of the
algorithm with the top element of the stack being pi. Also, for each node Ti, we create
a list Li of the exclusive neighbors of pi. This list is necessary to undo some later
operations. We now describe how these data structures are maintained throughout
the traversal of the enumeration tree.

Initialization. At the root T1 of the enumeration tree, we initialize A as follows:
add all neighbors of the start vertex p1 := v to A, set pointer π(A, 1) to the last non-
empty position in A. These are precisely the vertices of the exclusive neighborhood
of v and these vertices occupy the first π(A, 1) positions of A. The stack Q consists
of the vertex v and L1 contains all neighbors of v.

Creation of new children. As discussed above, a node Ti has a further child Ti+1

if π(A, i) points to an index containing some vertex x. We create child Ti+1 as follows:

1. move the pointer π(A, i) to the left,

2. check whether x is an exclusive neighbor of pi, and remove x from A if this is
the case, and

3. create the child Ti+1 with pi+1 = x and enter the recursive call for Ti+1.

We now specify how to move the pointer π(A, i) to the left when it currently points
to vertex x of color cℓ. An example of the pointer movement is given in Figure 3.1.
That is, x is an exclusive neighbor of pℓ for some ℓ ≤ i. Note that if x is an
exclusive neighbor of pi, we have i = ℓ. If x is contained in the first entry of A,
then redirect π(A, i) to null. Otherwise, decrease the position of π(A, i) by one.
If π(A, i) now points to a position containing a vertex y of color cj such that j < ℓ,
then move π(A, i) to the position that π(A, ℓ− 1) points to. Since y is an exclusive
neighbor of pj pointer π(A, j) points to y. Observe that if j = ℓ− 1 this means that
the pointer does not move in the second step.

We now describe how the algorithm creates a child Ti+1 of Ti after fixing pi+1 := x
as described above. If node Ti+1 is an interesting leaf, that is, if i = k − 1, we
output Pi+1 ∪{x} and return to node Ti. Otherwise, we add vertex x to the stack Q
representing the subgraph set and create an initially empty list Li+1. Then we
update A so that it represents Xi+1. For each neighbor u of x, check if u has some
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color cj. If this is not the case, then assign the color ci+1 to u and add u to Li+1.
Now, store the vertices of Li+1 in the left-most non-empty entries of A. Finally,
create the pointer π(A, i + 1) and let it point to the last non-empty position in A.
Observe that this procedure runs in O(∆) time.

Restoring the parent. Finally, we describe how the algorithm returns to the
parent Ti−1 of a node Ti. Note that the case that Ti is an interesting leaf was already
handled above. In the following, assume that Ti is not an interesting leaf. When
returning to Ti−1, first delete the last element pi of stack Q. Then, for each vertex
in Li, we remove its color ci. Finally, remove pointer π(A, i) from array A. Observe
that this can be done in O(∆) time as well.

We conclude that the overall running time is O(∆) as claimed. Moreover, the
size of stack Q is bounded by k, array A has a length of min(k∆, n), and the sum of
the sizes of all lists Li is at most min(k∆, n). Hence, Simple needs O(n+m) space.

We now prove that the pointer structure faithfully represents the extension sets
during the course of the algorithm. More precisely, we show that each pointer π(A, i)
visits all the vertices that are contained in the extension set Xi when Ti is created.
To this end, define inductively for all π(A, j) pointing on the array A, the following
subsets A≤j of entries of A inductively. The set A≤1 contains all entries to the left
of π(A, 1) including the entry that π(A, 1) points to. The set A≤j contains all entries
of A that are to the left of π(A, j) and either in A≤j−1 or exclusive neighbors of Tj.
We now claim the following invariant during the algorithm by induction over the
operations of the algorithm.

Let Ti be a enumeration tree node, and let T1, . . . , Ti denote the nodes
on the path from the root T1 of the enumeration tree to node Ti. At any
point in time A≤i contains exactly the set Xi.

The claim is obviously true for the root T1: Initially, A contains exactly the vertices
of N(p1) and all of them are to the left of the position of π(A, 1). Every time the
pointer π(A, 1) moves to the left, it moves by exactly one position and removes
exactly one vertex from X1 as prescribed in Line 8 of Algorithm 3.2.

Now, assume by induction that the claim holds for all Tj with j < i. When
creating Ti, the extension setXi may, according to the pseudocode of Simple, contain
all vertices which are in Xi−1 or exclusive neighbors of pi. When creating Ti, the
pointer π(A, i) points to the rightmost non-empty position in the array A. Thus A≤i

contains all vertices which are exclusive neighbors of pi or are contained in A≤i−1. By
the inductive hypothesis, the latter set contains exactly the vertices of Xi−1. When
the pointer π(A, i) is moved to the left, this corresponds to removing the element
that π(A, i) points to from Xi as prescribed in Line 8 of Algorithm 3.2 (where we
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remove u). To prove the claim that the procedure of moving to the left is correct,
we show that the pointer stops at the rightmost position of A containing an element
of Xi. We distinguish three cases:

Case 1: π(A, i) now points to some vertex with color ci. Then this vertex is an
exclusive neighbor of Ti and the pointer has moved exactly one position to the left.
Hence, the pointer stops at the rightmost position of A containing an element of Xi.

Case 2: π(A, i) now points for the first time to some vertex x with color cj such
that j < i. Then, π(A, j) points to the same position as π(A, i), since x is the
rightmost remaining vertex of the extension set Xj. If j = i − 1, then the pointer
position is not changed further and π(A, i) now points to the rightmost exclusive
neighbor of Ti−1 which is the rightmost vertex ofXi in A since A contains no exclusive
neighbors of Ti anymore. Otherwise, the pointer jumps to the position of π(A, i−1).
Since all elements of Xi−1 are contained in A≤i−1 and since, by induction, π(A, i−1)
points to the rightmost element of Xi−1 we have that π(A, i) points at the rightmost
position of A containing an element of Xi.

Case 3: π(A, i) was moved from a vertex with color cj such that j < i to the
left. In that case, the movement of π(A, i) is exactly the same as the movement
of π(A, i − 1) when the algorithm visits node Ti−1. By induction, we assume that
this movement visits all the vertices of Xi−1.

Hence, when moving the pointer to the left, we do not miss an element of Xi and
we only stop at elements of Xi.

With this running time bound to compute the next child or to restore the parent
at hand, we may now prove the claimed delay. Recall that for this it is essential to
remove small connected components, that is, those with size at most k − 1.

Theorem 3.5. Enumerate with Simple solves E-CISE for any graph G where each
connected component has order at least k and the maximum degree is ∆ with de-
lay O(k2∆) and space O(n+m).

Proof. Enumerate chooses an arbitrary start vertex v. According to Lemma 3.2, after
the deletion of vertex v, we can delete every vertex of each connected component
with less than k vertices in O(k2∆) time. Thus, it is sufficient to bound the time
which is needed to output the next solution within Simple.

We compute the sets P1 and X1 in O(∆) time. Since the algorithm of Lemma 3.2
was applied, by adding k − 1 vertices, we obtain a solution for E-CISE. The corre-
sponding connected induced subgraph can be output in O(k) time. Hence, the first
solution for a call of Enumerate will be output in O(k∆) time.

Next, we show that in O(k2∆) time we either find a new solution for E-CISE or
end this call of Enumerate. For this we show that in O((k − j)k∆) time we can
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restore the sets Pj and Xj of node Tj for some j < k or output the next solution.
Showing this statement is sufficient since the depth of the enumeration tree is at
most k and a return in the root means that no further induced subgraph of size k
containing p1 exists.

We show this statement by induction on j. Let Tk be an interesting leaf. Ac-
cording to Lemma 3.4, the sets Pk−1 and Xk−1 of node Tk−1 can be restored in O(∆)
time. Assume the sets Pj and Xj are restored in O((k− j)k∆) time. Every time we
call Simple recursively, we add exactly one vertex to the subgraph set. Hence, we
need at most k iterations to reach a leaf Tℓ. If Tℓ is interesting, that is if ℓ = k, then
we output the corresponding connected induced subgraph in O(kmin(k,∆)) time.
Thus, in this case the algorithm has a delay of O((k− j + 1)k∆) to output the next
solution. If Tℓ is boring, that is if ℓ < k, then according to Lemma 3.3 the pruning
rule applies to each node Tq on the path from Tℓ to Tj since no other subsequent
child of node Tq yields a path to an interesting leaf. Hence, we will return in alto-
gether O(k∆) time to the parent Tj−1 of node Tj. Hence, the sets Pj−1 and Xj−1

can be restored in O((k − j + 1)k∆) time. Thus, in O(k2∆) time we either output
the next solution or return in the root T1 and end this call of Enumerate. Hence,
the overall delay is O(k2∆). The space complexity follows from Lemma 3.3.

We can use Lemma 3.4 also to bound the overall running time of the algorithm.

Proposition 3.6. Enumerate with Simple has running time O((e(∆−1))k−1 · (∆+
k) · n/k).

Proof. Each connected induced subgraph with at most k vertices is output exactly
once [227]. Hence, for two different nodes T and Q in the enumeration tree, we
have PT ̸= PQ. In other words, each enumeration tree node corresponds to a different
connected subgraph of order at most k. According to Lemma 3.1, the overall number
of these subgraphs containing some vertex v is O(

∑︁k
i=1(e(∆ − 1))i−1) = O((e(∆ −

1))k−1) where the equality follows from the fact that 2(e(∆ − 1))i−1 < (e(∆ − 1))i

for ∆ ≥ 2. Consequently, the number of search tree nodes in the enumeration trees
in all calls of Enumerate with Simple is O((e(∆− 1))k−1 · n/k).

Now, we bound the time per node T in the enumeration tree. Let pT be the vertex
that was added to the subgraph set to create the node T . Determining the neighbors
of vertex pT and adding the exclusive neighbors of pT (that are those without a color)
to XT needs O(∆) time. For each vertex z in XT we make a recursive call where
we add z to the subgraph set. The recursive call includes updating the subgraph
set and the extension set and can be done in O(∆) time per call. By charging this
running time to the corresponding child in the enumeration tree, we obtain a running
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Algorithm 3.3: The Pivot algorithm; the initial call is
Pivot({v}, {}, v, {}).
1 Algorithm Pivot(P, S, p, F)

2 if |P ∪ S| = k then
3 output P ∪ S
4 return

5 if p = null then
6 if P ̸= ∅ then
7 p := choose some element of P
8 else
9 return

10 for z ∈ N(p) \ {P ∪ S ∪ F} do
11 Pivot(P ∪ {z}, S, p, F)

12 F := F ∪ {z}
13 Pivot(P \ {p}, S ∪ {p}, null, F)

14 return

time of O(∆) per enumeration tree node. To output a solution needs O(k) time we
obtain a running time of O(k+∆) per enumeration node. The overall running time
follows.

3.3 From Pivot to a Variant of Simple

We now adapt Pivot of Komusiewicz and Sorge [149] to obtain polynomial delay and
a better running time bound. More precisely, we show that a careful implementation
of an adaption of Pivot actually turns it into a variant of Simple. The pseudo code
of Pivot as described by Komusiewicz and Sorge [149] can be found in Algorithm 3.3;
the algorithm works as follows. In each enumeration tree node, the subgraph set is
partitioned into two sets P and S. The set P contains those vertices whose neighbors
may still be added to extend the subgraph set and set S contains the other vertices
of this subgraph, that is, no neighbor of S may be added to the subgraph. Moreover,
we have a set F containing further vertices that may not be added to the connected
subgraph. Each node in the enumeration tree has an active vertex from the set P
whose neighbors will be added to the subgraph. After considering each possible
neighbor, the vertex becomes inactive and is removed from P and added to S. This
version of the algorithm has a running time bound of O(4k(∆− 1)kn(n+m)) [149]
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Algorithm 3.4: An adaptation of Pivot without active vertex; the initial
call is Pivot({v}, ∅, ∅).
1 Algorithm Pivot(P, S, F)

2 if |P ∪ S| = k then
3 output P ∪ S
4 return

5 while P ̸= ∅ do
6 p := choose first element of P
7 foreach z ∈ N(p) \ (P ∪ S ∪ F ) do
8 Pivot(P ∪ {z}, S, F)

9 F := F ∪ {z}
10 P := P \ {p}
11 S := S ∪ {p}
12 return

and no polynomial delay. Next, we present our adaption of Pivot.
The pseudocode of our adaption of Pivot can be found in Algorithm 3.4. As we

show, this variant already has, up to polynomial factors, a optimal overall running
time. The adaption, however, does not yet achieve polynomial delay. Since our
implementation of this algorithm eventually leads to a variant of Simple, we omit
the proof of the overall running time and show running time bounds only for the
final version. Nevertheless, we believe it is instructive to discuss this intermediate
version of the algorithm. Consider a path T1, . . . , Ti from the root T1 to a node Ti

of the enumeration tree. We will not associate enumeration tree nodes with active
vertices. Instead, with each node Ti we associate the set Pi which is the subset of
the subgraph set which can have further neighbors, the set Si which is the remaining
subgraph set, and the set Fi which is the set of forbidden vertices. Now instead of
creating a new child when choosing a new active vertex we are using the while-loop
starting in Line 5. In this while-loop we do the following until Pi is empty: Pick the
vertex p ∈ Pi that was added first to Pi. That is, if pi is the ith vertex that was added
to the subgraph set, then pi becomes the active vertex p exactly after pi−1 moves
from P to S. Otherwise, the algorithm is the same as the original one. Observe
that when creating a child in Line 8, the active vertex (which is now only implicitly
given) remains the same by the choice of p in Line 6.

We now further modify this variant of Pivot. Assume that the current vertex p is
the ith vertex pi that was added to P . The main idea is to show that the set N(p) \
(P ∪ S ∪ F ) in Line 7 from which the next vertex z is chosen can be computed
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already when pi is added to P . By the convention that pi is chosen as the first vertex
of P , the set S when pi becomes active is predetermined, it is exactly {p1, . . . , pi−1}.
Moreover, whenever a vertex pj, j < i, moves from P to S in Line 10, every neighbor
of pj is either in P ∪S or in F . Hence, the set N(p)\ (P ∪S∪F ) for p = pi is exactly
the set N(pi) \N [P ∪ S]. Thus, instead of saving the set F of forbidden vertices, we
may work with a representation of an extension set X as in Simple. When adding
a vertex z to the subgraph set, we add exactly those neighbors of z to the extension
set X that are not neighbors of any vertex in P ∪ S, that is, we add the vertices
in N(z) \N [P ∪ S].

As for Simple, the extension set X will be represented by an array A with several
pointers pointing on this array. The difference is that these pointers move through A
in forward direction, that is, from low indices to high indices. The subgraph set
will be denoted by P only, that is, there is no need to store the set S anymore; it
is implicitly represented by the position of a pointer on A. The same is true for
the set F which is also not stored explicitly anymore. The pseudocode of this new
implementation of Pivot is shown in Algorithm 3.5, in light of the above discus-
sion, we will call it Simple-Forward. To highlight the differences between Simple

and Simple-Forward, we emphasize that in Simple-Forward X has an order by
using list notation, that is, initially X is a list of the neighbors of v = p1, new
vertices in X are appended and the next vertex is chosen from the front of the list
instead of from the back as in Simple. Before proving the running time bounds for
Simple-Forward, let us remark that an inspection showed that the implementation
of Simple in the FANMOD tool of Wernicke and Rasche [228] is essentially the same
as Simple-Forward except for the parts that are relevant for the pruning rules which
are needed to establish polynomial delay (Lines 4, 5, and 10–15).

Next, we prove that with suitable data structures for maintaining the sets P
and X during the enumeration, we can quickly traverse the enumeration tree.

Lemma 3.7. Simple-Forward can be implemented in such a way that for every
node Ti of the enumeration tree, we need O(∆) time to either compute the next
child Ti+1 or to restore the parent Ti−1 and that the overall space needed is O(n+m).

Proof. We use the same data structures as described in Lemma 3.4: an array A for
the representation ofX, for each i a list Li representing the exclusive neighborhood of
a vertex pi, a stack Q representing the subgraph set P , and a coloring of the vertices
to allow for an O(1)-time test for containment in the exclusive neighborhood of
some Pi. There is one difference, however: Instead of using k+1 colors, one for each
exclusive neighborhood, we use only one color c for all vertices in N [Pi]. Next, we
describe how these data structures are maintained during the enumeration tree.
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Algorithm 3.5: The Simple-Forward algorithm, an implementation of
Pivot; the initial call is Simple-Forward({v}, N(v)).

1 Algorithm Simple-Forward(P,X)

2 if |P | = k then
3 output P
4 return True

5 hasIntLeaf := False

6 while X ̸= ∅ do
7 u := choose first vertex from X
8 remove u from X ▷ The current set P will be extended
9 X ′ := X with N(u) \N [P ] appended

10 if Simple-Forward(P ∪ {u}, X ′)= True then
11 hasIntLeaf := True

12 else
13 return hasIntLeaf
14 ▷ Stop recursion if no new solution found

15 return hasIntLeaf

Initialization. At the root T1 of the enumeration tree, we initialize A as follows:
add all neighbors of the start vertex p1 := v to A, set pointer π(A, 1) to A[1]. These
are precisely the vertices of the exclusive neighborhood of v. The stack Q consists
of the vertex v and L1 contains all neighbors of v.

Creation of new children. A node Ti has a further child Ti+1 if π(A, i) points to
an index of A containing some vertex x. We create child Ti+1 as follows: If x is the
last entry of A, redirect π(A, i) to null. Otherwise, move π(A, i) one position to the
right. Afterwards, create the child Ti+1 with pi+1 := x as follows. If node Ti+1 is an
interesting leaf, that is, if i = k − 1, we output Pi+1 ∪ {x} and return to node Ti.
Otherwise, we add vertex x to the stack Q representing the subgraph set and create
an initially empty list Li+1. Then we update A so that it represents Xi+1: For each
neighbor u of x, check if u has color c. If this is not the case, then assign u with
color c and add u to Li+1. Now store the vertices of Li+1 in the left-most non-empty
entries of A. Finally, create the pointer π(A, i + 1) and let it point to the same
position as pointer π(A, i), then enter the recursive call for Ti+1. Observe that this
procedure runs in O(∆) time.

Restoring the parent. We describe how the algorithm returns to the parent Ti−1

of a node Ti; the case that Ti is an interesting leaf was already handled above. Hence,
assume that Ti is not an interesting leaf. When returning to Ti−1, first delete the
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last element of stack Q. Then, for each vertex in Li, we remove its color c. This
procedure runs in O(∆) time.

The overall space complexity of O(n +m) follows by the same arguments as in
the proof of Lemma 3.4.

It remains to show that the pointer structure faithfully represents the extension
sets during the course of the algorithm. We have to show that each pointer π(A, i)
visits all vertices contained in the extension set Xi when node Ti is created. By A>i

we denote the set of vertices in A beginning at π(A, i) and ending at A[|L1|+. . .+|Li|].
Note that A[1, . . . , |L1| + . . . + |Li|] represents N [Pi] \ {p1}. Similar to Simple we
show the following invariant during the algorithm by induction over the operations
of the algorithm.

Let Ti be a enumeration tree node and let T1, . . . , Ti denote the nodes on
the path from the root T1 of the enumeration tree to Ti. At any point in
time A>i contains exactly the set Xi.

Similar to Simple the statement is obviously true for the root T1 with the differ-
ence that π(A, 1) points to A[1]. Now assume the claim holds for all Tj with j < i.
When node Ti is created, the corresponding extension set is Xi := Xi−1 ∪ N(Pi) \
N [Pi−1]. According to the induction hypothesis, A>i−1 correctly represents Xi−1.
Furthermore, Li = N [Pi] \ N [Pi−1]. Hence, when Ti is created, A>i correctly rep-
resents Xi. Each time a child Ti+1 of node Ti is created, pointer π(A, i) is moved
exactly one position to the right. Hence, pointer π(A, i) correctly represents Xi and
thus visits all vertices in Xi.

The correctness of the pruning rule for Simple-Forward can be proven analo-
gously as the correctness of the pruning rule for Simple in Lemma 3.3 . Moreover, the
proof of the delay bound of Simple in Theorem 3.5 also applies to Simple-Forward.
Hence, we obtain directly obtain the following bound.

Corollary 3.8. Enumerate with Simple-Forward solves E-CISE for any graph G
where each connected component has order at least k and the maximum degree is ∆
with delay O(k2∆) and space O(n+m).

Finally, because of Lemma 3.7, the proof of Proposition 3.6, which bounds the
overall running time for Simple, applies also to Simple-Forward.

Corollary 3.9. Enumerate with Simple-Forward has running time O((e(∆−1))k−1·
(∆ + k) · n/k).
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3.4 Enumeration via Reverse Search

In this section, we describe the reverse search algorithms of [67]. Moreover, we present
a small modification of one of the algorithms that leads to an improved delay bound
for the case of small k.

3.4.1 Reverse Search with Dictionary (RwD)

The reverse search method which is also referred to as the supergraph method enu-
merates all solutions by traversing the supergraph G where every solution corresponds
to exactly one node of G. The pseudocode of the first of the two algorithms, RwD, is
shown in Algorithm 3.6.

During the algorithm, each node in G gets the following labels: visited means
that the node was visited by the algorithm, discovered means that the node was
not yet visited but is a neighbor of an already visited node, and a node is not
discovered otherwise. The algorithm saves all visited and discovered nodes in a
set K. Furthermore, all discovered nodes are stored in a queue Q .

In the first step, we have to determine an initial connected order-k subgraph
in G, so we determine a start node T in G. This can be done with depth-first search.
Afterwards, only node T is assigned with label discovered and all remaining nodes
have the label not discovered. So, initially the queue Q and the set K consist of
node T .

As long as the queue Q is not empty we do the following: We remove the first
node T of Q. Let S denote the solution represented by T . We output S and then
we have to determine all neighbors of T in the supergraph G and add them to Q if
they are not already discovered or visited. To this end, we subsequently remove each
vertex v from S to construct connected induced subgraphs of size k containing S ′ :=
S \ {v}. Observe that the induced subgraph G[S ′] may be disconnected. Hence, we
first determine the connected components of G[S ′]. Afterwards, we determine the
set N containing all vertices of V \S that have at least one neighbor in each connected
component of G[S ′]. We call the set N the common neighborhood of the connected
components of G[S ′]. In the algorithm of Elbassioni [67], the common neighborhood
is determined as follows: Check each vertex u of V \ S and determine whether it
has at least one neighbor in each connected component of S ′. Each vertex u in N
extends G[S ′] to another solution. To output each solution exactly once, we use the
set K, that is, we check whether a solution has already been discovered or visited. A
node corresponding to S ′ ∪ {u} is added to the queue only if it is not discovered.
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Algorithm 3.6: The RwD algorithm.

1 Algorithm RwD(G, k)
2 Queue Q := ∅, K := ∅ ▷ K saves the enumerated solutions
3 foreach connected component C in G do
4 S := lexicographically largest solution in C
5 Q. append(S), K := K ∪ {S}
6 while Q ̸= ∅ do
7 S := Q. get()
8 output S
9 for vertex v ∈ S do

10 S ′ := S \ {v}
11 N := common neighborhood of connected components of S ′

12 for vertex w ∈ N do
13 S ′′ := S ′ ∪ {w}
14 if S ′′ /∈ K then
15 Q. append(S ′′), K = K ∪ {S ′′}

3.4.2 Reverse Search with Predecessor (RwP)

This algorithm is almost the same as algorithm RwD. The main difference is the fol-
lowing: Instead of using the set K to save all visited and discovered nodes (which
requires exponential space) it uses a predecessor function for solutions. The basic
idea of this method in this context is the following: All solutions are sorted lexico-
graphically and each solution has a unique predecessor. Assume that we are currently
adding the neighbors of a node A in G. When we find a new candidate B for a con-
nected order-k subgraph, we only put B into the queue of discovered nodes if the
predecessor of B is A.

Now we explain this method in more detail: We apply DFS search on the graph G
and every vertex in G is assigned an index when it is discovered by this DFS. More
precisely, the first vertex is assigned with the highest index |G| and all following ver-
tices get a smaller index. Hence, the lexicographically largest connected order-k sub-
graph consists of the k vertices with the highest indices. The depth-first ordering of
the vertices implies a lexicographical ordering of the solutions. The initial connected
subgraph of order k for the enumeration is the lexicographically largest subgraph.
Next, we define the predecessor function f : The lexicographically largest subgraph
is its own predecessor. For each other node A, f is defined as f(A) := A \ {u} ∪ {v}
where
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Algorithm 3.7: The RwP algorithm.

1 Algorithm RwP(G, k)
2 Queue Q := ∅
3 foreach connected component C in G do
4 S := lexicographically largest solution in C
5 Q. append(S)
6 while Q ̸= ∅ do
7 S := Q. get()
8 output S
9 for vertex v ∈ S do

10 S ′ := S \ {v}
11 N := common neighborhood of connected components of S ′

12 for vertex w ∈ N do
13 S ′′ := S ′ ∪ {w} ▷ Now determine predecessor of S ′′ for

vertex u ∈ S ′′ according to ascending index sorting do
14 S∗ := S ′′ \ {u}
15 M := common neighborhood of connected components

of S∗

16 x := vertex with highest index in M
17 if u = w and x = v then
18 Q. append(S∗ ∪ {x})

1. u ∈ A is the vertex with smallest index and

2. v /∈ A is the vertex with highest

such that f(A) is connected and lexicographically smaller than A.

It was mentioned in [67] that it is necessary to consider an ordering based on DFS
instead of an arbitrary ordering. The pseudocode of this algorithm can be found in
Algorithm 3.7. Note that in the pseudocode analogously to RwD a queue Q is used
maintain the nodes which still have to be processed. We added Q to the pseudocode
since this matches our implementation of RwP (see Section 3.8.2). The difference
between our implementation and the description here is that in our implementation
we use BFS instead of DFS. The use of BFS is the reason of the usage of Q. This
does not change the overall running time or the delay but requires more space. We
used BFS since it can be implemented more easily.
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A Slightly Improved Delay for RwP for small k. For RwP, we obtain an
improved delay in the case k ≪ n. To this end, we decrease the time which is needed
to determine the predecessor of a solution. In the algorithm described in [67] this
step needs O(k(∆+log k)min (n− k, k∆)) time. We show that this step can be done
in O(k2∆) time using the new approach for computing the common neighborhood
of some connected components that we proposed for RwD.

Proposition 3.10. The predecessor of a connected order-k subgraph can be deter-
mined in O(k2∆) time.

Proof. Let S be a connected order-k subgraph. To determine the predecessor of S,
we find the vertex u ∈ S with lowest index and the vertex v /∈ S with highest
index such that S \ {u} ∪ {v} is connected as follows: We test for each vertex w
of S in increasing index order whether removing w from S gives the predecessor.
Each time, we do the following: In O(kmin (k,∆)) time we determine the connected
components of G[S \ {w}]. Afterwards, we determine the common neighborhood N
of the connected components in G[S \ {w}] in O(k∆) time as follows: Compute for
each connected C component of G[S \{w}] the set of vertices NC that are from V \S
and have at least one neighbor in C. Then, intersect all of these sets in O(k∆) time;
the resulting set is N . Finally, pick the vertex u with highest index in N . The
set (S∪{u})\{w} is the predecessor of S. The overall running time is O(k2∆) since
we may have to consider up to k possibilities for w.

The bottleneck in RwP is the predecessor check in Lines 13–18 since computing the
common neighbors N of each connected component of S ′ (Line 11) can be done in
O(min(n−k, k∆)) time and there are k possibilities for S ′. With the new method for
computing the predecessor we get the following delay, since the predecessor function
is called (as discussed above) at most k · min (n− k, k∆) times: we consider each
vertex in S as a candidate for removal from S and check the common neighborhood.

Corollary 3.11. The modified RwP algorithm solves E-CISE for any graph G with
maximum degree ∆ and integer k with polynomial delay O(k3∆min (n− k, k∆)).

If k ≪ n, then min (n− k, k∆) ≥ k and hence, our modified algorithm has a
better delay than the algorithm described in [67]. Hence, combining both approaches
and choosing one of the both algorithms depending on the value of parameter k leads
to the following delay. Here, the space usage will be linear if DFS instead of BFS is
used.

Corollary 3.12. The modified RwP algorithm solves E-CISE for any
graph G with maximum degree ∆ and integer k with polynomial delay
O(k2min (n− k, k∆) ·min (k∆, (n− k)(∆ + log k))) and space O(n+m).
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3.5 Polynomial Delay for Enumerating Connected

Induced Subgraphs of Size at most k

We now consider B-CISE, the problem of enumerating all connected subgraphs of
order at most k. Recall that Avis and Fukuda described the first algorithm with
delay O(nm) for B-CISE based on the reverse search framework [11]. Recently, the
RSSP algorithm (for an description we refer to Section A.4 in the Appendix) achieved
a delay of O(nc) [4], where nc is the order of the largest connected component of G,
for the special case when k ≥ nc, that is, when there is no size restriction. It is
possible to adapt this algorithm to the case of arbitrary k which gives a delay bound
of O(nc + k) = O(nc) for B-CISE. We omit the details of this adaption and instead
proceed to show that by adapting Simple or Simple-Forward, we obtain algorithms
with delay O(k +∆) that need O(n+m) space.

Furthermore, Haraguchi and Nagamochi [108] presented an algorithm with de-
lay O(min(ℓ + 1, n)n5m) and space O(n3) to enumerate all vertex sets that induce
an ℓ-edge-connected subgraph and an algorithm with delay O(min(ℓ+1, n1/2)nℓ+4m)
and space O(nℓ+2) to enumerate all vertex sets that induce an ℓ-vertex-connected
subgraph. Note that the special case ℓ = 1 for both problems corresponds to B-
CISE. Observe that the bounds on the delay and space of these algorithms is much
worse than our bounds.

Now, we adapt Simple and Simple-Forward to solve the B-CISE problem. We
have chosen these two algorithms for this task since the changes to the variant of enu-
merating all connected induced subgraphs of size exactly k is very small and the delay
is optimal if ∆≪ k. By abusing notation, we refer to Simple and Simple-Forward

as the adapted variants for B-CISE.

Theorem 3.13. Enumerate with Simple or Simple-Forward solves B-CISE for
any graph G with maximum degree ∆ with delay O(k +∆) and space O(n+m).

Proof. As shown in Lemmas 3.4 and 3.7, Simple and Simple-Forward both spend
O(∆) time at each search tree node before either creating the next child Ti+1 or
returning to the parent Ti−1 of the current enumeration tree node Ti.

To achieve the claimed delay bound, we adapt each enumeration algorithm as
follows: Enumerate chooses an arbitrary start vertex v. After the enumeration of all
connected induced subgraphs of order at most k containing vertex v, vertex v and all
incident edges are deleted in O(∆) time. Furthermore, we do not use the introduced
pruning rules.

We output solutions for B-CISE according to the alternative output rule [218]:
Consider a node Ti in the enumeration tree with subgraph set Pi. If i is odd, then
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output Pi when node Ti is created. Otherwise, if i is even, then output Pi when the
algorithm returns to the parent Ti−1 of node Ti. In the following, a node Ti with i
odd is called an odd node, and a node Ti with i even is called even.

To prove that this adaption leads to a delay of O(k+∆) for B-CISE, we bound
the time between the output of two consecutive solutions for B-CISE. Clearly, the
first solution of B-CISE is output after O(1) time, since the vertex v chosen by
Enumerate is a solution and 1 is odd. Now, assume we just output a solution for
B-CISE in some node Ti. We show that the next solution is output or the algorithm
correctly terminates after a constant number of moves in the enumeration.

Case 1: Node Ti is odd. Then, node Ti was created directly before Pi was output.

Case 1.1: Node Ti has a further child Ti+1. The algorithm needs O(∆) time to
construct this node. If node Ti+1 has a further child Ti+2, the algorithm constructs
this child in O(∆) time. Since Ti+2 is odd, the algorithm immediately outputs the
corresponding subgraph set Pi+2 in O(k) time. Otherwise, node Ti+1 has no child and
we return in O(∆) time to node Ti. Since Ti+1 is even the algorithm then outputs
the subgraph set Pi+1 in O(k) time.

Case 1.2: Node Ti has no further child. Hence, the algorithm returns in
O(∆) time to the even node Ti−1. If node Ti−1 has a further child, the algorithm
constructs in O(∆) time the next child T ′

i which is odd. Hence, subgraph set P ′
i is

output in O(k) time directly after the construction of T ′
i . Otherwise, if node Ti−1

has no further child, the algorithm return to its parent Ti−2 and since node Ti−1 is
even, the subgraph set Pi−1 is then output in O(k) time.

Case 2: Node Ti is even. Then, Pi is output directly before the algorithm returns
to the parent Ti−1 of Ti in O(∆) time.

Case 2.1: Node Ti−1 has a further child T ′
i . The algorithm constructs this node

in O(∆) time. If T ′
i has a child, the algorithm computes the first child T ′

i+1 of
node T ′

i in O(∆) time. Since node T ′
i+1 is odd, the algorithm immediately outputs

the subgraph set P ′
i+1 in O(k) time. Otherwise, the even node T ′

i has no children,
and the algorithm outputs the subgraph set P ′

i in O(k) time directly before returning
to Ti−1 .

Case 2.2: Node Ti−1 has no further child. If Ti−1 = Ti then this iteration of
Enumerate is finished and either the algorithm starts a new iteration of Enumerate
and output the induced subgraph corresponding to the newly added vertex or ends
the enumeration. Otherwise, if i− 1 ̸= 1, the algorithm constructs in O(∆) time its
even parent Ti−2. If Ti−2 has a further child, the algorithm computes in O(∆) time
its next child T ′

i−1. Since T ′
i−1 is odd, the algorithm outputs P ′

i−1 in O(k) time.
Otherwise, node Ti−2 has no further child. Since Ti−2 is even, the algorithm outputs
the subgraph set Pi−2 in O(k) time directly before returning to Ti−3.
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In all cases, the delay between two consecutive outputs of a solution for B-
CISE is O(k +∆).

Since ∆ < nc, Simple and Simple-Forward give improved delay bounds for
small k and ∆ while achieving the same delay bound as RSSP in the previously
considered case k = nc.

3.6 Polynomial Delay for Enumeration of Con-

nected Edge-Induced Subgraphs

Next, we show that Simple and Simple-Forward can also be used to enumerate all
connected edge-induced subgraphs of size at most or exactly k with polynomial delay.
Recall that for an edge set F ⊆ E the edge-induced subgraph of F in G = (V,E)
is defined as the subgraph of G with edge set F and all vertices having at least one
endpoint in F . Also, recall that the size of the edge-induced subgraph of F is |F |,
the number of edges. Formally, we study the following two problems.

Exact Connected Edge-Induced Subgraph Enumeration
(E-CEISE)

Input: An undirected graph G = (V,E) and an integer k.
Task: Enumerate all connected edge-induced subgraphs of size exactly k

of G.

Bounded Connected Edge-Induced Subgraph Enumeration
(B-CEISE)

Input: An undirected graph G = (V,E) and an integer k.
Task: Enumerate all connected edge-induced subgraphs of size at most k

of G.

Slightly different problems were studied by Haraguchi and Nagamochi [108]. They
presented an algorithm with delay O(min(ℓ + 1, n)m6) and space O(mn2) to enu-
merate all edge sets that induce an ℓ-edge-connected subgraph and an algorithm with
delay O(min(ℓ + 1, n1/2)mℓ+4) and space O(mℓ+1n) to enumerate all edge sets that
induce an ℓ-vertex-connected subgraph. Note that the special case ℓ = 1 for both
problems corresponds to B-CEISE. Observe that the guarantees on the delay and
space of these algorithms is much worse than our guarantees. Also note that here
they ask for an edge set and in the work mentioned in Section 3.5 they ask for a
vertex set.
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Recently, the RASMA algorithm was introduced to solve B-CEISE for the special
case when k ≥ mc, that is, when there is no size restriction [202]. Here, mc is the
maximal number of edges of any connected component of G. Furthermore, Salem
et al. [202] showed that RASMA achieves a delay of O(mc) for solving B-CEISE. It
is possible to adapt this algorithm to the case of arbitrary k which gives a delay
bound of O(mc + k) = O(mc) for B-CEISE if k ≥ mc. We omit the details of this
adaption and instead proceed to show that by adapting Simple or Simple-Forward,
we obtain algorithms with delay O(k+∆) that need O(n+m) space for B-CEISE.
Furthermore, we show that both algorithms also solve E-CEISE with delay O(k2∆).

Now, we adapt Simple and Simple-Forward for E-CEISE and B-CEISE. The
simple idea is to adapt both algorithms by using edges instead of vertices. More
precisely, the subgraph set and the extension set consist of edges instead of vertices.
Furthermore, for an edge uv we denote its neighborhood, the set of all edges with
exactly one endpoint in {u, v} by N(uv). Now, we use the algorithms Simple and
Simple-Forward as described for vertex sets but now with edge sets. In other words,
we essentially solve E-CISE and B-CISE on the line graph of G. The line graph
consists of a vertex for each edge and two vertices in the line graph are adjacent if
the two corresponding edges share a common endpoint in G.

Note that Lemma 3.4 and Lemma 3.7 still give a time bound of O(∆) per node
in the enumeration tree since each edge has at most 2∆ neighbors. Also Lemma 3.2
which removes connected components of size less than k needs to be adapted. For
this, note that the removal of any edge increases the number of connected components
by at most 1. Hence, the proof of Lemma 3.2 can be adapted in such a way that
all connected components with less than k edges are removed and that the overall
running time is O(k2). Thus, from Theorem 3.5, Corollary 3.8, and Theorem 3.13
we obtain the following results.

Corollary 3.14. Enumerate with Simple or Simple-Forward solves E-CEISE for
any graph G with maximum degree ∆ with delay O(k2∆) and space O(n+m).

Corollary 3.15. Enumerate with Simple or Simple-Forward solves B-CEISE for
any graph G with maximum degree ∆ with delay O(k +∆) and space O(n+m).

Since ∆ ≤ mc, Simple and Simple-Forward achieve the same delay bound as
RASMA [202] in the previously considered case k = mc.
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3.7 Polynomial Delay for Enumeration of Con-

nected Subgraphs

Next, we show that Simple and Simple-Forward can also be used to enumerate all
connected , not only induced, subgraphs of size at most or exactly k with polynomial
delay. Recall that a graph G′ := (V ′, E ′) is a subgraph of G if V ′ ⊆ V , E ′ ⊆ E. We
study the following two problems.

Exact Connected Subgraph Enumeration (E-CSE)

Input: An undirected graph G = (V,E) and an integer k.
Task: Enumerate all connected subgraphs of size exactly k of G.

Bounded Connected Subgraph Enumeration (B-CSE)

Input: An undirected graph G = (V,E) and an integer k.
Task: Enumerate all connected subgraphs of size at most k of G.

These problems are motivated by several applications. One example is the search
in semantic web data by using only keywords instead of structured queries [68]. In
this application, one is interested in all connected subgraphs not only induced ones.

We are not aware of any algorithms studying these problems with respect to its
delay or to output sensitivity. Here, we show how Simple and Simple-Forward can
be adapted to achieve polynomial delay for both problems.

The general idea is as follows: We use Simple and Simple-Forward to enumerate
all connected induced subgraphs of size exactly (at most) k. Whenever we enumerate
an induced subgraph G[S] with Simple or Simple-Forward, we next enumerate all
spanning subgraphs of G[S]. Since each enumerated subgraph is spanning, each
subgraph is in particular connected. We will ensure that this second step does not
increase the delay too much by relying on the alternative output rule [218].

To do this second enumeration step, we show that given a connected graph, we
can enumerate all spanning subgraphs with polynomial delay.

Lemma 3.16. Let G be a connected graph. Then, all spanning subgraphs of G can
be enumerate with delay O(m) and space O(m).

Proof. In the following, we call a subgraph of G containing a spanning subgraph of G
a solution. We use a binary enumeration tree in which the root of the enumeration
tree and each left child Tleft of any node T correspond to a solution. In this enumera-
tion tree we do not only remove edges from G to discover all solutions, we also mark
some edges which cannot be removed anymore. For an enumeration tree node T , we
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denote by GT the corresponding subgraph. The basic idea for an enumeration tree
node T is to choose an unmarked edge e of GT which is not a bridge in GT . In the
left child Tleft of T we remove e from GT and in the right child Tright we mark e.
The right child is necessary to save the information that edge e was already deleted
once to not enumerate some solutions multiple times. This process to create children
also explains why not each node in the enumeration tree corresponds to a solution:
The edge set GT of node T is identical to the edge set GTright

of the right child Tright

of T . If we would enumerate the subgraphs corresponding to each node we would
thus enumerate some subgraphs multiple times.

Next, we explain how we create the children Tleft and Tright of a node T . First, we
compute with Tarjan’s algorithm [214] all bridges of GT in O(n+m) = O(m) time.
Next, we mark all not already marked bridges in O(m) time. If, each edge is marked,
no further branching is necessary. Otherwise, we check whether there is an unmarked
edge e in O(n+m) time. If yes, we know that e is in at least one cycle. Then, in the
left child of T we remove e from GT and in the right child of T we mark e. If T is
a left child, we can output the corresponding subgraph in O(n +m) = O(m) time.
Thus, in O(m) time we can create the next child of T .

To restore the parent, we need to reverse these operations. This is done using
the following data structures: We use one stack in which we store which edge was
removed or marked, respectively, by the branching procedure. Furthermore, we use
another stack to store all bridges which got marked by Tarjan’s algorithm. Clearly,
since each edge can be removed or marked at most once and in each enumeration
tree node we remove or mark at least one edge, for both stacks we need O(m) space.
Now, we can use these stacks to restore the parent T ′ of a node T as follows: First,
we unmark all edges which got marked with Tarjan’s algorithm at T with the second
stack. Second, we insert or unmark the edge which was removed or marked in T ′ to
create T with the first stack. Clearly, this can be done in O(m) time. Thus, these
two stacks allow us to restore the parent node of any node in the numeration tree in
O(m) time.

Next, we argue that our algorithm outputs each solution.

Claim 1. Each solution is output exactly once.

Proof of Claim. For any node T in the enumeration tree let RT := E(G) \ E(GT )
be the set of edges removed from G in node T and let MT ⊆ E(GT ) be the set of
marked edges in GT .

We show inductively that our algorithm outputs each solution H. Let FH :=
E(G) \ E(H). In our induction we show that there exists a sequence T1, T2, . . . , Tℓ

of enumeration tree nodes with GT1 corresponding to G, Tj+1 being a child of Tj for
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each j ∈ [ℓ− 1], and GTℓ
corresponding to H such that RTj

⊆ FH and MTj
⊆ E(H)

for each j ∈ [ℓ]. Showing this statement in sufficient to verify that each solution is
output exactly once since each solution H is uniquely defined by E(H) and FH .

It remains to verify the existence of this sequence of enumeration tree nodes.
Clearly, in the root the two invariants are fulfilled since no edge is marked or removed.
Next, assume that RTi

⊆ FH and MTi
⊆ E(H) for each i ∈ [j]. We now verify that

there exists a child Tj+1 of Tj fulfilling RTj+1
⊆ FH and MTj+1

⊆ E(H). If GTj+1

corresponds to H we have verified that H is output. In the following, we assume
that GTj+1

does not correspond to H. Let Bj+1 denote the set of bridges detected
by Tarjan’s algorithm in node Tj+1. Observe that Bj+1 ⊆ E(H) since otherwise H
would not be connected, a contradiction. Since each bridge in Bj+1 is then marked,
the invariants are fulfilled. Next, an unmarked edge e is chosen. If e ∈ FH , we
consider the left child of Tj+1 and observe that the invariants are fulfilled since e ∈
RTj+1

. Otherwise, if e /∈ FH , we consider the right child of Tj+1 and observe that
the invariants are fulfilled since e ∈ MTj+1

. Hence, we have verified that H gets
enumerated.

We conclude that each solution is enumerated exactly once. ■
It remains to bound the delay of our algorithm. For this, we rely on the alternative

output rule [218]. We cannot apply the alternative output rule directly since in
this technique it is assumed that each node in the enumeration tree corresponds
to a solution. In our setting, only the root and the left children correspond to
solutions. Recall that the right children are necessary to keep track of the removed
edge in the sibling to circumvent the multiple enumeration of solutions. We adapt the
alternative output rule as follows: Output the subgraph corresponding to the root
immediately after creating the root. Consider a node Tleft in the enumeration tree
with the corresponding subgraph GTleft

. If the depth of Tleft is odd, then output GTleft

when Tleft is created. Otherwise, if the depth of Tleft is even, then output GTleft
when

the algorithm returns to the parent T of node Tleft. Now, the proof that the delay
is O(m), that is, after a constant number of moves in the enumeration tree the next
solution is output or the algorithm terminates, is similar to the proof of Theorem 3.13
in which we used the alternative output rule to show a delay of O(k+∆) for B-CISE.
For this reason we skip this part of the proof.

Now, we can solve E-CSE with polynomial delay as follows: By Theorem 3.5
and by Corollary 3.8 Simple and Simple-Forward can be implemented in such
a way that all connected induced subgraphs of size exactly k can be enumerated
with delay O(k2∆) and O(n +m) space. Now, whenever a connected induced sub-
graph G[S] of size exactly k is enumerated by Simple or Simple-Forward, we use
the algorithm of Lemma 3.16 to enumerate all spanning subgraphs of G[S] with
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delay O(min(k · min(k,∆),m)) and space O(min(k · min(k,∆),m) since the size
of E(G[S]) is bounded by k ·min(k,∆). Since each connected induced subgraph of
size exactly k has a unique vertex set S and the algorithm of Lemma 3.16 enumer-
ates all spanning subgraphs of G[S], we conclude that no connected subgraph of size
exactly k is enumerated twice. Furthermore, since each connected subgraph H of
size has a unique vertex set V (H), at some point Simple or Simple-Forward enu-
merates V (H) and since the algorithm of Lemma 3.16 is correct, H is enumerated.
In other words, each solution is enumerates at least once.

B-CSE can be solved similar: By Theorem 3.13 Simple and Simple-Forward

can be adapted in such a way to enumerate the vertex sets S of all connected induced
subgraphs of size at most k with delay O(k +∆) and O(n +m) space. Recall that
for B-CISE we focused on the enumeration of vertex sets instead of the induced
subgraphs since otherwise the delay is dominated by the output of the solution which
is O(k ·min(k,∆)). Afterwards, analogously to our algorithm for E-CSE, whenever
a connected induced subgraph G[S] of size exactly k is enumerated by Simple or
Simple-Forward, we use the algorithm of Lemma 3.16 to enumerate all spanning
subgraphs of G[S]. Since the details are identical to E-CSE, we omit them.

Hence, we obtain the following.

Corollary 3.17. For any graph G with maximum degree ∆, E-CSE can be solved
with delay O(k2∆) and space O(n+m).

Corollary 3.18. For any graph G with maximum degree ∆, B-CSE can be solved
with delay O(min(k ·min(k,∆),m)) and space O(n+m).

At first sight, it is very surprising that our delay of O(min(k ·min(k,∆),m)) for
B-CSE is worse than our delay of O(k + ∆) for B-CISE. The reason for this is
that for B-CISE we focused on the enumeration of vertex sets since otherwise the
delay is dominated by the output of the solution which is O(k ·min(k,∆)). Since for
fixed G[S] there might exist several spanning subgraphs, for B-CSE it is necessary
to enumerate also the corresponding edge sets. Also, our delay for B-CSE cannot
be improved: A graph with k vertices may have up to k ·min(k,∆) edges.

Observe that if we aim to enumerate all connected subgraphs of a given graph G
we may set k to n and one solves B-CSE. The algorithm of Corollary 3.18 then gives
a delay of O(n + m) = O(m). Also note that this problem can also be solved by
using the algorithm of Corollary 3.15 by setting k tom to enumerate all edge-induced
subgraphs of size at most m which gives the same delay of O(m). In other words,
these two different algorithms can be used to solve the same task.
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3.8 An Experimental Comparison

We now present an experimental comparison of Simple, Pivot, Simple-Forward,
Exgen, Kavosh, RwD, RwP, and BDDE for E-CISE and B-CISE. For a detailed de-
scription of Exgen, Kavosh, and BDDE, refer to the appendix (Chapter A).

3.8.1 Experimental Setup

We implemented all algorithms1 in Python 3.6.8 using the graph data structure
igraph; the core modules of igraph are written in C.2 Each experiment was performed
on a single thread of an Intel(R) Xeon(R) Silver 4116 CPU with 2.1 GHz, 24 CPUs
and 128 GB RAM. For the BDDE algorithm, we used NetworkX (https://networ
kx.github.io/) as graph library for building the enumeration tree. This choice
is due to the fact that the graph modification operations of igraph are inefficient.
The reported running times include the time needed to write the output to the hard
drive.

As benchmark data set we used 30 sparse social, biological, and technical networks
obtained from the Network Repository [200], KONECT [153], and the 10th DIMACS
challenge [12]. We group the real-world instances into three subsets of size 10: small
networks with n < 500, medium-size networks with 500 ≤ n < 5000 and large
networks with n ≥ 5000. An overview of the instance properties and names is given
in Table 3.1.

In addition, we performed experiments on random instances generated in the
G(n, p) model where n is the number of vertices and each edge is present with
probability p. We generated one instance for each n ∈ {100, 200, . . . , 1000} and p ∈
{0.1, 0.2}.

For each real-world network and each random instance, we considered each k ∈
{3, 4, . . . , 10} and k ∈ {nc−1, nc−2, nc−3} where nc is the order of the largest con-
nected component in the graph. For each instance, we set a running time threshold
of 10 minutes.

3.8.2 Implementation Details

Recall that the algorithms Exgen, Kavosh, Simple and Simple-Forward make use
of the sets Pi, Si, and Fi at each node Ti. To speed up the enumeration for large k

1The source code of our implementation is available at https://www.uni-marburg.de/en/fb1
2/research-groups/algorith/enucon.zip

2http://igraph.org/python/
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Table 3.1: Networks used for our experiments.

Size Name n m

Small moreno-zebra 27 111
ucidata-zachary 34 78
contiguous-usa 49 107
dolphins 62 159
ca-sandi-auths 86 124
adjnoun adjacency 112 425
arenas-jazz 198 2 742
inf-USAir97 332 2 126
ca-netscience 379 914
bio-celegans 453 2 025

Medium bio-diseasome 516 1 188
soc-wiki-Vote 889 2 914
arenas-email 1 133 5 451
inf-euroroad 1 174 1 417
bio-yeast 1 458 1 948
ca-CSphd 1 882 1 740
soc-hamsterster 2 426 16 630
inf-openflights 2 939 15 677
ca-GrQc 4 158 13 422
inf-power 4 941 6 594

Large soc-advogato 6 541 51 127
bio-dmela 7 393 25 569
ca-HepPh 11 204 117 619
ca-AstroPh 17 903 196 972
soc-brightkite 56 739 212 945
coAuthorsCiteseer 227 320 814 134
coAuthorsDBLP 299 067 977 676
coPapersCiteseer 434 102 16 036 720
soc-twitter-follows 404 719 713 319
coPapersDBLP 540 486 15 245 729

for E-CISE, we implemented the following pruning rule for these four algorithms
making use of the sets Pi and Si: We save the order of each connected component
of G. Let Ti be a node in an enumeration tree of one of these four algorithms. Let C
denote the connected component of G containing all vertices in Pi. To avoid some
unnecessary recursions, we check if |C| − |Fi| < k. If yes, we return in Ti to its
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parent Ti−1. The correctness of this pruning rule follows by the fact that for each
subsequent child Tj we have Fi ⊆ Fj and adding all remaining possible vertices of C
to Pi is not sufficient to obtain a solution containing k vertices.

Lemma 3.19. Let Ti be a node in an enumeration tree of Exgen, Kavosh, Simple
and Simple-Forward. Let Pi be the corresponding subgraph set in a connected compo-
nent C of G and let Fi be the corresponding set of forbidden vertices. If |C|−|Fi| < k,
then no subsequent recursive call in node Ti leads to an interesting leaf.

In the following we refer to this rule as the k-component rule. While this rule
gives a speed-up in practice it does not improve the delay of these algorithms. We
now give some further details on how we implemented the algorithms in Python.

We implemented all three variants of Pivot (Pivot, the version of Pivot with-
out active vertices, and Simple-Forward). Preliminary experiments revealed that
Simple-Forward is the fastest of these three variants. Hence, we only consider
Simple-Forward in the following. Furthermore, we implemented Exgen, Kavosh,
Simple and Simple-Forward recursively and iteratively. Preliminary experiments
showed that for each k the iterative variants of the algorithms are at least a factor of
two faster than the recursive variants. This factor increases for large k. Hence, we
only compare the iterative variants. Furthermore, preliminary experiments showed
that Kavosh outperforms Exgen on almost every instance. Hence, we excluded Ex-
gen from our plots. Each of Kavosh, Simple and Simple-Forward is implemented
with and without the k-component rule, and the corresponding pruning rules. In
other words, each of these four algorithms has four versions:

1. The Plain version (no pruning rule and no k-component rule)

2. The Pruning version (with pruning rule and no k-component rule)

3. The Component version (no pruning rule but with k-component rule)

4. The Full version (with pruning rule and with k-component rule).

Preliminary experiments also showed that our new implementations of RwD and
RwP outperform the existing ones by roughly 20%. Thus, we only consider the new
versions in our plots. Next, we specify the implementation details of the specific
algorithms.

Enumerate. We did not implement the removal of the vertex v after the call of
Enum-Algo directly because igraph was relatively inefficient with respect to graph
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modifications. Because of the same argument, we also did not implement the algo-
rithm of Lemma 3.2. Instead we assign an index to every vertex and process the
vertices in descending index order. Then, in the call of Enum-Algo where we enu-
merate all solutions containing v, we remove all vertices with higher index than v
when constructing the set of neighbors of any vertex.

Simple. The set P is implemented as a list. When creating a new node T of the
enumeration tree in Simple, we add the new vertex u to this list; when returning
from T to its parent, we remove u from the list. The extension set is implemented
as described in Lemma 3.4. We use two additional arrays. The first array B is
used for applying the pruning rule described in Lemma 3.3, that is, it is used for
implementing the variable hasIntLeaf. When we create a new child Ti+1 of a node Ti

the values B[i] and B[i+1] are set to 0. If an interesting leaf is detected, each entry
of B is set to 1. If a boring leaf is detected, the last vertex from the subgraph set is
removed, until a node Tj with B[j] = 1 is reached. In the second array we save the
orders of the connected components of the graph G to test the k-component rule.

Simple-Forward. We implemented the old variant of Pivot described in Algo-
rithm 3.3, the adapted variant of Pivot described in Algorithm 3.4 and the new
variant which we refer to as Simple-Forward. For Simple-Forward, we implemented
the data structures described in Lemma 3.7. As for Simple, we have an additional
array B to save the result of testing the pruning rule and an additional array to save
the orders of the connected components of the graph G to test the k-component rule.

Kavosh. We implemented Kavosh as described in Algorithm A.2. Note that X is
the set of exclusive neighbors of P . To compute each M ⊆ X for a fixed set X we
used itertools. The original implementation used the revolving door ordering [152,
127]. Similar to Simple and Simple-Forward we have an additional array B to
save the result of testing the pruning rule described in Proposition A.3 (the idea
of this pruning rule is very similar to the idea for the pruning rules of Simple and
Simple-Forward) and and an additional array to save the orders of the connected
components of the graph G to test the k-component rule.

RwD. We implemented another method to determine the common neighborhoodN
of the connected components of S ′. Instead of checking for each vertex of V \ S
whether it has at least one neighbor in each connected component of G[S ′], we
compute for each connected C component of G[S ′] the set of vertices NC that are
from V \ S and have at least one neighbor in C. Then, we intersect all of these
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Figure 3.2: Comparison for E-CISE. Left: Comparison for k ∈ {3, . . . , 10}. Right:
Comparison for k ∈ {nc − 1, nc − 2, nc − 3} where nc is the order of the largest connected
component in the graph.

sets, the resulting set is N . We computed the connected components of G[S ′] with a
union-find structure with path compression and union-by rank. This does not change
the worst-case delay of RwD.

RwP. The original algorithm used DFS to find all solutions for E-CISE. To achieve
the claimed delay it was necessary to distinguish between nodes of odd and even
depth. We implemented this algorithm with BFS. In other words, we use a queue
to save subgraphs that are discovered but not processed. Hence, our implemented
algorithm has a space bound of O(m+ n+ k|G|), instead of O(n+m). Similarly to
the RwD algorithm, we determine the connected components by a union-find struc-
ture with path compression and union-by rank and the common neighbors of these
components are computed similarly.

3.8.3 Results for E-CISE

First, we consider our experimental results for k ∈ {3, . . . , 10}. The Plain version
of Simple was slightly faster than the other three versions of Simple which had
almost the same running times. For Simple-Forward and Kavosh we obtained similar
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Table 3.2: Average running times for E-CISE on instances that are solved by all four
algorithms BDDE, Kavosh, Simple, and Simple-Forward for small k, that is, k ∈ {3, . . . , 10}.

Category BDDE Kavosh Simple Simple-Forward

Small 40.9 39.3 37.5 34.2
Medium 91.4 87.7 86.2 78.5
Large 151.3 151.9 153.9 149.4

results: The Plain version is slightly faster than the other three versions. Overall we
observe that for small k the Plain versions of the algorithms are the fastest.

In each plot only the fastest of the four versions (Plain, Pruning, Component, or
Full) of Simple, Simple-Forward and Kavosh is plotted. The left part of Figure 3.2
shows the result for k ∈ {3, . . . , 10}. RwD is five times faster than RwP. Furthermore,
all instances solved by RwD within the time limit of 600 seconds, were solved by the
other four algorithms within 15 seconds. In other words, RwD is 40 times slower than
the other four algorithms. The differences of the running times for BDDE, Kavosh,
Simple and Simple-Forward were small: Simple-Forward is slightly faster than
the other three algorithms. Simple solved 130 out of 400 instances, one more than
Simple-Forward.

The average running time of a solved instance for each algorithm ( BDDE, Kavosh,
Simple, and Simple-Forward) can be found in Table 3.2. RwD and RwP are not in-
cluded in Table 3.2 since they are significantly slower than the other four algorithms.
On average, Simple-Forward is the fastest algorithm in all three categories. Hence,
for small k, one should use the plain version of Simple-Forward.

Second, we consider our experimental results for k ∈ {nc − 1, nc − 2, nc − 3}
where nc is the order of the largest connected component in the graph. The Plain
versions of Kavosh, Simple, and Simple-Forward and BDDE solve only three out
of 150 instances. Furthermore, many memory errors occurred in BDDE. This is not
surprising since BDDE stores huge parts of the enumeration tree to copy branches
which are used again. RwD has no memory errors since the cutoff time of 600 seconds
was so small that RwD only outputted a few solutions.

For Kavosh we observed the following: The Pruning version is much faster than
the Plain version (no concrete speed-up factor is possible since the Plain version
only solved three instances). The Component version is roughly 20 times faster
than the Pruning version. Finally, the Full version is roughly 30% faster than then
Component version.

The right part of Figure 3.2 shows the result for k ∈ {nc − 1, nc − 2, nc − 3}
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Figure 3.3: Comparison for B-CISE for k ∈ {3, . . . , 10}.

where nc is the order of the largest connected component in the graph.

Simple with the pruning rule and without the k-component rule is much faster
than the plain version. Similar to Kavosh we cannot estimate a speed-up factor since
the plain version solved only very few instances. Simple with the k-component rule
and with the pruning rule is slightly faster than Simple with the k-component rule
and without the pruning rule. Both variants are roughly 30 times faster than Simple

only with the pruning rule. We obtained similar results for Simple-Forward as for
Simple. In our experiments the k-component rule gives a much higher speedup than
the corresponding pruning rules since k was at least nc−3. To conclude: For large k
the versions of the algorithms with the pruning rule and with the k-component rule
are the fastest.

RwD is roughly two times faster than RwP. All instances solved by RwD are solved by
Kavosh in less than two seconds. Simple is roughly three times faster than Kavosh

and Simple-Forward is roughly two times faster than Simple. Simple-Forward

solved 69 out of 150 instances. Hence, for large k, one should use Simple-Forward

with the pruning rule and the k-component rule.
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Table 3.3: Average running times for B-CISE on instances that are solved by all algo-
rithms for small k.

Category BDDE Kavosh RSSP Simple Simple-Forward

Small 45.9 45.4 44.6 39.7 44.9
Medium 76.5 75.3 62.4 68.6 70.7
Large 141.6 145.4 159.0 141.7 140.6

3.8.4 Results for B-CISE

We tested the plain versions of Kavosh, Simple and Simple-Forward for B-CISE.
We compare these three algorithms with BDDE [167] and RSSP [4]. Here, we do not
compare with RwD or RwP since these algorithms are designed specifically for E-CISE.
Figure 3.3 shows our results for k ∈ {3, . . . , 10}. For B-CISE we did no experiments
for k ∈ {nc−1, nc−2, nc−3} where nc is the order of the largest connected component
in the graph since the number of solutions is monotonically increasing for each k and
gets too huge soon.

BDDE is slightly slower than Kavosh, which is slightly slower than RSSP. Next,
Simple-Forward is slightly faster than RSSP and Simple is slightly faster than
Simple-Forward. Overall, Simple is roughly 20% faster than BDDE. Simple solved
129 out of 400 instances. The average running time of a solved instance for each
algorithm in our comparison can be found in Table 3.3. Simple is the fastest algo-
rithm for small instances, RSSP is the fastest algorithm for medium instances and
Simple-Forward is the fastest algorithm for large instances.

Our experiments showed that the running times between all these algorithms
for B-CISE do not differ too much. But since in our experiments Simple was the
fastest, one should use this algorithm.

3.9 Conclusion

We studied several variants of subgraph enumeration problems. On the theoretical
side, we improved the current best delay delay for E-CISE presented by Elbas-
sioni [67] to O(k2∆), using only linear space (Theorem 3.5 and Corollary 3.8). Fur-
thermore, we also provided polynomial-delay algorithms forB-CISE (Theorem 3.13).
For the special case k = nc our delay matches the previous best delay proven by Alok-
shiya et al. [4]. Also, we showed that our algorithms can be used to enumerate all
connected edge-induced subgraphs with exactly (at most) k edges (Corollaries 3.14
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and 3.15). For the special case k = mc our delay matches the previous best de-
lay proved by Salem et al. [202]. Finally, we showed that also the enumeration of
all subgraphs with exactly (at most) k vertices can be done with polynomial delay
(Corollaries 3.17 and 3.18). On the practical side, we provided a comprehensive
study of Python implementations for E-CISE and B-CISE. For B-CISE and also
for E-CISE and small k we showed that the running-time of all search-tree based
algorithms is comparable. This is mainly because there are many solutions and the
time to output them dominates the running time. In contrast, for E-CISE and
large k the running time of Simple-Forward is significantly smaller than of previous
algorithms (RwD and RwP).

In Chapter 4 we use the implementations of Simple, Simple-Forward, and
Kavosh as the basic enumeration methods in an efficient generic algorithm for fixed-
cardinality optimization problems in graphs. For this application, Simple-Forward
turned out to be the most efficient implementation.

Concerning future work, a major open task is to improve the delay bounds for the
problems studied in this chapter. For this, E-CSE, however, could be a good starting
problem. We provided a delay of O(k2∆) for E-CSE (Corollary 3.17) which is the
same delay we provided for E-CISE. This is because in our current algorithm for
E-CSE uses our algorithm for E-CISE as a subroutine: In our current approach we
enumerate all induced connected subgraphs of size k and each time the vertex set S
of an induced connected subgraph is enumerated, we then enumerate all subgraphs
of G[S] which contain a spanning subgraph of G[S]. Since the number of solution
for E-CSE is larger than the number of solutions for E-CISE one would expect a
smaller delay for E-CSE than for E-CISE. To obtain a smaller delay a more direct
approach could be helpful, that is, an approach that does not use the enumeration
of all induced connected subgraphs as a subroutine.

Smaller delays than O(k2∆) are also desirable for E-CISE and E-CEISE. For
both problems, in our opinion, the main bottleneck is the number of enumeration
tree nodes which need to be visited until we are guaranteed to find the next solution.
Currently, we bounded this number by k2. We think that a bound of k for this
number is within reach: In our arguments we currently do not exploit the fact that
if the extension set is big, that is, if it has size k + ℓ, then node Tk−1 has at least ℓ
children which correspond to solutions.

Also, it is interesting to study the Kavosh algorithm [127] we used in our ex-
periments in terms of bounded delay. We already introduced a pruning rule for
Kavosh (see Proposition A.3). The idea of Kavosh is to try all possible extensions
decreasingly in their size. Our pruning rule end this process if no extension for some
size leads to a new solution. However, this pruning rule is not sufficient to obtain
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polynomial delay: Consider the star graph with one vertex v of degree n − 1 and
assume v is added in the root of the enumeration tree. After trying all subsets of
size k− 1 of N(v), the algorithm tries to add each subset of size k− 2, none of which
gives a solution. The number of these subsets is

(︁
n−1
k−2

)︁
which is not polynomial if k

is not a constant. Hence, further pruning rules are necessary to obtain polynomial
delay. Another algorithm which we used in our experiments is BDDE [167]. For BDDE
polynomial delay seems impossible without massively changing the algorithm: The
basic idea of BDDE is to enumerate all connected vertex sets S ′ with S ′ ⊂ S before
the connected vertex set S is enumerated. Clearly, the number of connected subsets
of S is exponential in |S|.

Furthermore, it would be interesting to study the algorithm of Ferreira [79] from
the viewpoint of bounded delay. Recall, that in this algorithm a binary search tree
whose nodes represent connected sets S of G is used together with a certificate to
guarantee that each solution is enumerated exactly once. Since the depth of the
enumeration tree in this algorithm is not bounded by k, one would need a different
analysis to prove delay bounds for this algorithm. Furthermore, it is interesting im-
plement algorithm of Ferreira [79] and to compare its running time with the running
times of the algorithms studied in the chapter.

A further interesting route to obtain better enumeration algorithms could be
to replace the maximum degree ∆ by provably smaller parameters such as the h-
index or the degeneracy d of the graph. Such algorithms need more advanced data
structures since already one scan of the neighborhood of a vertex may take Ω(∆) time.
Since h and d are smaller parameters than ∆ not to many expensive neighborhood
scans are possible anymore. One idea is to not scan the whole neighborhood of a
vertex v contained in a current vertex subset S at once, instead one could check only
one neighbor w of v, extend S by w and only after all solutions containing w are
enumerated the next neighbor of v is checked. One issue one has to overcome in this
idea is that up to ∆ many neighbors of v may have already been visited by other
vertices in S. In other words, without some additional arguments also this idea leads
to an algorithm in which O(∆) time is spend in each enumeration tree node.

Another interesting route for further research is to study the problem of counting
the number of connected (induced) subgraphs of size exactly k. It was shown that
counting the number of connected induced subgraphs of size exactly k is #W[1]-hard
with respect to k [121]. Furthermore, it was shown that the number of all connected
subgraphs of size k for k ≤ 5 can be counted in linear time in graphs with constant
degeneracy [19, 184, 196]. Recall that all connected induced subgraphs of size k can
be enumerated in O((e(∆ − 1))(k−1) · (∆ + k) · (n/k)) time [150]. Can this running
time be significantly reduced for the counting problem, for example by replacing ∆
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by the h-index?
Finally, it would be interesting to determine systematically for which restrictions

on the connected induced subgraphs that we aim to enumerate one may achieve
better delay bounds. For example, in FixCon (see Chapter 4) we sometimes do not
want to enumerate all connected induced subgraphs of size k. Consider the Densest
k-Subgraph problem. There, one searches for a vertex set S of size exactly k such
that G[S] has the maximum number of edges of all these vertex sets. For this
problem, we do not have to consider vertices u in the enumeration for which another
vertex v exists such that N(u) ⊆ N [v]. Is it also possible to enumerate all connected
vertex sets of size k which fulfill a property like this with polynomial delay?
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Chapter 4

FixCon: A Generic Solver for
Fixed-Cardinality Subgraph
Problems

In many classic graph problems, one is interested in finding a set S of exactly k
vertices maximizing (or minimizing) a specific objective function valG(S) in a given
graph G [35, 38, 39, 150]. For example, in Densest k-Subgraph we aim to maxi-
mize the number of edges with both endpoint in S [74, 77, 150] (also see Chapter 8).
In contrast, in Sparest k-Subgraph we aim to minimize the number of edges with
both endpoint in S [106, 107, 224] (also see Chapter 8). In Max (k, n − k)-Cut
one aims to find a set S of size k maximizing the number of edges having exactly
one endpoint in S[38, 60, 87] (also see Chapter 8). Another example is Maximal
Triangles in which we aim to maximize the number of triangles in G[S], the sub-
graph induced by S [217]. Also, recognition problems fit into this framework. For
a property Π we set valG(S) = 1 if S ∈ Π and valG(S) = 0 if S /∈ Π. One example
is Acyclic Subgraph; in this problem one aims to find a set S which induces an
acyclic subgraph (a forest) [94]. All these problems are so-called fixed cardinality
optimization problems and can be defined generally as follows.

Fixed-Cardinality Optimization (FCO)

Input: An undirected simple graph G = (V,E), an objective func-
tion valG : G → R, and an integer k.

Task: Find a set S ⊆ V of size k such that S maximizes valG(G[S]) under
this condition.

Herein, G is the set of all undirected simple graphs. Bruglieri et al. [35] give
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a systematic survey about special cases of FCO where they present results on the
computational complexity of some special cases and discuss some methods to solve
them. Furthermore, the survey of Ehrgott and Hamacher [66] discusses some results
on the computational complexity of some fixed-cardinality optimization problems,
for example NP-hardness of k-Cardinality Tree. Also, they discuss many results
on approximation algorithms and integer linear programs (ILPs). Cai [38] studied
the parameterized complexity of many FCO problems. For example, Cai [38] showed
that Max (k, n − k)-Cut is W[1]-hard with respect to k; in Chapter 8 we study
the parameterized complexity of Max (k, n− k)-Cut in further detail. Since FCO
contains Max (k, n−k)-Cut as a special case, FCO is thus NP-hard and also W[1]-
hard with respect to k. Despite its general nature, there exist algorithmic results for
FCO: Cai et al. [39] presented a framework, called the random separation method,
to obtain FPT-algorithms for the parameter k+∆ for a wide range of special cases.
The random separation method is a variation of the color-coding technique [5] with
the aim of coloring the solution in one color and all neighbors of the solution in
another color.

Often, maximizing or minimizing the objective function valG is not sufficient.
Instead, one has the additional constraint that the sought vertex set S is connected.
Such a connectivity constraint is particularly well-motivated in network design. For
example, in the design of wildlife corridors, a necessary requirement is to allow ani-
mals to reach each part of the network [48]. Similarly, connectivity is also desirable
in the construction of wildlife reserves to prevent fragmentation [32]. Also, in oil field
leasing, it is important to detect valuable connected parts of a geographic area [105].
More generally, in facility layout problems it is important to create connected facili-
ties [80]. Furthermore, in the analysis of protein networks it is important to identify
connected sets of vertices [6]. Finding connected vertex sets is also an important task
in the design of efficient algorithms: For example, in local-search based algorithms
for Vertex Cover, one searches for a connected vertex set of fixed size to improve
the solution [128]. Adding the connectivity constraint to FCO leads to the following
problem.

Connected Fixed-Cardinality Optimization (CFCO)

Input: An undirected simple graph G = (V,E), an objective func-
tion valG : G → R, and an integer k.

Task: Find a set S ⊆ V of size k such that G[S] is connected and S
maximizes valG(G[S]) under these conditions.

Similar to FCO, CFCO contains Clique is NP-hard and W[1]-hard with re-
spect to k. On the positive side, the random separation method gives a randomized
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algorithm for CFCO with running time O(2(∆+1)k · |V |O(1) · TvalG(k)) where TvalG(k)
is the time needed for evaluating valG on graphs of order k and ∆ is the maximum
degree of G [39]. Later, this result was improved: Komusiewicz and Sorge [150]
presented an algorithm that solves CFCO in O((e(∆− 1))k · |V |O(1) ·TvalG(k)) time.
Furthermore, Maxwell et al. [167] proposed the algorithm BDDE to enumerate all
connected induced subgraphs H that for a given hereditary objective function valG
and threshold t, fulfill valG(H) > t. Here, a function valG is denoted as hereditary
if valG(S) ≥ t then also valG(S

′) ≥ t for each S ′ ⊆ S. According to Lemma A.5 the
running time of BDDE is bounded by O((e(∆− 1))k · k ·∆ · n).

In this chapter, we engineer an algorithm for CFCO. Before we do this, let us
first inspect the algorithm of Komusiewicz and Sorge with running time O((e(∆ −
1))k · |V |O(1) · TvalG(k)) for CFCO [150] in greater detail: This algorithm consists of
two steps. First, enumerate all connected induced subgraphs of order at most k, and
second, evaluate valG for the subgraphs G[S] of order exactly k, keeping the best
subgraph G[S] and output S after the enumeration has finished. An implementa-
tion of this algorithm was developed for the special case when the task is to decide
whether G contains an order-k connected µ-clique, where a graph with k vertices is
a µ-clique if it has at least µ ·

(︁
k
2

)︁
edges [151]. As a proof of concept, this implemen-

tation showed that enumeration of connected subgraphs can be a useful algorithmic
approach for special cases of CFCO.

The current state of such algorithms is the following: one has to provide an
implementation for each problem which includes the development of new reduction
and pruning rules. This makes it unlikely that these algorithms will find widespread
use in real-world applications. To circumvent these issues, our aim in this chapter is
to obtain rules which prevent us from enumerating all connected induced subgraphs
of order at most k. For the correctness of these rules, we need the assumption
that valG depends only on the isomorphism class of G[S]. In other words, for any two
isomorphic graphs H and H ′ we have f(H) = f(H ′). Roughly speaking, the function
value only depends on the structure of G[S]. Many problems like Clique fulfill
this property, but not every CFCO problem: An example is Maximum Partial
Vertex Cover. In this problem, we ask for a vertex set S of size k such that as
many edges as possible have at least one endpoint in S. Note that we study the
parameterized complexity of Maximum Partial Vertex Cover in Chapter 8.

In contrast to the existing enumeration-based solver for finding an order k con-
nected µ-clique [151], integer programming and SAT solving have proved to be ex-
tremely useful tools for solving NP-hard problems. One reason for this is that SAT
and ILP solvers have been engineered over decades like Gurobi or CPLEX and, as
a result, can solve many real-world instances very quickly. Another reason is that,
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due to the generic nature of SAT and ILP, one may formulate many combinatorial
optimization problems rather easily as a SAT or ILP problem.

In this chapter, we aim to lift enumeration-based algorithms from specific to
generic applications. We develop the algorithmic tool FixCon in which the user
needs to program only the objective function valG. The user may furthermore provide
some properties of the objective function valG that will then be exploited by generic
pruning rules that restrict the search space for the enumeration algorithm. The
pruning rules assume only the correctness of the provided properties and otherwise
treat valG as a black box. In addition, the user may implement problem-specific
pruning rules. Since the theoretical running time guarantees forCFCO are good only
in the case of small k [39, 150], we focus on engineering FixCon for k ≤ 20. We did
not choose the random separation method presented by Cai et al. [39] as basis for our
implementation since it has worse running time guarantees and since it seems hard to
exploit properties of the objective functions during the algorithm. We do not compare
with BDDE [167] since the enumeration problem is much harder: our algorithm may
stop immediately after finding one optimal solution; in the enumeration problem, one
must output all solutions and thus continue the search. From another perspective,
our implementation is more general than BDDE from Maxwell et al. [167], as valG
does not need to be hereditary in FixCon.

Our contribution. We implement three variants of the generic enumeration-based
algorithm of Komusiewicz and Sorge [150] based on different algorithms to enumerate
all connected induced subgraphs described in Chapter 3. The basic idea is that each
enumeration tree node T in FixCon corresponds to a connected set of vertices C. In
each child of T a neighbor of C is added to the connected set in FixCon. We then
provide three generic pruning rules that help decreasing the size of the search tree
used by the enumeration algorithm. To develop these rules, we note and make use
of two properties of the objective function valG: vertex-addition bounds (that limit
the change of the objective value when a vertex is added to the graph) and edge-
monotonicity (which means that adding an edge to a graph does not decrease its
objective value). In addition, we decrease the search space size by identifying vertices
with the same neighborhoods in the input graph (called twins). Furthermore, for
edge-monotone properties we extend the notion of twins to prune the search space
further. Finally, in the universal graph rule for a given vertex set C we test each
possibility to extend G[C] to a graph of order k. The universal graph rule and the
rule based on twins are valid for any function valG that assigns the same value to
graphs from the same isomorphism class. Moreover, we provide generic heuristics
that provide FixCon with lower bounds for the value of the optimal solution. Finally,
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for some problems, we provide new problem-specific reduction rules.
In our implementation, we only focus on maximizing the objective function valG.

Clearly, one could also ask to minimize valG. This can be easily incorporated in our
framework by maximizing the function − valG.

We analyze the algorithms and the effect of the generic and problem-specific
pruning rules for eight example problems and compare them with ILP formulations
for these problems. In a nutshell, we show that the best version of our algorithm
can solve the majority of the benchmark instances within 600 seconds per instance.
Moreover, we outperform the ILP formulations in terms of number of solved in-
stances.

Our source code is available at https://www.uni-marburg.de/en/fb12/rese
arch-groups/algorith/software/fixcon.

4.1 Example Problems

In this section, we describe eight example objective functions that we will consider
as input in the CFCO instances. For each problem, we only specify the objective
function valG. All eight example objective functions fall in one of the following
categories:

1. Finding dense cohesive subgraphs,

2. finding sparse subgraphs, and

3. finding subgraphs were we pose restrictions on the degree of a vertex in the
solution S.

Clearly, not each CFCO problems falls into one of these three categories. For
example, the problem of finding an induced subgraph G[S] on k vertices which max-
imizes the number of even cycles does not fit into one of these categories.

Dense subgraph problems. The first two problems have applications in finding
cohesive subgraphs [74, 77]. In the first problem, we aim to maximize the number of
edges in the subgraph.

Densest k-Subgraph:

valG(H) := |E(H)|.
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In the second, problem we aim to find a graph in which the minimum degree is
large.

Max-Min-Degree Subgraph:

valG(H) := min
v∈V (H)

{|NH(v)|}.

For both problems, cliques of order k give the best objective values for all graphs
of order k. A further problem in this direction would be to minimize the diameter
of the induced subgraphs. We did not include this problem in the comparison since
for k ≤ 20, finding solutions with diameter 2 (2-clubs) is trivial in our instances
since the induced subgraph of any vertex v of degree at least k − 1 together with
exactly k− 1 neighbors Z has diameter 2 if and only if there exists two non-adjacent
vertices u and w in Z. Thus, the problem is essentially only to decide whether there
is a clique on k vertices.

Sparse subgraph problems. The next four problems are concerned with finding
sparse subgraphs. The first is essentially the opposite of Max-Min-Degree, that
is, we aim to find a subgraph with a minimal maximum degree; we formulate it as a
maximization problem.

Min-Max-Degree Subgraph:

valG(H) := − max
v∈V (H)

{|NH(v)|}.

The next two problems are essentially recognition problems, formulated as max-
imization problems. We may find induced subgraphs that are trees by solving the
following problem.

Acyclic Subgraph:

valG(H) :=

{︄
1 H is a tree,

0 otherwise.

In a similar fashion, we may look for connected induced subgraphs that contain
no triangle.

Triangle-Free Subgraph:

valG(H) :=

{︄
1 H contains no triangle,

0 otherwise.
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The final problem from this group is to search for a subgraph that has a large
diameter.

Maximum-Diameter Subgraph:

valG(H) := max
u, v ∈V (H)

distH(u, v).

For all four problems, a path on k vertices gives the best objective value for
all graphs of order k. Note that for Acyclic Subgraph and Triangle-Free
Subgraph the set of optimal solutions is larger.

Degree-constrained subgraph problems. In the final two problems, we con-
sider two variants of restricting vertex degrees. Again, these problems are basically
recognition problems, formulated as maximization problems.

r-Regular Subgraph:

valG(H) :=

{︄
1 H is r-regular,

0 otherwise.

In the experiments, we use r = 3 for even k and r = 4 for odd k, since with
these values, there exist connected graphs on k vertices fulfilling the properties for
all k ∈ {4, . . . , 20}.

(α, β)-Degree-Constrained Subgraph:

valG(H) :=

⎧⎪⎨⎪⎩
1 H has minimum degree at least α

and maximum degree at most β,

0 otherwise.

We set α = 3 and β = 5 in the experiments, since with these values, there exist
connected graphs on k vertices fulfilling the properties for all k ∈ {4, . . . , 20}.

The source code of our implementation of the eight above-mentioned objective
functions is shown in Section B.1 in the appendix.
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4.2 Experimental Setup

Each experiment was performed on a single thread of an Intel(R) Xeon(R) Silver
4116 CPU with 2.1 GHz, 24 CPUs and 128 GB RAM running Python 3.6.8. FixCon
is implemented in Python 3.6.8. and uses igraph with the python-igraph interface (ht
tp://igraph.org/python/) as the graph data structure. We performed experiments
on 40 real-world networks from Konect [153], the DIMACS Challenge on Graph
Clustering and Partitioning [12], and the Network Repository [200]; 10 networks are
sparse and small (less than 500 vertices), 10 are sparse and have medium size (500
– 5 000 vertices), 10 are sparse and large (between 5 000 and 500 000 vertices), and
10 are dense (less than 100 vertices and up to 200 000 vertices). The instance names
and some of their properties are shown in Table B.1 in the appendix. To also study
instances with a different structure, we built 20 random instances in the Gn,p model
with n ∈ {100, 200, . . . , 1000} and p ∈ {0.1, 0.2}. We set a timeout of 600 seconds
per instance. The time for reading the input is not included in the running time. For
the ILP, we do include the time for passing the initial set of constraints. For each
graph, we built an instance for each of the eight problems and each k ∈ {4, . . . , 20}.
We call k small if k ≤ 10 and large if 11 ≤ k ≤ 20.

We add improvements to the algorithms and evaluate their effect one by one.
In any section, we compare the version with the new improvement and all previous
improvements to the variant that has all previous improvements but not the new
one.

4.3 Enumeration Algorithms

We consider three different algorithms for enumerating connected induced subgraphs
of order k which we investigated in Chapter 3. More precisely, we use Simple (Al-
gorithm 3.2), Simple-Forward (Algorithm 3.5), and Kavosh (Algorithm A.2). To
avoid confusion, we refer to Simple-Forward as Pivot in this chapter1. We adapted
these three algorithms to CFCO as follows: instead of output the connected set C,
we evaluate valG(G[C]) and save C if it gives the current-best objective value.

Recall that in all of the three algorithms, there is one main algorithm loop (Al-
gorithm 3.1) which considers, in some order, each vertex v ∈ V (G), enumerates all
connected induced subgraphs of order k containing v, and then removes v from G.
Also, recall that all three algorithms are search tree algorithms in which each node of

1The name Pivot is used since Simple-Forward is an efficient implementation of Pivot (also see
Section 3.3)
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Figure 4.1: Comparison of the plain version of the three algorithms.

the search tree is associated with a set C of vertices that induces a connected graph,
called a connected set in the following. In each search tree node with |C| < k, we
branch into the possibilities to add vertices of N(C).

In the following, we partition the connected set C into the set P which can have
further neighbors and the set Q which can have no further neighbors. In other words,
each vertex added to the connected set C must have at least one neighbor in P and no
neighbor in Q. Recall that such a partition is explicitly given in Pivot and Kavosh.
In Simple this is not the case, that is, each vertex in C may have further neighbors.
Note that in all three algorithms, a vertex v added to the connected set C may be
added to Q if N(v) is already contained in N [C] since no vertex w in V (G)\(C∪{v})
is a neighbor of v.

In the plain version of our implementation, we use the following easy way to
prune the search space: we stop the search once a solution that is obviously optimal
has been found. To this end, users may provide FixCon with a global upper bound
for the value of valG on graphs of order k. For many problems such a bound is
easy to determine. For Densest k-Subgraph the global upper bound is

(︁
k
2

)︁
, for

Max-Min-Degree Subgraph it is k−1. For Min-Max-Degree Subgraph, the
global upper bound is −2, as a connected graph on at least four vertices has at least
one vertex that has two or more neighbors. For Maximum-Diameter Subgraph,
the global upper bound is k − 1, this bound is met only by the path on k vertices.
Finally, for the remaining problems which all describe graph properties, the best
objective value is 1 which can be seen directly from the definition.

The the running times of the plain version of the three enumeration algorithms
is shown in Figure 4.1. Kavosh is substantially slower than Pivot which is again
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Figure 4.2: Comparison of the running times of the plain version of Simple and Pivot

for the three problem categories.

substantially slower than Simple. In all further versions of the algorithms that we
tested, Kavosh was slower than the other two algorithms. This is due to the structure
of the enumeration tree in Kavosh which has, on average, smaller depth and larger
breadth than the search trees of Simple and Pivot. In other words Kavosh has many
leaves (corresponding to subgraphs of order k) and few inner nodes (corresponding
to subgraphs of order less than k). Since the further improvements are rooted in the
idea to prune the search tree at some inner node, Kavosh benefits less from these
improvements. Hence, to improve the presentation, Kavosh is excluded from further
experiments.

Figure 4.2 shows the performance of the plain versions of Simple and Pivot

separated by categories. Pivot is only faster in the dense category. The main
observations are that the sparse problems are the easiest for the plain algorithm
version, followed by the degree-constrained problems, and the dense problems which
are the hardest. Simple solved 69% of the instances with small k and 34% of the
instances with large k. Thus, as expected, the instances with large k are much harder
than those with small k.

4.4 Pruning Rules

The plain algorithm only prunes the search tree if the graph contains a solution
that meets the global upper bound which is often not the case. Thus, we propose

88



4.4. Pruning Rules

three additional pruning rules that help to further decrease the number of search
tree nodes. In these pruning rules, we use the current connected set C to obtain an
upper bound on the value of valG(G[S]) for all S ⊋ C. In the formulation of the
pruning rules, we denote G[C] by HC for brevity.

4.4.1 Vertex-based Upper Bounds

To allow for a computation of an upper bound, we first consider the following property
of objective functions valG.

Definition 4.1. An objective function valG is vertex-addition-bounded by value x,
if for every graph H and all graphs H∗ that are obtained by adding some vertex
to H and making this vertex adjacent to some subset of V (H), we have valG(H

∗) ≤
valG(H) + x.

We may now use the following rule.

Pruning Rule 4.1 (Vertex-Addition Rule). Let C be the current connected set,
let |C| = k−ℓ, let valG be vertex-addition-bounded by x, and let z denote the objective
value of the current best solution. If valG(HC) + ℓ · x ≤ z, then return to the parent
node in the search tree.

We can use the Vertex-Addition Rule (VAR) for all eight problems. For example,
the vertex-addition bound is k − 1 for Densest k-Subgraph and 1 for Max-
Min-Degree-Subgraph. Moreover, the objective function for Triangle-Free
Subgraph is vertex-addition-bounded by 0, since adding a new vertex to HC can
only introduce new triangles and never destroys existing triangles. More generally,
when the aim is to find an induced subgraph fulfilling some hereditary property, then
we may use an objective function that is vertex-addition-bounded by 0. For example,
our objective function for Acyclic Subgraph is also vertex-addition-bounded by 0.

For Min-Max-Degree Subgraph the vertex-addition bound is 0 as adding a
vertex does not decrease the maximum degree. For Maximum-Diameter Sub-
graph the vertex-addition bound is 1, as adding a vertex may increase the diameter
by at most 1.

Finally, for the two problems from the degree-constrained category, we can adapt
the definition of valG to distinguish two cases for graphs that do not fulfill the prop-
erty. For example, if a subgraph HC contains a vertex with degree at least r + 1,
then HC is not the subgraph of an r-regular graph. Similarly, if HC contains a ver-
tex with degree at least b + 1, then HC is not the subgraph of a graph fulfilling the
constraints of (a, b)-Degree-Constrained Subgraph. By setting the objective
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value for such graphs to be −∞ and setting the vertex-addition bound to 1, we can
model this observation rather easily.

r-Regular Subgraph:

valG(H) :=

⎧⎪⎨⎪⎩
1 H is r-regular,

−∞ H has a vertex v with |N(v)| > r,

0 otherwise.

(α, β)-Degree-Constrained Subgraph:

valG(H) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 H has minimum degree at least α

and maximum degree at most β,

−∞ H has a vertex v with |N(v)| > β,

0 otherwise.

The results if adding the VAR are shown in Figure 4.3. Both algorithms benefit
from a substantial speed-up when using the VAR. Hence, VAR is enabled in all
following variants. The effect of VAR for Pivot and Simple for the three categories
is shown in the bottom part of Figure 4.3. Pivot is now faster than Simple in
all categories for small and large k, now solving almost all instances of the sparse
category. The comparison of the plain version of Simple and Pivot with the VAR
is shown in the top part of Figure 4.3. For small k and the dense and the degree-
constrained category, VAR gives a speedup factor of more than 10. For instances of
the degree-constrained category and large k, all instances solved by the plain version
of Simple are now solved within 0.1 seconds by Pivot with VAR. For instances of the
dense category with large k, VAR has almost no effect as the algorithm enumerates
too many dense subgraphs of order roughly k/2 which are not pruned by VAR.

Summarizing, with VAR enabled, Pivot solved 79% of the instances for small k
and 59% of the instances for large k.

4.4.2 Edge-Monotonicity

We call an objective function valG edge-monotone if adding an edge to a graph H
does not decrease the objective value valG(H). For Densest k-Subgraph the
function valG is edge-monotone, since adding an edge increases the objective value
by 1. Similarly, valG is edge-monotone in Max-Min-Degree Subgraph. The
other six objective functions are not edge-monotone. We use edge-monotonicity as
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Figure 4.3: Top: Comparison of the plain version of Simple and Pivot with VAR.
Bottom: Comparison of Simple and Pivot with VAR.

follows to prune the search tree. Recall that P ⊆ C is the set of vertices whose
neighbors can be added to extend the connected set C.

Pruning Rule 4.2 (Clique Join Rule). Let C be the current connected set, let ℓ =
k − |C|, and let z denote the current best objective value. Let HC∗ be the graph
obtained from HC by adding an ℓ-vertex clique K and making it adjacent to all
vertices of P ⊆ C. If valG(HC∗) ≤ z, then return to the parent node in the search
tree.

The correctness of the Clique Join Rule (CJR) is obvious, since all connected
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Figure 4.4: Comparison of Pivot and Simple with VAR and CJR, respectively.

induced subgraphs found in the subtree rooted at the current node are a subgraph
of HC∗ . Consequently, they cannot achieve a better objective value than z.

The upper bound provided by the VAR is never better than the one provided by
the CJR. However, the vertex-addition bound is faster to compute since we do not
need to add a clique to the current subgraph HC . Hence, we first apply the VAR
and then the CJR.

Figure 4.4 shows the effect of the CJR. Pivot with the CJR is roughly 100 times
faster than Pivot with only the VAR, the previously fastest for this category. For
Simple, the speed-up is much smaller. We conclude that any further variants of the
program should include some variant of the CJR when valG is edge-monotone.

4.4.3 Universal Graphs

In contrast to the two rules above, the following pruning rule puts no restrictions on
the objective function valG. Such rules are highly desirable but it is intuitively clear
that it is hard to prune the search tree when we have no knowledge about valG.

Consider a connected set C of size k − ℓ at some node in the search tree and
assume that z is the current best objective value. As in the other rules, if HC can
not be expanded to a connected subgraph HC∗ of order k such that valG(HC∗) > z,
we can discard the connected set C and hence return to the parent of the current
node. To test this condition without any knowledge of valG, we simply try each
possibility to expand HC to a connected subgraph of order k. This can be done as
follows.
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Figure 4.5: Top: Comparison of Pivot with the UGR and Pivot with VAR. Bottom:
Comparison of Simple and Pivot with the UGR.

Pruning Rule 4.3 (Universal Graph Rule). For each (up to isomorphism) graph J
on ℓ vertices, try each possibility of adding edges between V (J) and P such that the
resulting graph HC∗ is connected. If valG(HC∗) ≤ z for all resulting graphs HC∗, then
return to the parent of the current node.

Clearly, one may abort the pruning rule after encountering the first HC∗ with
valG(HC∗) > z. The Universal Graph Rule (UGR) is obviously correct but it is not
clear when this rule will lead to an improvement in running time as the number of
graphs and edge additions to consider grows exponentially in ℓ and in |P |. To this
end, we compute the number of graphs that we generate.
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Let I(n) be the number of graphs (up to isomorphism) of order n. In the UGR
we have to evaluate y = I(ℓ) · 2ℓ·|P | graphs. Since y can be extremely large, we apply
the universal graph rule only for ℓ ≤ 3 where I(ℓ) = 2ℓ−1. In addition, we compare y
with an estimate of the number of search tree nodes in the subtree rooted at the
current node corresponding to C.

For this estimation, we consider the size of Y := N(P ) \ F to obtain an estimate
on the number of vertices we will add to the current connected set C. More precisely,
we apply the UGR if 2|P |·ℓ+ℓ−1 < |Y |ℓ.

The effect of the UGR for Pivot is shown in the top part of Figure 4.5; the dense
category is excluded from the experiments, since the UGR is never better than the
CJR. For the problems of the sparse category this rule had a small negative effect.
This is due the fact that Pivot with the VAR already solved almost all instances in
that category. For problems of the degree-constrained category and large k, the rule
had almost no effect, but for small k the rule gives a speed-up of factor 20 compared
with Pivot with the VAR. Hence, we recommend to use the UGR for objective
functions that are not edge-monotone. The running time comparison of Simple and
Pivot is shown in the bottom part of Figure 4.5. Simple is slightly faster than Pivot

in the sparse category but overall both variants solve the same number of instances
in the sparse category. In the degree-constrained category, Pivot is much faster.
For the future, it seems promising to fine-tune the UGR, for example by applying
the rule if 2|P |·ℓ+ℓ−1 < cu · |Y |ℓ where cu is a constant whose optimal value may be
experimentally determined.

Summarizing, with the CJR for the dense category and the UGR for the other
categories, Pivot solved 88% of the instances for small k and 63% of the instances
for large k.

Pivot benefits more from both rules than Simple because the set P is smaller
for Pivot. Recall that in Simple the Extension Set processed from the last to the
first element and in Pivot the extension set is processed form the first to the last
element. This distinction has the result that in some node T with the corresponding
connected set C some vertices move from P to Q in Pivot which is not the case
for Simple. Thus, it could be promising to consider further enumeration strategies
which often lead to small P .
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4.5 Neighborhood-based Reduction- and Pruning

Rules

To further decrease the running times, we consider the relations between the neigh-
borhoods of vertices in G.

4.5.1 Twin Sets

The first idea is to avoid enumerating too many graphs that are isomorphic by
identifying vertices that have the same neighborhood. For this, we use the following
definition. Two vertices u and v are called true twins if N [u] = N [v] and false twins
if N(u) = N(v). If u and v are true twins or false twins, u and v are called twins.
Two vertices u and v are true twins, then there does not exist any vertex w such
that u and w are false twins, and vice versa. As a consequence, being twins is an
equivalence relation. A maximal set of twins is called a twin set.

Before starting the enumeration algorithm, we compute all twin sets and apply
the following two reduction rules.

Reduction Rule 4.1. Let C be a set of true twins of G with |C| > k. Remove |C|−k
vertices of C from G.

Reduction Rule 4.2. Let I be a set of false twins of G with |I| ≥ k. Remove |I|−
k + 1 vertices of I from G.

The correctness of the rules follows from the fact that each solution containing
exactly k vertices can contain at most k vertices of a true twin set and at most k− 1
vertices of a false twin set since at least one common neighbor of these false twins
has be contained in the connected set to be connected.

During the enumeration, we use twin sets as follows.

Pruning Rule 4.4 (Twin Rule). Let C be the connected set at the current node,
let F denote the current set of forbidden vertices and let v be a vertex such that the
algorithm considered each solution extending C∪{v}. Let C denote the twin set of v.
Add all vertices of C \ C to F .

The correctness can be seen as follows: Let z be the current best objective value.
Assume there exists another connected set C ′ with C ∪{u} ⊆ C ′ and u ∈ C \C such
that valG(HC′) > z. Consider the set C ′′ := (C ′ \ {u}) ∪ {v}. Since u and v are
twins, HC′ ∼= HC′′ . Since v ∈ C ′′, the algorithm already considered the connected
set C ′′. Hence, valG(HC′′) ≤ z, a contradiction to the assumption that valG(HC′) > z.
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Figure 4.6: Top: Comparison of Pivot with the Twin Rule and Pivot with UGR and
CJR. Bottom: Comparison of Simple and Pivot with the Twin Rule.

The effect of the Twin Rule for Pivot is shown in the top part of Figure 4.6. For
running times below ten seconds, Pivot with Twin Rule is slower than Pivot with
the CJR and UGR. This is due to the time which is needed to calculate the twin
sets. In the sparse category, the Twin Rule gave no improvement since almost all
instances can be solved within the time limit. For the dense and degree-constrained
category, the Twin Rule gives a running time improvement of roughly factor 2 for the
harder instances. Moreover, as shown in Figure 4.7, the Twin Rule may decrease the
size of the search tree tremendously in some cases. Since the running time overhead
incurred by the rule is not too high, we enable the twin rule for all three categories.
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Figure 4.7: Comparison of the number of search tree nodes of Pivot with the Twin Rule
and Pivot with UGR and CJR.

The bottom part of Figure 4.6 compares Simple and Pivot with the Twin Rule.
In the sparse category, Simple is competitive. In the dense and degree-constrained
category, for small k, Pivot is more than ten times faster than Simple and for large k,
Pivot solves each instance that was solved by Simple within the time limit in less
than one second.

4.5.2 Neighborhood Relation for Edge-Monotonicity

In the following, we provide an improvement of the Twin Rule for edge-monotone
objective functions f .

Pruning Rule 4.5 (Neighborhood Inclusion Rule). Let C be the connected set at
the current node, let F denote the current set of forbidden vertices, and let v be a
vertex such that the algorithm considered each solution extending C ∪ {v}. Add all
vertices u /∈ C with N(u) ⊆ N [v] to F .

The correctness of the Neighborhood Inclusion Rule (NIR) can be seen as follows:
Let z be the current best objective value. Assume there exists a connected set C ′

with C ∪ {u} ⊆ C ′, u /∈ C and N(u) ⊆ N [v] such that valG(HC′) > z. Since N(u) ⊆
N [v], HC′ is a subgraph of HC′′ where C ′′ := (C ′ \ {u}) ∪ {v}. Since valG is edge-
monotone, valG(HC′) ≤ valG(HC′′). Hence, valG(HC′) ≤ z, a contradiction to the
fact that valG(HC′) > z.

Figure 4.8 shows the effect of the NIR. Similar to the Twin Rule, for running
times below 10 seconds, Pivot with the NIR is slower than Pivot without it, which
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Figure 4.8: Comparison of Simple and Pivot with and without the NIR.

is again due to the time needed to compute the relations. For small k, the NIR does
not improve Pivot. For large k, Pivot with NIR is slightly faster than Pivot with
Twin Rule. Moreover, as shown in Figure 4.9, there are again some cases in which
the number of search tree nodes is decreased tremendously. Hence, we enable this
rule in the following. For Simple and small k the speedup is much better, but Pivot
remains roughly 20 times faster than Simple.

Summarizing, with the NIR for the dense category and the Twin Rule for the
other categories, Pivot solved 88% of the instances for small k and 65% of the
instances for large k.

4.6 Heuristic Lower Bounds

We also implemented three randomized heuristics to compute good initial solutions.
These provide a lower bound for the objective function valG which will be useful
for pruning the search tree. The heuristics work as follows: We have a probability
measure P0 on V (G). Choose a start vertex v1 with probability P0(v1). For a
connected set C of size ℓ < k we have a probability measure Pℓ on N(C), and choose
a vertex vℓ with probability Pℓ(vℓ).

In the first heuristic, we let Pi be the uniform distribution. This heuristic is
aimed to be good for objective functions where we have little knowledge.

In the second heuristic, we set P0(v) := |N(v)|/(2|E|) for each v ∈ V (G). Further-
more, for each 1 ≤ i < k and for each v ∈ N(C), where C is the current connected
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Figure 4.9: Comparison of number of search tree nodes of Pivot with the Twin Rule and
Pivot with the NIR.

set, we set: Pi(v) := |N(v) ∩ C|/R, where R :=
∑︁

v∈N(C) N(v) ∩ C. This heuristic is
aimed to be suitable for edge-monotone objective functions.

In the third heuristic, we set P0(v) := (∆− |N(v)|)/T , where T :=
∑︁

v∈V (G)(∆−
|N(v)|) for each v ∈ V (G). Furthermore, for each 1 ≤ i < k and for each v ∈ N(C),
we set: Pi(v) := (∆− |N(v)|)/M , where M :=

∑︁
v∈N(C)(∆− |N(v)|). This heuristic

is aimed to be suitable for problems in the sparse category.
Since instances with larger k and larger n are harder, we apply the heuristic more

often, the larger n and k are. More precisely, each heuristic is applied log(n) ·k times.
We have chosen a linear dependence on k since the subgraph size in our experiments
is at most 20 and a logarithmic dependence on n since we consider networks with up
to 500 000 vertices. We refer to each application as a trial. Let z denote the objective
value of the current best solution.

While iteratively building a random subgraph in some trial, we check whether
the current subgraph can still lead to a solution with objective value better than z
by applying the VAR. If this is not the case, then we discard the current subgraph
and start with the next trial.

Since the variance of the best solution found by these heuristics is huge, after each
trial of each heuristic we perform local search to improve the solution quality of the
found connected set C: In the local search, we consider all possibilities of obtaining
a better connected set C∗ by swapping a vertex v ∈ C with a vertex u ∈ V \ C as
follows. For each v ∈ C, we compute the connected components C1, . . . , Cℓ of HC−v.
Afterwards, we compute their common neighborhood N := (N(C1)∩ . . .∩N(Cℓ))\C
in G − C. We then compute the vertex u ∈ N for which the connected set C∗ :=
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Figure 4.10: Top: Comparison of Pivot with and without heuristic lower bounds. Bot-
tom: Comparison of Simple and Pivot with heuristic lower bounds.

C ∪{u} \ {v} obtained by removing v and adding u has a maximal value valG(HC∗).
If valG(HC∗) > z set C ← C∗, z ← valG(HC∗) and continue, otherwise we abort the
trial.

The effect of the computation of the heuristic lower bounds for Pivot is shown in
the top part of Figure 4.10. For the small instances, we can observe a small negative
effect that is caused by the additional time needed to compute the lower bounds.
For the large instances, we either observe no effect or a small positive effect with
one exception: for the dense category and large k, the rule gives a speed-up factor
of almost 100 and almost doubles the number of instances that can be solved within
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the time limit. The comparison of Pivot and Simple with heuristic lower bounds is
shown in the bottom of Figure 4.10. Simple is only competitive with Pivot in the
sparse category.

With the greedy heuristics and all previous rules, Pivot solved 89% of the in-
stances for small k and 69% of the instances for large k, outperforming Simple also
in this variant.

4.7 Problem-Specific Pruning Rules

To allow for further improvement of the algorithms, we extend FixCon to include
problem-specific pruning rules that, in addition, use not only HC as input but also
the graph G. We design such rules for the two harder categories: the dense category
and the degree-constrained category.

4.7.1 Dense Category

Maximizing the Number of Edges. First, we describe the pruning rules
applied for Densest k-Subgraph. The first rule is an adaptation of a known
upper bound on the number of edges of any order-k graph containing the connected
set C [151, 186]. We adapt this bound to our setting as follows. Let C be the current
connected set, let S be any order-k solution extending C, and let ℓ := k−|C| denote
the number of vertices to add. We partition the edges of G[S] into three subsets:
the edges between vertices of C, whose number is denoted by m(C) and already
known, the edges between vertices of C and S \ C, whose number will be denoted
by m(C, S \ C), and the edges between vertices of S \ C, whose number will be
denoted by m(S \ C). We compute upper bounds on m(C, S \ C) and m(S \ C).

For bounding m(C, S \C), we exploit that no neighbors of vertices in C \P may
be added. We thus first compute the set Y := V \ (C∪N(C \P )∪F ) of vertices that
may still be added to C. For each vertex y ∈ Y , we compute degP (y) := |N(y) ∩ P |
and degV \C(y) := |N(y) ∩ V \ C|. Now m(C, S \ C) +m(S \ C) ≤ b0(C,P ) where

b0(C,P ) :=
ℓ∑︂

i=1

(degP (yi) + min(degV \C(yi), ℓ− 1)/2)

where {y1, . . . , yℓ} ⊆ Y is the set of vertices that maximizes this sum. The second
summand is divided by 2 since these edges are double counted in the sum. Moreover,
if b0(C,P ) is not integral, we may round down. Thus, we obtain the first improved
pruning rule.
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Pruning Rule 4.6. Let C be the current connected set and let z denote the current-
best objective value. If m(C) + ⌊b0(C,P )⌋ ≤ z, then return to the parent node.

We now further refine this bound by partitioning the set of edges between vertices
in S \ C even further. To this end, let S1 := (S ∩ N(P )) \ C denote the vertices
of S \C that are neighbors of P , and S2 := S \(C∪S1) denote the remaining vertices.
We partition the edges in S \ C into those edges inside S1, those edges between S1

and S2 and those edges inside S2. Moreover, we consider all possible sizes ℓ′ of S2;
due to the connectivity constraint we have |S1| ≥ 1 and thus 0 ≤ ℓ′ < ℓ. For each ℓ′,
we compute an upper bound of m(S, ℓ′), defined as the maximum number of edges
we may achieve by having exactly ℓ′ vertices in S2. The upper bound for m(S) is
then the maximum of m(S, ℓ′) over all ℓ′. Thus, in the following, we describe how to
compute bounds for m(S, ℓ′). For fixed ℓ′, we denote the numbers of the edge sets in
the partition by m(S1, ℓ

′), m(S1, S2, ℓ
′) and m(S2, ℓ

′), respectively.
The numberm(S2, ℓ

′) is at most
(︁
ℓ′

2

)︁
since in the best case, the vertices of S2 form a

clique. To bound m(S1, ℓ
′) we compute degN(P )(v) := |N(v) ∩N(P )| for all vertices

in Y ∩ N(P ). To bound m(S1, S2, ℓ
′), we compute degV \N [C](v) := |N(v) \ N [C]|

for vertices in Y ∩ N(P ). We now obtain the bound m(C, S \ C, ℓ′) + m(S1, ℓ
′) +

m(S1, S2, ℓ
′) +m(S2, ℓ

′) ≤ b1(C,P, ℓ
′) where

b1(C,P, ℓ
′) :=

ℓ−ℓ′∑︂
i=1

(︂
degP (vi)

+min(degN(P )(vi), ℓ− ℓ′ − 1)/2

+min(degV \N [C](vi), ℓ
′)
)︂

where v1, . . . , vℓ−ℓ′ are the vertices of Y ∩N(P ) maximizing the sum.

Pruning Rule 4.7. Let C be the current connected set and let z denote the current-
best objective value. If m(C)+max0≤ℓ′<ℓ(⌊b1(C,P, ℓ′)⌋+

(︁
ℓ′

2

)︁
) ≤ z, then return to the

parent node.

Evaluation. The top part of Figure 4.11 shows the effect of both pruning rules.
The variant where Pruning Rule 4.6 is added to Heur. LB is referred to as Old UB

and the variant where Pruning Rule 4.7 is added is referred to as Specific UB. Old
UB gives a considerable improvement for small k and large k. Using in addition the
new upper bound (Specific-UB) gives a rather small improvement for large k and
has a negligible effect for small k.
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Maximizing the Minimum Degree. Second, we describe the pruning rules
for Max-Min-Degree-Subgraph which are simpler than the ones for Densest k-
Subgraph.

Pruning Rule 4.8. Let C be the current connected set and let z denote the current-
best objective value. If

1. C contains a vertex with degree at most z in G, or

2. C contains a vertex v with at most z − degHC
(v) neighbors in Y , or

3. z > ℓ − 1 and N(P ) ∩ Y contains less than ℓ vertices v with |N(v) ∩ P | +
min(ℓ− 1, |N(v) \ C|) > z, or

4. N(P ) ∩ Y contains no vertex with |N(v) ∩ P |+min(ℓ− 1, |N(v) \ C|) > z

then return to the parent node.

The first two cases of the pruning rule are obviously correct. For the third case,
observe that if z > ℓ − 1, only vertices with at least one neighbor in P may be
added. Moreover, a vertex may only be added if his number of neighbors in P plus
the number of neighbors in the remaining part of S exceeds z. If there are less than ℓ
candidates to add, then there is no solution extending C. For the last case, observe
that we need to add at least one vertex of N(P )∩Y . If there is no suitable candidate,
then we can discard the current connected set.

4.7.2 Degree-Constraint Category.

We will only describe the rules for the more general (α, β)-Degree-Constrained
Subgraph since we use the same rules for r-Regular Subgraph by setting α =
β = r.

In the following, for each vertex of P , we let dem(v) := α − degC(v) denote the
demand of v, that is, the number of edges with one endpoint being v that we need
to add in order to fulfill the degree constraint of v. Here, degC(v) is the degree of
the vertex in HC . Recall that Q = C \ P denotes the set of vertices for which we
may not add further neighbors.

Pruning Rule 4.9. Let C be the current connected set. Return to the parent node
if

1. Q contains a vertex of degree less than α, or
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2. C contains a vertex v with dem(v) > k − |C|, or

3. C contains a vertex v that has degree less than α in G.

This rule is correct since in each case the vertex v cannot have degree at least α.
The following rule is correct, since in the cases described by the rule, every

addition of a vertex to C creates at least one vertex of degree at least β + 1.

Pruning Rule 4.10. Let C be the current connected set. If |C| < k and if all
vertices of P have degree β in HC, then return to the parent node.

In the next case, the idea is to count how many edges need to be added in order
to increase the degree of every vertex of HC above the threshold α. This number
is compared with an upper bound on the number of edges that we may obtain by
adding k − |C| new vertices whose degree may not exceed β.

Pruning Rule 4.11. Let C be the current connected set. Let V<α denote the set of
vertices in HC that have degree less than α. If

∑︁
v∈V<α

dem(v) > (k − |C|) · β, then
return to the parent node.

We now take a closer look at the vertices of V (G) \ C that we may add to C.
More precisely, we exploit the following observation: we may not add any vertex u
that has degree less than α in G or any vertex u that has a neighbor w in C which
has degree β in HC . Thus, we may define for each vertex v ∈ C, a set of possible
neighbors

N∗
G(v, C) := {u ∈ V (G) \ C | degG(u) ≥ α and ∀w ∈ C ∩N(u) : degC(w) < β}.

Pruning Rule 4.12. Let C be the current connected set. If C contains a vertex v
such that dem(v) > |N∗

G(v, C)|, then return to the parent node.

We now look at pairs of vertices u and v in C for which we still need to add
neighbors. We exploit the following observation: the fewer the number of common
neighbors of u and v in V (G) \ C, the larger is the number of vertices that we must
add. If this number is too large, then C cannot be extended to a solution.

Pruning Rule 4.13. Let C be the current connected set.
1) If C contains two vertices u and v such that dem(v) + dem(u) − min(β −

degC(v), β − degC(u), |N∗
G(v, C) ∩N∗

G(u,C)|) > k − |C|, or
2) if C contains three vertices u, v, and w such that N∗

G(w,C) is disjoint from
N∗

G(u,C) and from N∗
G(v, C) and dem(v)+dem(u)+dem(w)−min{β−degC(v), β−

degC(u), |N∗
G(v, C) ∩N∗

G(u,C)|} > k − |C|, then return to the parent node.
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The correctness of the first part of the rule can be seen as follows: In order to
fulfill the degree constraints for v and u, we need to add dem(v) + dem(u) edges
with an endpoint in u or v. Vertices that are common neighbors of u and v add
two such edges, all other vertices add only one such edge. Hence, we may write
the number of vertices to add as the number of neighbors of u plus the number of
neighbors of v minus the number of common neighbors of u and v. Since the number
of common neighbors of u and v that we may add is at most min{β − degC(v), β −
degC(u), |N∗

G(v, C) ∩N∗
G(u,C)|}, the left hand side thus gives a lower bound on the

number of vertices that we need to add to increase the degree of u and v sufficiently.
If this lower bound exceeds k − |C|, the number of vertices that we may still add,
then there is no solution C ′ that extends C.

For the second part, we simply consider a third vertex w if the set of possible
neighbors of w is disjoint from those of v and u. The arguments for the correctness
are completely analogous. Since the second part of the rule is costly in terms of
running time (we have to consider all triples of vertices in C), we apply this part
only if dem(v) + dem(w)−min{β − degC(v), β − degC(u), |N∗

G(v, C)∩N∗
G(u,C)|} >

(k−|C|)/2. The rationale behind this condition is that it is unlikely that the second
part of the rule will be successful if the condition is not met.

The final rule extends Rule 4.13 to larger subsets of vertices in C. Instead of trying
all possibilities of such sets, we greedily compute a set of vertices in C for which we
still need to add neighbors and which have disjoint possible neighborhoods.

Pruning Rule 4.14. Let C be the current connected set. If C has a subset A of
vertices such that for all vertices u, v ∈ A we have N∗

G(v, C) ∩ N∗
G(u,C) = ∅ and∑︁

v∈A dem(v) ≥ k − |C|, then return to the parent node.

As stated above, the set A is computed greedily. More precisely, we consider the
vertices of C in some order and add the first vertex v in C \ A with dem(v) > 0
whose possible neighborhood is disjoint from all possible neighborhoods of A.

Evaluation. The overall effect of these pruning rules is shown in the bottom
of Figure 4.11. There is a substantial speed-up for the dense category, particularly
for large k, and a tremendous speed-up for the degree-constrained category for small
and large k.

4.8 A Comparison with ILP formulations

To compare FixCon with some competitor, we developed ILP formulations for all
eight problems. As ILP solver, we used Gurobi version 8.01 with the Python interface.
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Figure 4.11: Comparison of Pivot with and without problem-specific pruning rules. Top:
The two rules for Densest k-Subgraph. Bottom: Comparison for the dense and degree-
constrained category.

In all eight formulations we have binary variables xv for each vertex v ∈ V and
the constraint

∑︁
v∈V xv = k which ensures that k vertices are selected. As proposed

by Althaus et al. [6] we use lazy constraints to ensure the connectivity of the solution:
If at some node of the search tree, we have a disconnected solution S, then we add
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Figure 4.12: Comparison of the ILP with the version of Pivot containing all improve-
ments.

the following constraint for each connected component C of G[S] in a callback 2∑︂
v∈C

xv −
∑︂

v∈N(C)

xv ≤ |C| − 1.

More details of the ILP formulations of the 8 concrete problems can be seen in
Section B.2 (in the appendix).

Figure 4.12 compares the ILP formulations with the best variants of Pivot.
Overall, Pivot solves 96% of the instances with small k and 84% of the instances

with large k, whereas the ILP solves 85% of the small and 70% of the large instances.
For small k, Pivot is significantly faster than the ILP in all three categories.

In the degree-constrained category for small k and in the sparse category for all k,
Pivot solves almost all instances within the time limit. The biggest difference can
be observed for the sparse category. This can be somewhat expected since FixCon

maintains the connectivity constraint during the search, whereas for the ILP, the con-
nectivity constraint is somewhat contrary to the fact that sparse graphs are preferred
by the objective functions.

For the dense category and small k, Pivot is roughly 20 times faster than the ILP.
For the dense category and the degree-constrained category and large k, the ILP and
Pivot are competitive. A further comparison is shown in Table B.1 (in the appendix);

2We also tried using one constraint for each c ∈ C as Althaus et al. [6]; in preliminary experiments
this gave slightly worse results.
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the table shows for each considered real-world network the largest k such that all
eight CFCO problems could be solved within 600 seconds.

Overall, we conclude that FixCon with Pivot is competitive with off-the-shelf ILP
formulations of the considered CFCO problems when k ≤ 20 and problem-specific
pruning rules are employed.

4.9 Conclusion

We have demonstrated the usefulness of subgraph enumeration for the generic Con-
nected Fixed-Cardinality Optimization problem. For using the generic ver-
sion of FixCon without problem-specific pruning rules, a user only needs to imple-
ment the objective function valG and provide some properties of valG. We refer to
Section B.1 (in the appendix) for the implementations of the eight problems consid-
ered in this chapter. Our only assumption is that the objective function valG depends
only on the isomorphism class of G[S]. This version can be used as a baseline for
comparison with special purpose algorithms or as a base implementation that can be
improved by adding problem-specific pruning rules. In the latter setting, FixCon is
competitive with standard ILP formulations for the problems under consideration,
as we showed.

There are many avenues to pursue in future research. First, we could compare
our algorithm with further existing approaches. For example, for some objective
functions a comparison with BDDE [167] is possible. Recall, that in BDDE all con-
nected induced subgraphs H that for a given hereditary objective function valG and
a threshold t, fulfill f(H) > t are enumerated. Hence, by setting the threshold to
the global upper bound minus one and stopping as soon as one solution is found,
one could compare BDDE with our algorithm for hereditary graph properties. Af-
ter these changes a comparison with FixCon is directly possible: Currently, there
are two example problems which are hereditary, namely Acyclic Subgraph and
Triangle-Free Subgraph.

Moreover, further problem-specific rules are highly desirable, particularly for the
dense category where our algorithm performs poorly compared with the ILP on sparse
graphs. The main reason for this behavior is that the maximal number of edges of
any induced subgraph with k vertices in a real-world graph might be significantly
lower than the number of edges of a clique of size k. This large gap has the result
that our CJR is only successful at nodes with a high depth.

Another candidate for a comparison is a mixed integer linear program for the
problem of finding a connected induced subgraph with a bound on the maximum
degree to maximize the weight of the edges within the subgraph [163]. This mixed

108



4.9. Conclusion

integer linear program could be a good benchmark for CFCO problems since it only
used a polynomial number of constraints.

Furthermore, we aim to further improve the generic part of FixCon, for example
by extending the Twin Rule which exploits symmetry in the neighborhood to cases
where vertices have almost the same neighborhood. One possible extension is the
following: Suppose the graph G contains two vertices u and w such that N [u] =
N [w]∪{v}. Let C be the connected set of a node in the search tree. If the algorithm
already considered all possible vertex sets containing C ∪{w} and now considers the
connected set C∪{u}, then we can immediately also put vertex v into the connected
set C ∪ {u} since otherwise we could replace u with w and hence no better solution
can be found.

Another possible line for further speed-ups is the use of color coding [5]. A first
option is to use k + t colors to randomly color the vertices of the input graph G.
Here t is a non-negative integer serving as a parameter. Then, one searches for a
connected induced subgraph G[S] which is colorful, that is, all vertices in S have a
different color. This approach sparsifies the graph: We may remove all edges such
that both endpoints have the same color. This approach has shown to be useful
for the problem to detect paths of length k [5]. A second option is to use only two
colors “black” and “white” and search for a solution which is white. Hence, we may
remove all black vertices and the use our enumeration algorithms. This approach
is closely related to the random separation method [39]: In random separation one
additionally requires that the neighborhood of the solution is black. The advantage
of our approach is that the success probability is 2−k compared to 2−k∆ of random
separation.

In our current implementation we apply each pruning rule in every search tree
node. This might not be the fastest way to apply these rules. For example, it could
be faster to apply the VAR only in those search tree nodes in which the size of
the connected set is even. More generally, one could apply a branching rule only in
each ith search tree node. It could also be faster to apply some rule only for search
tree nodes which corresponding set has size at least k− c where c is a fixed constant.
One may define a hyperparameter for each of these options and subsequently optimize
these hyperparameters to obtain a small running time with hyperparamter tools like
SMAC [116].

Currently, our algorithm is implemented in Python. Since Python programs
cannot compete with similar programs written in compiled languages in terms of
running time, we currently work on an implementation of our algorithm in Java.
From this change of programming language alone, we expect a substantial speed-up.
Another interesting line of research is to examine how parallelization can be used to
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speed up FixCon, as it was done for example for clique enumeration [51].
Also, we aim to collect further example problems. It is interesting to study the

performance of our algorithm with problems which do not fit into the existing three
categories. One example could be: Does G contain a vertex set S of size k such that
the induced subgraph G[S] contains no cycle of even length? Is our algorithm also
competitive with ILPs for such problems?

Furthermore, we aim to extend our algorithms to allow richer graph models. For
example, one could allow vertex and edge weights. In this case, for example, the
Twin Rule might not work anymore since two twin vertices might have different
vertex weights. Another way to extend the graph model is to allow for vertex and
edge colors, or directed edges. One could also aim to address problems where the
objective function depends not only on the subgraph itself, as we assumed in this
chapter, but also on the rest of the graph G. This could be used to solve, for example,
Multi-Node Hub [205]. In Multi-Node Hub one aims to find a (k, n − k)-cut
such that the number of edges in the cut is maximized with the additional constraint
that the partite set of size k is connected. Note that this problem is the variant of
Max (k, n − k)-Cut to which a connectivity constraint is added to the partite set
of size k; note that we study the parameterized complexity of Max (k, n− k)-Cut
in Chapter 8. Other examples include finding a connected dominating set [125], or
a connected vertex cover [140].

Another possibility is to extend FixCon to enumeration problems, where one
wants to output all optimal solutions or to counting problems, where one wants to
output their number.

Finally, it is also open to translate other generic subgraph problem representa-
tions into FixCon objective functions. For example, one could aim to automatically
translate first-order-logic formulas [212] into FixCon objective functions and, in par-
ticular, extract useful properties such as edge-monotonicity or vertex-based upper
bounds directly from the formulas.
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Chapter 5

Clique Relaxations in (Weakly)
Closed Graphs

Clique relaxations have been studied extensively with respect to their parameterized
complexity. For a given clique relaxation Π there exist two main tasks: First, find a
vertex set of size k that satisfies property Π, and second, enumerate all vertex sets
which correspond to maximal elements of Π in the input graph. The most strict
model in the context of clique-relaxations are cliques (see Definition 1.1). Clique
is the corresponding decision problem of detecting a clique of size at least k. By
Clique Enumeration we denote the problem of enumerating all maximal cliques.
The most famous algorithm for Clique Enumeration is the Bron-Kerbosch algo-
rithm [34]. An implementation of Bron-Kerbosch by Tomita et al. has proven to be
the faster by orders of magnitude in practice than other algorithms for this task [216].
Furthermore, the algorithm of Tomita et al. has a overall running time of O(3n/3)
excluding the time to write the output. This running time is optimal: a graph may
have up to 3n/3 maximal cliques [172]. Clique Enumeration has application in
the detection of communities in social networks [44, 45] and bioinformatics [233].

As discussed in Chapter 1, in many applications the clique model is often too
strict. This resulted in the introduction of clique relaxations. In these models, at
least one clique-defining property of being is relaxed [168, 191, 193]. One popular
model are s-plexes (see Definition 1.2). s-Plex is the corresponding decision prob-
lem. Furthermore, by s-Plex Enumeration we denote the problem of enumerat-
ing all maximal s-plexes. There exist fast implementations for s-Plex Enumer-
ation [49, 50]. Another popular model are s-defective cliques (see Definition 1.3).
s-Defective Clique is the corresponding decision problem. By s-Defective
Clique Enumeration we denote the corresponding problem of enumerating all
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maximal s-defective cliques. Yet another popular model are s-clubs (see Defini-
tion 1.4). s-Club is the corresponding decision problem. By s-Club Enumeration
we denote the corresponding problem of enumerating all maximal s-clubs.

Another popular model for communities are bicliques. In such models the set S
of vertices forming this group is partitioned into two sets A and B such that each
vertex in A is adjacent to each vertex in B. Often, it is also required that A and B
are independent sets. In this case such groups are referred to as induced bicliques and
otherwise as non-induced bicliques. The corresponding decision problem of finding a
(non-) induced biclique of size at least k is called (Non-)Induced (k1, k2)-Biclique,
and the corresponding problem of enumerating all maximal (non-) induced bicliques
is called (Non-)Induced Biclique Enumeration.

The decision variants of the above-mentioned models have been studied exten-
sively with respect to the standard parameter solution size k: Clique is W[1]-hard
with respect to k [53, 63] and also s-Plex is W[1]-hard when parameterized by k
for all s ∈ N [131, 144]. Furthermore, one can show that s-Defective Clique is
W[1]-hard with respect to k by adapting a previous hardness proof for Densest-
k-Subgraph [198, Theorem 20]. Also, Non-Induced (k1, k2)-Biclique is W[1]-
hard with respect to k1 even if k1 = k2 [157] and Induced (k1, k2)-Biclique is
W[1]-hard even if k1 = k2 [53]. In contrast, s-Club parameterized by k admits an
FPT-algorithm [43, 206]. Furthermore, s-Club does not admit a polynomial kernel
for k unless coNP ⊆ NP/poly [206].

Another very important parameter is the maximum degree ∆. Clique admits a
trivial FPT-algorithm for ∆ since a clique is contained in the closed neighborhood of
some vertex. Furthermore, the observation that each s-plex has size at most ∆ + s
can be used together with a case distinction whether the s-plex is connected or not to
show that s-Plex admits an FPT-algorithm for ∆+ s [143]. This algorithm can be
adapted to also solve s-Defective Clique in FPT-time for the parameter ∆ + s.
A similar observation can be used to show that s-Club is FPT with respect to ∆+s:
Each s-club is contained in the sth neighborhood of some vertex. Thus, the size of
an s-club is bounded by a function depending on s and ∆.

Since the degeneracy d is a smaller parameter than the maximum degree ∆
one important aim in parameterized complexity is to lift positive algorithmic re-
sults from ∆ to d. Eppstein et al. [70] showed that Clique Enumeration can be
solved in O(dn3d/3) time. Furthermore, each graph has at most (n− d)3d/3 maximal
cliques [70]. The algorithm of Eppstein et al. [70] also implies that Clique admits
an FPT-algorithm with respect to d. A simple algorithm can enumerate all maxi-
mal s-plexes in 2dns+O(1) time [143]. This algorithm can be adapted so enumerate
all maximal s-defective cliques in 2dns+O(1) time. In contrast, 2-Club is NP-hard
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on 6-degenerate graphs [110]. Moreover, Induced Biclique Enumeration can be
solved in O∗(3(∆+d)/3) time [111]. On the negative side, it is impossible to enumerate
all maximal induced bicliques in time O∗(f(d)) for any function f because a graph
may have too many maximal induced bicliques [111]: Consider the graph with a
single universal vertex u and (n− 1)/3 disjoint triangles. This graph is 3-degenerate
and has 3(n−1)/3 maximal induced bicliques where one part consists of u.

In recent work, Fox et al. [84] proposed exploiting a different property of real-
world graphs that is motivated by the triadic closure principle. This principle postu-
lates that people in a social network which have many common friends are likely to
be friends themselves. Many real-world social networks give evidence for this postu-
late as they contain no pair of non-adjacent vertices with many common neighbors.
The degree to which a given graph adheres to the triadic closure principle can be
expressed in the closure number of G, defined as follows.

Definition 5.1 ([84]). Let clG(v) := maxv′∈V \N [v] |N(v) ∩N(v′)| denote the closure
number of a vertex v in a graph G. A graph G is c-closed if clG(v) < c for all
v ∈ V (G). The closure number of a graph G is the smallest integer c such that G
is c-closed.

Fox et al. [84] suggested a further graph parameter which combines sparseness
and triadic closure, the weak closure of a graph.

Definition 5.2 ([84]). A graph G is weakly γ-closed1 if one of the following holds:

• There exists a weak closure ordering σ := (v1, . . . , vn) of G, that is, an ordering
such that clGi

(vi) < γ for all i ∈ [n] where Gi := G[{vi, . . . , vn}].
• Every induced subgraph G′ of G has a vertex v ∈ V (G′) such that clG′(v) < γ.

The weak closure number of a graph G is the smallest integer γ such that G is
weakly γ-closed.

The four parameters maximum degree ∆, degeneracy d, closure c, and the weak
closure γ are related as follows:

1. The maximum degree ∆ is an upper bound for the d, c, and γ.

2. Since each degeneracy ordering is also a weak closure ordering, we observe
that γ is at most d+ 1.

1To avoid confusion with the closure number c, we denote the weak closure by γ instead of c.
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3. Since the closure of a vertex v in a subgraph of G is bounded from above by
the closure of v in G, we observe that γ is at most c.

4. The degeneracy d and the closure number c are incomparable as witnessed by
large complete graphs (they have large degeneracy and are 1-closed) and large
complete bipartite graphs where one part has size two (they are 2-degenerate
and have large closure number).

The latter examples also show that γ can be much smaller than the closure
number c and the degeneracy d. To conclude: d and c are independent and smaller
than ∆, and γ is a smaller parameter than d and c. Consequently, FPT-algorithms
for d and c are, in principle, preferable to those for the maximum degree ∆. Similar,
FPT-algorithms for γ are, in principle, preferable to those for the closure number c
or the degeneracy d. From an application point of view, the weak closure number is
also an excellent parameter since it tends to take on very small values in real-world
networks [84] (see also Table 5.1).

Fox et al. [84] showed that a graph has O(3γ/3 ·n2) many maximal cliques which,
using known clique enumeration algorithms, gives an algorithm that enumerates
all maximal cliques in O∗(3γ/3) time. Independently, Behera et al. [17] obtained
similar results for the enumeration of maximal s-plexes and further dense subgraphs
parameterized by the c-closure; it seems that their algorithms for s-plex enumeration
can be adapted to parameterization by weak closure as well [17].

The parameters closure c and the weak closure γ are not only helpful to ob-
tain fast (FPT-)algorithms for clique relaxations. Koana et al. showed that In-
dependent Set has a kernel with at most ck2 vertices [139]. Later, Koana et
al. improved this result by showing that Independent Set has a kernel with at
most γk2 vertices [137]. Koana et al. also showed that each c-closed graph with
at least (c − 1)

(︁
b−1
2

)︁
+ (a − 1)(b − 1) vertices contains a clique of size a or an in-

dependent set of size b [139]. Also, it was shown that many domination problems
admit FPT-algorithms with respect to the (weak) closure. Koana et al. provided
an almost tight kernel of size kO(c) for Dominating Set. Recently, Lokshtanov
and Surianarayanan showed that Dominating Set parameterized by γ + k can
be solved in O∗(kO(γ2k3)) time [160]. Furthermore, Kanesh et al. [125] showed that
Perfect Code and Connected Dominating Set admit an FPT-algorithm for
the parameter k + c. Also, we provided kernels of size kO(γ) for Connected Ver-
tex Cover and Capacitated Vertex Cover. Furthermore, in Chapter 8 we
provide almost tight kernels of size kO(c) for Maximum Partial Vertex Cover
and Max (k, n− k)-Cut. Finally, Koana and Nichterlein [142] provided parameter-
ized polynomial-time algorithms for detecting and enumerating small graphs (3 or 4

114



Table 5.1: A comparison of the number n of vertices, number m of edges, the maximum
degree ∆, the closure c, the degeneracy d and the weak closure γ in social and biological
networks.

Instance name n m ∆ c d γ

adjnoun-adjacency 112 425 49 14 6 6
arenas-jazz 198 2 742 100 42 29 18
ca-netscience 379 914 34 5 8 3
bio-celegans 453 2 025 237 26 10 9
bio-diseasome 516 1 188 50 9 10 5
soc-wiki-Vote 889 2 914 102 18 9 8
arenas-email 1 133 5 451 71 19 11 8
bio-yeast 1 458 1 948 56 8 5 4
ca-CSphd 1 882 1 740 46 3 2 3
soc-hamsterster 2 426 16 630 273 77 24 19
ca-GrQc 4 158 13 422 81 43 43 9
soc-advogato 5 167 39 432 807 218 25 21
bio-dmela 7 393 25 569 190 72 11 12
ca-HepPh 11 204 117 619 491 90 238 54
ca-AstroPh 17 903 196 972 504 61 56 30
soc-brightkite 56 739 212 945 1 134 184 52 49

vertices) in c-closed graphs.

Our Results. In a nutshell, we show that low (weak) closure helps in detecting or
enumerating s-plexes, s-defective cliques, s-clubs, and (non-)induced bicliques. Our
main results are listed in Table 5.2.

Our results improve over the state of the art in the following sense: the best
known tractability results for these problems employ the degeneracy of the input
graph as a parameter and, as discussed above, the weak closure is essentially a
smaller parameter. For some problems, we also provide results for the c-closure
parameter. There are two reasons for this. First, for some problems we obtain
better running time bounds for the parameter c. Second, we provide some lower
bounds for the problems under consideration and, whenever possible, we provide
them for the larger closure parameter c.

From a practical point of view, the most important results are, in our opinion,
the enumeration algorithms for maximal non-induced bicliques and maximal s-plexes
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Table 5.2: An overview of our results. Our algorithms for s-Plex Enumeration and
s-Defective Clique Enumeration can be used directly to solve the correspondence
decision problems s-Plex (Corollary 5.4) and s-Defective Clique (Corollary 5.7) in
the same running times. Furthermore, our algorithm for Non-Induced-Biclique Enu-
meration can be adapted to solve also Non-Induced (k1, k2)-Biclique in O∗(2γ) time
(Theorem 5.15).

Problem Result Reference

s-Plex Enumeration O(2γn2s+1)-time algorithm for s ≥ 2 Theorem 5.3
s-Plex W[1]-hard for k even if c = 2 Theorem 5.5
s-Defective Clique Enu-
meration

O(2γns+3)-time algorithm Theorem 5.6

s-Defective Clique W[1]-hard for k even if c = 2 [198]

2O(γ
√
s+s log k)nO(

√
s)-time algorithm Theorem 5.10

2-Club NP-hard for c = 4 Theorem 5.13

Non-Induced-Biclique
Enumeration

O∗(2γ)-time algorithm Theorem 5.14

Induced (k, k)-Biclique O∗(γO(γ))-time algorithm Theorem 5.17
Induced (k1, k2)-Biclique O∗(1.6107c)-time algorithm if k1 ≥ 2 Theorem 5.18

NP-hard if k1 = 1 for c = 3 and γ = 2 Theorem 5.20
P for c = 2 Corollary 5.23
P for k1 = 1 and γ = 1 Theorem 5.21
P for k1 ≥ 2 and γ ≤ k1 + 1 Theorem 5.21
NP-hard for k1 ≥ 2 and γ ≥ k1 + 2 Theorem 5.21

whose running times grow moderately with γ. Both algorithms are based on the
algorithm to enumerate all maximal cliques in weakly γ-closed graphs [84].

5.1 Clique Relaxations

In this section, we present algorithms for relaxations of the Clique problem. For the
positive results, we only consider parameterization by the weak closure number γ.

5.1.1 s-Plex

First, we study the problem of enumerating all maximal s-plexes.
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Theorem 5.3. For s ≥ 2, a graph G has O(2γn2s−1) maximal s-plexes. Moreover,
all maximal s-plexes of G can be enumerated in O(2γn2s+1) time.

Proof. First, we show the bound on the number of maximal s-plexes in a weakly γ-
closed graph. Let v ∈ V (G) be a vertex such that clG(v) < γ and let G′ := G − v
be the graph obtained by deleting v. Let S and S ′ be the collections of all maximal
s-plexes (without duplicates) in G and G′, respectively. We show that |S| ≤ |S ′| +
2γn2s−2 and that S can be constructed from S ′ in O(|S ′| · n + 2γn2s+1) time. To
obtain the bound we identify the following four types of maximal s-plexes in G:

Type 1: S does not contain v. Then, S is also maximal in G′.

Type 2: S contains v and S \ {v} is maximal in G′.

Type 3: S contains v, S \ {v} is not maximal in G′, and S contains a non-neighbor
of v (that is, S \NG(v) ̸= ∅).

Type 4: S contains v, S \ {v} is not maximal in G′, and S is contained in the
neighborhood of v, that is, S ⊆ NG[v].

Clearly, each maximal s-plex is of one of these four types. It is easy to see that
there are |S ′| maximal s-plexes of Type 1 and Type 2. Hence, it remains to bound
the number of maximal s-plexes of Type 3 and Type 4.

Next, we bound the number of maximal s-plexes of Type 3. Consider such an s-
plex S. We may partition S into three parts as follows: We first divide S into Sv :=
S ∩ NG[v] and ˜︂Sv := S \ NG[v]. We divide Sv further into Suv := Sv ∩ NG(u)

and ˜︂Suv := Sv \ NG(u) for some vertex u ∈ ˜︂Sv. Here, u is any non-neighbor of v

to exploit the weak γ-closure. By the definition of s-plexes, |˜︂Sv| < s and |˜︂Suv| < s.

Hence, there are at most n2s−2 choices for ˜︂Sv and ˜︂Suv. For Suv, there are at most 2γ−1

choices because Suv ⊆ NG(v) ∩ NG(u) and |NG(v) ∩ NG(u)| < clG(v) < γ. Overall,
there are at most 2γ−1n2s−2 maximal s-plexes of Type 3.

It remains to bound the number of maximal s-plexes of Type 4. Let S be one of
these s-plexes. Since S ′ := S \ {v} is not maximal in G′, there exists a vertex u ∈
V (G) \ S such that S ′ ∪ {u} is an s-plex in G′. If u ∈ NG(v), then S ∪ {u} is also
an s-plex in G, which contradicts the fact that S is maximal in G. Hence, we can
assume that u /∈ NG(v). Then, S \ NG(u) contains at most s − 1 vertices, which in
turn implies that there are at most ns−1 choices for S \NG(u). Since S ⊆ N(v) we
observe that S ∩NG(u) ⊆ NG(v)∩NG(u) and |NG(v)∩NG(u)| ≤ clG(v) < γ. Thus,
we have 2γ−1 choices for S ∩ NG(v). All in all, there are at most 2γ−1ns maximal
s-plexes of Type 4.
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By the above analysis, we obtain |S| ≤ |S ′|+2γ−1n2s−2+2γ−1ns ≤ |S ′|+2γn2s−2.
Next, we bound the overall number of maximal s-plexes in a graph with n vertices.
To this end, let an be the number of maximal s-plexes in weakly γ-closed graphs
on n vertices. Clearly, a1 = 1. Furthermore, the above analysis showed that an −
an−1 = |S| − |S ′| ≤ 2γn2s−2. Hence, by induction we obtain an = a1 +

∑︁n
i=2(ai −

ai−1) ≤ 2γn2s−1 + 1. In other words, a weakly γ-closed graph on n vertices has at
most 2γn2s−1 + 1 maximal s-plexes.

Second, we bound the overall time needed to enumerate all maximal s-plexes.
To obtain this bound, we again let v ∈ V (G) be any vertex such that clG(v) < γ,
let G′ := G−v be the graph obtained by deleting v, and let S and S ′ be the collections
of all (without duplicates) maximal s-plexes inG andG′. Observe that all maximal s-
plexes of Type 1 and 2 can be found in O(|S ′| · n) time. Furthermore, maximal s-
plexes of Type 3 and 4 can be enumerated inO((2γ−1n2s−2+2γ−1ns)·n2) time, because
it takes O(n2) time to verify whether a vertex set is a maximal s-plex or not. Finally,
we remove duplicates in O((|S ′|+2γ−1n2s−2+2γ−1ns) ·n) = O(|S ′| ·n+2γn2s−1) time,
using radix sort. Altogether, the algorithm needsO(|S ′|·n+2γn2s) time to enumerate
all maximal s-plexes in G. Recall that an is the number of maximal s-plexes in a
weakly γ-closed graph on n vertices. Thus, all maximal s-plexes of a weakly γ-closed
graph on n vertices can be enumerated inO((an·n+2γn2s)·n) = O(2γn2s+1) time.

A factor of n2s−2 for the number of maximal s-plexes in Theorem 5.3 is unavoid-
able: Consider a graph G consisting of two cliques C1 and C2 of equal size. Clearly,
G is 1-closed. Each subset of C1 of size exactly s − 1 and each subset of C2 of size
exactly s − 1 together form a maximal s-plex. Hence, there exist 1-closed graphs
with Ω((n/2)2s−2) maximal s-plexes.

For s-Plex, Theorem 5.3 directly implies the following.

Corollary 5.4. For s ≥ 2, s-Plex can be solved in O(2γn2s+1) time.

Next, we show that there is presumably no f(k) ·nO(1)-time algorithm for s-Plex
in 2-closed graphs. Moreover, our reduction also shows that s-Plex is W[1]-hard for
the parameter k + s+ d.

Theorem 5.5. s-Plex is W[1]-hard in 2-closed graphs when parameterized by k +
s+ d.

Proof. We reduce from Clique. An illustration of our construction is shown in
Figure 5.1. Let (G, k) be an instance of Clique with k ≥ 4. First, we subdivide
each edge uv of G twice. That is, we remove the edge uv and add edges uxv

u, x
v
ux

u
v ,

and xu
vv, where xv

u and xu
v are two new vertices. Second, for each edge uv ∈ E(G),
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u v
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y u v
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vy xk−3

vy Xvy

t1 tk−3
T

a) b)

Figure 5.1: Illustration of the construction of Theorem 5.5. a) shows the graph G of the
Clique instance and b) shows the graph G′ of s-Plex. Here, the sets Xuw and Xvw are
not drawn. Note that the sets Xuv and Xvy are cliques containing exactly k − 1 vertices.

we introduce k − 3 vertices x1
uv, . . . , x

k−3
uv . Let Xuv := {xv

u, x
u
v , x

1
uv, . . . , x

k−3
uv } and

let X :=
⋃︁

uv∈E(G) Xuv. We then add edges so that Xuv forms a clique. Lastly, we

introduce a set T := {t1, . . . , tk−3} of k−3 vertices and add edges between xi
uv and ti

for each uv ∈ E(G) and each i ∈ [k − 3]. Let G′ be the resulting graph.
It is easy to verify that G′ is 2-closed. Moreover, G′ is (k − 1)-degenerate: Each

vertex x ∈ Xuv is of degree k−1 and there is no edge in G′−X. We show that G has a
clique of size k if and only if G′ has an s-plex of size k′, where k′ := 2k−3+(k−1)

(︁
k
2

)︁
and s := k′ − (k − 1).

Suppose that G has a clique S of size exactly k. Let S ′ = S ∪ T ∪
⋃︁

u,v∈S Xuv.
Observe that |S ′| = k′. We verify that each vertex in G′[S ′] has degree at least
k′ − s = k − 1.

• Let v ∈ S. By construction, we have xu
v ∈ NG′(v) for each u ∈ S \ {v}. Since

xu
v is contained in S ′, v has at least k − 1 neighbors in G′[S ′].

• We have degG′[S′](t
i) ≥

(︁
k
2

)︁
≥ k − 1 for each i ∈ [k − 3], because ti is adjacent

to xi
uv for all uv ∈ E(G[S]).

• Consider xv
u for uv ∈ E(G[S]). We have u ∈ NG′(xv

u) by construction. More-
over, xv

u is adjacent to all k − 2 vertices in Xuv \ {xv
u}. Thus, we have

degG′[S′](x
v
u) ≥ k − 1.

• Consider xi
uv for uv ∈ E(G[S]) and i ∈ [k − 3]. We have ti ∈ NG′(xi

uv) by
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construction. Moreover, xi
uv is adjacent to all k − 2 vertices in Xuv \ {xi

uv}.
Thus, we have degG′[S′](x

i
uv) ≥ k − 1.

Thus, every vertex has at least k − 1 = k′ − s neighbors in G′[S ′].
Conversely, suppose that S ′ is an s-plex of size exactly k′. We start with the

following claim.

Claim 2. If S ′ contains a vertex x of Xuv for some uv ∈ E(G), then S ′ also contains
all vertices in NG′ [Xuv], that is, {u, v} ∪Xuv ∪ T ⊆ S ′.

Proof of Claim. By construction, degG′(x) = k − 1. Since each vertex in G′[S ′] has
degree |S ′| − s ≥ k − 1 by the definition of s-plexes, we have NG′ [Xuv] ⊆ S ′. ■

Let ℓ = |S ′ ∩ V (G)|. We conclude that there are at most
(︁
ℓ
2

)︁
edges uv ∈ E(G)

with Xuv ∩S ′ ̸= ∅ since otherwise the above claim would imply that |S ′∩V (G)| > ℓ.
By construction, we have |Xuv| = k − 1 for each uv ∈ E(G). Thus, we have

|S ′| = |S ′ ∩ V (G)|+ |T |+ |S ′ ∩X| ≤ ℓ+ k − 3 + (k − 1)

(︃
ℓ

2

)︃
.

Since |S ′| = k′ = 2k − 3 +
(︁
k
2

)︁
, we obtain ℓ ≥ k.

By definition, each vertex v ∈ S ′ ∩ V (G) has at least |S ′| − s ≥ k − 1 neighbors
in G′[S ′]. So there are at least ℓ(k − 1)/2 edges uv ∈ E(G) such that S ′ ∩Xuv ̸= ∅.
From the above claim we know that Xuv ⊆ S ′ for each Xuv with Xuv∩S ′ ̸= ∅. Hence,
we obtain that

|S ′| ≥ |S ′ ∩ V (G)|+ |T |+ |S ′ ∩X| ≥ ℓ+ k − 3 + (k − 1) · ℓ(k − 1)/2.

Since |S ′| = k′ = 2k − 3 + (k − 1)
(︁
k
2

)︁
, we obtain ℓ = k and |S ′ ∩ X| = (k − 1)

(︁
k
2

)︁
.

Since |S ′ ∩ X| = (k − 1)
(︁
k
2

)︁
we conclude that each two vertices in S ′ ∩ V (G) are

adjacent. Thus, S ′ ∩ V (G) is a clique of k vertices in G by construction.

5.1.2 s-Defective Clique

First, we study the problem of enumerating all maximal s-defective cliques in weakly
γ-closed graphs. To this end, we adapt the algorithm of Theorem 5.3 to obtain an
algorithm to enumerate all maximal s-defective cliques.

The only difference to the proof of Theorem 5.3 is the following: For bounding
the number of s-plexes of Type 3 the sets ˜︂Sv and ˜︂Suv were bounded by s − 1 each.
Since a maximal s-defective clique contains at most s non-edges and uv /∈ E(G) we

observe that |˜︂Sv ∪ ˜︂Suv| < s. Hence, there are at most 2γ−1ns−1 maximal s-defective
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cliques of Type 3. Thus, we can bound the overall number of maximal s-defective
cliques by 2γns+1 + 1. Since the rest of the proof is completely analogous, we omit
it.

Theorem 5.6. For s ≥ 2, there are O(2γns+1) maximal s-defective cliques in
weakly γ-closed graphs and they can be enumerated in O(2γns+3) time.

A factor of ns+1 in the number of maximal s-defective cliques in Theorem 5.6
is inevitable due to the following lower bound: Again we consider the graph G
consisting of two disjoint cliques C1 and C2, each of size n/2. For each clique C ⊆ C1

of size s and each v ∈ C2, the vertex set C ∪ {v} is a maximal s-defective clique.
Thus, G has Ω((n/2)s+1) maximal s-defective cliques.

Second, we study s-Defective Clique, the decision problem of finding a suf-
ficiently large s-defective clique. Theorem 5.6 directly implies the following.

Corollary 5.7. s-Defective Clique can be solved in O(2γns+3) time.

Next, we present faster algorithms in terms of the dependence on s. First, we
show that each s-defective clique can be covered by O(

√
s) maximal cliques.

Lemma 5.8. Let S be an s-defective clique for s ≥ 1. Then, there is a collection C
of at most O(

√
s) cliques such that S ⊆

⋃︁
C∈C C.

Proof. Let H denote the complement graph of G[S]. By definition, H has at most
s edges. Since a clique becomes an independent set in the complement graph, it
suffices to show that there is an O(

√
s)-coloring of H (that is, χ(H) = O(

√
s)).

Although this is known folklore, we describe its proof for the sake of completeness.
Consider an optimal coloring. Then, for each pair of colors, say red and blue, there
is at least one edge with one endpoint red and the other blue (otherwise we find a
coloring with fewer colors). Recall thatH is the complement graph ofG[S]. Hence,H

has at most s edges, we obtain s ≥
(︁
χ(H)
2

)︁
, or equivalently, χ(H) ≤

√︂
2s+ 1

4
+ 1

2
.

Note that a trivial brute-force algorithm can enumerate all (not necessarily maxi-
mal) cliques in O(2ddn) time. Lemma 5.8 says that each s-defective clique is covered
by at most O(

√
s) cliques. Hence, by a simple brute-force we obtain the following.

Theorem 5.9. s-Defective Clique can be solved in 2O(d
√
s)nO(

√
s) time.

We can also use Lemma 5.8 to obtain an algorithm in terms of the smaller pa-
rameter γ instead of the degeneracy d without increasing the exponent of n.

Theorem 5.10. s-Defective Clique can be solved in 2O(γ
√
s+s log k)nO(

√
s) time.
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Proof. We first enumerate all maximal cliques in (3γ/3 · nO(1)) time [84]. If there is
a clique of size at least k, then return Yes, since each clique is also an s-defective
clique. Now, we assume that there is no clique of size at least k. By Lemma 5.8,
it suffices to check whether there is an s-defective clique of size k in

⋃︁
C∈C C for

each collection C of O(
√
s) maximal cliques. Observe that each fixed collection

in C has O(k
√
s) vertices. Let WC denote the vertex set of C. By applying the

algorithm of Corollary 5.7 to find the largest s-defective clique, we can determine in
O(2γ(

√
sk)O(s+3)) time whether WC contains an s-defective clique of size at least k.

Since there are O∗(3γ/3) maximal cliques, the overall running time of this algorithm
is (3γ/3 · nO(1))O(

√
s) · O(2γ(

√
sk)O(s+3)) = 2O(γ

√
s+s log k)nO(

√
s) time.

For c-closed graphs, we can obtain an algorithm whose running time does not
depend on k. This is due to the following lemma.

Lemma 5.11. Let S ⊆ V (G) be an s-defective clique in G, in which at least one
pair of vertices is nonadjacent. Then, |S| ≤ c+ s.

Proof. Let u, v ∈ S be vertices such that uv /∈ E(G). We show that |S ′| ≤ c+ s− 2
for S ′ := S \ {u, v}. Since G is c-closed, there are at most c − 1 vertices in S ′

adjacent to both u and v. Moreover, there are at most s− 1 vertices in S ′ which are
nonadjacent to either u or v in S ′, by the definition of s-defective cliques. Thus, we
obtain |S ′| ≤ (c− 1) + (s− 1) = c+ s− 2.

From Lemma 5.11 we directly obtain the following.

Corollary 5.12. s-Defective Clique can be solved in 2O(c
√
s+s log(c+s))nO(

√
s) time.

5.1.3 2-Clubs

Recall that 2-Club is FPT for the parameter maximum degree ∆. In contrast,
2-Club is W[1]-hard with respect to h-index and it is NP-hard on 6-degenerate
graphs [110]. Since γ ≤ d+1, this also implies NP-hardness for constant values of γ.
We extent these results, by showing that 2-Club remains NP-hard even on 4-closed
graphs.

Theorem 5.13. 2-Club remains NP-hard even on 4-closed graphs.

Proof. We reduce from Clique.
Construction. Let (G, k) be an instance of Clique. We construct an equivalent

instance (G′, k′) of 2-Club such that G′ is 4-closed. We set k′ := k · n2. For each
vertex w ∈ V (G), we add a clique Kw := {wj | j ∈ {0, . . . , n2 − 1}} of size n2 to G′.
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We denote the graph constructed so far by G0. Furthermore, let (e1, e2, . . . , em) be an
arbitrary but fixed ordering of the edges in E(G). We will add edges corresponding
to each edge ei ∈ E(G) to G′. We denote by Gi the graph after we added the gadgets
for the edges e1 to ei to G0. Note that G0 is the graph constructed so far; a disjoint
union of cliques, and that Gm = G′. The idea for the gadget of edge ei = uv is as
follows: We add a matching between the vertices of the cliques Ku and Kv. More
precisely, we add the edges uivi+ℓuv mod n2 for each i ∈ {0, . . . , n2− 1} and some fixed
integer ℓuv. We call ℓuv the shift of uv. We will assume that ℓuv + ℓvu = n2. To
simplify notation, we will assume that the modulo n2 is taken after the addition of a
shift. The difficult part lies in choosing ℓuv carefully to obtain a graph with constant
closure.

For a vertex pair (a, b) of G by Aab we denote the set of vertices in the cliques Ka

and Kb and by Bab the remaining vertices of V (G′). Next, we prove the following
invariant which is an essential ingredient to show that G′ = Gm has constant closure
number.

Invariant. For each i, there is a shift ℓuv for the gadget of the ith edge ei =
uv such that for each two nonadjacent vertices x ∈ Ka and y ∈ Kb for
any vertices a, b ∈ V (G) we have |NGi(x)∩NGi(y)∩Bab| ≤ 1. Moreover,
we can find ℓuv is polynomial time.

That is, we want to maintain the invariant that two nonadjacent vertices in
Ka ∪ Kb have at most one common neighbor in Bab. Recall that G0 is a disjoint
union of cliques. Thus, the invariant holds for G0. In the following, we assume
that the invariant holds for the graph Gi−1. Recall that the graph Gi is constructed
from Gi−1 by adding the matching for the edge ei = uv. We will show that the
invariant can be maintained for Gi. More precisely, we show that we can compute
a shift ℓuv ∈ {0, . . . , n2 − 1} in polynomial time such that adding the edges ujvj+ℓuv

for each j ∈ {0, . . . , n2 − 1} to Gi−1 does not violate the invariant.
Assume to the contrary that the invariant is violated by two nonadjacent vertices

in Gi. Observe that there could be three possibilities on how the invariant could be
violated in Gi:

Case 1: Two nonadjacent vertices in Apq for p, q ∈ V (G)\{u, v} violate the invariant,

Case 2: two nonadjacent vertices in Auv violate the invariant, or

Case 3: two nonadjacent vertices in Awp for w ∈ {u, v} and p ∈ V (G)\{u, v} violate
the invariant.
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In the following, we show that we can choose the shift ℓuv in such a way to fulfill
the invariant also for Gi. We distinguish the three above cases:

Case 1. Let x and y be a pair of nonadjacent vertices in Apq violating the
invariant. Note that each edge added to Gi−1 to obtain Gi is of the form urvs.
Clearly, ur, vs /∈ Apq. Hence, we conclude that |NGi(x)∩NGi(y)∩Bpq| = |NGi−1(x)∩
NGi−1(y)∩Bpq| ≤ 1 since the invariant holds for Gi−1. Thus, this case is not possible.

Case 2. Let x and y be a pair of nonadjacent vertices in Auv violating the
invariant. As in case 1, since only edges with both endpoints in Auv are added to the
graph G′, we obtain that |NGi(x)∩NGi(y)∩Buv| = |NGi−1(x)∩NGi−1(y)∩Buv| ≤ 1
since the invariant holds for Gi−1. Thus, this case is also not possible.

Case 3. Without loss of generality, assume that w = u. Recall that adding
a matching between the cliques Ku and Kv can increase the number of common
neighbors in Bup of two nonadjacent vertices in Aup by at most 1. Thus, two vertices
in Aup violating the invariant in Gi have a common neighbor in some clique Kt

in Gi−1. Since only the matchings corresponding to the edges ut, pt ∈ E(G) result
in edges between Ku and Kt and between Kp and Kt, the matchings corresponding
to the edges ut and pt are already added to Gi−1. To obtain Gi from Gi−1 only
a matching between Ku and Kv is added. Thus, we conclude that the matching
corresponding to the edge pv was already present in Gi−1.

For every j ∈ {0, . . . , n2 − 1}, we have N(uj) ∩ Kt = {tj+ℓut} and N(tj+ℓut) ∩
Kp = {pj+ℓut+ℓtp}. Hence, uj and pj′ have a common neighbor in Kp if and only if
j′ − j ≡ ℓut + ℓtp. Similarly, uj and pj′ have a common neighbor in Kv if and only if
j′− j ≡ ℓuv + ℓvp. Consequently, the invariant is only violated if ℓuv ≡ ℓut + ℓtp + ℓpv.
Thus, for each p and t, there is at most one shift violating the invariant, amounting
to at most (n− 2)2 forbidden shifts. Since there are n2 possible shifts, we conclude
that we can choose a shift ℓuv in a way which does not violate the invariant. Note
that this does not only show the existence of a shift maintaining the invariant, the
above argument also shows that the shift ℓuv can be constructed in polynomial time,
although no explicit formula for ℓuv is given here.

Thus, we have shown that the invariant is maintained for each i, in particular
for i = m and hence for the resulting graph G′.

Bounded Closure. We use the invariant to show that G′ is 4-closed. Consider
two nonadjacent vertices x ∈ Ku and y ∈ Kv in G′. Observe that u ̸= v since
otherwise xy ∈ E(G′). By the invariant, we have |NG′(x)∩NG′(y)∩Buv| ≤ 1. Recall
that Auv = Ku∪Kv. Since x has at most one neighbor in Kv and since y has at most
one neighbor in Ku, we conclude that x and y have at most three common neighbors.
Thus, G′ is 4-closed.

Correctness. Suppose that G contains a clique C of size at least k. Let S :=
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{Kv | v ∈ C}. Clearly, S has size k′ = k · n2. It remains to show that S is a 2-
club. Consider two nonadjacent vertices x, y ∈ S. Note that x ∈ Ku and y ∈ Kv

for u, v ∈ C such that u ̸= v since otherwise xy ∈ E(G′). Since C is a clique, we
have uv ∈ E(G) and thus we added a matching between the cliques Ku and Kv.
Hence, x has a neighbor z in Kv and thus x and y have distance 2 since Kv is a
clique.

Conversely, suppose that S contains an 2-club S of size at least k′ = k · n2.
Let T := {v | |Kv ∩ S| ≥ n + 1}. Observe that |T | ≥ k, since otherwise |S| ≤
|T | · n2 + (n− |T |) · n ≤ kn2 − (k− 1)n. In the following, we show that T is a clique
in G. Assume towards a contradiction that T is not a clique and let u, v ∈ T such
that uv /∈ E(G). Let u∗ be a vertex in Ku ∩ S and let U := N(u∗) \Ku. Note that
since uv /∈ E(G) we have U ∩Kv = ∅. Furthermore, note that by construction each
vertex y ∈ Kw has at most one neighbor in Kx for any w, x ∈ V (G) such that w ̸= x.
Thus, |U | ≤ n. Furthermore, by the same argument we obtain that each vertex
in U has at most 1 neighbor in Kv. Thus, u∗ has distance at most 2 to at most n
vertices in Kv. This is a contradiction to the fact that |S ∩Kv| ≥ n+ 1 and that S
is an 2-club. Hence, T is a clique and thus G contains a clique of size at least k.

We leave the complexity of 2-Club on 2-closed graphs and 3-closed graphs open.
We want to point out that 2-closed graphs of diameter two are also known to be
geodetic, that is, each pair of vertices has a unique shortest path between them.
Moreover, it is known that every 2-closed graph G of diameter two satisfies one of
the following [23]:

• G contains a vertex v such that N(v) = V (G), or

• G is strongly regular, that is, G is regular and for some λ, µ ∈ N, every two
adjacent (nonadjacent) vertices have λ (µ, respectively) common neighbors
(note that µ = 1 since G is 2-closed), or

• G has exactly two vertex degrees.

To show that 2-Club in 2-closed graph is solvable in polynomial time exploiting
these three properties might be helpful.

For 2-clubs we only studied the decision variant 2-Club in which we ask for an
sufficiently large 2-club in c-closed graphs. The enumeration of all maximal 2-clubs is
not possible in FPT-time even for graphs with constant closure: Observe that in the
construction of Theorem 5.13, C is a maximal clique in the graph G of the Clique
instance if and only if {Kc | c ∈ C} is a maximal 2-club in the graph G′ of the
2-Club instance. The number of maximal cliques in an n-vertex graph is 3n/3 [172].
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Hence, the above correspondence shows that even a 4-closed graph may have up to
3n/3 maximal 2-clubs.

5.2 Bicliques

The counterpart of cliques in bipartite graphs are (non-) induced bicliques. In this
section we study the parameterized complexity of enumerating all maximal (non-)
induced bicliques and finding a sufficiently large (non-) induced biclique in (weakly)
closed graphs.

5.2.1 Non-Induced Biclique

In this subsection, we study problems of finding non-induced maximal bicliques ful-
filling certain cardinality constraints. We also consider Non-Induced Max-Edge
Biclique where we demand that |S| · |T | ≥ k instead of putting constraints on the
partition sizes. Non-Induced Max-Edge Biclique can be solved by solving

√
k

instances of Non-Induced (k1, k2)-Biclique and thus the latter problem can be
considered to be more difficult in our setting. Non-Induced Max-Edge Biclique
can be solved in O(k2.5k

√
kn) time by applying the algorithm for Induced Max-

Edge Biclique on bipartite graphs [78] which relies on the observation that one
side has at most

√
k vertices.

First, we study the parameterized complexity of enumerating all maximal non-
induced bicliques in weakly γ-closed graphs. We need to define carefully, however,
what we mean by enumerating bicliques: The algorithm of Eppstein [69] enumerates
in O∗(2d) time all maximal pairs of sets S and T such that each vertex of S is
adjacent to each vertex of T . For this enumeration problem, an FPT-algorithm for
the weak closure is unattainable since any clique of size n is 1-closed and admits
Θ(2n) bipartitions that need to be enumerated. To circumvent this issue, we view
a biclique as a vertex set that can be partitioned into sets S and T . Thus, in order
to strengthen the parameterization from d to γ, we go from an explicit listing of
bicliques with bipartitions to a compact representation of bicliques as vertex sets
and this is indeed necessary. We say that a vertex set U ⊆ V (G) is a non-induced
biclique if G[U ] contains a biclique as a (not necessarily induced) subgraph. Note
that it can be decided in O(n2) time whether a vertex set U ⊆ V (G) is a non-induced
biclique or not, because U is a non-induced biclique if and only if the complement of
G[U ] has multiple connected components. We adapt the algorithm of Theorem 5.3
to obtain an O∗(2γ)-time algorithm to enumerate all maximal non-induced bicliques.
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Recall that in Theorem 5.3 we bounded the overall number of maximal s-plexes
in a weakly γ-closed graph G by distinguishing 4 different types of maximal s-plexes
if we are provided wih the set of maximal s-plexes of G − v. As in the proof of
Theorem 5.3, we aim to enumerate all maximal non-induced bicliques in G, provided
with the collection S ′ of all non-induced maximal bicliques in G′ := G − v. Again,
we define the same four types of non-induced bicliques S:

Type 1: S does not contain v.

Type 2: S contains v and S \ {v} is maximal in G′.

Type 3: S contains v, S \ {v} is not maximal in G′, and S contains a non-neighbor
of v.

Type 4: S contains v, S \ {v} is not maximal in G′, and S is contained in the
neighborhood of v, that is, S ⊆ NG[v].

First and foremost, all maximal non-induced bicliques of Type 1 and Type 2 can
be enumerated from S ′ in |S ′| · n2 time. We claim that there are at most 2γ−1n
maximal non-induced bicliques of Type 3: Let U be such a non-induced biclique
with a bipartition (S, T ). Without loss of generality, assume that u, v ∈ S. There
are at most n choices for u ∈ S \ NG[v] and there are at most 2γ−1 choices for
T ⊆ NG(v) ∩ NG(u). Since U is a maximal non-induced biclique, we obtain S =⋂︁

w∈T NG(w). Finally, there is only one maximal non-induced biclique of Type 4,
namely NG[v]. Thus, we obtain the following theorem.

Theorem 5.14. All maximal non-induced bicliques can be enumerated in O∗(2γ)
time.

Second, we consider the decision variant of this problem. We show that Non-
Induced (k1, k2)-Biclique can be solved in O∗(2γ) time, using this enumeration
algorithm.

Theorem 5.15. Non-Induced (k1, k2)-Biclique can be solved in O∗(2γ) time.

Proof. With the algorithm behind Theorem 5.14 we can enumerate the vertex sets of
all maximal non-induced bicliques. This algorithm, however, only returns the vertex
set, and not a bipartition of any maximal non-induced biclique. To check whether
any of these maximal non-induced bicliques has a bipartition into sets S and T
such that |S| ≥ k1 and |T | ≥ k2, we use the following observation: Let G′ denote
the complement graph of G. Any connected component of G′ is either completely
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contained in S or completely contained in T . Now, we can use this observation to
define an instance of Subset Sum to check whether there exists a valid bipartition.
Subset Sum is formally defined as follows.

Subset Sum
Input: A set A = {a1, . . . , an} of n positive integers and k1 ≤ k2 ∈ N.
Question: Is there a set B ⊆ A such that k1 ≤

∑︁
b∈B b ≤ k2?

A standard dynamic programming algorithm can solve Subset Sum in O(n ·∑︁
a∈A a) time. To solve Non-Induced (k1, k2)-Biclique, we construct an in-

stance (A′, k′
1, k

′
2) of Subset Sum for each maximal non-induced biclique U with

|U | ≥ k1 + k2 returned by the algorithm of Theorem 5.14, where k′
1 := k1, k

′
2 :=

|U | − k2, and A′ := {|Ci| : i ∈ [ℓ]} for the connected components C1, . . . , Cℓ ⊆ V (G)
of the complement of G[U ]. Observe that (G, k1, k2) is a Yes-instance if and only if
the constructed instance of Subset Sum is a Yes-instance for some maximal non-
induced biclique U : note that k′

1 is a lower bound and k′
2 is an upper bound for the

size of the smaller side of any valid bipartition and any solution B of the Subset
Sum instance corresponds to S, the smaller side of the bipartition of U , and A \ B
corresponds to the other part of the bipartition.

Recall that Non-Induced Max-Edge Biclique can be solved by solving
√
k

instances of Non-Induced (k1, k2)-Biclique. Hence, we obtain the following from
Theorem 5.15.

Corollary 5.16. Non-Induced Max-Edge Biclique can be solved in O∗(2γ) time.

5.2.2 Induced Biclique

In this subsection, we study problems where one aims to find induced maximal
bicliques fulfilling certain cardinality constraints. Gaspers et al. [90] provided an
O∗(3n/3)-time algorithm to enumerate all maximal induced bicliques. When k1 = k2
in Induced (k1, k2)-Biclique, we will refer to the problem as Induced (k, k)-
Biclique. We also consider Induced Max-Edge Biclique where we demand
that |S|·|T | ≥ k instead of putting constraints on the partition sizes. Induced Max-
Edge Biclique is NP-hard [194] and W[1]-hardness with respect to the solution
size k can be shown by a reduction from Independent Set where we attach an
universal vertex. As in the non-induced case, Induced Max-Edge Biclique can
be solved by solving

√
k instances of Induced (k1, k2)-Biclique. Thus, positive

results for Induced (k1, k2)-Biclique transfer to Induced Max-Edge Biclique.

128



5.2. Bicliques

First, we present an FPT-algorithm for Induced (k, k)-Biclique parameterized
by γ.

Theorem 5.17. Induced (k, k)-Biclique can be solved in O∗(γO(γ)) time.

Proof. Since a biclique Kγ,γ is not weakly γ-closed, (G, k, k) is a No-instance if
k ≥ γ. Moreover, Induced (k, k)-Biclique is trivially solvable in polynomial time
when k ≤ 1. Hence, we may assume that 2 ≤ k < γ. Let σ be a fixed weak closure
ordering of G. Suppose that (S, T ) is a solution of (G, k). Furthermore, let v ∈ S∪T
be the vertex of S ∪ T that appears in σ before all other vertices of S ∪ T . We
assume without loss of generality that v lies in S. Note that there are at most n
choices for v. Let G′ be the graph obtained by removing all vertices preceding v
in σ. Furthermore, let v′ ∈ V (G′) \ {v} be another vertex which is contained in S.
Note that there are at most n choices for v′. Next, we determine an independent
set T ⊆ NG′(v) ∩ NG′(v′) of at least k vertices. Since |NG′(v) ∩ NG′(v′)| < γ,
there are at most 2γ possibilities for T . Now, it remains to find an independent
set S ⊆

⋂︁
u∈T NG′(u) of size at least k in G′. In companion work, we showed that

Independent Set admits a kernel with γk2 vertices [137]. Hence, by brute-forcing
on the resulting kernel, we can determine S in O∗((γk2)k) time. Since k < γ, the
overall running time is O∗(2γγ3γ) = O∗(γO(γ)).

For c-closed graphs, we show that there is a single-exponential time algorithm
when k1 ≥ 2. Our algorithm is based on a reduction to a variant of Independent
Set called Bicolored Independent Set [52].

Bicolored Independent Set
Input: A graph G, a partition (V1, V2) of V (G), and k1, k2 ∈ N.
Question: Does there exist an independent set I ⊆ V (G) with |I∩V1| = k1

and |I ∩ V2| = k2?

Theorem 5.18. If k1 ≥ 2, then Induced (k1, k2)-Biclique can be solved in
O∗(1.611c) time.

Proof. Let (G = (V,E), k1, k2) be an instance of Induced (k1, k2)-Biclique. Since
k1 ≥ 2 any induced biclique with k1 vertices in one partite set and with k2 vertices
in the other partite set contains at least on cycle on four vertices. For each induced
cycle (uS, uT , vS, vT ) on four vertices in G we search the largest induced biclique
containing these four vertices. Now, we construct an instance (G′, V ′

1 , V
′
2 , k1, k2) of

Bicolored Independent Set, where

• V ′
1 := NG(uS) ∩NG(vS),
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• V ′
2 := NG(uT ) ∩NG(vT ), and

• G′ := (V ′
1 ∪ V ′

2 , E(G[V ′
1 ]) ∪ E(G[V ′

2 ]) ∪ {v′1v′2 | v′1 ∈ V ′
1 , v

′
2 ∈ V ′

2 , v
′
1v

′
2 /∈ E(G)}).

In other words, G′ is constructed from G[V ′
1 ∪ V ′

2 ] by flipping the adjacency
between V ′

1 and V ′
2 . By the c-closure of G, there are at most 2c − 2 vertices in G′.

Since v′1 ∈ V ′
1 and v′2 ∈ V ′

2 are adjacent in G if and only if they are not in G′, there is
a (k1, k2)-biclique containing uS, uT , vS, vT if and only if (G′, V ′

1 , V
′
2 , k1, k2) is a Yes-

instance. Since Bicolored Independent Set is O∗(1.2691n)-time solvable on
n-vertex graphs [52], we obtain an O∗(1.611c)-time algorithm for Induced (k1, k2)-
Biclique.

By using a reduction similar to the one in the proof of Theorem 5.18, and using
the algorithm of Gaspers et al. [90] to enumerate all maximal induced bicliques in
O∗(3n/3) time we obtain the following.

Proposition 5.19. All maximal induced bicliques in which each part has at least
two vertices can be enumerated in O∗(32c/3) time.

However, even 2-closed graphs may have Ω(3n/3) maximal induced bicliques: Con-
sider the aforementioned graph proposed by Hermelin and Manoussakis [111], which
consists of a single universal vertex u and (n− 1)/3 disjoint triangles. Observe that
this graph is 2-closed and has 3(n−1)/3 maximal induced bicliques where one part
consists of u.

In contrast to our positive result for k1 ≥ 2 presented in Theorem 5.18, we prove
that Induced (1, k)-Biclique is NP-hard even on graphs with constant h-index, c-
closure, and weak γ-closure.

Theorem 5.20. Induced Max-Edge Biclique and Induced (1, k2)-Biclique
remain NP-hard even on graphs with h-index 4, c-closure 3, and weak γ-closure 2.

Proof. We first show the NP-hardness for Induced Max-Edge Biclique. We
reduce from Independent Set, which is NP-hard even on graphs in which each
vertex has degree at most 3 [87]. Recall that in Independent Set we are given
a graph G and an integer k, and ask whether G contains an independent set of
size at least k. We assume that k ≥ 10, since otherwise the instance (G, k) can be
solved in polynomial time. We construct an instance (G′, k′) of Induced Max-
Edge Biclique as follows: We begin with a copy of G. Then, each edge uv ∈ E(G)
is replaced by a path on four vertices u, uv, vu, and v. Finally, we introduce a new
universal vertex w (that is, NG′ [w] = V (G′)) and set k′ := k + |E(G)|. It is easy to
see that G′ has h-index 4 (because every vertex except w has degree at most 4), is 3-
closed and weakly 2-closed. It remains to show that G contains an independent set

130



5.2. Bicliques

of size k if and only if G′ contains an induced biclique with at least k′ = k + |E(G)|
edges.

Suppose that G contains an independent set I of size at least k. Then, there is
an independent set I ′ of size k+ |E(G)| in G′−w: Since I is an independent set, for
each edge uv ∈ E(G) we have without loss of generality that u /∈ I. Let F := {uv |
uv ∈ E(G) such that u /∈ I} be the union of the neighbors of these vertices u not in
the independent set in paths on four vertices in G′. Then, I ′ is the disjoint union
of I and F . Thus, the set I ′ ∪ {w} is an induced biclique with at least k + |E(G)|
edges in G′.

Conversely, suppose thatG′ contains a biclique (S, T ) with at least k′ = k+|E(G)|
edges. Since each vertex in G′ − w has degree at most 3 and k ≥ 10, we see that
vertex w is contained in (S, T ). Without loss of generality, assume that w ∈ S.
Since w is a universal vertex, we obtain S = {w}. It follows that T is an independent
set of size at least k + |E(G)| in G′. We may assume |T ∩ {uv, vu}| = 1: For each
edge uv ∈ E(G), the set T contains at most one of uv and vu. If neither is in T ,
then (T \ {u}) ∪ {uv} is another independent set of size k′. Thus, we may assume
that |T ∩ {uv, vu}| = 1 for every uv ∈ E(G). No pair of adjacent vertices u and v
in G are part of T since otherwise T contains three vertices from a path (u, uv, vu, v).
Thus, T ∩ V (G) is an independent set of size |T ′| − |E(G)| ≥ k.

Finally, note that this reduction also shows NP-hardness of Induced (1, k2)-
Biclique (let k2 = k′).

Together with Theorem 5.20, the next theorem paints a full picture of the com-
plexity of Induced (k1, k2)-Biclique with respect to the weak closure number.

Theorem 5.21. For constant k1 ≥ 2, Induced (k1, k2)-Biclique on weakly γ-
closed graphs is polynomial-time solvable if γ ≤ k1 + 1 and NP-hard otherwise.
Moreover, Induced (1, k2)-Biclique on weakly 1-closed graphs is polynomial-time
solvable.

Proof. We start with the NP-hardness. We adapt the reduction in the proof of
Theorem 5.20: Instead of adding a single universal vertex w, we add k1 universal
vertices (which are pairwise nonadjacent). Note that the graph constructed by our
reduction is weakly (k1 + 2)-closed (consider an ordering in which all the universal
vertices appear last).

Our polynomial-time algorithms solve Independent Set on weakly 1-closed
graphs as a subroutine. We fix a weak closure ordering σ. Start with I = ∅. In a
first step, we add the last vertex v of σ to I and then delete N [v] from the graph. For
the correctness of this step, observe that the neighborhood of v is a clique. Otherwise,
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there exists a non-neighbor u of v with u <σ v and distance 2 to v. Since u and v
have at least one common neighbor, we obtain a contradiction to the fact that the
graph is weakly 1-closed. Since N [v] is a clique, there exists a maximum independent
set containing v. We repeat this step until the graph is empty.

Next, we give a polynomial-time algorithm for Induced (1, k2)-Biclique on
weakly 1-closed graphs. Without loss of generality, we assume that the input graph G
is connected. Observe that there is a universal vertex u that is adjacent to every
other vertex. Now, observe that there is an induced (1, k2)-biclique in G if and only
if a maximum independent set of size k2 in G − u. Since a maximum independent
set in a weakly 1-closed graph can be found in polynomial time, we are done.

Finally, we prove the polynomial-time solvability for γ ≤ k1 + 1. Observe that
if γ ≤ k1, then we have a No-instance of Induced (k1, k2)-Biclique since an
induced (k1, k2)-biclique has weak closure k1 + 1. Hence, in the following we assume
that γ = k1+1. Now, consider a hypothetical solution (S, T ) with |S| = k1 and |T | =
k2. We can guess which vertices correspond to the smaller side S in O(nk1) time.
Let σ be a fixed weak closure ordering and let X be the set of vertices that occur
in σ before any vertex in S. Since T ∩ X are common neighbors of S we observe
that T ∩X has size at most γ− 1 = k1. Hence, in O(nk1) time, we can guess T ∩X.
It remains to find T ∩X. Note that T ∩X ⊆ U :=

⋂︁
s∈S N(s), that is, S ⊆ N(t) for

every vertex t ∈ T ∩X. Observe that G[U ∩X] is weakly 1-closed: In the ordering σ,
two nonadjacent vertices u, u′ ∈ U ∩X such that u <σ u′ have no common neighbor
w ∈ U ∩X with u <σ w since u and u′ have S as common neighbors which appear
after u′ in σ, and S has size k1 = γ − 1. As argued above, we can find a maximum
independent set in G[U ∩X] in polynomial time. Thus, Induced (k1, k2)-Biclique
can be solved in polynomial time if k1 is a constant and γ ≤ k1 + 1.

To complete the dichotomy with respect to c, we prove that Induced Max-
Edge Biclique and Induced (k1, k2)-Biclique can be solved in polynomial time
if c = 2. Observe that Theorem 5.18 implies a polynomial-time algorithm for k1 ≥ 2
if c = 2. Hence, it remains to show that Induced (1, k2)-Biclique can be solved
in polynomial-time if c = 2. For this, is it sufficient to consider diamond-free graphs
since each 2-closed graph is diamond-free.

Proposition 5.22. Induced (1, k2)-Biclique can be solved in polynomial time on
diamond-free graphs.

Proof. Suppose that the input graph G is diamond-free. Then, for each vertex v ∈
V (G) the graph G[N(v)] is a disjoint union of cliques. Thus, (G, 1, k2) is a Yes-
instance if and only if there is a vertex v ∈ V (G) such that G[N(v)] has at least k2
connected components.
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Now, from Proposition 5.22 (k1 = 1) and Theorem 5.18 (k1 ≥ 2) we obtain the
following.

Corollary 5.23. Induced (k1, k2)-Biclique and Induced Max-Edge Biclique
can be solved in polynomial time on 2-closed graphs.

Our results for Induced (k1, k2)-Biclique can be summarized as follows (see
also Table 6.1): If k1 = k2, then the problem becomes FPT with respect to the
weak closure number γ (Theorem 5.15). In the general case, the complexity strongly
depends on whether k1 ≥ 2 or k1 = 1. If k1 ≥ 2, the problem is polynomial-time
solvable for γ ≤ k1 + 1 (Theorem 5.21), NP-hard for γ ≥ k1 + 2 (Theorem 5.21),
and FPT for the parameterization by c (Theorem 5.18). If k1 = 1, then we have a
complexity dichotomies in terms of c and γ: we have a polynomial-time algorithm
for c = 2 (Corollary 5.23) and γ = 1 (Theorem 5.21) and NP-hardness for c ≥ 3
(Theorem 5.20) and γ ≥ 2 (Theorem 5.20).

5.3 Conclusion

Fox et al. studied the complexity of enumerating maximal cliques in (weakly) closed
graphs [84]. In this chapter, we continued this line of research and studied the
complexity of enumerating maximal s-plexes (and other clique relaxations) or finding
a sufficiently large s-plex (and other clique relaxations) in (weakly) closed graphs.
More precisely, we studied in this chapter s-plexes, s-defective cliques, s-clubs, and
(non-) induced bicliques.

For future work, it is interesting to study the parameterized complexity of further
clique relaxations in (weakly) closed graphs in terms of enumeration or finding a
solution of size at least k. One promising candidate are s-cliques. A vertex set S is
an s-clique if each two vertices u, v ∈ S have distance at most s in G [161]. Note
that s-cliques are closely related to s-clubs; instead of requiring distance at most s
in G[S], here one requires distance at most s in G. It is known that the problem of
finding an s-clique of size at least k admits an FPT-algorithm for ∆ + s [143]. It is
interesting whether this FPT result can be lifted to an FPT-algorithm with respect
to c+ s or d+ s.

Another interesting candidate are µ-complete vertex sets. A vertex set S is µ-
complete for some 0 ≤ µ ≤ 1, if every vertex in G[S] has degree at least µ · (|S| −
1) [166, 195]. Especially the case µ ≥ 1/2 is interesting: The value of µ implies
that G[S] is connected, and even stronger, has diameter 2. In other words, S is
also a 2-club. Since finding a sufficiently large 2-club is NP-hard even in 4-closed
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graphs (Theorem 5.13), adding the additional constraint that each vertex has degree
at least µ · (|S| − 1) could help to obtain polynomial-time algorithms for finding
sufficiently large µ-complete vertex sets in graphs with constant closure.

In Theorem 5.3, we showed that any weakly γ-closed graph has O(2γn2s−1) maxi-
mal s-plexes. Afterwards, we presented a graph with Ω((n/2)2s−2) maximal s-plexes.
It is interesting to close this gap. For s-defective cliques the current gap between up-
per and lower bound is much smaller: In Theorem 5.6 we showed that any weakly γ-
closed graph has O(2γns+1) maximal s-defective cliques. Afterwards, we presented
a graph with Ω((n/2)s+1) maximal s-defective cliques.

For s-Defective Clique we improved upon the dependence of s compared
with the algorithm of enumerating all maximal s-defective cliques. More precisely,
the enumeration algorithm implied that s-Defective Clique can be solved in
O(2γns+3) time. Furthermore, we present an algorithm which running-time is bounded
by 2O(γ

√
s+s log k)nO(

√
s). The algorithm achieving this running-time relied on the fact

that each s-defective clique can be covered by at most O(
√
s) cliques. It is open,

whether the exponent on n can be further reduced, for example to 1/4. Another
natural question is, whether such an improvement in terms of the dependence of s is
also possible for s-Plex. Since an s-plex is not always coverable by O(

√
s) cliques,

our approach for s-defective cliques cannot be directly be adapted to s-plexes.

For 2-Club we provided NP-hardness even if c = 4 (Theorem 5.13). Afterwards,
we argued that 4-closed graphs may have up to 3n/3 maximal 2-clubs. It remains an
open question whether 2-Club can be solved in polynomial time if c = 2 or c = 3.
Also, it remains open whether all maximal 2-clubs can be enumerated efficiently
if c = 2 or c = 3. Furthermore, it is interesting to study the problem of finding a
sufficiently large s-club or the enumerate all maximal s-clubs for s ≥ 3 with respect
to the cclosure. It is very likely that our hardness results for 2-clubs can be lifted to
larger values of s, for example by subdividing edges in the constructed instances.

Another interesting open question is whether our algorithm with running time
O∗(γO(γ)) for Induced (k, k)-Biclique (Theorem 5.17) can be improved to an
algorithm with running O∗(2O(γ)). In the current algorithm, we determine one side
of the sought biclique in O∗(2γ) time. For the other side, we rely on finding an
independent set. This is done by applying brute-force on a kernel. To achieve the
claimed running time, we have to improve the second step, where we determine this
independent set. More precisely, if we would be able to find an independent set
with k ≤ γ in O∗(2O(γ)) time, then we would achieve the desired running time. The
current fastest algorithm for this task is the aforementioned brute force algorithm
on the kernel with up to γk2 vertices [137].

In our algorithms we assume that the (weak) closure is given. To exploit this
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value, the (weak) closure of the graph has to be computed first. The c-closure of
a graph can be computed in O(nω) time [84], where ω is the matrix multiplication
coefficient or in O(cn2+m3/2) time [142]. An algorithm with the latter running time
is preferable to the algorithm with running time O(nω) if c is small and the graph
is sparse. The computation of the weak closure γ is possible in O(n3) time [84].
An important open question is thus whether the parameters c and γ can computed
faster. Is the computation of these parameters doable in linear time?
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Chapter 6

Complexity of s-Club with
Triangle and Seed Constraints

A big drawback of s-clubs is that the largest s-clubs are often not very cohesive with
respect to other cohesiveness measures such as density or minimum degree. Recall
that a vertex set S of a graph G is an s-club if each pair of vertices in S has distance at
most s in G[S]. For an example we refer to Figure 6.1. This behavior is particularly
pronounced for s = 2: the largest 2-club in a graph is often the vertex v of maximum
degree together with its neighbors [109]. Usually, this is not a good solution for
applications since the number of edges within the induced subgraph is too small. To
avoid these so-called hub-and-spoke structures, it has been proposed to augment the
s-club definition by adding further constraints on the model [41, 145, 193, 222].

One of these augmented models, are the vertex-triangle s-clubs, proposed by
Carvalho and Almeida [41].

Definition 6.1. A vertex set S in a graph G is a vertex-triangle s-club if S is an s-
club and each vertex in S is part of at least one triangle in G[S].

The property is motivated by the importance of triangles, or clusters of size 3,
since for example, the definitions of the global and local clustering coefficient are
based on triangles [2, 179, 225]. Since each vertex in a vertex-1-triangle s-club S
is contained in at least one triangle, S contains at least ⌈|S|/3⌉ triangles. In other
words, the triangle property ensures that there are many edges within the induced
subgraph G[S]. Vertex-triangle s-clubs relax cliques also in the following sense: In
a clique C of size c each vertex in C is contained in exactly

(︁
c−1
2

)︁
triangles and in a

vertex-triangle s-club each vertex is contained in at least one triangle.
The vertex-triangle s-club property was later generalized to the vertex-ℓ-triangle

property [3].
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a
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c d
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g7g1

g4

g2 g6

g3 g5

Figure 6.1: In this graph the largest 2-club is {c, d, g, g1, . . . , g7}, the largest vertex-1-
triangle 2-club is {a, b, c, d, e, f, g}, and the largest edge-1-triangle 2-club is {c, d, e, f, g}.

Definition 6.2. A vertex set S in a graph G is a vertex-ℓ-triangle s-club if S is
an s-club and each vertex in S is part of at least ℓ triangle in G[S].

This model is motivated by cliques relaxation based on clustering coefficients,
so-called local- and global-α clusters, proposed by Ertem et al. [72]. Furthermore,
such a property leads to higher clustering coefficients. For an example we refer to
Figure 6.1.

Vertex Triangle s-Club
Input: An undirected graph G = (V,E), and two integers k, ℓ ≥ 1.
Question: Does G contain an s-club S of size at least k that fulfills the

vertex-ℓ-triangle property?

The vertex-ℓ-triangle constraint entails some desirable properties for cohesive
subgraphs. Let Dv be the set of vertices which are in a triangle with v ∈ V (G).
Since |Dv| ≥

√
2ℓ we obtain that the minimum degree of a vertex-ℓ-triangle s-club

is larger than
√
2ℓ. Moreover, vertex-ℓ-triangle s-clubs S are robust with respect

to some specific edge-deletions: Since |Dv| ≥
√
2ℓ we may delete up to

√
2ℓ − 1

edges with one endpoint being v and the other in Dv without disconnecting S. This
property is not fulfilled, if we instead of the vertex-ℓ-triangle constraint put the
additional property of having minimum degree at least

√
2ℓ on s-clubs: In such

a model there exists at least one vertex v such that each each deletion incident
with v disconnects the graph, for example, a star with

√
2ℓ leaves, where a clique
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u v
C1 C2

Figure 6.2: The sets C1, C2 are cliques of size d. Hence, C1∪C2 is a vertex-
(︁
d
2

)︁
-triangle 3-

club of size 2d. After deleting the edge uv the cliques C1 and C2 are disconnected.

of size
√
2ℓ is attached to each leaf. However, some undesirable behavior of hub-

and-spoke structures remains: vertex-ℓ-triangle s-clubs are not robust with respect
to each possible edge deletion. For an example, we refer to Figure 6.2.

To overcome this problem, we introduce a new model where we put triangle
constraints on the edges of the s-club instead of the vertices.

Definition 6.3. A vertex set S of a graph G fulfills the edge-ℓ-triangle property
if G[S] contains a spanning subgraph G′ := (S,E ′) such that every edge in E(G′) is
in at least ℓ triangles in G′ and the diameter of G′ is at most s.

For an example we refer to Figure 6.1. Next, we introduce the related problem.

Edge Triangle s-Club
Input: An undirected graph G = (V,E), and two integers k, ℓ ≥ 1.
Question: Does G contain a vertex set S of size at least k that fulfills the

edge-ℓ-triangle property?

Note that in this definition, the triangle and diameter constraints are imposed
on a spanning subgraph of G[S]. In contrast, for Vertex Triangle s-Club, they
are imposed directly on G[S]. The reason for this distinction is that we would like
to have properties that are closed under edge insertions. Properties which are closed
under edge insertions are also well-motivated from an application point of view since
adding a new connection within a group should not destroy this group. If we would
impose the triangle constraint on the induced subgraph G[S] instead, then an edge-
ℓ-triangle s-club S would not be robust to edge additions. For an example, we refer
to Figure 6.3. By searching for a subgraph we can overcome this issue since this
allows us to ignore such edges.

Observe that every set that fulfills the edge-ℓ-triangle property also fulfills the
vertex-ℓ-triangle property. Also note that the converse is not true: A vertex-ℓ-
triangle s-club is not necessarily also an edge-ℓ-triangle s-club. For example, the
graph shown in Figure 6.2 fulfills the vertex-1-triangle property but does not fulfill
the edge-1-triangle property since uv is contained in no triangle. Moreover, each
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a b c d

u v

C

Figure 6.3: The set C induces a clique of size at least four. S := V (G) = C ∪ {u, v} is
a 3-club and every edge in G[S] is contained in at least one triangle. Let G′ be the graph
obtained from G by adding the dashed edge uv. Since uv is not contained in any triangle in
G′, the set S would not be an edge-1-triangle 3-club in G′ if we would impose the triangle
constraints on G′[S]. In contrast, since we impose the triangle constraints on a spanning
subgraph of G′[S], the set S is an edge-1-triangle 3-club in G′.

vertex v ∈ S has at least ℓ + 1 neighbors in S: Consider an arbitrary edge uv.
Since uv is in at least ℓ triangles {u, v, w1}, . . . , {u, v, wℓ} we thus conclude that u
and v have degree at least ℓ. We can show an even stronger statement: an edge-ℓ-
triangle s-club S is robust against up to ℓ edge deletions, as desired.

Proposition 6.4. Let G = (V,E) be a graph and let S be an edge-ℓ-triangle s-club
in G. Let G′ be a spanning subgraph of G[S] such that every edge in G′ is in at least ℓ
triangles and the diameter of G′ is at most s. If ℓ edges of G′ are removed from G,
then S is still an (s+ ℓ)-club and a (2s)-club in G.

Proof. We show that if ℓ edges are removed from G′, the diameter of the resulting
graph ˜︁G increases by at most ℓ. Let P = (v1, . . . , vs+1) be a path of length s in
G′. Since G′ is an edge-ℓ-triangle s-club, every edge vivi+1 of P is part of at least
ℓ triangles in G′. Thus, for two vertices vi and vi+1 in P there is a path of length at
most two from vi to vi+1 in G′, either directly through the edge vivi+1 or via a vertex
u that forms one of the ℓ triangles with vi and vi+1 in G′. Thus, dist(vi, vi+1) increases
by at most 1 after one edge deletion and only if vivi+1 is removed. Since at most ℓ of
the edges in P are removed, we have dist(v1, vs+1) ≤ dist(v1, v2)+. . .+dist(vs, vs+1) ≤
s+ ℓ in ˜︁G. By the same arguments, we also have dist(v1, vs+1) ≤ 2s.

Thus, after deleting ℓ edges in G′, S is an (s+ ℓ)-club and a (2s)-club.

We also introduce and study a further variant of s-clubs. This variant of s-Club
is also practically motivated but not necessarily by concerns about the robustness of
the s-club. Here the difference to the standard problem is simply that we are given
a set of seed vertices W and aim to find a large s-club that contains all seed vertices.
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Seeded s-Club
Input: An undirected graph G = (V,E), a subset W ⊆ V , and an

integer k ≥ 1.
Question: Does G contain an s-club S of size at least k such that W ⊆ S?

This variant can be used in community detection, where we are often interested
in finding communities containing some set of fixed vertices [124, 230].

In this chapter, we study the parameterized complexity of the three above-
mentioned problems with respect to the standard parameter solution size k. Our
goal is to determine whether FPT results for s-Club [43, 206] transfer to these
practically motivated problem variants.

Related Work. The s-Club problem is NP-hard for all s ≥ 1 [31], even when
the input graph has diameter s+1 [14]. For s = 1, s-Club is equivalent to Clique
and thus W[1]-hard with respect to k. In contrast, for every s > 1, s-Club is
fixed-parameter tractable (FPT) with respect to the solution size k [43, 206]. This
fixed-parameter tractability can be shown via a Turing kernel with O(k2) vertices
for even s and O(k3) vertices for odd s [43, 206]. These Turing kernels are based on
the observation that each vertex v together which each other vertex w with distance
at most ⌊s/2⌋ is an s-club.

The complexity of s-Club has been also studied with respect to different classes
of input graphs [93] and with respect to structural parameters such as degeneracy of
the input graph [110]. The s-Club problem can be solved efficiently in practice, in
particular for s = 2 [31, 43, 109].

Vertex Triangle s-Club is NP-hard for all interesting cases, that is, s ≥ 2
and for all ℓ ≥ 1 [41, 3]. Furthermore, there exist ILP formulations for Vertex
Triangle s-Club [41, 3]. We are not aware of any algorithmic studies of Edge
Triangle s-Club or Seeded s-Club. The NP-hardness of Edge Triangle s-
Club for ℓ = 1 can be shown via the reduction for Vertex Triangle s-Club
for ℓ = 1 [3]. Also, the NP-hardness of Seeded s-Club follows directly from the
fact that an algorithm for the case where |W | = 1 can be used as a black box to
solve s-Club.

Further robust models of s-clubs include t-hereditary s-clubs [145, 193], t-robust
s-clubs [222], and t-connected s-clubs [231, 145]. Note that these 3 models do not
guarantee triangles and thus the cluster coefficients of the solutions of these models
might be 0.

Our Results. An overview of our results is given in Table 6.1. For Vertex Tri-
angle s-Club and Edge Triangle s-Club, we provide a complexity dichotomy
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Chapter 6. Complexity of s-Club with Triangle and Seed Constraints

for all interesting combinations of s and ℓ, that is, for every s ≥ 2 and ℓ ≥ 1, into
cases that are FPT or W[1]-hard with respect to k, respectively. Our W[1]-hardness
reduction for Edge Triangle s-Club for ℓ ≥ 2 also shows the NP-hardness of this
case. The FPT-algorithms are obtained via adaptions of the Turing kernelization
for s-Club. Interestingly, Vertex Triangle s-Club with ℓ = 1 is FPT only
for larger s, whereas Edge Triangle s-Club with ℓ = 1 is FPT for all s. In our
opinion, this means that the edge-ℓ-triangle property is preferable not only from a
modelling standpoint but also from an algorithmic standpoint as it allows to employ
Turing kernelization as a part of the solving procedure, at least for ℓ = 1. It is
easy to see that standard problem kernels of polynomial size are unlikely to exist for
Vertex Triangle s-Club and Edge Triangle s-Club: s-clubs are necessarily
connected and thus taking the disjoint union of graphs gives a trivial or-composition
(see Section 2.3 for the definition) and, consequently a polynomial problem kernel
implies coNP ⊆ NP/poly [24].

All of our hardness results forVertex Triangle s-Club and Edge Triangle
s-Club are shown by a reduction from Clique which is W[1]-hard with respect
to k [54, 63]. The idea is to replace each vertex of the Clique instance by a vertex
gadget. These gadgets are constructed in such a way that if one of these vertices
is part of a vertex/edge-ℓ-triangle 2-club S, then the entire vertex gadget is part
of S. We can then use the distance constraint to make sure that full vertex gadgets
are chosen only if the corresponding vertices are adjacent. While this idea is very
natural, using the triangle constraint without creating many vertices that are too
close to each other turned out to be technically challenging.

For Seeded s-Club, we provide a kernel with respect to k for clique seeds W
and W[1]-hardness with respect to k for some other cases. For s = 2, our results
provide a dichotomy into FPT and W[1]-hardness with respect to k in terms of the
structure of the seed.

The W[1]-hardness of Seeded s-Club is provided by two reductions from the
Clique problem. One reduction is for the case s = 2 and any seed that contains at
least two non-adjacent vertices u and z. The other reduction is for the case s ≥ 3 and
any seed that contains at least two connected components U and Z. In both cases we
add two copies X1 and X2 of the graph of the Clique instance to the new instance
of Seeded s-Club such that each vertex of X1 has distance at most s to u or U if
its copy in X2 is also part of the solution. We show a similar property for X2 and z
or Z. This ensures that if p1 ∈ X1 is in the solution if and only if p2 ∈ X2 is in the
solution. Also, the reductions have the property that vertex p1 in X1 has distance at
most s to vertex q2 in X2 if and only if pq is an edge of the Clique instance. This
feature ensures that the same clique has to be chosen from both copies.
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6.1. Vertex Triangle s-Club

Table 6.1: Overview of our results of the parameterized complexity of the three problems
with respect to the parameter solution size k.

Vertex Triangle
s-Club

Edge Triangle
s-Club

Seeded s-Club

FPT ℓ = 1 and s ≥ 4 ℓ = 1 for each s G[W ] is a clique

W[1]-h ℓ = 1 and s ≤ 3 ℓ ≥ 2 for each s s = 2 and G[W ] contains
at least two non-adjacent
vertices

ℓ ≥ 2 for each s s ≥ 3 and G[W ] contains
at least two connected
components

Our W[1]-hardness results, in particular those for Seeded s-Club, show that the
FPT results for s-Club are quite brittle since the standard argument that we may
assume k ≥ ∆ fails and that adding even simple further constraints makes finding
small-diameter subgraphs much harder.

6.1 Vertex Triangle s-Club

In this section, we settle the parameterized complexity of Vertex Triangle s-
Club with respect to the solution size k. First, we show that this problem is fixed-
parameter tractable when ℓ = 1 and s ≥ 4. Afterwards, we show W[1]-hardness for
all remaining cases, that is, for ℓ ≥ 2 and s ≥ 2, and also for ℓ = 1 and s ∈ {2, 3}.

6.1.1 FPT-Algorithms

The overall idea is based on the idea of the Turing kernel for 2-Club, that is,
bounding the size of Ns[v] for each vertex v ∈ V (G). The first step is to remove all
vertices which are not in a triangle.

Reduction Rule 6.1. Let (G, k) be an instance of Vertex Triangle s-Club.
Delete all vertices from G which are not part of any triangle.

Clearly, Reduction Rule 6.1 is correct and can be exhaustively applied in poly-
nomial time. The application of Reduction Rule 6.1 has the following effect: if some
vertex v is close to many vertices, then (G, k) is a trivial yes-instance.
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Lemma 6.5. Let (G, k) be an instance of Vertex Triangle s-Club with ℓ = 1
and s ≥ 4 to which Reduction Rule 6.1 is applied. Then, (G, k) is a yes-instance
if |N⌊s/2⌋−1[v]| ≥ k for some vertex v ∈ V (G).

Proof. Let v ∈ V (G) be a vertex such that |N⌊s/2⌋−1[v]| ≥ k. We construct a vertex-
1-triangle s-club T of size at least |N⌊s/2⌋−1[v]| ≥ k. Initially, we set T := N⌊s/2⌋−1[v].
Now, for each vertex w ∈ N⌊s/2⌋−1(v) we do the following: Since Reduction Rule 6.1
is applied, we conclude that there exist two vertices x and y such that G[{w, x, y}]
is a triangle. We add x and y to the set T . We call the set of vertices added in this
step the T -expansion.

Next, we show that T is indeed a vertex-1-triangle s-club for s ≥ 4. Observe
that each vertex in T is either in N⌊s/2⌋−1[v] or a neighbor of a vertex in N⌊s/2⌋−1(v).
Hence, each vertex in T has distance at most ⌊s/2⌋ to vertex v. Thus, T is an s-
club. It remains to show that each vertex of T is in a triangle. Observe that for
each vertex w ∈ N⌊s/2⌋−2[v] we have N(w) ⊆ N⌊s/2⌋−1[v]. Recall that since Re-
duction Rule 6.1 is applied, each vertex in G is contained in a triangle. Thus,
each vertex of N⌊s/2⌋−2[v] is contained in a triangle in T . Furthermore, all ver-
tices in N⌊s/2⌋−1(v) ∪ (T \ N⌊s/2⌋−1[v]) are in a triangle because of the T -expansion.
Since |T | ≥ |N⌊s/2⌋−1[v]| ≥ k, the statement follows.

Next, we show that Lemma 6.5 implies the existence of a Turing kernel for s ≥ 4.
We do this by showing that Ns[v] is bounded for every vertex in the graph. This in
turn implies that the problem is fixed-parameter tractable. It is sufficient to bound
the size of Ns[v] for each v ∈ V (G) since we then can query the oracle for an s-club
of size k.

Theorem 6.6. Vertex Triangle s-Club for ℓ = 1 admits a k4-vertex Turing
kernel if s = 4 or s = 7, a k5-vertex Turing kernel if s = 5, and a k3-vertex Turing
kernel if s = 6 or s ≥ 8.

Proof. First, we apply Reduction Rule 6.1. Because of Lemma 6.5 we conclude
that (G, k) is a trivial yes-instance if |N⌊s/2⌋−1[v]| ≥ k for any vertex v ∈ V (G). Thus,
in the following we can assume that |N⌊s/2⌋−1[v]| < k for each vertex v ∈ V (G). We
use this fact to bound the size of Ns[v] in non-trivial instances.

Note that if s = 4 or s = 5 we have ⌊s/2⌋−1 = 1. In this cases from |N⌊s/2⌋−1[v]| <
k we obtain that the size of the neighborhood of each vertex is bounded. Thus, we
obtain a k4-vertex Turing kernel for s = 4 and a k5-vertex Turing kernel for s = 5.
Furthermore, if s = 7 we have ⌊s/2⌋ − 1 = 2. Thus, we obtain a k4-vertex Turing
kernel for s = 7 since N7[v] ⊆ N8[v] = N2[N2[N2[N2[v]]]].
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6.1. Vertex Triangle s-Club

If s = 6 or s ≥ 8, then ⌊s/2⌋ − 1 ≥ ⌈s/3⌉. Observe that Ns[v] is contained
in N⌈s/3⌉[N⌈s/3⌉[N⌈s/3⌉[v]]]. Thus, we obtain a k3-vertex Turing kernel for s = 6
or s ≥ 8.

Note that s ≥ 4 is necessary to ensure ⌊s/2⌋ − 1 ≥ 1. In our arguments to
obtain a Turing kernel ℓ = 1 is necessary for the following reason: if ℓ ≥ 2, then
the remaining vertices of the other triangles of a vertex in the T -expansion may be
contained in N⌊s/2⌋+1 and, thus, adding them will not necessarily give an s-club. Also
note that using Nt[v] for some t < ⌊s/2⌋ − 1 does not help: The remaining vertices
of the other triangles of a vertex in the T -expansion may be contained in Nt+1. But
now, another T -expansion for the vertices in Nt+1 is necessary. This may lead to a
cascade of T -expansions where eventually we add vertices with distance at least s+1
to v. Thus, the constructed set is no s-club anymore.

6.1.2 Parameterized Hardness

In the following, we prove W[1]-hardness for Vertex Triangle s-Club parame-
terized by the solution size k for all cases not covered by Theorem 6.6, that is, ℓ ≥ 2
and s ≥ 2, and also for ℓ = 1 and s ∈ {2, 3}.

Theorem 6.7. Vertex Triangle s-Club is W[1]-hard for parameter k if ℓ ≥ 2,
and if ℓ = 1 and s ∈ {2, 3}.

For some combinations of s and ℓ we provide hardness for restricted input graphs.
More precisely, we prove that Vertex Triangle s-Club is W[1]-hard even if each
vertex v ∈ V (G) is contained in exactly ℓ triangles in the input graph. In other words,
the hardness does not depend on the fact that we could choose different triangles.
We provide this hardness for the case s ≥ 3 and arbitrary ℓ and also for s = 2
when ℓ =

(︁
c−1
2

)︁
for some integer c.

We prove the theorem by considering four subcases. The proofs for the four cases
all use a reduction from the W[1]-hard Clique problem. In these constructions,
each vertex v of the Clique instance is replaced by a vertex gadget T v such that
every vertex-ℓ-triangle s-club S either contains T v completely or contains no vertex
of T v. This property is obtained since each vertex in T v will be in exactly ℓ triangles
and each of these triangles is within T v. The idea is that if uv /∈ E(G) then there
exists a vertex x ∈ T u and a vertex y ∈ T v such that dist(x, y) ≥ s+ 1.

Vertex Triangle 2-Club. First, we handle the case s = 2.
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Construction 6.8. Let (G, k) be an instance of Clique and let c be the smallest
number such that

(︁
c−1
2

)︁
≥ ℓ. We construct an instance (G′, c(k + 1), ℓ) of Vertex

Triangle 2-Club as follows.

• For each vertex v ∈ V (G), we add a clique T v := {xv
1, . . . , x

v
c} of size c to G′.

• For each edge vw ∈ E(G), we connect the cliques T v and Tw by adding the
edge xv

2i−1x
w
2i and xw

2i−1x
v
2i to G′ for each i ∈ [⌊c/2⌋].

• Furthermore, we add a clique Y := {y1, . . . , yc} of size c to G′.

• We also add, for each i ∈ [c] and each v ∈ V (G), the edge xv
i yi to G′.

Note that the clique size c ensures that each vertex x ∈ V (G′) is contained in at
least

(︁
c−1
2

)︁
≥ ℓ triangles in G′. Furthermore, note that the clique Y is only necessary

when c is odd to ensure that the vertices xv
c and xw

c have a common neighbor. We
add the clique Y in both cases to unify the construction and the correctness proof.
Next, we show that for each vertex gadget T v the intersection with each vertex-ℓ-
triangle 2-club is either empty or T v.

Lemma 6.9. Let S be a vertex-ℓ-triangle 2-club in G′. Then,

a) S ∩ T v ̸= ∅ ⇔ T v ⊆ S, and

b) S ′ := S ∪ Y is also a vertex-ℓ-triangle 2-club in G′.

Proof. First, we show statement a). Assume that for a vertex z ∈ T v for some v ∈
V (G) we have z ∈ S for some vertex-ℓ-triangle 2-club S. Note that T v contains all
vertices which form a triangle with vertex z. Since c is minimal such that

(︁
c−1
2

)︁
≥ ℓ

and since T v is a clique, we conclude that T v ⊆ S to fulfill the property that vertex z
is contained in at least ℓ triangles in G[S]. Thus, T v ⊆ S.

Second, we show statement b). Since each vertex y ∈ Y forms only triangles with
vertices in Y and Y has size

(︁
c−1
2

)︁
, we conclude that Y ⊆ S∗ ⇔ S∗ ∩ Y ̸= ∅ for

each vertex-ℓ-triangle 2-club S∗. In the following, let S be a vertex-ℓ-triangle 2-club
such that Y ∩ S = ∅. From statement a) we conclude that S :=

⋃︁
v∈P T v for some

set P ⊆ V (G). Next, we show that S ′ := S ∪ Y is also a vertex-ℓ-triangle 2-club.
Since each vertex is contained in a clique of size c in S, it is in sufficiently many
triangles. Thus, it remains to prove that S ′ is a 2-club. Consider some vertex xv

i and
some vertex yj for some i, j ∈ [c] and v ∈ P . Then, yi is a common neighbor of xv

i

and yj. Hence, S
′ is a vertex-ℓ-triangle 2-club and thus b) holds.

Now, we prove the correctness of Construction 6.8.
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Lemma 6.10. For each ℓ ∈ N, the Vertex Triangle 2-Club problem parame-
terized by k is W[1]-hard.

Proof. We prove that G contains a clique of size k if and only if G′ contains a
vertex-ℓ-triangle 2-club of size at least c(k + 1).

Let C be a clique of size at least k in G. We argue that S := Y ∪
⋃︁

v∈C T v is a
vertex-ℓ-triangle 2-club of size c(k + 1) in G′. Note that for each vertex v ∈ T v we
have |T v| = c. Since T v is a clique, we conclude that each vertex in T v is contained
in exactly

(︁
c−1
2

)︁
≥ ℓ triangles. The same is true for each vertex in Y . Hence, each

vertex in S is contained in at least ℓ triangles. Thus, it remains to show that S is
a 2-club. Consider the vertices xv

i and xw
j for v, w ∈ C, i ∈ [c − 1], and j ∈ [c]. If i

is odd, then xw
i+1 ∈ N(xv

i ) ∩ N(xw
j ). Otherwise, if i is even, xw

i−1 ∈ N(xv
i ) ∩ N(xw

j ).
In both cases, we obtain dist(xv

i , x
w
j ) ≤ 2. Next, consider two vertices xv

c and xw
c

in S. Observe that yc ∈ N(xv
c) ∩N(xw

c ). Since Y is a clique, it remains to consider
vertices xv

i and yj in S for i ∈ [c] and j ∈ [c]. Observe that xv
j ∈ N(yj) ∩ N [xv

i ].
Thus, G′ contains a vertex-ℓ-triangle 2-club of size at least c(k + 1).

Conversely, suppose that G′ contains a vertex-ℓ-triangle 2-club S of size at least
c(k+1). By Lemma 6.9, we can assume that Y ⊆ S and for each vertex gadget T v ∈
G′ we either have T v ⊆ S or T v ∩ S = ∅. Hence, S contains at least k cliques of the
form T v. Assume towards a contradiction that S contains two cliques T v and Tw such
that vw /∈ E(G) and consider the two vertices xv

1 ∈ T v and xw
2 ∈ Tw. Note that these

vertices always exist since c ≥ 3. Observe that N [xv
1] = T v∪{xu

2 | uv ∈ E(G)}∪{y1}
and N [xw

2 ] = Tw ∪{xu
1 | uw ∈ E(G)}∪{y2}. Thus, dist(xv

1, x
w
2 ) ≥ 3, a contradiction.

Hence, for each two distinct vertex gadgets T v and Tw that are contained in S, we
observe that vw ∈ E(G). Consequently, the set {v | T v ⊆ S} is a clique of size at
least k in G.

If ℓ =
(︁
c−1
2

)︁
for some integer c, then Lemma 6.10 also holds for the restriction

that each vertex is contained in exactly ℓ triangles in the input graph G′.

Vertex Triangle s-Club for s = 3 and for s ≥ 4 and ℓ ≥ 2. Now, we provide
hardness for the remaining cases. We consider three subcases. Case 1 deals with
odd s. Case 2 covers the case that s is even and ℓ ≥ 3. Case 3 deals with the case
that s is even and ℓ = 2. All three cases use the same vertex gadget. Only the edges
between these gadgets, called connector edges, differ. The idea is to construct the
vertex gadgets T v in such a way that there are pairs of vertices in T v of distance 2s∗

which is almost s. Thus, in a vertex-ℓ-triangle s-club, the distance between two
different vertex gadgets must be small. The first part of the following construction
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a)
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Figure 6.4: a) The vertex gadgets T v and Tw for s ∈ {7, 8} and ℓ = 2. The blue lines are
only added if s is odd and the red lines are only added if s is even. b) The vertex gadget T v

for s ∈ {5, 6} and ℓ = 3.

describes the vertex gadget which is used in all three cases. For an illustration of
this construction see Figure 6.4.

Construction 6.11. We set s∗ := ⌊(s−1)/2⌋. Let (G, k) be an instance of Clique.
We construct an equivalent instance (G′, 3ℓks∗, ℓ) of Vertex Triangle s-Club.
Recall that ℓ ≥ 1 and s = 3, or ℓ ≥ 2 and s ≥ 4. For each vertex v ∈ V (G) we
construct a vertex gadget T v. This vertex gadget is used for each reduction of the
three cases.

• We add the vertices pvi , and qvi , and an edge pvi q
v
i for each i ∈ [ℓ] to G′.

• We add a vertex xv
j,i for each i ∈ [ℓ] and each j ∈ [s∗] to G′.

• We add an edge yvt,iz
v
t,i for each i ∈ [ℓ] and each t ∈ [s∗ − 1] to G′. Note that

these vertices only exist, if s ≥ 5.

The vertices xv
j,i, y

v
t,i, and zvt,i are referred to as the cascading vertices. They are

used to ensure that all vertices in T v are in exactly ℓ triangles and that there are
vertex pairs of distance 2s∗ within T v. Note that since s ≥ 3 we create at least ℓ
many x-vertices. We connect these vertices as follows:
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6.1. Vertex Triangle s-Club

• We add the edges pvi x
v
1,j and qvi x

v
1,j for each i ∈ [ℓ− 1] and each j ∈ [ℓ] to G′.

• We add the edges pvℓx
v
s∗,j and qvℓx

v
s∗,j for each j ∈ [ℓ] to G′.

• We add the edges yvt,ix
v
t,i and zvt,ix

v
t,i for each i ∈ [ℓ], and each t ∈ [s∗− 1] to G′.

• We add the edges yvt,ix
v
t+1,j and zvt,ix

v
t+1,j for each i ∈ [ℓ], each j ∈ [ℓ] \ {i}, and

each t ∈ [s∗ − 1] to G′.

Note that if s = 3 or s = 4, the graph G′ is a non-induced biclique where one
partite set consists of the vertices {xv

1,j | j ∈ [ℓ]} and the other partite set consists
of the vertices {pvi , qvi | i ∈ [ℓ]}. Furthermore, the additional edges are pvi q

v
i for

each i ∈ [ℓ]. Also, observe that each vertex gadget T v consists of exactly 3ℓs∗

vertices.
From now on, the construction differs for the three cases. We now connect these

vertex gadgets by introducing the connector edges : For each edge vw ∈ E(G) we
add edges between the vertex gadgets T v and Tw of the corresponding vertices. We
distinguish between the three cases.

Case I: s is odd. We add the edges pvi q
w
i and qvi p

w
i for each i ∈ [ℓ] to G′.

Case II: s is even and ℓ ≥ 3. We add the edges pv1q
w
1 , q

v
1p

w
1 , p

v
ℓq

w
ℓ , and qvℓ p

w
ℓ

to G′.

Case III: s is even and ℓ = 2. We add the edges pv1x
w
s∗,1, and pw1 x

v
s∗,1 to G′.

We make the following observation about the connector edges between different
vertex gadgets: If s is odd (Case I), or if s is even and ℓ ≥ 3 (Case II), we have N(pvi )\
T v ⊆ {qwi | vw ∈ E(G)} and also N(qvi ) \ T v ⊆ {pwi | vw ∈ E(G)} for each v ∈ V (G)
and each i ∈ [ℓ]. Otherwise, if s is even and ℓ = 2 (Case III), observe that we
have N(pv1) \ T v = {xw

s∗,1 | vw ∈ E(G)} and also N(xv
s∗,1) \ T v = {pw1 | vw ∈ E(G)}

for each v ∈ V (G). Since only the connector edges have endpoints in different vertex
gadgets, we thus observe the following.

Observation 6.12. All three endpoints of each triangle in G′ are contained in exactly
one vertex gadget.

Next, we show that each vertex in a vertex gadget T v is contained in exactly ℓ
triangles in G′[T v]. Together with Observation 6.12 this implies that each vertex
in G′ is contained in exactly ℓ triangles and also that for each vertex gadget T v any
vertex-ℓ-triangle s-club S in G′ either contains all vertices of T v or none of them.

Lemma 6.13. Let T v be a vertex gadget. Each vertex in T v is contained in exactly ℓ
triangles in G′[T v].
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Proof. Wemake a case distinction, that is, for each vertex a ∈ T v we present exactly ℓ
triangles containing vertex a. We distinguish between the different vertices of a vertex
gadget.

Case 1: Consider vertex pvd for some d ∈ [ℓ− 1]. Because of Observation 6.12 we
only have to consider the neighbors of pvd in T v. By construction we haveN(pvd)∩T v =
{qvd} ∪ {xv

1,j | j ∈ [ℓ]}. Observe that the only edges within N(pvd) ∩ T v are the
edges qvdx

v
1,j for each j ∈ [ℓ]. Thus, pvd is contained in the ℓ triangles {{pvd, qvd , xv

1,i} |
i ∈ [ℓ]}. By similar arguments the same is true for vertex qvd .

Case 2: Consider vertex pvℓ . By construction we have N(pvℓ ) = {qvℓ } ∪ {xv
s∗,i |

i ∈ [ℓ]} ∪ {qwℓ | vw ∈ E(G)} if s is odd or s is even and ℓ ≥ 3. If s is even
and ℓ = 2 we have N(pvℓ ) = {qvℓ } ∪ {xv

s∗,i | i ∈ [ℓ]}. Observe that the only edges
within N(pvℓ ) are the edges qvℓx

v
s∗,i for each i ∈ [ℓ]. Thus, pvℓ is contained in the ℓ

triangles {{pvℓ , qvℓ , xv
s∗,i} | i ∈ [ℓ]}. By similar arguments the same is true for vertex qvℓ .

Case 3: Now, consider vertices xv
1,i and xv

s∗,i for some i ∈ [ℓ]. Here we have to
distinguish if s ∈ {3, 4} or s ≥ 5 since yvt,i exists only in the second case.

First, consider the case s = 3 or s = 4. Note that we now have xv
1,i = xv

s∗,i. By
construction we have N(xv

1,i) = {pvj | j ∈ [ℓ]} ∪ {qvj | j ∈ [ℓ]}. Note that the only
edges within N(xv

1,i) have the form pvjq
v
j for each j ∈ [ℓ]. Thus, xv

1,i is contained in
the ℓ triangles {{xv

1,i, p
v
j , q

v
j } | j ∈ [ℓ]}.

Second, consider the case s ≥ 5. First, we investigate vertex xv
1,i. By construction

we have N(xv
1,i) = {pvj | j ∈ [ℓ − 1]} ∪ {qvj | j ∈ [ℓ − 1]} ∪ {yv1,i, zv1,i}. The only

edges within N(xv
1,i) are the edge pvjq

v
j for each j ∈ [ℓ − 1] and the edge yv1,iz

v
1,i.

Thus, xv
1,i is contained in the ℓ − 1 triangles {{xv

1,i, p
v
j , q

v
j } | j ∈ [ℓ − 1]}, and in the

triangle {xv
1,i, y

v
1,i, z

v
1,i}.

Now, consider vertex xv
s∗,i. Because of Observation 6.12 we only have to consider

the neighbors of xv
s∗,i in T v. By construction we observe thatN(xv

s∗,i)∩T v = {pvℓ , qvℓ }∪
{yvs∗−1,j, z

v
s∗−1,j | j ∈ [ℓ] \ {i}}. Note that the only edges within N(xv

s∗,i)∩ T v are the
edge pvℓq

v
ℓ and the edge yvs∗−1,jz

v
s∗−1,j for each j ∈ [ℓ] \ {i}. Thus, xv

s∗,i is contained
in the triangle {xv

s∗,i, p
v
ℓ , q

v
ℓ } and in the ℓ − 1 triangles {{xv

s∗,i, y
v
s∗−1,j, z

v
s∗−1,j} | j ∈

[ℓ] \ {i}}.
Case 4: Consider vertex xv

r,i for some i ∈ [ℓ] and some r ∈ [2, s∗−1]. Recall that
these vertices only exist if s ≥ 7. By constructionN(xv

r,i) = {yvr,i, zvr,i}∪{yvr−1,j, z
v
r−1,j |

j ∈ [ℓ] \ {i}}. The only edges within N(xv
r,i) have the form yvr,iz

v
r,i and yvr−1,jz

v
r−1,j for

each j ∈ [ℓ]\{i}. Thus, xv
r,i is contained in the triangle {xv

r,i, y
v
r,i, z

v
r,i} and in the ℓ−1

triangles {{xv
r,i, y

v
r−1,j, z

v
r−1,j} | j ∈ [ℓ] \ {i}}.

Case 5: Finally, consider vertex yvt,i for some i ∈ [ℓ] and some t ∈ [s∗−1]. Recall
that these vertices only exist if s ≥ 5. By construction we have N(yvt,i) = {xv

t,i, z
v
t,i}∪

{xv
t+1,j | j ∈ [ℓ] \ {i}}. The only edges within N(yvt,i) are the edge xv

t,iz
v
t,i and the
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edge xv
t+1,jz

v
t,i for each j ∈ [ℓ]\{i}. Thus, yvt,i is contained in the triangle {yvt,i, zvt,i, xv

t,i}
and in the ℓ− 1 triangles {{yvt,i, zvt,i, xv

t+1,j} | j ∈ [ℓ] \ {i}}. By similar arguments the
same holds for vertex zvt,i.

Thus, each vertex in T v is contained in exactly ℓ triangles.

From Lemma 6.13 and Observation 6.12, we conclude the following.

Observation 6.14. Let S be a vertex-ℓ-triangle s-club for s = 3 and ℓ ≥ 1 or
for s ≥ 4 and ℓ ≥ 2 in G′. Then, S ∩ T v ̸= ∅ ⇔ T v ⊆ S.

Now, we prove the correctness of Construction 6.11.

Lemma 6.15. For s = 3 and each ℓ ≥ 1, and also for each s ≥ 4 and ℓ ≥ 2 the
Vertex Triangle s-Club problem parameterized by k is W[1]-hard, even if each
vertex in the input graph is contained in exactly ℓ triangles.

Proof. We show that G contains a clique of size at least k if and only if G′ contains
a vertex-ℓ-triangle s-club of size at least 3ℓks∗.

Let K be a clique of size at least k in G. We argue that S :=
⋃︁

v∈K T v is a
vertex-ℓ-triangle s-club of size at least 3ℓks∗ in G′. The size bound follows from the
fact that each T v consists of exactly 3ℓs∗ vertices. Furthermore, by Lemma 6.13 each
vertex in T v for some v ∈ V (G) is contained in exactly ℓ triangles in G′[T v]. Hence,
it remains to show that S is an s-club.

To do so, we first prove the following two claims. To formulate the claims,
we need some further notation. We define T v

0 := {pv1, . . . , pvℓ−1} ∪ {qv1 , . . . , qvℓ−1}
and T v

ℓ := {pvℓ , qvℓ }. Recall that if ℓ = 1, then T v
0 = ∅. Otherwise, both sets are

non-empty.

Claim 3. For ℓ ≥ 2, we have distG′(u, a) + distG′(u, b) ≤ 2s∗ for each vertex a ∈ T v
0 ,

each vertex b ∈ T v
ℓ , and for each vertex u ∈ T v \ (T v

0 ∪ T v
ℓ ).

Proof of Claim. By Xv
1 := {xv

1,j | j ∈ [ℓ]} we denote the neighbors of T v
0 . We define

the sets Xv
2 , . . . , X

v
s∗ and Y v

1 , Z
v
1 , . . . , Y

v
s∗−1, Z

v
s∗−1 analogously. We first make some

observations about the neighborhoods of these vertex sets, which then allows us to
obtain an upper bound for distG′(u, a)+distG′(u, b). Note that here we only consider
paths that are entirely contained in the vertex gadget T v.

• For s ∈ {3, 4}: N(xv
1,i) ∩ T v = T v

0 ∪ T v
ℓ for each i ∈ [ℓ]. Hence N(Xv

1 ) ∩ T v =
T v
0 ∪ T v

ℓ .

• For s ≥ 5: N(xv
1,i) = T v

0 ∪ {yv1,i, zv1,i} for each i ∈ [ℓ]. Hence N(Xv
1 ) = T v

0 ∪
Y v
1 ∪ Zv

1 .
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• For s ≥ 5: N(xv
s∗,i) ∩ T v = T v

ℓ ∪ {yvs∗−1,j, z
v
s∗−1,j | j ∈ [ℓ] \ {i}} for each i ∈ [ℓ].

Hence, N(Xv
s∗) ∩ T v = T v

ℓ ∪ Y v
s∗−1 ∪ Zv

s∗−1.

• For s ≥ 7: N(xv
t,i) = {yvt,i, zvt,i}∪{yvt−1,j, z

v
t−1,j | j ∈ [ℓ]\{i}} for each t ∈ [2, s∗−1]

and each i ∈ [ℓ]. Hence, N(Xv
t ) = Y v

t ∪Zv
t ∪Y v

t−1 ∪Zv
t−1 for each t ∈ [2, s∗− 1].

• For s ≥ 5: N(yvt,i) = {xv
t,i, z

v
t,i} ∪ {xv

t+1,j | j ∈ [ℓ] \ {i}} and also N(zvt,i) =
{xv

t,i, y
v
t,i} ∪ {xv

t+1,j | j ∈ [ℓ] \ {i}} for each t ∈ [s∗ − 1] and each i ∈ [ℓ].
Hence,N(Y v

t ) = Xv
t ∪Zv

t ∪Xv
t+1 andN(Zv

t ) = Xv
t ∪Y v

t ∪Xv
t+1 for each t ∈ [s∗−1].

From the above and for a vertex u ∈ Xv
z we obtain a path from u to a of length 2z−1

by using subsequent vertices from Y v
z−1, X

v
z−1, . . . , Y

v
1 , X

v
1 . A similar observation can

be made for a path from u to b. The cases u ∈ Y v
z ∪ Zv

z are treated similarly. This
implies that distG′(u, a)+distG′(u, b) ≤ 2s∗ for each vertex a ∈ T v

0 , each vertex b ∈ T v
ℓ ,

and for each vertex u ∈ T v \ (T v
0 ∪ T v

ℓ ). ■
Now, we use Claim 3 to show that T v is a (2s∗)-club.

Claim 4. If s is odd, then T v is an (s−1)-club and if s is even, then T v is an (s−2)-
club for each vertex v ∈ V (G).

Proof of Claim. Recall that for s ∈ {3, 4} the gadget T v is a non-induced biclique.
Hence, the statement is true in this case. In the following, we assume that s ≥ 5.
Note that this implies that ℓ ≥ 2. We only consider the case that s is odd. The case
that s is even follows analogously.

By construction we have T v
0 ⊆ N(xv

1,1) and T v
ℓ ⊆ N(xv

s∗,1), so each pair of vertices
in T v

0 has distance at most 2 to each other and the same is true for the vertices in T v
ℓ .

Consider a pair of vertices u, ˜︁u with u ∈ T v
0 and ˜︁u ∈ T v \ T v

0 . From Claim 3 we
get distG′(u, ˜︁u) ≤ s− 1. The case u ∈ T v

ℓ and ˜︁u ∈ T v \ T v
ℓ follows analogously.

Now, consider a pair of vertices u, ˜︁u of T v \ (T v
0 ∪ T v

ℓ ). To bound the distance
of u and ˜︁u, we consider one path via a vertex in T v

0 and one via a vertex in T v
ℓ . We

have distG′(u, ˜︁u) ≤ min(distG′(u, a) + distG′(a, ˜︁u), distG′(u, b) + distG′(b, ˜︁u)) for each
vertex a ∈ T v

0 , and each vertex b ∈ T v
ℓ . From Claim 3 we know that distG′(u, a) +

distG′(u, b) ≤ 2s∗ and that distG′(˜︁u, a) + distG′(˜︁u, b) ≤ 2s∗. Hence, distG′(u, ˜︁u) ≤
2s∗ ≤ s− 1. Thus, T v is indeed an (s− 1)-club. ■

Now, we show that for two vertices v and w in K, a vertex u ∈ T v, and a
vertex ˜︁u ∈ Tw we have distG′(u, ˜︁u) ≤ s. We consider the three cases:

Case I: s is odd. Observe that since vw ∈ E(G), each vertex u ∈ (T v
0 ∪ T v

ℓ )
has one neighbor in Tw. Since Tw is an (s− 1)-club by Claim 4, we obtain that for
each vertex ˜︁u ∈ Tw we have distG′(u, ˜︁u) ≤ s if u ∈ T v

0 ∪ T v
ℓ . Hence, it remains to

consider the case that u ∈ T v \ (T v
0 ∪ T v

ℓ ) and that ˜︁u ∈ Tw \ (Tw
0 ∪ Tw

ℓ ). For this,
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let uv
1 := distG′(u, pv1), ˜︁uw

1 := distG′(qw1 , ˜︁u), uv
ℓ := distG′(u, pvℓ ), and ˜︁uw

ℓ := distG′(qwℓ , ˜︁u).
Note that

distG′(u, ˜︁u) ≤ min(uv
1 + 1 + ˜︁uw

1 , u
v
ℓ + 1 + ˜︁uw

ℓ )

= 1 + min(uv
1 + ˜︁uw

1 , u
v
ℓ + ˜︁uw

ℓ ).

In this inequality, the ’+1’ is the result of the fact that we have to use an edge
to get from gadget T v to gadget Tw. By Claim 3 we know that uv

1 + uv
ℓ ≤ 2s∗ and

that ˜︁uw
1 +˜︁uw

ℓ ≤ 2s∗. Since s is odd, we obtain that distG′(u, ˜︁u) ≤ 1+2s∗ = s. Thus, S
is a vertex-ℓ-triangle s-club of size 3ℓks∗.

Case II: s is even and ℓ ≥ 3. For each vertex pair u ∈ T v \T v
0 and ˜︁u ∈ Tw \Tw

0

the proof of distG′(u, ˜︁u) ≤ s is analogous to the proof in Case I handling odd values
of s. Hence, it remains to show that each vertex u ∈ T v

0 has distance at most s
to each vertex ˜︁u ∈ Tw. Observe that distG′(u, pv1) ≤ 2 since T v

0 ⊆ N(xv
1,1) and xv

1,1

is a neighbor of pv1. Thus, distG′(u, qw1 ) ≤ 3 since vw ∈ E(G). Furthermore, for
each vertex ˜︁u ∈ Tw \ Tw

ℓ we have distG′(˜︁u, qw1 ) ≤ s − 3 by the proof of Claim 4.
Hence, dist(u, ˜︁u) ≤ s. Thus, it remains to consider the case that u ∈ T v

0 and
that ˜︁u ∈ Tw

ℓ = {pwℓ , qwℓ }. Since vw ∈ E(G) we conclude that ˜︁u has a neighbor in T v.
Since T v is an (s−2)-club by Claim 4 we conclude that distG′(u, ˜︁u) = s−1. Hence, S
is a vertex-ℓ-triangle s-club of size 3ℓks∗.

Case III: s is even and ℓ = 2. Let xw := xw
s∗,1 and xv := xv

s∗,1. Furthermore,
let uv

1 := distG′(u, pv1), ˜︁uw
x := distG′(xw, ˜︁u), uv

x := distG′(u, xv), and ˜︁uw
1 := distG′(pw1 , ˜︁u).

We have

distG′(u, ˜︁u) ≤ min(uv
1 + 1 + ˜︁uw

x , u
v
x + 1 + ˜︁uw

1 )

= 1 + min(uv
1 + ˜︁uw

x , u
v
x + ˜︁uw

1 ).

Again, the ’+1’ results from the fact that we have to use an edge to go from
gadget T v to Tw. Consider the following claim.

Claim 5. For each vertex u ∈ T v we have uv
1 + uv

x ≤ s− 1.

Claim 5 directly implies that

min(uv
1 + ˜︁uw

x , u
v
x + ˜︁uw

1 ) ≤ s− 1

and thus distG′(u, ˜︁u) ≤ s. This in turn implies that S is a vertex-ℓ-triangle s-club of
size 3ℓks∗. Thus, it remains to prove Claim 5.
Proof of Claim. We first consider the case that u ∈ T v

ℓ . By construction we have
T v
ℓ ⊆ N(xv

s∗,1) and thus uv
x = 1. Since T v is an (s − 2)-club by Claim 4, we have

uv
1 ≤ s− 2 and hence Claim 5 is true in this case.

153



Chapter 6. Complexity of s-Club with Triangle and Seed Constraints

Next, we consider the case that u ∈ T v
0 . Since T

v
0 ⊆ N(xv

1,1) we conclude that u
v
1 ≤

2. Furthermore, T v
0 ⊆ N(xv

1,i) for each i ∈ [ℓ], so there is a path of length 2(s∗− 1)+
1 = s − 3 from u to xv

s∗,1 and we conclude that uv
x = s − 3. Hence, Claim 5 is true

in this case.

For all remaining cases, it is sufficient to prove the claim for each vertex u ∈
T v \ (T v

0 ∪ T v
ℓ ). First, we consider the case that u := xv

t,i for some t ∈ [s∗] and
some i ∈ [ℓ]. Then we have distG′(xv

t,i, p
v
1) = 2t−1 and distG′(xv

t,i, x
v
s∗,1) ≤ 2(s∗−t)+2

and hence distG′(xv
t,i, p

v
1)+distG′(xv

t,i, x
v
s∗,1) ≤ 2t− 1+2s∗− 2t+2 = 2s∗+1 ≤ s− 1.

Second, we consider the case that u := yvt,i for some t ∈ [s∗ − 1] and some i ∈ [ℓ].
Then we have distG′(yvt,i, p

v
1) = 2t and distG′(yvt,i, x

v
s∗,1) ≤ 2(s∗ − t) + 1 and hence we

obtain that distG′(yvt,i, p
v
1) + distG′(yvt,i, x

v
s∗,1) ≤ 2t + 2s∗ − 2t + 1 = 2s∗ + 1 ≤ s − 1.

The case that u := zvt,i follows by the same argumentation. ■
Conversely, suppose that G′ contains a vertex-ℓ-triangle s-club S of size at least

3ℓks∗. Because of Observation 6.14 for each vertex gadget T v we either have T v ⊆ S
or T v ∩ S = ∅. Hence, S contains at least k vertex gadgets. We assume towards a
contradiction that S contains two vertex gadgets T v and Tw such that vw /∈ E(G).
In each case, we will determine a vertex uv ∈ T v and a vertex uw ∈ Tw such
that distG′(uv, uw) ≥ s + 1. This contradiction to the s-club property allows us to
conclude that the set {v | T v ⊆ S} is a clique of size at least k in G.

Case I: s is odd. We define vertex uv as follows. The vertex uw is defined
analogously. Recall that in this case we have s∗ = (s− 1)/2.

• If s ≡ 3 mod 4, we set uv := xv
(s+1)/4,1.

• Otherwise, if s ≡ 1 mod 4, we set uv := yv(s−1)/4,1.

Observe that for each vertex u ∈ T v
0 ∪ T v

ℓ we have distG′(uv, u) = (s − 1)/2.
Furthermore, recall that the vertices in T v

0 ∪ T v
ℓ are the only vertices in T v with

neighbors in other vertex gadgets.

Similarly, for each vertex u′ ∈ Tw
0 ∪ Tw

ℓ we have distG′(uw, u
′) = (s − 1)/2.

But since vw /∈ E(G) there are no edges between T v and Tw and we obtain for
each choice of u and u′ that distG′(uv, uw) ≥ distG′(uv, u) + 2 + distG′(u′, uw) =
(s− 1)/2 + 2 + (s− 1)/2 = s+ 1, a contradiction.

Case II: s is even and ℓ ≥ 3. We set uv := pv2 and uw := xw
s∗,1. Note that uv ∈ T v

0

since ℓ ≥ 3. By the construction we obtain that for each vertex u0 ∈ {pv1, qv1} we
have distG′(uv, u0) = 2 since T v

0 ⊆ N(xv
1,1). Furthermore, for each vertex uℓ ∈ {pvℓ , qvℓ }

we have distG′(uv, uℓ) = s − 2. Next, observe that for each vertex u′
0 ∈ {pw1 , qw1 } we

have distG′(uw, u
′
0) = s−3 and for each vertex u′

ℓ ∈ {pwℓ , qwℓ } we have dist(uw, u
′
ℓ) = 1.
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Since vw /∈ E(G), there are no edges between the gadgets T v and Tw. Hence,

distG′(uv, uw) ≥ min(distG′(uv, u0) + 2 + distG′(u′
0, uw),

≥ 4545 distG′(uv, uℓ) + 2 + distG′(u′
ℓ, uw))

for each vertex u0 ∈ {pv1, qv1}, each u′
0 ∈ {pw1 , qw1 }, each uℓ ∈ T v

ℓ , and each u′
ℓ ∈ Tw

ℓ . By
the above argumentation we obtain distG′(uv, uw) ≥ min(2+2+s−3, s−2+2+1) =
s+ 1, a contradiction.

Case III: s is even and ℓ = 2. We define the vertices uv and uw as follows:

• If s = 4, we set uv := xv
1,2 and uw := pw2 .

• If s ≡ 0 mod 4 and s ≥ 8, we set uv := xv
s/4,1 and uw := yws/4,1.

• If s ≡ 2 mod 8, we set uv := yv(s−2)/4,2 and uw := xw
(s+2)/4,1.

• If s ≡ 6 mod 8, we set uv := yv(s−2)/4,1 and uw := xw
(s+2)/4,2.

From the definition of these vertices we obtain that distG′(uv, p
v
1) = s/2 − 1,

distG′(uv, x
v
s∗,1) = s/2, distG′(uw, p

w
1 ) = s/2, and that distG′(uw, x

w
s∗,1) = s/2 − 1.

Recall that the vertices pu1 and xu
s∗,1 are the only vertices in T u which have neighbors

outside T u for each u ∈ V (G). Furthermore, observe that all neighbors of pu1 which
are not contained in T u are the vertices xb

s∗,1 where ub ∈ E(G). Similar, all neighbors
of xu

s∗,1 which are not in T u are of the form pb1 where ub ∈ E(G). We conclude
that distG′(uv, uw) ≥ distG′(uv, p

v
1)+3+distG′(xw

s∗,1, uw). Here, the ’+3’ results from
the fact that at least 3 edges to switch the vertex gadgets have to be used: one is
not sufficient since uw /∈ E(G) and also two are not sufficient since in two steps one
can only reach a vertex pc1 for c ∈ V (G) from pv1 but no vertex xd

s∗,1 for d ∈ V (G).
Hence, distG′(uv, uw) ≥ s/2− 1 + 3 + s/2− 1 = s+ 1, a contradiction.

6.2 Edge Triangle s-Club

In this section we settle the parameterized complexity of Edge Triangle s-Club
with respect to the solution size k. Recall that a vertex set S is an edge-ℓ-triangle s-
club if G[S] contains a spanning subgraph G′ = (S,E ′) such that each edge in E(G′)
is contained in at least ℓ triangles within G′ and the diameter of G′ is at most s.
First, we show that Edge Triangle s-Club is FPT with respect to k when ℓ = 1
irrespective of the value of s by providing a Turing kernel. To show this, it is sufficient
to delete edges which are not part of a triangle. Afterwards, we prove W[1]-hardness
of Edge Triangle s-Club with respect to k for all fixed ℓ ≥ 2.
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6.2.1 Edge Triangle s-Club with ℓ = 1

Now, we prove that Edge Triangle s-Club for ℓ = 1 admits a Turing kernel with
respect to k implying that the problem is FPT. To obtain the kernel we need the
following reduction rule which removes edges which are in no triangle.

Reduction Rule 6.2. Let (G, k) be an instance of Edge Triangle s-Club.
Delete all edges from G which are not part of any triangle.

It is clear that Reduction Rule 6.2 is correct and can be applied in polynomial
time. The idea is that after Reduction Rule 6.2 is applied, we can bound the size
of the neighborhood of each vertex. Next, we prove that after the application of
Reduction Rule 6.2 each edge with both endpoints in the closed neighborhood of a
vertex w is contained in a triangle which is contained completely in N [w].

Lemma 6.16. Let (G, k) be an instance of Edge Triangle s-Club with ℓ = 1 to
which Reduction Rule 6.2 is applied. For each vertex v ∈ V (G) each edge in G[N [v]]
is contained in at least one triangle in G[N [v]].

Proof. First, we consider edges of the form uv where u is a neighbor of v. Since
Reduction Rule 6.2 is applied, there exists another vertex w ∈ V (G) such that
G[{u, v, w}] is a triangle. Observe that w ∈ N(v).

Second, each edge uw with u,w ∈ N(v) is in a triangle with vertex v.

Next, we show that any instance such that sufficiently many vertices are close to
some vertex v is a yes-instance.

Lemma 6.17. Let (G, k) be an instance of Edge Triangle s-Club with ℓ = 1 to
which Reduction Rule 6.2 is applied. Then, (G, k) is a yes-instance if |N⌊s/2⌋[v]| ≥ k
for some vertex v ∈ V (G).

Proof. By Lemma 6.16 each edge in G[N⌊s/2⌋[v]] is contained in at least one triangle
in G[N⌊s/2⌋[v]] since N⌊s/2⌋[v] =

⋃︁
w∈N⌊s/2⌋−1[v]

N [w] for each s ≥ 4. Furthermore,

each vertex in N⌊s/2⌋[v] has distance at most ⌊s/2⌋ to vertex v. Hence, N⌊s/2⌋[v] is
an s-club and by assumption |N⌊s/2⌋[v]| ≥ k.

Lemma 6.17 implies a Turing kernel for k which implies that the problem is
fixed-parameter tractable.

Theorem 6.18. Edge Triangle s-Club for ℓ = 1 admits a k2-vertex Turing
kernel if s is even and a k3-vertex Turing kernel if s is odd and s ≥ 3.
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Proof. First, we apply Reduction Rule 6.2. Because of Lemma 6.17 we conclude
that (G, k) is a trivial yes-instance, if |N⌊s/2⌋[v]| ≥ k for some v ∈ V (G). Hence, in
the following we can assume that k > |N⌊s/2⌋[v]| for each vertex v ∈ V (G).

First, we consider the case that s is even. Then ⌊s/2⌋ = s/2 and we obtain
that Ns[v] ⊆ Ns/2[Ns/2[v]] for each v ∈ V (G). Thus, |Ns[v]| ≤ k2.

Second, we consider the case that s is odd. Observe that we have Ns[v] ⊆
N⌊s/2⌋[N⌊s/2⌋[N⌊s/2⌋[v]]] for each v ∈ V (G). Thus, |Ns[v]| ≤ k3.

6.2.2 Edge Triangle s-Club for ℓ ≥ 2

Now we show W[1]-hardness for the remaining cases.

Theorem 6.19. Edge Triangle s-Club is W[1]-hard for parameter k if ℓ ≥ 2.

Next, we describe the construction of the reduction to prove Theorem 6.19. We
reduce from Clique. The idea is to construct one vertex gadget for each vertex of
the Clique instance and to add edges between two different vertex gadgets if and
only if the two corresponding vertices are adjacent in such a way that all these edges
are in exactly ℓ triangles. For an illustration of this construction see Figure 6.5.

Construction 6.20. Let (G, k) be an instance of Clique with k ≥ 3. We construct
an equivalent instance (G′, k′) of Edge-Triangle s-Club for some fixed ℓ ≥ 2 as
follows. Let ℓ∗ := ⌈ℓ/2⌉ and let x := 6 · ℓ∗(s− 1) + ⌊ℓ/2⌋. For each vertex v ∈ V (G),
we construct the following vertex gadget T v. For better readability, all sub-indices of
the vertices in T v are considered modulo x. Our construction distinguishes between
even and odd values of ℓ. First, we describe the part of the construction which both
cases have in common.

1. We add vertex sets Av := {avi | i ∈ [0, x]} and Bv := {bvi | i ∈ [0, x]} to G′.

2. We add the edges avi a
v
i+j, and bvi b

v
i+j for each i ∈ [0, x] and each j ∈ [−3ℓ∗, 3ℓ∗]\

{0} to G′.

3. We add the edge avi b
v
i+j for each i ∈ [0, x] and each j ∈ [−3ℓ∗, 3ℓ∗] to G′.

In other words, an edge avi b
v
j is added if the indices differ by at most 3ℓ∗. For

even ℓ, this completes the construction of T v. For odd ℓ, we extend T v as follows:

0-1. We add the vertex set Cv := {cvi | i ∈ [0, x] and i ≡ 0 mod ℓ∗} to G′. Note
that Cv consists of exactly 6s− 5 vertices.

157



Chapter 6. Complexity of s-Club with Triangle and Seed Constraints

av0 av1 av2 av3 av4 av5 av6 av7 av8 av9 av10 av11 av12 av13 Av

Bw

Aw

bu0 bu1 bu2 bu3 bu4 bu5 bu6 bu7 bu8 bu9 bu10 bu11 bu12 bu13
Bu

Figure 6.5: Construction for Theorem 6.19 when s = 3 and ℓ = 2 andG is a P3 on {u, v, w}
with uv /∈ E(G). Only the gadgets Av, Bw, Aw, and Bu are shown. For simplicity, no edges
within Av, Bw, Aw, and Bu are drawn and edges between Bw and Aw are only drawn if
one endpoint is aw3 , a

w
4 , a

w
9 , or a

w
10.

Blue encircled vertices are neighbors of av0, red encircled vertices have distance 2 to av0,
and black encircled vertices have distance 3 to av0. Thus, av0 and bu7 = bu0+1+3·1·2 =
bu0+⌊ℓ/2⌋+3ℓ∗(s−1) have distance at least 4.

0-2. We add the edges cvi a
v
i+j and cvi b

v
i+j for each i ∈ [0, x] such that i ≡ 0 mod ℓ∗

and each j ∈ [−3ℓ∗, 3ℓ∗] to G′.

0-3. Also, we add the edge cvi c
v
i+j to G′ for each i ∈ [0, x] such that i ≡ 0 mod ℓ∗

and each j ∈ [−3ℓ∗, 3ℓ∗] \ {0} to G′ if the corresponding vertex cvi+j exists.

In other words, an edge between cvi and avj , b
v
j , or c

v
j is added if the indices differ

by at most 3ℓ∗. Now, for each edge uv ∈ E(G), we add the following to G′:

0-4. We add the edges avi b
u
i+j and aui b

v
i+j for each i ∈ [0, x] and j ∈ [0, ⌊ℓ/2⌋].

0-5. If ℓ is odd, we also add the edges cvi b
u
i+j and cui b

v
i+j for each i ∈ [0, x] such

that i ≡ 0 mod ℓ∗ and each j ∈ [0, ⌊ℓ/2⌋] to G′.

Observe that each vertex bui+j is adjacent to exactly one vertex in Cv.

In other words, an edge between avi or cvi and bvj is added if j exceeds i by at
most ⌊ℓ/2⌋. Finally, if ℓ is even, we set k′ := 2(x+ 1)k = (ℓ(6s− 5) + 2) · k, and if ℓ
is odd, we set k′ := (2(x+ 1) + 6s− 5)k = (ℓ+ 2)(6s− 5) · k.

Construction 6.20 has two key mechanisms: First, if uv /∈ E(G) then for each
vertex a ∈ Av there is at least one vertex b ∈ Bu such that dist(a, b) > s. Second,
each edge with one endpoint in Av and one endpoint in Bu is contained in exactly ℓ
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triangles. Furthermore, if ℓ is odd, then this also holds for each edge with one
endpoint in Cv and one in Bu. Consider an edge-ℓ-triangle s-club S in G and let ˜︁G =
(S, ˜︁E) be a spanning subgraph of G[S] with the maximal number of edges, such that

each edge of ˜︁E is contained in at least ℓ triangles in ˜︁G and the diameter of ˜︁G is s.
As we will show, the two mechanisms ensure that an edge with one endpoint in Av

(or Cv) and the other endpoint in Bu is contained in ˜︁E if and only if S contains all
vertices of Av (and Cv) and Bu. We call this the enforcement property. Next, we
formalize this property. To this end, we introduce the following notation. By Euv we
denote the set of all edges with one endpoint in Av (or Cv if ℓ is odd) and the other
endpoint in Bu.

Lemma 6.21. Let S be an edge-ℓ-triangle s-club in the graph G′ constructed in
Construction 6.20. More precisely, let ˜︁G = (S, ˜︁E) be a maximal subgraph of G′[S]

such that each edge in E( ˜︁G) is contained in at least ℓ triangles within ˜︁G and the

diameter of ˜︁G is at most s. Let e ∈ Euv. Then e ∈ E( ˜︁G) if and only if Av, Bu ⊆ S
(and Cv ⊆ S, if ℓ is odd).

Proof. Before we show the two implications, we prove the following cascading prop-
erty of edge-ℓ-triangle s-clubs which contain at least one edge of Euv.

Claim 6. If avi b
u
j ∈ E( ˜︁G) or cvi b

u
j ∈ E( ˜︁G), then Euv ⊆ E( ˜︁G).

Proof of Claim. First, we consider even values of ℓ. Note that ℓ∗ = ⌊ℓ/2⌋ = ℓ/2 =
⌈ℓ/2⌉. By construction we have:

• N [avi ] = {avi+i′ , b
v
i+i′ | i′ ∈ [−3ℓ/2, 3ℓ/2]} ∪ {bwi+i′ | i′ ∈ [0, ℓ/2] and vw ∈ E(G)},

and

• N [buj ] = {auj+i′ , b
u
j+i′ | i′ ∈ [−3ℓ/2, 3ℓ/2]}∪{awj−i′ | i′ ∈ [0, ℓ/2] and uw ∈ E(G)}.

Since avi b
u
j ∈ E(G′) we obtain by Part 0-4. of Construction 6.20 that j = i+z for

some z ∈ [0, ℓ/2]. Without loss of generality we assume that z > 0. Let y := ℓ/2− z
and observe thatN(avi )∩N(buj ) = {avi+i′ | i′ ∈ [−y, z]\{0}}∪{buj+i′ | i′ ∈ [−z, y]\{0}}.
Thus, the edge avi b

u
j is contained in exactly ℓ triangles whose vertex sets are all

contained in G′[Av ∪Bu]. Since avi b
u
j ∈ E( ˜︁G), we thus conclude that all vertices and

edges which form these ℓ triangles are contained in ˜︁G. Since avi b
u
j ∈ E( ˜︁G) and we

assume that z > 0, we obtain that avi+1 ∈ V ( ˜︁G) and avi+1b
u
j ∈ E( ˜︁G). Now, j = i+1+z′

where z′ = z − 1 and thus z < ℓ/2. By similar arguments as before, we can show

that avi+1b
u
j+1 ∈ E( ˜︁G) and thus also that avi+1, b

u
j+1 ∈ V ( ˜︁G). Now, since avi+1b

u
j+1 ∈

E( ˜︁G) we can repeat the above argumentation for the edge avi+1b
u
j+1 and inductively
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for the edge avi+qb
v
i+q for all q ∈ [x]. We then have verified that Av ∪Bu ⊆ V ( ˜︁G) and

that each edge in Euv is contained in E( ˜︁G). Recall that Av and Bu have size x+ 1.
Second, we consider odd values of ℓ, that is ℓ = 2t + 1 for some integer t. Note

that ⌊ℓ/2⌋ = t and that ℓ∗ = ⌈ℓ/2⌉ = t+ 1. Furthermore, observe that vertex buj has
exactly one neighbor cvj−i′ in Cv for some i′ ∈ [0, t] such that j − i′ mod (t+ 1) = 0.

Hence, by construction we have

• N [avi ] = N [cvi ] = {avi+i′ , b
v
i+i′ | i′ ∈ [−3(t + 1), 3(t + 1)]} ∪ {cvi+i′ | i′ ∈ [−3(t +

1), 3(t+ 1)] and (i+ i′) mod (t+ 1) = 0} ∪ {bwi+i′ | i′ ∈ [0, t] and vw ∈ E(G)},
and

• N [buj ] = {auj+i′ , b
u
j+i′ | i′ ∈ [−3(t + 1), 3(t + 1)]} ∪ {cuj+i′ | i′ ∈ [−3(t + 1), 3(t +

1)] and (j+ i′) mod (t+1) = 0}∪ {awj−i′ | i′ ∈ [0, t] and uw ∈ E(G)}∪ {cwj−i′ |
i′ ∈ [0, t] and (j − i′) mod (t+ 1) = 0 and uw ∈ E(G)}.

Since avi b
u
j ∈ E(G′) we obtain by Part 0-4. of Construction 6.20 that j = i+z for

some z ∈ [0, t]. Without loss of generality we assume that z > 0. Now, let y := t− z
and let cvi′ be the unique neighbor of buj in Cv. We conclude that N(avi ) ∩ N(buj ) =
{avi+j′ | j′ ∈ [−y, z] \ {0}} ∪ {buj+j′ | j′ ∈ [−z, y] \ 0} ∪ {cvi′}.

Hence, both vertices have exactly t+t+1 = ℓ common neighbors and thus N(avi )∩
N(buj ) ⊆ S. By similar arguments a similar statement can be shown for the edge cvi b

u
j .

Thus, the edges avi b
u
j and cvi b

u
j are contained in exactly ℓ triangles whose vertex sets

are all contained in G′[Av ∪ Cv ∪ Bu]. Since avi b
u
j ∈ E( ˜︁G) we thus conclude that all

vertices and edges which form these ℓ triangles are contained in ˜︁G.
Furthermore, since avi b

u
j ∈ E( ˜︁G) and we assume that z > 0, we obtain that avi+1 ∈

V ( ˜︁G) and avi+1b
u
j ∈ E( ˜︁G). Now, j = i + 1 + z′ where z′ = z − 1 and thus z <

ℓ/2. By similar arguments as before, we can show that avi+1b
u
j+1 ∈ E( ˜︁G) and thus

also that avi+1, b
u
j+1 ∈ V ( ˜︁G). Now, since avi+1b

u
j+1 ∈ E( ˜︁G) we can repeat the above

argumentation for the edge avi+1b
u
j+1 and inductively for the edge avi+qb

v
i+q for all q ∈

[x]. We then have verified that Av ∪ Bu ∪ Cv ⊆ V ( ˜︁G) and that each edge in Euv is

contained in E( ˜︁G). ■
Now, we are ready to prove the two implications. The implication that if e ∈ E( ˜︁G)

then Av, Bu ⊆ S (and Cv ⊆ S, if ℓ is odd) directly follows from Claim 6. It remains

to show the other implication. From Claim 6 we conclude that either Euv ⊆ E( ˜︁G)

or Euv ∩ E( ˜︁G) = ∅. If Euv ⊆ E( ˜︁G), then we are done, so we assume towards a

contradiction that Euv ∩ E( ˜︁G) = ∅. Recall that Av ∪ Bu ⊆ S (and also Cv ⊆ S is ℓ

is odd). Furthermore, recall that ˜︁G is maximal, that is, there exists no spanning

subgraph of G′[S] which has more edges than ˜︁G. The proof of Claim 6 also shows
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that each edge in Euv is contained in exactly ℓ triangles. Thus, adding all edges
in Euv to ˜︁G is still an edge-ℓ-triangle s-club, a contradiction to the assumption
that ˜︁G contains the maximal number of possible edges.

Now, we prove the correctness of the reduction for Theorem 6.19.

Proof of Theorem 6.19. We show that G contains a clique of size at least k if and
only if G′ contains an edge-ℓ-triangle s-club of size at least k′.

Let K be a clique of size k in G. Recall that T v is the gadget of vertex v ∈ V (G).
We verify that S := {v ∈ V (T v) | v ∈ K} is an edge-ℓ-triangle s-club of size at
least k′. More precisely, we show that S fulfills all properties of being an edge-ℓ-
triangle s-club. Since |T v| = 2ℓ∗(6s− 5) + 2 if ℓ is even and |T v| = (2ℓ∗ + 1)(6s− 5)

if ℓ is odd for each v ∈ K and since |K| ≥ k, we have |S| = |V ( ˜︁G)| ≥ k′. It remains
to show that S is an edge-ℓ-triangle s-club. First, we prove the s-club property.

Claim 7. ˜︁G is an s-club.

Proof of Claim. First, we show that T v is an s-club. For this, consider the vertex
pair {avi , avj} for some v ∈ K. Observe that P := (avi , a

v
i+1, . . . , a

v
i+p) for i + p = j is

a path of length p from avi to avj and that Q := (avi , a
v
i−1, . . . , a

v
i−q) for i− q = j is a

path of length q from avi to avj . Clearly, p+q = x+1. Hence, min(p, q) ≤ (x+1)/2 ≤
3ℓ∗(s− 1)+ ⌊ℓ/2⌋. Without loss of generality, assume that the minimum is achieved
by path P and assume that p = α · (3ℓ∗) + β for some α ∈ [s− 1] and some β < 3ℓ∗.
Recall that by Part 2 of Construction 6.20, avi′a

v
j′ ∈ E(G′) if and only if j′ = i′+z for

some z ∈ [−3ℓ∗, 3ℓ∗] \ {0}. Hence, (avi , a
v
i+1·(3ℓ∗), . . . , a

v
i+α·(3ℓ∗), a

v
i+α·(3ℓ∗)+β) is a path

of length at most (s− 1) + 1 = s from avi to avj .
These arguments also apply symmetrically to the vertex pairs {bvi , bvj} and {avi , bvj}

for each v ∈ K. Furthermore, if ℓ is odd, observe that the above argumentation can
also be used to show that the vertex pairs {cvi , avj}, {cvi , bvj}, and {cvi , cvj} have distance
at most s to each other.

Second, we show that avi has distance at most s to buj . Note that by Part 0-
4. of Construction 6.20, avi has neighbors bui , . . . , b

u
i+⌊ℓ/2⌋ since uv ∈ E(G). In the

following, we assume that j ̸= i + z for all z ∈ [0, ⌊ℓ/2⌋]. Consider the paths P :=
(avi , b

u
i+⌊ℓ/2⌋, b

u
i+⌊ℓ/2⌋+1, . . . , , b

u
i+⌊ℓ/2⌋+p) for i + ⌊ℓ/2⌋ + p = j of length p + 1 and Q :=

(avi , b
u
i , b

u
i−1, . . . , b

u
i−q) for i− q = j of length q + 1. Observe that (p+ 1) + (q + 1) =

(x + 3) − ⌊ℓ/2⌋. Thus, p + q = (x + 1) − ⌊ℓ/2⌋ = 6ℓ∗(s − 1) + 1. Since p and q are
integers we have min(p, q) ≤ ⌊((x+ 1)− ⌊ℓ/2⌋)/2⌋ = 3ℓ∗(s− 1).

Without loss of generality assume that the minimum is achieved by path P and
assume that p = α · (3ℓ∗) + β for some α ∈ [s − 2] and some β ∈ [3ℓ∗]. Recall that

161



Chapter 6. Complexity of s-Club with Triangle and Seed Constraints

by Part 2 of Construction 6.20, we have bui′b
u
j′ ∈ E(G′) if and only if j′ = i′ + z for

some z ∈ [−3ℓ∗, 3ℓ∗] \ {0}. Now, observe that

(avi , b
u
i+⌊ℓ/2⌋, b

u
i+⌊ℓ/2⌋+1·(3ℓ∗), . . . , b

u
i+⌊ℓ/2⌋+α·(3ℓ∗), b

u
i+⌊ℓ/2⌋+α·(3ℓ∗)+β)

is a path of length at most 1 + (s− 2) + 1 = s from avi to buj .
Furthermore, if ℓ is odd, observe that the above argumentation can also be used

to show that the vertex pairs {cvi , buj } have distance at most s to each other by
replacing avi with cvi in the paths P and Q.

The fact that vertices avi and auj , and bvi and buj , respectively, have distance at
most s to each other can be proven similarly as we showed that avi and buj have
distance at most s by observing that avi has distance 2 to each vertex aui+z with z ∈
[−3ℓ∗, ⌊ℓ/2⌋ + 3ℓ∗] since avi has neighbors bui , . . . , b

u
i+⌊ℓ/2⌋ and since by Part 2 of

Construction 6.20, we have bui′a
u
j′ ∈ E(G′) if and only if j′ = i′ + z′ for some z′ ∈

[−3ℓ∗, 3ℓ∗].
Furthermore, if ℓ is odd, observe that the above argumentation can also be used

to show that the vertex pairs {cvi , auj } and {cvi , cuj } have distance at most s to each
other by replacing avi with cvi and replacing auj with cuj , respectively, in the paths P
and Q.

Hence, S is indeed an s-club. ■
Second, we show that each triangle is contained in sufficiently many triangles.

Claim 8. Each edge in E( ˜︁G) is contained in at least ℓ triangles which are contained

in ˜︁G.

Proof of Claim. Consider the edge avi a
v
i+j for some j ∈ [−3ℓ∗, 3ℓ∗] \ {0}. Without

loss of generality, assume that j > 0. By Part 2 of Construction 6.20, both vertices
are adjacent to each vertex avi+i′ with i′ ∈ [3ℓ∗] \ {j}. Hence, both vertices are in at
least 3ℓ∗ − 1 ≥ ℓ triangles.

Furthermore, the statement can be shown analogously for the edges bvi b
v
i+j (and

cvi c
v
i+j if ℓ is odd) for some j ∈ [−3ℓ∗, 3ℓ∗] \ {0}.
Also, the statement can be shown analogously for the edge avi b

v
i+j for some j ∈

[−3ℓ∗, 3ℓ∗]. If j ≥ 0, then avi+z for each z ∈ [3ℓ∗] is a common neighbor of both
vertices and thus the edge avi b

v
i+j is contained in at least ℓ triangles. The case j < 0

can be shown analogously.
For odd ℓ, the statement can be shown analogously for the edges avi c

v
i+j and bvi c

v
i+j

for some j ∈ [−3ℓ∗, 3ℓ∗], and for the edges cvi c
v
i+j for some j ∈ [−3ℓ∗, 3ℓ∗] \ {0}.

The fact that the edges avi b
u
i+j and cvi b

u
i+j are contained in exactly ℓ triangles

follows from the proof of Lemma 6.21.
We conclude that each edge in E( ˜︁G) is contained in at least ℓ triangles in ˜︁G. ■
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Thus, S is indeed an edge-ℓ-triangle s-club of size k′.
Conversely, let S be an edge-ℓ-triangle s-club of size at least k′ in G′. More

precisely, let ˜︁G be a maximal spanning subgraph of G′[S] which has diameter at

most s and such that each edge in E( ˜︁G) is contained in at least ℓ triangles is ˜︁G. We
show that G contains a clique of size at least k.

First, we show that for each vertex x ∈ Av ∪ Bv ∪ Cv there exists a vertex y ∈
Au ∪ Bu ∪ Cu such that dist(x, y) ≥ s + 1 if uv /∈ E(G). For this, recall that by
construction each two vertices with sub-indices i′ and j′ are not adjacent if their
difference (modulo x) is larger than 3ℓ∗. Also recall that the vertices Cv only exist
if ℓ is odd.

Claim 9. In G′ we have dist(xi, yj) ≥ s+1 for each i ∈ [0, x], j := i+⌊ℓ/2⌋+3ℓ∗(s−
1), xi ∈ {avi , bvi , cvi }, and yj ∈ {auj , buj , cuj } if uv /∈ E(G).

Proof of Claim. There are two possible paths from xi to yi+⌊ℓ/2⌋+3ℓ∗(s−1) with
respect to the indices. First, there is a subsequence of the indices which is increasing
(i, i+1, . . . , i+ ⌊ℓ/2⌋+3ℓ∗(s− 1)). This path has length ⌊ℓ/2⌋+3ℓ∗(s− 1). Second,
there is a subsequence of the indices which is decreasing (i, i−1, . . . , i−i′, where−i′ :=
⌊ℓ/2⌋+ 3ℓ∗(s− 1)). This path has length 3ℓ∗(s− 1) + 1.

Hence, each path from xi to yi+⌊ℓ/2⌋+3ℓ∗(s−1) has to overcome at least 3ℓ∗(s−1)+1
indices. Observe that whenever an edge between Ap (or Cp) and Bq for p, q ∈ V (G)
with pq ∈ E(G) is traversed, by construction the index can increase/decrease by at
most ⌊ℓ/2⌋. Now, we use the fact that uv /∈ E(G): There are no edges between
the vertex gadgets T v and T u. Thus, at least two times such a traversal of at
most ⌊ℓ/2⌋ indices has to be done. Hence, the index i can increase or decrease by
at most 2 · ⌊ℓ/2⌋ + 3ℓ∗(s − 2) < 3ℓ∗(s − 1) + 1 if at least 2 edge traversals between
different vertex gadgets are necessary. Thus, the two vertices xi and yj have distance
at least s+ 1. ■

The following statement directly follows from Claim 9.

Claim 10. If Av ⊆ S (or Cv ⊆ S if ℓ is odd) and Bu ⊆ S then uv ∈ E(G).

We now use Claims 9 and 10 to show that G contains a clique of size at least k.
We distinguish between the cases whether S contains only parts of one of the gad-
gets Av, Bv, or Cv or whether S contains all vertices of the gadgets Av (or Bv, or Cv)
completely.

First, assume that for some vertex v ∈ V (G) we have Av ∩S ̸= ∅ and Av ̸⊆ S. In
the following, we show that S only contains vertices of gadget T v and from gadgets T u

such that uv ∈ E(G). Since Av ̸⊆ S, we conclude that in ˜︁G we have N ˜︁G(Av ∩ S) ⊆
(Bv ∪ Cv): Otherwise, since vertex av ∈ Av ∩ S has a neighbor bu ∈ Bu and by
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Lemma 6.21 we would obtain Av ⊆ S, a contradiction to the assumption Av ̸⊆ S.
If Bv ̸⊆ S, then by Lemma 6.21 no vertex in Bv can have a neighbor awi or cwi for
some w ̸= v. Note that Bv may have neighbors in Cv. Hence, S ∩ T v would be
a connected component of size at most 3(x + 1), a contradiction to the size of S
since k ≥ 3. Thus, we may assume that Bv ⊆ S.

Observe that if awi ∈ S or cwi ∈ S for some w ∈ V (G) such that vw ∈ E( ˜︁G), that
is, also vw ∈ E(G′) and thus also yw ∈ E(G), then we have Aw ⊆ S and Cw ⊆ S by
Lemma 6.21 since each vertex awi and cwi has a neighbor in Bv. LetW := {w1, . . . , wt}
denote the set of vertices wj such that vwj ∈ E(G) and Awj

, Cwj
⊆ S. If wxwy /∈

E(G) for some x, y ∈ [t] with x ̸= y, then awx
0 and a

wy

⌊ℓ/2⌋+3ℓ∗(s−1) have distance at

least s+ 1 by Claim 9. Thus wxwy ∈ E(G) for each x, y ∈ [t] with x ̸= y.

Assume towards a contradiction that api ∈ S or cpi ∈ S for some p ∈ V (G) \W
with p ̸= v. Note that pv /∈ E(G) since otherwise p ∈ W by the definition of W .
Observe that since Bv ⊆ S we also have bvi+⌊ℓ/2⌋+3ℓ∗(s−1) ∈ S. But since pv /∈ E(G)

we obtain from Claim 9 that dist(zi, b
v
i+⌊ℓ/2⌋+3ℓ∗(s−1)) ≥ s+1 for zi = api or z

p
i = ci, a

contradiction. We conclude that S does not contain any vertex api or cpi with p ̸= v
or p ̸= wj for j ∈ [t].

Next, assume towards a contradiction that bpi ∈ S for some p ∈ V (G) \W with
p ̸= v. If pv /∈ E(G), then bpi and bvi+⌊ℓ/2⌋+3ℓ∗(s−1) have distance at least s+1 again by

Claim 9. Thus, we can assume that pv ∈ E(G). Recall that bvi+⌊ℓ/2⌋+3ℓ∗(s−1) ∈ S. As

defined by Claim 9, each shortest path from bpi to bvi+⌊ℓ/2⌋+3ℓ∗(s−1) can swap at most
once between different vertex gadgets. In this case, there is exactly one swap from T p

to T v. From the above we know that (Ap ∪ Cp) ∩ S = ∅. Thus, each shortest path
from bpi to bvi+⌊ℓ/2⌋+3ℓ∗(s−1) uses at least one vertex in Av ∪Cv. Since at least one edge

with an endpoint in Av ∪ Cv is contained in E( ˜︁G), we conclude from Lemma 6.21
that Av ∪ Cv ⊆ S, a contradiction to the assumption Av ̸⊆ S.

Hence, there is no vertex p ̸= v and p /∈ W such that T p∩S ̸= ∅. In other words, S
contains only vertices from the gadget T v and from gadgets T u with vu ∈ E(G).
Thus, S ⊆ T v ∪

⋃︁t
j=1 T

wj . By definition of k′, we have t ≥ k − 1 and we conclude
that G contains a clique of size at least k. The case that we have Bv ∩ S ̸= ∅
and Bv ̸⊆ S or Cv ∩ S ̸= ∅ and Cv ̸⊆ S for some vertex v ∈ V (G) can be handled
similarly.

Second, consider the case that for each set Av with Av ∩ S ̸= ∅ we have Av ⊆ S,
that for each set Bv with Bv ∩ S ̸= ∅ we have Bv ⊆ S , and if ℓ is odd, that
for each set Cv with Cv ∩ S ̸= ∅ we have Cv ⊆ S. Let WA := {wj

A ∈ V (G) |
Awj
⊆ S}, WB := {wj

B ∈ V (G) | Bwj
⊆ S}, and WC := {wj

C ∈ V (G) | Cwj
⊆ S}.

If WA = ∅ or WB = ∅ or WC = ∅ (recall that these vertices only exist if ℓ is odd),
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then each connected component in G′[S] has size at most 2(x + 1) < k′. Thus, we
may assume that WA ̸= ∅, WB ̸= ∅, and WC ̸= ∅. By Claim 10, we have wi

Aw
j
B ∈

E(G) for each wi
A ∈ WA and wj

B ∈ WB and, if ℓ is odd, also wi
Cw

j
B ∈ E(G) for

each wi
C ∈ WC and wj

B ∈ WB. Furthermore, by Claim 9, we have wj
Bw

j′

B ∈ E(G) for

distinct wj
B, w

j′

B ∈ WB, w
i
Aw

i′
A ∈ E(G) for distinct wi

A, w
i′
A ∈ WA, and if ℓ is odd we

also have wi
Cw

i′
C ∈ E(G) for distinct wi

C , w
i′
C ∈ WC and wi

Aw
i′
C ∈ E(G) for wi

A ∈ WA

and wi′
C ∈ WC .

Recall that k′ = yk where y := 2(x+1)k if ℓ is even and y := (2(x+1)+6s− 5)k
if ℓ is odd and that for each vertex v ∈ V (G) we have |Av|+ |Bv|+ |Cv| = y. Hence,
we obtain that max(|WA|, |WB|, |WC |) ≥ k. Without loss of generality, we assume
that |WA| ≥ k. Then since wi

Aw
i′
A ∈ E(G) for distinct wi

A, w
i′
A ∈ WA we conclude

that G contains a clique of size at least k.

6.3 Seeded s-Club

In this section we study the parameterized complexity of Seeded s-Club with
respect to the standard parameter solution size k. Recall that in this problem we aim
to find an s-club containing a given seed of vertices. Here, we assume that |W | < k
since otherwise the problem can be solved in polynomial time.

6.3.1 Tractable Cases

For clique seeds, we provide the following kernel. Note that here we present a kernel
and not only a Turing kernel.

Theorem 6.22. Seeded s-Club admits a kernel with O(k2|W |+1) vertices if W
induces a clique.

Note that this kernel has polynomial size if W has constant size. In the following,
assume that G[W ] is a clique. To prove the kernel, we first remove all vertices with
distance at least s + 1 to any vertex in W . Second, we show that if the remaining
graph, that is Ns[W ], is sufficiently large, then (G,W, k) is a trivial yes-instance.

Reduction Rule 6.3. Let (G,W, k) be an instance of Seeded s-Club. If G
contains a vertex u such that dist(u,w) ≥ s+ 1 for some w ∈ W , then remove u.

Clearly, Reduction Rule 6.3 is correct and can be applied in polynomial time.
Next, we show that if the remaining graph is sufficiently large, then (G,W, k) is a
yes-instance of Seeded s-Club.
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Lemma 6.23. An instance (G,W, k) of Seeded s-Club with |Ns−1[W ]| ≥ k2 is
a yes-instance.

To prove Lemma 6.23 for s ≥ 3 we need the following technical lemmas.

Lemma 6.24. An instance (G,W, k) of Seeded s-Club with s ≥ 3 is a yes-
instance if |N⌊(s+1)/2⌋−1[W ]| ≥ k.

Proof. By definition W ⊆ N⌊(s+1)/2⌋−1[W ] and |N⌊(s+1)/2⌋−1[W ]| ≥ k. Thus, it re-
mains to show that N⌊(s+1)/2⌋−1[W ] is an s-club. For this, consider a pair of ver-
tices u, v ∈ N⌊(s+1)/2⌋−1[W ]. Observe that by definition dist(u,W ) ≤ ⌊(s+ 1)/2⌋ − 1
and dist(v,W ) ≤ ⌊(s + 1)/2⌋ − 1. Since W is a clique, we have dist(u, v) ≤
(⌊(s+ 1)/2⌋ − 1) + 1 + (⌊(s+ 1)/2⌋ − 1) ≤ s. Hence, the lemma follows.

Note that the assumption s ≥ 3 in Lemma 6.24 is necessary to guarantee that ⌊(s+
1)/2⌋ − 1 ≥ 1. Next, we show that if a vertex in N⌊(s+1)/2⌋−1(W ) has many vertices
close to it, then (G,W, k) is a yes-instance.

Lemma 6.25. An instance (G,W, k) of Seeded s-Club with s ≥ 3 and with
|N⌊s/2⌋[v]| ≥ k for some vertex v ∈ N⌊(s+1)/2⌋−1(W ) is a yes-instance.

Proof. Let v be a vertex as specified in the lemma. By definition of v, there exists a
path P := (q0, q1, . . . , q⌊(s+1)/2⌋−1) of length ⌊(s+1)/2⌋−1 inG such that q⌊(s+1)/2⌋−1 =
v, q0 ∈ W , and qi ∈ Ni(q0). We show that S := N⌊s/2⌋[v] ∪W ∪ P is an s-club of
size k containing W . Clearly, W ⊆ S and |S| ≥ k. Thus, it remains to show that S
is an s-club.

Consider a vertex w ∈ W . Vertex w has distance at most i + 1 to vertex qi. In
particular, dist(w, v) ≤ ⌊(s + 1)/2⌋. Since each vertex u ∈ N⌊s/2⌋[v] has distance at
most ⌊s/2⌋ to v we obtain that dist(w, u) ≤ ⌊(s + 1)/2⌋ + ⌊s/2⌋ = s. By similar
arguments we can also show that vertex qi for i ∈ [⌊(s + 1)/2⌋ − 1] has distance at
most s to each vertex in S.

Finally, consider two vertices x, y ∈ N⌊s/2⌋[v]. Note that dist(x, v) ≤ ⌊s/2⌋ and
also dist(y, v) ≤ ⌊s/2⌋ and thus dist(x, y) ≤ s.

Thus, S is indeed an s-club.

With those two lemmas we are now able to prove Lemma 6.23.

Proof of Lemma 6.23. First, we consider the case s = 2. Since |W | ≤ k and
since N [W ] ≥ k2, it is sufficient to show that (G,W, k) is a yes-instance if |N [w]| ≥ k
for some w ∈ W . Since all vertices in N(w) have the common neighbor w, we con-
clude that N [w] is a 2-club. Also, since W is a clique, we have W ⊆ N [w]. The size
bound of Ns−1[W ] follows from |N [w]| ≥ k. Thus, (G,W, k) is a yes-instance.

166



6.3. Seeded s-Club

Second, we consider the case s ≥ 3. Observe that

Ns−1[W ] = N⌊(s+1)/2⌋−1[W ] ∪
⋃︂

v∈N⌊(s+1)/2⌋−1[W ]

N⌊s/2⌋[v].

By Lemma 6.24, (G,W, k) is a yes-instance if |N⌊(s+1)/2⌋−1[W ]| ≥ k. Further-
more, by Lemma 6.25, (G,W, k) is a yes-instance if |N⌊s/2⌋[v]| ≥ k for some v ∈
N⌊(s+1)/2⌋−1(W ). Thus, by the above equality we conclude that (G,W, k) is a yes-
instance.

Finally, we bound the size of Ns(W ). There we assume that |Ns−1[W ]| < k2 by
Lemma 6.23 and that Reduction Rule 6.3 is applied.

Lemma 6.26. An instance (G,W, k) of Seeded s-Club such that |Ns(W )| ≥
k2|W |+1 which is reduced with respect to Reduction Rule 6.3 is a yes-instance.

Proof. Since Reduction Rule 6.3 has been applied exhaustively, each vertex p ∈
Ns(W ) has distance exactly s to each vertex in W . In other words, for each
vertex wℓ ∈ W there exists a vertex uℓ

s−1 ∈ Ns−1(wℓ) such that puℓ
s−1 ∈ E(G).

Note that Ns−1(wℓ) ⊆ Ns−1[W ]. Moreover, by Lemma 6.23 we may assume that
|Ns−1[W ]| < k2. In particular: |Ns−1(W )| < k2. Since |Ns(W )| ≥ k2|W |+1, by the

pigeonhole principle there exists a set {u1
s−1, u

2
s−1, . . . , u

|W |
s−1} with uℓ

s−1 ∈ Ns−1(wℓ)
for ℓ ∈ [|W |] such that the set P := Ns(W ) ∩

⋂︁
ℓ∈[|W |] N(uℓ

s−1) has size at least k.

The size bound follows from the observation that each Ns−1(wℓ) has size at most k2

and we have exactly |W | many of these sets. By the definition of vertex uℓ
s−1, there

exists for each i ∈ [s− 2] a vertex uℓ
i ∈ Ni(wℓ) such that wℓ, u

ℓ
1, . . . , u

ℓ
s−1 is a path of

length s− 1 in G. We define the set U := {uℓ
i | ℓ ∈ [|W |], i ∈ [s− 1]}. Next, we show

that Z := P ∪W ∪ U induces an s-club.

First, observe that all vertices in P have distance at most 2 to each other
since they have the common neighbor u1

s−1. Second, note that the vertices wℓ,

uℓ
1, . . . , u

ℓ
s−1, p, u

j
s−1, . . . , u

j
1, wj form a cycle with 2s + 1 vertices, for each p ∈ P

and each two indices j, ℓ ∈ [|W |]. Each vertex in this cycle has distance at most s to
each other vertex in that cycle. Hence, Z is indeed an s-club.

Recall that Lemma 6.23 showed that the number of vertices with distance at
most s− 1 to W is bounded by k2. Together with Lemma 6.26 now Theorem 6.22 is
proven.
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xu

yu

zu

Gu xv

yv

zv

Gv

p
u∗ v∗

u vR W

Figure 6.6: Illustration of Construction 6.28.

6.3.2 Intractable Cases

Now, we show hardness for some of the remaining cases.

Theorem 6.27. Let H be a fixed graph. Seeded s-Club is W[1]-hard parameterized
by k even if G[W ] is isomorphic to H, when

• s = 2 and H contains at least two non-adjacent vertices, or if

• s ≥ 3 and H contains at least two connected components.

Hardness for s = 2. First, we prove hardness for s = 2 when H contains at least
one non-edge. For an illustration of Construction 6.28 we refer to Figure 6.6.

Construction 6.28. Let (G, k) be an instance of Clique. We construct an equiva-
lent instance (G′, k′) of Seeded s-Club as follows. Initially, we add the set W to G′,
and add edges such that G′[W ] is isomorphic to H. Since H is not a clique, there
exist two vertices u, v ∈ V (H) such that uv /∈ E(H). Let R := W \ {u, v}. Next,
we add two copies Gu and Gv of G to G′, make u adjacent to each vertex in V (Gu),
and make v adjacent to each vertex in V (Gv). For x ∈ V (G) we denote with xu

and xv the copies of x in Gu and Gv, respectively. Next, we add the edge xuxv for
each x ∈ V (G). Furthermore, we add a new vertex p and make it adjacent to each
vertex in W . Next, we add a new vertex u∗ adjacent to p, each vertex in V (Gu), and
each vertex in R. Analogously, we add a new vertex v∗ which is adjacent to p, each
vertex in V (Gv), and each vertex in R. Finally, we set k′ := 2k + |W |+ 3.

Now, we prove the correctness of Construction 6.28.
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Lemma 6.29. For any graph H which is not a clique, Seeded 2-Club parameter-
ized by k is W[1]-hard if the subgraph induced by W is isomorphic to H.

Proof. We prove that G contains a clique of size k if and only if G′ contains a 2-club S
containing W of size k′ = 2k + |W |+ 3.

Let K be a clique of size k in G and let Ku and Kv be the copies of K in Gu

and Gv. We argue that S := Ku ∪Kv ∪W ∪ {u∗, v∗, p} is a 2-club of size at least k′

containing W . Clearly, |S| = k′ and S contains W . Thus, it remains to show that S
is a 2-club in G′.

First, we show that each vertex inR has distance at most 2 to each vertex in S: All
vertices in R have the common neighbors p, u∗, and v∗. Since u and v are neighbors
of p, each vertex in V (Gu) is a neighbor of u∗, and since each vertex in V (Gv) is
a neighbor of v∗, we conclude that each vertex in R has distance at most 2 to any
vertex in S.

Second, we show that each vertex in Ku has distance at most 2 to each vertex
in S \R. Observe that {u, u∗, xv} ∪Ku ⊆ N [xu] for each vertex xu ∈ Ku. Hence, xu

has distance at most 2 to p via u∗,u, v and to v∗ via xv, and to each vertex in Kv via
the corresponding vertex in Ku. By symmetric arguments the statement also holds
for each vertex in Kv.

Finally, each pair of vertices of {p, u, u∗, v, v∗} has distance at most 2 to each
other since u, u∗, v, v∗ ∈ N(p).

Thus, S is indeed a 2-club.
Conversely, suppose that G′ contains a 2-club S of size at least 2k + |W | + 3

which contains all vertices of W . Observe that we have N(xu) ∩ N(v) = {xv}
for each vertex xu ∈ V (Gu), and symmetrically N(xv) ∩ N(u) = {xu} for each
vertex xv ∈ V (Gv). Hence, xu ∈ S if and only if xv ∈ S. Let Ku := S ∩ V (Gu). By
definition of k′ we obtain that |Ku| ≥ k. Assume towards a contradiction that Ku

contains a pair of non-adjacent vertices xu and yu. By the argumentation above
we obtain yv ∈ S. Now, observe that N(xu) = {u, u∗, xv} ∪

⋃︁
{zu | xz ∈ E(G)}

and that N(yv) = {v, v∗, yu} ∪
⋃︁
{zv | yz ∈ E(G)}. Since xy /∈ E(G) we thus

obtain N(xu) ∩N(yv) = ∅, a contradiction. Thus, G contains a clique of size k.

Hardness for seeds with at least two connected components and s ≥ 3.
Now, we show W[1]-hardness for the case s ≥ 3 when the seed contains at least two
connected components. Fix a graph H with at least two connected components. We
show W[1]-hardness for s ≥ 3 even if G[W ] is isomorphic to H.

Construction 6.30. Let (G, k) be an instance of Clique. We construct an equiv-
alent instance (G′, k′) of Seeded s-Club as follows. Initially, we add the set W
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to G′, and add edges such that G′[W ] is isomorphic to H. Let D1 be one connected
component of G′[W ]. By assumption, D2 := W \D1 is not empty. Next, we add two
copies G1 and G2 of G to G′. Then, we add edges to G′ such that each vertex in D1 is
adjacent to each vertex in V (G1) and such that each vertex in D2 is adjacent to each
vertex in V (G2). Furthermore, we add a path (p1, . . . , ps−1) consisting of exactly s−1
new vertices to G′, make p1 adjacent to each u ∈ D1, and make ps−1 adjacent to
each v ∈ D2. By P := {pi | i ∈ [s− 1]} we denote the set of these newly added ver-
tices. Now, for each x ∈ V (G) we do the following. Consider the copies x1 ∈ V (G1)
and x2 ∈ V (G2) of vertex x ∈ V (G). We add a path (x1, q

x
1 , . . . , q

x
s−2, x2) consisting

of s− 2 new vertices to G′. By Qx := {qxi | i ∈ [s− 2]} we denote the set of the new
internal path vertices. Finally, we set k′ := sk + |W |+ s− 1.

Now, we prove the correctness of Construction 6.30.

Lemma 6.31. Let H be a fixed graph with at least two connected components.
Seeded s-Club for s ≥ 3 parameterized by k is W[1]-hard even if G[W ] is iso-
morphic to H.

Proof. We show that G contains a clique of size k if and only if G′ contains an s-club
containing W of size at least k′ = sk + |W |+ s− 1.

Let K be a clique of size k in G. Furthermore, let K1 and K2 denote the
copies of K in G1 and G2, respectively. We show that S := W ∪ P ∪ K1 ∪
K2 ∪

⋃︁
x∈K Qx is an s-club containing W of size at least k′. Clearly, |S| = k′

and S contains W . Thus, it remains to verify that S is an s-club in G′. Note
that since each vertex in V (G1) is adjacent to each vertex in D1, each two ver-
tices in D1 have distance at most 2, and similarly each two vertices in V (G1)
have distance at most 2. Analogously, we can show that each two vertices in D2

and each two vertices in V (G2) have distance at most 2. Furthermore, the ver-
tices (x, p1, p2, . . . , ps−1, y, u2, q

u
s−2, . . . , q

u
1 , u1) for each vertex x ∈ D1, each vertex y ∈

D2, and each vertex u ∈ K form a C2s+1, a cycle with 2s+ 1 vertices. Observe that
also the vertices (u1, q

u
1 , . . . , q

u
s−2, u2, v2, q

v
s−2, . . . , q

v
1 , v1) form a C2s for each two ver-

tices u, v ∈ K. Since all remaining distances are covered by these two kinds of cycles,
we conclude that S is indeed an s-club.

Conversely, suppose that G′ contains an s-club S containing W of size at least k′.
Let Q′

v := {v1, qv1 , . . . , qvs−2, v2} for each v ∈ V (G). We show that Q′
v ∩ S ̸= ∅ if and

only if Q′
v ⊆ S. Assume towards a contradiction, that Q′

v∩S ̸= ∅ for some v ∈ V (G)
such that Q′

v ̸⊆ S. If v1 /∈ S, and also v2 /∈ S, then no vertex in S ∩Q′
v is connected

to any vertex in S \Q′
v. Hence, we can assume without loss of generality that v1 ∈ S.

Note that N(D2) = V (G2) ∪ {ps−1}. Furthermore, observe that dist(v1, ps−1) = s,
that dist(v1, q

v
s−2) = s − 2, and that dist(v1, q

u
s−2) ≥ s − 1 for each u ∈ V (G) \ {v}.
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Thus, the unique path of length at most s from v1 to D2 contains all vertices in Q′
v.

Hence, Q′
v ∩ S ̸= ∅ if and only if Q′

v ⊆ S. By the definition of k′ we may thus
conclude that Q′

v ⊆ S for at least k vertices v ∈ V (G).
Now, assume towards a contradiction that Q′

u ⊆ S and Q′
v ⊆ S such that uv /∈

E(G). We consider the vertices v1 and u2. Observe that by construction each path
from v1 to u2 containing any vertex pi has length at least s+2. Hence, each shortest
path from v1 to u2 contains the vertex set of Q′

w for some w ∈ V (G). Since the
path induced by each Q′

w has length s − 1, we conclude that w = u or w = v.
Assume without loss of generality that w = v. Hence, the (s − 1)th vertex on
the shortest path from u2 to v1 is v2. Since uv /∈ E(G) we have by construction
that u2v2 /∈ E(G′). Hence, dist(v1, u2) ≥ s+ 1, a contradiction to the fact that S is
an s-club. Thus, {v | Q′

v ⊆ S} is a clique of size at least k in G.

6.4 Conclusion

We provided a complexity dichotomy for Vertex Triangle s-Club and Edge
Triangle s-Club for the standard parameter solution size k with respect to s
and ℓ. Furthermore, we also provided a complexity dichotomy for Seeded 2-Club
for k in terms of the structure of G[W ]. For Seeded s-Club with s ≥ 3 we
provided an FPT-algorithm with respect to k when G[W ] is a clique and we showed
W[1]-hardness for k when G[W ] contains at least 2 connected components. Hence,
an immediate open question is the parameterized complexity of Seeded s-Club
for s ≥ 3 when G[W ] is connected but not a clique. One aim should be to also
provide a dichotomy for k for Seeded s-Club with s ≥ 3 for all possible structures
of G[W ]. It is particularly interesting to study seeds of constant size since this seems
to be the most interesting case for applications.

Furthermore, for future work it seems interesting to study the complexity of the
considered variants of s-Club with respect to further parameters, as it was done
for 2-Club [110]. For example it is interesting to study these problems with re-
spect to structural parameters of the input graph G such as the treewidth of G or
the feedback edge set number. 2-Club admits an FPT-algorithm with respect to
the treewidth [109]. Note that even the arguments for the larger parameter vertex
cover [109] cannot applied directly for Vertex Triangle s-Club and Edge Tri-
angle s-Club: First all possibilities of the intersection of the vertex cover with
the solution was brute forced and second all vertices with a too large distance to
the current sub-solution were deleted. This algorithm fails for these two problems
since this algorithm some vertices may not be in sufficiently many triangles. Fur-
thermore, 2-Club admits a polynomial kernel with respect to the feedback edge set
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number [109]. Also, the arguments of the linear kernel of Hartung et al. [109] can not
be used directly for the three problems studied in this chapter since one argument
to obtain this kernel is that ∆ < k which is not true for the three problems studied
in this chapter.

It is also interesting to study other problems for detecting communities with
seed constraints. The first problem which comes in mind could be Clique with
seed constraint. While this problem could be interesting in applications, it is not
interesting from an algorithmic point of view: If a vertex set W is seeded, we have
to find the largest clique in the common neighborhood of W . For this task the
standard clique algorithms can be used. Hence, from an algorithmic point of view
it is more interesting to study other clique relaxations with seed constraints, for
example s-Plex or s-Defective Clique. These problems are also NP-hard, since
an algorithm for the case when |W | = 1 can be used as a black box to solve the
unseeded variants. It is interesting to investigate the parameterized complexity of
these problems.

One example of such a seeded clique relaxation is the combination of the studied
problems in this chapter. More precisely, one could study the following problem.

Seeded Vertex Triangle s-Club
Input: An undirected graph G = (V,E), a subset W ⊆ V , and two

integers k, ℓ ≥ 1.
Question: Does G contain an s-club S of size at least k such that S fulfills

the vertex-ℓ-triangle property and W ⊆ S?

Also the problem Seeded Edge Triangle s-Club is interesting. In this prob-
lem, we put the triangle constraint on the edges instead of the vertices. The NP-
hardness of Seeded Vertex Triangle s-Club and Seeded Edge Triangle s-
Club follows directly from the fact that an algorithm for the case where |W | = 1
can be used as a black box to solve Vertex Triangle s-Club. Furthermore,
our W[1]-hardness results for the parameter k for Vertex Triangle s-Club and
Edge Triangle s-Club from Theorems 6.7 and 6.19 can be extended to provide
W[1]-hardness also for Seeded Vertex Triangle s-Club and Seeded Edge
Triangle s-Club: We add a new vertex gadget which is seeded to the constructed
graph and update the budget accordingly. Thus, for the standard parameter k only
the cases for which Vertex Triangle s-Club and Edge Triangle s-Club are
FPT are interesting, that is, ℓ = 1 and s ≥ 4 for the vertex variant, and ℓ = 1
and s ≥ 2 for the edge variant. But the FPT-algorithms for these cases cannot be
adapted that easily: These FPT-algorithms relied on Turing kernels in which we
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showed that if some vertex has a large neighborhood, then the instance is a yes-
instance. Such an argument is not possible anymore because we now also have to
consider the distance to the seed vertices.

Additionally, it is interesting to study the parameterized complexity of further
robust variants of s-Club such as t-Hereditary s-Club [145, 193], t-robust s-
clubs [222], and t-connected s-clubs [231, 145]. It was shown these three problems
admit an FPT-algorithm with respect to the maximum degree ∆ [145]. Furthermore,
these tree problems also admit an FPT-algorithm with respect to n− k, the number
of deleted vertices [145]. It remains an open question to study the parameterized
complexity of these three problems with respect to k, the solution size. It is very
likely that these three problems are W[1]-hard with respect to k since our results
for Vertex Triangle s-Club, Edge Triangle s-Club and Seeded s-Club
showed that the FPT results for s-Club with respect to k are quite brittle. For
following work it is also interesting to study the seeded versions of these problems.
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Chapter 7

Experiments for Triangle 2-Clubs

In this chapter we engineer an exact solver for the two problems Vertex Trian-
gle 2-Club and Edge Triangle 2-Club studied in Chapter 6 in terms of their
parameterized complexity with respect to the standard parameter solution size k.
Recall that a vertex set S ⊆ V is a vertex-ℓ-triangle 2-club in G if G[S] has diameter
at most two and every vertex of S is in at least ℓ triangles in G[S] [3] (see also
Definition 6.2). This model leads to the following optimization problem.

Vertex Triangle 2-Club
Input: An undirected graph G = (V,E) and an integer ℓ.
Task: Find a maximum-cardinality vertex-ℓ-triangle 2-club.

Furthermore, recall that a set S is an edge-ℓ-triangle 2-club when G[S] has a

spanning subgraph ˆ︁G = (S, ˆ︁E) such that ˆ︁G has diameter at most 2 and every edge

of ˆ︁E is in at least ℓ triangles in ˆ︁G (see also Definition 6.3). This model leads to the
following optimization problem.

Edge Triangle 2-Club
Input: An undirected graph G = (V,E) and an integer ℓ.
Task: Find a maximum-cardinality edge-ℓ-triangle 2-club.

Both problems were introduced to overcome a major downside of the 2-club
model: Often a vertex of maximum degree together with all its neighbors is also the
largest 2-club in the graph. As a consequence, maximum 2-clubs fare poorly when it
comes to other typical properties of communities such as having high density or being
robust against vertex or edge failures. As discussed in Chapter 6 both the vertex-
ℓ-triangle 2-club and edge-ℓ-triangle 2-club have many desirable properties: For ex-
ample, both models imply a clustering coefficient larger than zero. Furthermore, an
edge-ℓ-triangle 2-club is still connected after ℓ edge deletions (Proposition 6.4).
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In the past 20 years, many exact solvers for s-Club were developed. For example,
Bourjolly et al. [31] not only provided NP-hardness for finding a largest s-club, they
also presented an ILP formulation and an exact branch-and-bound algorithm. This
branch-and-bound algorithm was later improved by Chang et al. [43] by providing
new reduction rules and upper bounds within the search tree.

A particularly important case is s = 2, where we search for a vertex set that
induces a subgraph of diameter at most 2. Also, several ILPs were developed which
can solve 2-Club efficiently [14, 185, 203]. Furthermore, it was demonstrated that
branch-and-bound algorithms are competitive with ILPs to solve 2-Club [43, 109,
145]. As noted above, these studies showed an undesirable behavior of maximum
2-clubs: in most instances, the largest 2-club consists of a vertex of maximum degree
and its neighbors.

In this chapter, we study whether exact solutions for both problems can be effi-
ciently found in practice. More precisely, we provide branch-and-bound algorithms
for the standard parameter solution size k based on the standard Turing kernels
for k for 2-Club. For Vertex Triangle 2-Club and ℓ = 1, a first ILP to find
optimal solutions was presented by Carvalho and Almeida [41]. This ILP formula-
tion was then generalized by Almeida and Brás [3] to arbitrary values of ℓ. They
showed that their ILP can solve medium-size instances (up to 10 000 vertices) for
all ℓ ≤ 6 efficiently (in less than 10 minutes) [3]. Both ILP-based algorithms, which
more generally solve Vertex Triangle s-Club for arbitrary values of s, consist
of three main features: First, an efficient separation that computes valid inequalities
in case a vertex set violates the vertex-ℓ-triangle property or the diameter property
is violated. Second, a data reduction rule that removes vertices which are not in suf-
ficiently many triangles is described. Finally, an efficiently computable lower bound,
called the Neighborhood Lower Bound in this work, is described. The Neighborhood
Lower Bound is an adaption of the classic star heuristic for 2-club [3]. The star
heuristic finds the vertex with maximum degree as a valid 2-club solution which very
often turns out to be the optimal solution. In the context of Vertex Triangle
2-Club, the Neighborhood Lower Bound aims to find the largest vertex-ℓ-triangle 2-
club contained in the neighborhood of some vertex v ∈ V (G). The ILP formulations
are so far the only computational study on the two problems.

Our Results. For brevity, we use the term triangle 2-clubs to simultaneously
refer to the vertex-ℓ-triangle 2-club and the edge-ℓ-triangle 2-club properties for all ℓ.

We show that, using a combinatorial branch-and-bound algorithm combined
with problem-specific data reduction rules and lower bounds, we are able to solve
large sparse instances of Vertex Triangle 2-Club with up to 290 000 vertices
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and 990 000 edges. Compared to the previous computational experiments of Almeida
and Brás [3], which were run only for ℓ ≤ 6, we show that Vertex Triangle 2-
Club can be solved efficiently for ℓ up to 100. Our implementation outperforms the
ILP of Almeida and Brás [3] on all except one instance considered previously. In
addition, our implementation also solves Edge Triangle 2-Club. Furthermore,
our algorithm is faster for Edge Triangle 2-Club than for Vertex Triangle 2-
Club. In contrast, for Edge Triangle 2-Club, we expect ILP-based formulations
to be slower than for Vertex Triangle 2-Club: direct formulations need vari-
ables that encode the presence of edges which is not necessary for the vertex-triangle
property.

The overall approach of our branch-and-bound algorithm is similar to previous
ones for 2-Club [109] and other robust models of 2-Club like t-Hereditary 2-
Club [145]: First, perform data reduction and compute a lower bound. Second,
consider the sufficiently large 2-neighborhoods of G, that is, the 2-neighborhoods
that are larger than the lower bound, one by one. On each 2-neighborhood, perform
a branching that identifies a vertex that is in conflict with at least one other vertex,
for example since their distance within the 2-neighborhood is too large, that is, at
least 3.

Naturally, the details of the branch-and-bound algorithm differ from previous ones
when it comes to incorporating the triangle properties. We first use data reduction
rules that establish the triangle properties. The direct rules that delete vertices
or edges whenever they are not in sufficiently many triangles have been described
previously [3, 88]. We add further simple-degree-based rules to speed up the data
reduction. We identify further data reduction rules that delete edges and vertices,
since including them in a triangle 2-club would lead to a violation of the triangle
properties. These rules particularly apply to the setting during branching when
some vertices are already marked as being part of the sought triangle 2-club.

We use two heuristics for computing lower bounds. The first one is the known
Neighborhood Lower Bound. This lower bound performs very well on many instances
but not on all instances. In particular for intermediate values of ℓ, the lower bound
quality decreases. This prompts us to develop a new heuristic, called Greedy Lower
Bound, which considers the 2-neighborhoods, as the branching algorithm does. In-
stead of performing a branching it greedily deletes vertices that are in a conflict. We
show that the combination of the two lower bounds substantially outperforms the
Neighborhood Lower Bound in terms of solution quality. Since the running time of
the Greedy Lower Bound is quite high, it leads to substantial running time improve-
ments only for Edge Triangle 2-Club. Besides the experimental evaluation, we
also analyze the theoretical worst-case running time of the lower bounds depending
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on the degeneracy and the total size of the input graph. Furthermore, we show that if
an optimal solution S for Vertex Triangle 2-Club or Edge Triangle 2-Club
contains a universal vertex, then the Neighborhood Lower Bound finds S.

Our experiments show that the running time decreases for larger values of ℓ. The
main reason for this behavior is our initial data reduction which deletes vertices with
too small degree. These results are in sharp contrast to our theoretical results from
Chapter 6: We showed that Edge Triangle 2-Club is only FPT for k if ℓ = 1
and that Vertex Triangle 2-Club is W[1]-hard for k for any ℓ ≥ 1. In other
words, these sharp theoretical boundaries cannot be observed in practice. A main
reason for this is the quality of our lower bounds and the effectiveness of our initial
data reduction rules.

We then study how the parameter ℓ influences central properties of the returned
triangle 2-clubs, as done in previous work [3]. In a nutshell, we confirm that increas-
ing ℓ usually leads to high density and high global and local clustering coefficients,
also on larger networks, where the general tendency is that maximum (triangle) 2-
clubs are less dense. Furthermore, our experiments show that already for ℓ = 1
the density and the local and global clustering coefficient are relatively high. Since
increasing ℓ usually does not influence the running time negatively, this gives a good
adjustable parameter for balancing the emphasis on the low-diameter property with
other cohesiveness properties.

7.1 The Branching Algorithm

Our algorithms to solve Vertex Triangle 2-Club and Edge Triangle 2-Club
are based on the observation that the solution is contained in the 2-neighborhood
N2[v] of some vertex v of the input graph [206]. Consequently, we solve a given
instance (G, ℓ) by finding the solutions of all local instances (Gv, ℓ), where Gv is the
subgraph induced by N2[v]. Afterwards, we return the solution of maximum size.
Our algorithm stores the size k of a largest triangle 2-club detected so far. Then,
our algorithm tries to find triangle 2-clubs of size at least k + 1.

To solve the local instances, we describe two branching algorithms. Furthermore,
we provide several reduction rules that we apply in our implementation.

7.1.1 Basic Reduction Rules and Naive Branching Algorithm

We first describe a naive strategy to solve Vertex Triangle 2-Club and Edge
Triangle 2-Club. The algorithm relies on a simple reduction rule and a branching
strategy. Let (G, ℓ) be an instance of Vertex Triangle 2-Club and let v be a
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vertex of G. If v is contained in less than ℓ triangles of G, it cannot be part of
any vertex set S that forms a vertex-ℓ-triangle 2-club. It is easy to see that this
vertex can safely be removed from the input graph. Observe that the same holds for
Edge Triangle 2-Club, since a set that fulfills the edge-ℓ-triangle property also
fulfills the vertex-ℓ-triangle property. For an instance (G, ℓ) of Edge Triangle
2-Club we can also remove some edges: Let e be an edge of G that is contained
in less than ℓ triangles. Furthermore, let S be an edge-ℓ-triangle 2-club in G and
let ˆ︁G = (S, ˆ︁E) be a corresponding subgraph with diameter at most 2, where every

edge of ˆ︁E is in at least ℓ triangles in ˆ︁G. Then, e ̸∈ ˆ︁E and therefore, the edge e can
safely be removed from the input instance.

Both observations described above lead to a reduction rule in which we can safely
remove vertices (or edges, respectively) that are not contained in enough triangles.

Reduction Rule 7.1 (Low-Triangle Rule (LTR)). a) In case of Vertex Tri-
angle 2-Club, remove all vertices that are in less than ℓ triangles.

b) In case of Edge Triangle 2-Club, remove all edges that are in less than ℓ
triangles and remove isolated vertices.

We now bound the running time of exhaustively applying this rule. To obtain
a bound that explains why the rule runs relatively fast on sparse instances, we
formulate it in terms of the number of edges m and the degeneracy d of the input
graph.

Lemma 7.1. The LTR can be performed exhaustively in O(m · d) time.

Proof. Using the triangle enumeration algorithm of Chiba and Nishizeki [46], we can
enumerate all triangles in O(m · d) time. While enumerating the triangles, we can
compute for each vertex w and each edge e of G a list of all triangles containing w
or e and their number.

After this prepossessing, a vertex or an edge to which the rule applies can be
determined in O(1) time as long as the triangle counters for the vertices or edges
are updated after each deletion. To update the triangle counter, we traverse the
triangle list for the deleted vertex or edge and decrement the respective counter for
all vertices or edges that are contained in the triangle.

To decrease the effort of counting triangles, we provide another rule that exploits
the degree of vertices in the input graph to identify some vertices that are not con-
tained in at least ℓ triangles. Observe that a vertex v is contained in at most

(︁
deg(v)

2

)︁
triangles, which is the case if N [v] is a clique. Therefore, a vertex v with

(︁
deg(v)

2

)︁
< ℓ
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Algorithm 7.1: NaiveBranching Algorithm to solve Vertex Triangle
2-Club or Edge Triangle 2-Club, respectively.

Input: An instance (G = (V,E), ℓ).
Output: A maximum-cardinality triangle 2-club.

1 Apply Reduction Rules 7.2 and 7.1 on the input instance
2 if all v ∈ V are pairwise compatible, then
3 return V
4 else
5 Find two vertices u and w that are incompatible
6 S1 := NaiveBranching(G− u, ℓ)
7 S2 := NaiveBranching(G− w, ℓ)
8 return argmaxS∈{S1,S2}|S|

is not contained in at least ℓ triangles and we may thus remove vertices with degree
at most 1/2 +

√︁
1/4 + 2ℓ from the input graph. Furthermore, an edge e incident

with a vertex v is contained in at most deg(v)− 1 triangles. Thus, in case of Edge
Triangle 2-Club we may remove vertices with degree at most ℓ.

Reduction Rule 7.2 (Low-Degree Rule (LDR)). a) In case of Vertex Tri-
angle 2-Club, remove all vertices that have degree at most 1/2+

√︁
1/4 + 2ℓ.

b) In case of Edge Triangle 2-Club, remove all vertices that have degree at
most ℓ.

Observe that applying the LDR (Reduction Rule 7.2) may reduce the number of
vertices and edges that need to be considered when applying the LTR (Reduction
Rule 7.1). In the following, we denote the LDR and the LTR together as the Basic
Rules. Note that these two rules were already observed by Almeida and Brás [3] for
Vertex Triangle 2-Club. After applying the Basic Rules exhaustively, the input
graph satisfies the triangle conditions posed on vertex-ℓ-triangle 2-clubs or edge-ℓ-
triangle 2-clubs. However, the diameter might still be larger than 2. To handle this,
we use a simple branching strategy which is based on the definition of incompatibility.

Definition 7.2. Two vertices u and w in a graph G are called compatible if and only
if distG(u,w) ≤ 2. Otherwise, u and w are called incompatible.

Let G = (V,E) be an input graph where the triangle conditions are satisfied.
If all vertices are pairwise compatible, one may return V as a solution. Otherwise,
if there is a pair of incompatible vertices u and w, a solution cannot contain both
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vertices at the same time. This gives rise to a simple search tree algorithm, where
we branch into the cases where we either remove u or w from G. The pseudocode for
this algorithm is given in Algorithm 7.1. Note that this simple branching algorithm
also implies an FPT-algorithm for the dual parameter n− k.

Proposition 7.3. Vertex Triangle 2-Club and Edge Triangle 2-Club can
be solved in O(2n−knO(1)) time.

7.1.2 Marked Vertices

To speed up the branching, we use the idea of marked vertices, also used for other
2-Club variants [109, 145]. Intuitively, marked vertices must belong to the solution
that we aim to compute. Suppose we know that the first recursive call in the naive
branching algorithm did not result in an optimal solution. Then, removing u from G
is not optimal and therefore, we may assume that u is part of the solution and mark u
accordingly.

Formally, we extend the input of our problems to a graph G = (V,E), an integer ℓ,
and a set M of marked vertices and aim to find a solution S with M ⊆ S. We first
describe how the concept of marked vertices can be used to improve the branching
behind Algorithm 7.1. Afterwards, we provide further reduction rules that exploit
marked vertices.

Branching with Marked Vertices. The idea is analogous to the idea behind
Algorithm 7.1: If the triangle constraints are satisfied and all vertices are pairwise
compatible, one may return V as a solution. Otherwise, we find two incompatible
vertices u and w. Instead of branching into the two cases where either u or w is
removed from the input graph, we branch into the two cases where u is removed
from the input graph or u is marked.

We first present rules which guarantee that also in the second branch where u gets
marked, the number of vertices is decreased by at least one. Recall that the marked
vertex u is incompatible with at least one other vertex w. More generally, consider
vertices that are incompatible with marked vertices. Since a marked vertex v must
belong to a solution, no vertex x that is incompatible with v can be added to the
solution. If x is unmarked, it can safely be removed from the input graph. Otherwise,
if x is marked, there is no solution S containing both v and x and therefore, we may
abort the branch.

Reduction Rule 7.3 (Incompatible-Resolution Rule (IRR)). Remove all unmarked
vertices that are incompatible to a marked vertex.

181



Chapter 7. Experiments for Triangle 2-Clubs

Algorithm 7.2: MarkedBranching Algorithm.

Input: An instance (G = (V,E), ℓ) and a set of marked vertices M ⊆ V .
Output: A maximum-cardinality triangle 2-club S with M ⊆ S.

1 Apply Reduction Rules 7.2, 7.1, 7.3, 7.4, 7.5, and 7.6 on the input instance
2 if all v ∈ V are pairwise compatible, then
3 return V
4 else
5 Find an unmarked vertex u that is incompatible to at least one other

vertex
6 S1 := MarkedBranching(G− u, ℓ,M)

7 S2 := MarkedBranching(G, ℓ,M ∪ {u})
8 return argmaxS∈{S1,S2}|S|

Reduction Rule 7.4 (Marked-Incompatible Rule (MIR)). If an instance contains
two incompatible vertices that are both marked, then return that there is no solution.

The pseudocode for the branching with marked vertices is given in Algorithm 7.2.
In Algorithm 7.2 we apply Reduction Rules 7.2, 7.1, 7.3, 7.4, 7.5, and 7.6 as follows:
In one iteration we apply Reduction Rules 7.2, 7.1, 7.3, 7.4, 7.5, and 7.6 in this order.
If at least one reduction rule applied, we start a new iteration.

Further Reduction Rules. The next rule deals with (marked) vertices that
have a relatively small number of compatible vertices. Let (G, ℓ) be an instance
of Vertex Triangle 2-Club or Edge Triangle 2-Club. Recall, that our
algorithm stores the size k of a largest triangle 2-club detected so far. In other
words, our algorithm now tries to find a triangle 2-club of size at least k + 1. Then,
if a vertex v is compatible with at most k − 1 other vertices, the vertex v cannot be
contained in a solution of size larger than k. If v is unmarked, then v can be removed
from the input instance. Otherwise, if v is marked, we may abort this branch.

We present two variants of this rule. In the 2-NR (Reduction Rule 7.5) we directly
count the number of compatible vertices of some vertex v, that is, we check if N2[v]
has size at least k. In the LCR (Reduction Rule 7.6) we check if for each vertex u ∈
V (G) whether u and v are compatible and we stop this procedure if the number of
remaining vertices is not large enough such that v can have k compatible vertices.

Reduction Rule 7.5 (2-Neighborhood Rule (2-NR)). Remove all vertices v with
|N2[v]| ≤ k. If a marked vertex is removed, report that there is no solution of size
larger than k.
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Reduction Rule 7.6 (Low-Compatibility Rule (LCR)). Remove vertices whose
number of compatible vertices is at most k − 1. If a marked vertex is removed,
report that there is no solution of size larger than k.

Abusing notation, the refer to the rules LDR (Reduction Rule 7.2), LTR (Reduc-
tion Rule 7.1), 2-NR (Reduction Rule 7.5), and LCR (Reduction Rule 7.6) as the
Basic Rules.

We describe two further rules to identify vertices that need to be marked based
on the set of currently marked vertices.

Let v and u be vertices of the input graph. If v is contained in less than ℓ trian-
gles after removing u, then u has to be contained in every solution that contains v.
Consequently, if v is marked, we may also mark u. Since a solution of Edge Trian-
gle 2-Club also fulfills the vertex-ℓ-triangle property, this also holds for the edge
variant. This observation leads to the following reduction rule.

Reduction Rule 7.7 (Cascading Rule (CR)). Let v be a marked vertex and let u be
an unmarked vertex. Let xv be the number of triangles which contain v, and let xuv

be the number of triangles which contain u and v. If xv − xuv < ℓ, then mark also u.

Suppose that two non-adjacent marked vertices u and w have exactly one common
neighbor. Then, this unique common neighbor needs to be part of the solution S
since otherwise the distance between u and w in G[S] (in case of Vertex Triangle

2-Club) or in (S, ˆ︁E) (in case of Edge Triangle 2-Club) becomes larger than 2.
Consequently, we may mark the unique common neighbor.

Reduction Rule 7.8 (No-Choice Rule (NCR)). Let u and w be two marked vertices.
If uw /∈ E(G) and both vertices have exactly one common neighbor v, then mark v.

In the following we denote the IRR, MIR, CR, and NCR as the Marking Rules.
We refer to the algorithm variant that uses the Basic Rules and the Marking

Rules and Marked Branching as the Basic version.

7.1.3 Conflict Graphs and Upper Bounds

We describe an upper bound of the solution size that is based on the conflict graph
of the input graph. Given an instance (G = (V,E), ℓ), the conflict graph of G is a
graph Gc on the same vertex set as G such that two vertices are adjacent in Gc if
and only if they are incompatible in G.

Lemma 7.4. The conflict graph Gc of a graph G can be constructed in O(nm) time.
After deleting a vertex w ∈ V in G, the conflict graph can be updated in O(deg(w) ·
m) time; after deleting an edge in G, the conflict graph can be updated in O(m) time.
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Proof. We may assume that the input graph is reduced with respect to the LDR
(Reduction Rule 7.2) and therefore, G contains no isolated vertices.

The conflict graph can be constructed as follows: We start with an empty
graph. For each vertex v we perform two BFS steps to compute N2[v] and add
conflict edges vw to Gc for every w ̸∈ N2[v]. Consequently, Gc can be computed
in O(nm) time.

We next consider the running time for updating Gc after deleting some vertex w ∈
V . To this end, note that removing w does not repair any incompatibility, but instead
new incompatibilities may emerge, since two neighbors x and y of w may now be
incompatible. To find these new incompatibilities, we perform a BFS from each
neighbor of w. This can be done in O(deg(w) ·m) time.

In case of deleting an edge xy, all new arising incompatibilities contain one of
the vertices x or y. Thus, two calls of BFS are sufficient to update Gc accordingly
in O(m) time.

As described above, we assume that we know that a solution of size k exists and
we aim to find a solution of size larger than k. Consider the following reduction rule,
also used for other 2-Club variants [109, 145].

Reduction Rule 7.9 (Matching Rule). Compute the size b of a maximum matching
for Gc. If |V (Gc)| − b is at most k, then return no.

Proposition 7.5. Reduction Rule 7.9 is correct.

Proof. Let M be a matching of size b. To prove the correctness of the rule, we show
that every solution S has size at most |V (Gc)| − b.

Let S be a solution. Then, S does not contain two vertices that are adjacent
in Gc and thus, S contains at most b vertices that are endpoints of edges in M .
Therefore, S consists of at most |V (Gc)| − b vertices.

We refer to the algorithm variant that works like Basic but additionally uses the
conflict graph and the Matching Rule (Reduction Rule 7.9) as Basic+UB.

7.2 Lower Bounds

To obtain a good initial solution we implemented two heuristics. These heuristics
provide a lower bound for the size of the largest triangle 2-club. The first heuristic
determines the largest triangle 2-club in the closed neighborhood of any vertex v ∈
V (G) and the second one greedily determines a triangle 2-club in N2[v] for any v ∈
V (G).
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A Lower Bound Based on Closed Neighborhoods. We next describe the
known Neighborhood-Lower Bound (N-LB) [3] and bound the worst-case running
time for computing the lower bound. For each vertex v ∈ V (G), we compute a
largest triangle 2-club Sv that is contained in N [v] and also contains v. To do
this, we first construct the induced subgraph of N [v], denoted Gv, and then apply
Reduction Rule 7.1 to Gv. Note that Sv is a triangle 2-club: Sv fulfills the triangle
property due to Reduction Rule 7.1 and Sv is a 2-club since v is universal in Sv.
Moreover, since we search for a solution containing v we may abort if Reduction
Rule 7.1 removes v. By Sv we denote the vertex set of the reduced graph. The
heuristic then returns a vertex set Sv which has maximum size of any of the sets Su,
u ∈ V (G). Next, we show that if a maximal triangle 2-club S has a universal vertex,
then this heuristic will find S. In other words, in such a scenario the N-LB returns
an optimal solution. For this, it is sufficient to show the following statement.

Proposition 7.6. For each v ∈ V (G) the N-LB returns a largest solution Sv that is
contained in Gv and contains v.

Proof. Let S be a largest triangle 2-club in Gv. We show that Sv contains all vertices
of S.

First, we show the statement for the vertex-variant. If Sv is nonempty, then the
vertex v is not returned by the LTR: v is universal and thus contained in a maximum
number of triangles in Gv. Thus, Sv is a triangle 2-club. Now, assume towards a
contradiction that Sv does not contain all vertices of S. Let w be the first vertex of S
which gets deleted by the algorithm and consider the application of the LTR that
deleted w. Since w ∈ S, we know that w is contained in at least ℓ triangles in Gv,
all of these triangles are present when w is deleted, a contradiction to the definition
of the LTR. Thus, such a vertex w does not exist and the algorithm returns S.

Second, we show the statement for the edge-variant. Let G∗ = (Sv, E
∗) denote the

graph at the end of the algorithm. We first show that Sv is an edge-ℓ-triangle 2-club
in G. We show this by showing that G∗ has diameter at most 2 and every edge of E∗

is in at least ℓ triangles in G∗. The latter claim follows from the fact that the LTR
has been applied exhaustively. It remains to show that G∗ has diameter at most 2.
To show this, we prove that in G∗, the vertex v is adjacent to all other vertices.
Assume that the algorithm deletes an edge {v, u} that is incident with v. Then all
other edges {u,w} incident with u will also be deleted by the algorithm: Since v is a
universal vertex in Gv, for every triangle {u,w, x} with x ̸= v, the set {u, v, x} is also
triangle. Hence, the number of triangles containing {v, u} is at least as large as the
number of triangles containing {u,w}. As a consequence, whenever an edge {v, u}
is deleted, all edges incident with u are deleted. Consequently, u is deleted as well.
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Altogether, v is adjacent to every other vertex of G∗. Thus, Sv is an edge-ℓ-triangle 2-
club.

It remains to show that Sv contains all vertices of S. Assume towards a contra-
diction that this is not the case and let (S, ˆ︁E) denote the corresponding spanning
subgraph. Now, assume towards a contradiction, that the algorithm deletes at least
one edge of ˆ︁E. Let e be the first edge of ˆ︁E which gets deleted, and consider the
application of the LTR that deletes e. Since e ∈ ˆ︁E we know that e is contained in
at least ℓ triangles in (S, ˆ︁E). Since all edges of ˆ︁E are present when e is deleted, it
is contained in at least ℓ triangles at the time of its deletion, a contradiction to the
definition of the LTR. Hence, such an edge e does not exist and thus G∗ contains
every edge of ˆ︁E and therefore also all vertices of S.

Next, we bound the overall running time of computing the N-LB.

Proposition 7.7. For Vertex Triangle 2-Club and for Edge Triangle 2-
Club the overall running time of the N-LB is O(m · d2).

Proof. Fix some degeneracy ordering σ of G. For each vertex v, the graph Gv can be
constructed in O(deg(v)·d) time by considering all neighbors w of v and then travers-
ing the list containing all neighbors u of w that appear after w in σ. Thus, the total
running time for computing all induced subgraphs isO(

∑︁
v∈V (G) deg(v)·d) = O(m·d).

For each vertex v, the graph Gv is d-degenerate and thus has O(deg(v) ·d) edges. By
Lemma 7.1, the exhaustive application of the LTR on Gv thus takes O(deg(v) · d2)
time. Hence, the overall running time for the application of the rule for all graphs v ∈
V (G) is O(

∑︁
v∈V (G) deg(v) · d2) = O(m · d2).

In the worst-case, when d = Θ(n), the running time bound of the N-LB becomes
O(n4) and thus is impractical. In sparse real-world graphs, however, the degeneracy
takes on very small values and the running time bound guarantees that the algorithm
is fast. In particular, when the degeneracy is constant, we achieve a linear running
time.

A Greedy Lower Bound. For each vertex v ∈ V (G), we compute a triangle 2-
club Sv that is contained in the closed second neighborhood N2[v] and contains v
as follows: We first construct the induced subgraph Gv := G[N2[v]] and apply the
LTR (Reduction Rule 7.1) to Gv. By Sv we denote the vertex set of Gv after the
application of the LTR (Reduction Rule 7.1). Each vertex in Sv or each edge with two
endpoints in Sv is contained in at least ℓ triangles. However, Sv is not necessarily
a 2-club. To solve this issue, we test whether Sv is a 2-club and return a vertex
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pair {u,w} of distance at least 3 in Gv. If u = v or w = v, then we remove the other
vertex since we aim to find the largest triangle 2-club containing v. Otherwise, we
greedily remove the vertex of u and w which is in less triangles in Gv. Afterwards, we
again apply the LTR (Reduction Rule 7.1). We continue with this procedure until
the resulting vertex set Sv is a triangle 2-club. We call this the Greedy-Lower Bound
(G-LB). Next, we bound the overall running time of the G-LB.

Proposition 7.8. For Vertex Triangle 2-Club and for Edge Triangle 2-
Club the overall running time of the G-LB is O(m ·∆3 · d2).

Proof. The graph Gv = G[N2[v]] has less than deg(v) · ∆ vertices and can be con-
structed in O(deg(v) · ∆ · d) time using the degeneracy-ordering adjacency lists as
detailed in the running time bound proof for the N-LB. The number of triangles in Gv

is O(deg(v) ·∆ ·d2) and again, these triangles can be computed in the corresponding
running time. The total time for checking the triangle counters and deleting vertices
or edges when their counters are too low is again upper-bounded by the number of
triangles in Gv and thus bounded by O (deg(v) ·∆ · d2). The main running time
bottleneck is the repeated check whether the current graph Gv has diameter 2 for
which we make use of the conflict graph. By Lemma 7.4, the conflict graph can be
constructed in O(deg(v)2 · ∆2d) time. Afterwards, we need to update the conflict
graph after vertex and edge deletions. The running time for the update after deleting
a vertex u is O(deg(u) ·m), again by Lemma 7.4. The worst-case overall running for
the updates thus is

O

⎛⎝ ∑︂
u∈N2[v]

degv(u) · deg(v) ·∆ · d) = O(deg(v)2 ·∆2 · d2
⎞⎠ ,

where degv(u) is the degree of u in Gv, if we essentially delete all vertices and
edges of Gv either by reduction rules or by greedy choice. The total running time
for computing the lower bounds for all vertices is O(

∑︁
v∈V (G) deg(v)

2 · ∆2 · d2) =

O(m ·∆3 · d2).

Again, on very dense graphs, the running time is impractical. While the running
time becomes acceptable on sparse graphs with moderate maximum degree, it is still
much higher than the running time for the N-LB. This can also be observed for our
implementation, which prompted us to add several speed-ups to the implementation
of the G-LB.

The algorithm variant that works like Basic+UB but additionally uses the N-LB is
called N-LB. The variant that additionally uses both lower bounds is called Multi-LB.
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Basic Rules

N-LB

2-NR
Basic Rules

G-LB

2-NR
Basic Rules

For each v ∈ V (G) do
MarkedBranching(G, ℓ, {v})

uses

Basic Rules
LCR/2-NR

Marking Rules
Matching Rule∗

Figure 7.1: Sequence of our algorithm. Everything described in white boxes is done in
each of the 4 variants. Everything within the light-gray box is done in the 2 variants

using a lower bound (N-LB and Multi-LB). Furthermore, the gray box is used only for
Multi-LB. The Matching Rule (marked with an asterisk (*)), is used in each variant except
Basic.

7.3 Implementation Details

An outline of our algorithm is given in Figure 7.1. By k we denote the size of a largest
triangle 2-club detected so far. Recall that the LCR (Reduction Rule 7.6) and the
2-NR (Reduction Rule 7.5) serve the same purpose; identifying vertices which have
at most k−1 compatible vertices. The 2-NR is faster than the LCR if N2[v] is small.
Hence, we have chosen to use the 2-NR for low densities. Another reason for our
choice is that if the density of N2[v] is large, the LCR is not much slower than the
2-NR. Here, the density is the ratio between the edges present in a graph and the
maximum number of edges that the graph can contain. In other words, on the basis
of the density of N2[v] the algorithm decides whether it uses the 2-NR or the LCR in
each subsequent call of MarkedBranching(G, ℓ, {v}). We use the 2-NR if the density
of N2[v] is at most 0.05; otherwise the LCR is used.

We use a global triangle list to allow for a fast check of all operations related to
triangles, for example, whenever we compute the set of triangles containing one ver-
tex u or an edge uw. For the G-LB and branching, we sort the vertices descendingly
according to the size of their 2-neighborhood. Since the computation of the N-LB is
fast, we use an arbitrary vertex ordering to compute the N-LB. After the branching
on vertex v is completed, vertex v is removed from the graph.

Data Structures. Our algorithm assigns each vertex a unique ID. To represent
a graph we use Hash Sets and Hash Maps. More precisely, for the vertex set we rely
on a Hash Set to allow for a fast check whether a vertex is present. The set of edges
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is organized in an adjacency list. More precisely, a Hash Map uses the vertex IDs to
assign each vertex a distinct Hash Set, containing its neighbors, that is, the IDs of
each adjacent vertex. Furthermore, we use a stack to reverse the operations in the
search tree efficiently.

Compatibility Test and Conflict Graph. To test whether two vertices u
and w are compatible, that is, have distance at most 2, we first check whether u = w.
Afterwards, we check whether u and w are adjacent and then we check if u and w
have a common neighbor. For any vertex v we create the conflict graph Gc of N2[v]
by using the above mentioned compatibility test. We do not create the conflict graph
of the complete input graph since this is too time consuming and needs too much
memory. Whenever a vertex w is deleted from N2[v], we also delete w from Gc.
Afterwards, we update Gc according to Lemma 7.4.

Reduction Rules. Next, we give some implementation details for reduction
rules which are not implemented in a straightforward manner. Let dmin be the
minimum degree of any vertex in a triangle 2-club. Recall that dmin is at most 1/2+√︁
1/4 + 2ℓ for the vertex variant and that dmin = ℓ + 1 for the edge variant. In

one application of the LDR (Reduction Rule 7.2), we first store all vertices of G
that have degree smaller than dmin. Afterwards, we remove all of these vertices. In
one application of the LTR (Reduction Rule 7.1) we similarly store all vertices or
edges which are in less than ℓ triangles, and then remove them simultaneously. In our
implementations of the IRR (Reduction Rule 7.3), the MIR (Reduction Rule 7.4), and
the LCR (Reduction Rule 7.6), we count the number of incompatibilities of w ∈ N2[v]
and stop if |N2[v]| − k incompatibilities are found.

Lower Bounds. Before we compute the G-LB, we use the N-LB, to obtain
an initial lower bound. Afterwards, the subsequent application of the Basic Rules
and the 2-NR removes many further vertices from the graph and thus the G-LB has
to be computed only for a fraction of the initial vertices. Since the running time
for one iteration of the G-LB is much larger than for one iteration of the N-LB,
this decreases the overall running time. Preliminary experiments showed that this is
beneficial for small running times. In the following, we denote this combined lower
bound by N+G-LB.

In both lower bounds, that is, in the N-LB and N+G-LB, we compute a lower
bound for each vertex v ∈ V (G). For this, we check if the size of N [v], or N2[v],
respectively, is larger than k, otherwise we abort and remove v from the graph. The
removal of v is beneficial since after this deletion for another vertex w may now
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also observe that |N [w]| ≤ k, or |N2[w]| ≤ k, respectively, and hence we may also
immediately abort and remove w from G. Next, we construct the subgraph induced
by N [v], or N2[v], respectively.

Afterwards, we use the LDR (Reduction Rule 7.2) as described above to remove
vertices which cannot have sufficiently many triangles. Recall that in this iteration
we search the largest triangle 2-club containing v. Thus, if the LDR (Reduction
Rule 7.2) or other rules removes v, then we can abort this iteration.

In the N-LB we then apply the LTR (Reduction Rule 7.1) in the following way:
Step 1: Apply LDR (Reduction Rule 7.2) exhaustively. Step 2: Perform one appli-
cation of the LTR. If at least one vertex was deleted in this application, go back to
Step 1.

In the N+G-LB we then construct the conflict graph (see Section 7.1.3). This
allows us to use the LCR (Reduction Rule 7.6), that is, to remove vertices which
cannot be part of a solution of at least k+1 vertices. Next, we establish the triangle
property as follows:

1. We apply the LCR (Reduction Rule 7.6).

2. If the algorithm removed at least one vertex in Step 1, we apply the LDR
(Reduction Rule 7.2) and go back to Step 1.

3. We perform one iteration of the LTR (Reduction Rule 7.1), that is, we remove
all vertices/edges in less than ℓ triangles.

4. If the algorithm removed at least one vertex in Step 3, we apply the LDR
(Reduction Rule 7.2) and go back to Step 1.

When the algorithm does not go back to Step 1 in Step 4, the triangle property is
established. Now, if the number of the remaining vertices in N2[v] after the applica-
tion of all these reduction rules is at most k, we delete v from the input graph. This
is correct since until this point we only applied reduction rules and hence there is no
solution of size at least k+1 containing v. With the removal of v of the input graph
during the lower bound computation we avoid having to apply all these reduction
rules for v again during branching.

Next, similar to Reduction Rule 7.9 we compute a maximum matching M of the
conflict graph, by greedily adding edges to M . For each edge in M , we greedily
remove the vertex which is in less triangles (vertex variant) or has smaller degree
(edge variant). Note that if any edge of M contains v, then we always remove the
other vertex because of the premise that we search for a solution containing v. Now,
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we repeat the above procedure of establishing the triangle property and computing a
matching until the remaining vertex set fulfills the triangle and the diameter property.

Our implementation of N+G-LB seems rather complicated, but preliminary ex-
periments showed that this procedure is indeed necessary to achieve small running
times.

7.4 Experiments

Each experiment was performed on a single thread of an Intel(R) Xeon(R) Silver
4116 CPU with 2.1 GHz, 24 CPUs and 128 GB RAM running Java openjdk 17.0.2.
Our algorithms are implemented in Java. As benchmark data set we used 67 so-
cial, biological, and technical networks obtained from the Network Repository [200],
KONECT [153], and the 10th DIMACS challenge [12]. These networks range from
less than 100 vertices to up to 300 000 vertices. All networks except five are sparse
with density at most 0.05. Roughly 10 networks have less than 100 vertices, 25
networks have between 100 and 1 000 vertices, 25 have between 1 000 and 10 000
vertices, and 10 have more than 10 000 vertices. Furthermore, we tested 27 different
values for ℓ in the range of 1 to 100. More precisely, we tested our algorithm for each
value in

{1, 2, . . . , 6, 7, 9, 11, 13, 15, 20, 25, . . . , 90, 100}.

For each instance, we set a time-out of 1 hour. The time needed to read the graph
is not included in the running time. Our source code, the list of all networks used
in our experiments, and our result files are available at https://www.uni-marburg
.de/en/fb12/research-groups/algorith/t2c.zip. The running times for the
ILP are the running times obtained by Almeida and Brás [3]. Almeida and Brás [3]
implemented their ILP in CPLEX (https://www.ibm.com/de-de/products/i
log-cplex-optimization-studio). The specifications of the computer used by
Almeida and Brás [3] are very similar to the specifications of our computer. Thus,
the running times are comparable.

The performance of the four variants of our algorithm for Vertex Triangle 2-
Club and ℓ ≤ 5 is shown in the left part of Figure 7.2. Basic is substantially slower
than Basic+UB which in turn is substantially slower than Multi-LB. Furthermore,
N-LB is even faster than Multi-LB. The performance of the four variants of our
algorithm for Vertex Triangle 2-Club and 6 ≤ ℓ ≤ 15 is shown in the right
part of Figure 7.2. All four variants are substantially faster for 6 ≤ ℓ ≤ 15, where
the LDR (Reduction Rule 7.2) and the LTR (Reduction Rule 7.1) are applied more
often in the initial data reduction which deletes significantly more vertices before the
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Figure 7.2: Comparison of the four variants of our algorithm for Vertex Triangle 2-
Club for ℓ ≤ 15.
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Figure 7.3: Comparison of the four variants of our algorithm for Edge Triangle 2-
Club for ℓ ≤ 15.

algorithm computes a lower bound and applies branching.

The performance of the four variants of our algorithm for Edge Triangle 2-
Club is shown in Figure 7.3. The left part shows our results for ℓ ≤ 5 and the
right part shows our results for 6 ≤ ℓ ≤ 15. Similar to the vertex variant Basic is
substantially slower than Basic+UB which in turn is substantially slower than N-LB.
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Figure 7.4: Comparison of the four variants of our algorithm for ℓ ≥ 16. The left plot
shows our results for Vertex Triangle 2-Club and the right plot shows our results for
Edge Triangle 2-Club.

Table 7.1: Average quality of both lower bounds for both the edge and the vertex variant
for different values of ℓ.

LB
Vertex Variant Edge Variant

ℓ ≤ 5 6 ≤ ℓ ≤ 15 ℓ ≥ 16 ℓ ≤ 5 6 ≤ ℓ ≤ 15 ℓ ≥ 16

N-LB 96.0% 93.8% 94.7% 97.1% 97.0% 97.4%
N+G-LB 99.9% 99.8% 99.5% 99.9% 99.8% 98.3%

In contrast to the vertex variant, Multi-LB is faster than N-LB. Again, all variants
are substantially faster for larger ℓ.

The performance of the four variants for ℓ > 15 of our algorithm forVertex Tri-
angle 2-Club and Edge Triangle 2-Club is shown in Figure 7.4. For Vertex
Triangle 2-Club the results are similar to ℓ ≤ 15, that is, Basic is substantially
slower than Basic+UB which in turn is substantially slower than Multi-LB, and N-LB

is the fastest. For Edge Triangle 2-Club the result is different: Basic is faster
than Basic+UB which is slower than N-LB and Multi-LB is the fastest. Again, all four
variants are substantially faster for larger ℓ > 15 than for ℓ ≤ 15 for both Vertex
Triangle 2-Club and Edge Triangle 2-Club. The main reason for this result
is that the LDR (Reduction Rule 7.2) and the LTR (Reduction Rule 7.1) are applied
more often in the initial data reduction which removes a significant portion of the
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Figure 7.5: Comparison of the 4 variants of our algorithm for Vertex Triangle 2-
Club with the ILP of Almeida and Brás.
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Figure 7.6: Dependence of the density on ℓ (L). The let plot shows the result for Vertex
Triangle 2-Club and the right plot shows the result for Edge Triangle 2-Club.

vertices from the graph. This is especially the case for Edge Triangle 2-Club
since initially all vertices with degree at most ℓ get removed.

Interestingly, Multi-LB was only beneficial in terms of running time for the edge-
variant, for the vertex variant the running time increased compared with N-LB. How-
ever, such a behavior cannot be observed if we compare the size of the lower bounds
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Figure 7.7: Dependence of the average global and the smallest local clustering coefficients
on ℓ (L). Black +-signs show the values for the edge variant, red crosses show the values
for the vertex variant.

N-LB (used in N-LB) and N+G-LB (used in Multi-LB) with the size of an optimal
solution, see Table 7.1. For both the edge and the vertex variant the N+G-LB is
much better than the N-LB. Surprisingly, the difference of the quality of these lower
bounds is larger in the vertex variant than in the edge variant despite the fact the
Multi-LB is only faster than the N-LB for the edge variant.

We compared our algorithm with the ILP formulation from Almeida and Brás [3]
for Vertex Triangle 2-Club in Figure 7.5. Since the source code of the ILP was
not available to us, we compared our algorithm with the ILP only on the instances
used by Almeida and Brás [3]. The ILP formulation was only faster for the graph
polblogs. Note that all instances of the graph polblogs were solved by our algorithm
by only applying data reduction rules. For all remaining instances our algorithm
outperformed the ILP.

We also considered the impact of ℓ on the density, see Figure 7.6. The figure shows
the average densities for all instances that were solved within the time limit and had
non-empty solutions for all ℓ ≤ 30. In general, the density grows with ℓ. Already
for ℓ = 1, the density is relatively high. One can see that the density increases more
strongly with increasing ℓ in the edge variant than in the vertex variant. The main
reason for this is that the minimum degree in an edge-ℓ-triangle 2-club is higher than
the minimum degree in a vertex-ℓ-triangle 2-club, especially for ℓ ≥ 10.

Finally, we consider the impact of ℓ on global and local clustering coefficients,
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see Figure 7.7. The figure shows the average coefficients for all instances that were
solved within the time limit and had non-empty solutions for all ℓ ≤ 30. In general,
both coefficients grow with ℓ. As expected, the growth is more rapid for the stricter
edge-variant where the minimum degree is ℓ + 1. Observe that already for ℓ = 1,
the global clustering coefficient is relatively high for both variants. Naturally, the
smallest local clustering is comparably smaller but achieves high values for ℓ ≤ 10 in
both variants. Summarizing, this shows that the computed solutions fulfill further
desirable community properties.

7.5 Conclusion

We provided an exact branch-and-bound solver for Vertex Triangle 2-Club and
for Edge Triangle 2-Club. We showed that our solver outperforms an existing
ILP by Almeida and Brás [3] for Vertex Triangle 2-Club. Furthermore, we
showed that the local and global clustering coefficient in a triangle 2-club in real-world
instances is much higher than the guaranteed local or global clustering coefficient by
the definition of this model (see [3] and Chapter 6). Also, our experiments showed
that both the local and global clustering coefficient is higher in the edge variant than
the corresponding values in the vertex variant. Since also edge-ℓ-triangle 2-clubs can
be found faster than vertex ℓ-triangle 2-clubs (which is mainly because of the higher
minimum degree in the edge variant), we conclude that the edge-ℓ-triangle 2-club
model is not only preferable from a modeling point of view (an edge-ℓ-triangle 2-club
is robust against up to ℓ edge deletions, see Proposition 6.4), but also regarding the
running time and quality of the solution.

Our naive branching algorithm (Algorithm 7.1) implied that Vertex Triangle
2-Club and Edge Triangle 2-Club can be solved in O(2n−knO(1)) time (Proposi-
tion 7.3). This result can be extended to show that Vertex Triangle s-Club and
Edge Triangle s-Club for each s can be solved in O(2n−knO(1)) time by adapting
the definition of incompatible vertices (distance s+1 instead of 3, see Definition 7.2).

Table 7.1 shows that our lower bounds, especially the N+G-LB, are very close
to an optimal solution and often already find an optimal solution. As a side result,
we showed that the running time of the G-LB is O(m · ∆3 · d2) (Proposition 7.8).
This running time is very high, even on sparse real-world graphs. This high running
time was our motivation to speed-up the computation of the G-LB by using the N-
LB beforehand and to use the conflict graph and the reduction rules like the LDR,
LTR, and LCR (see Section 7.3). All these speed-ups made the usage of the G-LB
practical. Nevertheless, the running time of the N+G-LB is still quite high. Hence,
a next step would be to find more reduction rules or weaker but faster versions of
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existing reduction rules to accelerate the N+G-LB. Such tricks or reduction rules are
not only desirable for the N+G-LB, but also for the branching: The number of nodes
in the search tree is relatively low compared to the overall running time. Hence, the
time spent in one search tree node is quite high. The main reason for this is that in
each node we have to check if the corresponding graph is a triangle 2-club. This can
be observed, for example, in the instances in which the lower bound equals the size
of an optimal solution since our experiments showed that then the search tree very
often has depth one.

Another possibility is to use different heuristics in the computation of the lower
bounds: Currently if a pair of incompatible vertices u and w is detected, we delete
the vertex which is in less triangles (vertex variant) or which has lower degree (edge
variant). Hence, it is interesting to study different greedy criteria according to which
a vertex of a pair of incompatible vertices is removed. One option is to remove the
vertex with the lowest number of incompatibilities. Note that this can be checked
efficiently because we use the conflict graph in the G-LB. More precisely, the number
of incompatibilities of vertex v is exactly the degree of v in the conflict graph. This
idea will not improve our lower bounds since they are already very close to optimal
solutions. However, it may reduce the time which is necessary to compute the lower
bounds since this different heuristic might lead to more subsequent applications of
the LTR (Reduction Rule 7.1).

Another way to improve our algorithm is to extend the definition of being in-
compatible. Currently, two vertices are incompatible if and only if their distance is
at least 3. Hence, this definition only uses the 2-club property, but not the triangle
property. In the following, we describe one way to incorporate the triangle property
into the definition of incompatibility. Roughly speaking, two vertices u and w are
also incompatible if too many vertices in a triangle with u have only few compatible
vertices in triangles with w. Let us describe this idea more precisely. Let Tu be the
set of vertices which are in a triangle together with vertex u. Now, two vertices u
and w are incompatible if the following algorithm returns no: Compute the sets Tu

and Tw. While there exists a vertex v ∈ Tu which has distance at most 2 to less
than ℓ vertices in Tw, delete v from Tu and do the same with Tw. Return “no” as
soon as |Tu| < ℓ or |Tw| < ℓ or if a marked vertex gets removed.

It would be interesting to also develop ILP formulations for Edge Triangle
s-Club and compare them with our algorithm. It seems very promising to tune
such an ILP with the LDR (Reduction Rule 7.2) and the LTR (Reduction Rule 7.1)
as an initial pre-processing as it was done by Almeida and Brás for Vertex Tri-
angle s-Club. Furthermore, it is interesting to see whether providing the ILP for
Edge Triangle s-Club with the lower bound of the N-LB decreases the running
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time. The same test could then be done for the N+G-LB for the ILPs for Vertex
Triangle s-Club and Edge Triangle s-Club.

Finally, it would be interesting to lift our implementation to be able to also
solve Vertex Triangle s-Club and Edge Triangle s-Club for s ≥ 3. Some
reduction rules like the LTR (Reduction Rule 7.1) or the LDR (Reduction Rule 7.2)
can be used directly for these problems. To use the LCR, one simply needs to adapt
the definition of incompatibility. But not every reduction rule can be adapted that
easily: For example the NCR (Reduction Rule 7.8) is not true anymore since two
non-adjacent marked vertices u and w do not need to have a common neighbor
anymore since s ≥ 3. Another challenge is to develop good heuristics: For s ≥ 3,
a lower bound based only on the neighborhood of a vertex might have a too large
difference to the value of an optimal solution. Finally, one bottleneck in our solver
for s = 2 is the check whether a vertex set is a 2-club. For s ≥ 3 this check needs even
more time since it is not sufficient anymore to check whether each pair of vertices
is adjacent or has a common neighbor. Hence, it is important to check the s-club
property sufficiently fast.
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Chapter 8

Covering Many (or Few) Edges
with k Vertices in Sparse Graphs

In many fixed-cardinality optimization problems, the value of the objective func-
tion f does not only depend on the structure of the subgraph induced by the solu-
tion S [38, 66]. In many examples f depends on the number of edges that have one
or two endpoints in S: In Maximum Partial Vertex Cover (MaxPVC), we
require that at least t edges have at least one endpoint in S. MaxPVC has appli-
cations in facility location [85]. Conversely, in Minimum Partial Vertex Cover
(MinPVC) we require that at most t edges have at least one endpoint in S. Min-
PVC is used to model the loading of semi-conductor components to be assembled
into products [92]. In Max (k,n − k)-Cut, we require that at least t edges have
exactly one endpoint in S. Max (k, n−k)-Cut is used as a group centrality measure
where a group with many connections to the remaining graph is sought [73]. Further-
more, it is used to search for a ground state in the anti-ferromagnetic k-state Potts
mode [226]. Furthermore, in Min (k,n − k)-Cut we require that at most t edges
have exactly one endpoint in S. Min (k, n− k)-Cut is used in VLSI-design [155].

Also, some problems in which the objective function depends only on the structure
of G[S] fit into this setting: In the decision version of Densest k-Subgraph we
require that there are at least t edges with both endpoints in S. Densest k-
Subgraph has applications in spam detection [91] and in community mining [59].
Conversely, in Sparsest k-Subgraph we require that at most t edges have both
endpoints in S. Sparsest k-Subgraph is used in tools to visualize stock market
interactions [26].

All these above-mentioned problems have been studied extensively, for example
in terms of their classic complexity, parameterized complexity and in terms of ap-
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proximation. For example, Densest k-Subgraph as been shown to be NP-hard
even if the maximum degree is 3 and the degeneracy is 2 [74]. Moreover, Dens-
est k-Subgraph is W[1]-hard with respect to k + t [62] since t =

(︁
k
2

)︁
yields the

Clique problem. Also, Densest k-Subgraph remains W[1]-hard parameterized
by k even on graphs with degeneracy 2 and closure number 2 [198]. Furthermore,
the problem also remains W[1]-hard with respect to the dual parameter n − k [38].
A randomized FPT-algorithm for Densest k-Subgraph parameterized by k + ∆
with running time 2O(∆k) was developed by Cai, Chan, and Chan [39]. Later, a de-
randomized algorithm with better worst-case running time of O(∆k) was presented
by Komusiewicz and Sorge [150]. Also, approximation algorithms for Densest k-
Subgraph have been studied extensively [20, 74, 130]. An exact exponential-time
algorithm with running time O(1.7315n) was presented by Chang et al. [42].

Furthermore, Sparsest k-Subgraph is NP-hard [87, 126] and W[1]-hard with
respect to k + t [62] since t = 0 yields the Independent Set problem. Also,
W[1]-hardness for k+ t can be shown for regular graphs [38] and for the dual param-
eter n − k [38]. Cai, Chan, and Chan presented an FPT-algorithm for the parame-
ter k+∆ [39]. Sparsest k-Subgraph is inapproximable for t with any factor since
Independent Set is NP-hard and each independent set has 0 inner edges. Hence,
approximation algorithms on graph classes in which Independent Set is solvable
in polynomial time have been studied [224]. An exact exponential-time algorithm
with running time O(1.7315n) was presented by Chang et al. [42].

MaxPVC is NP-hard [87, 126] and W[1]-hard for k [38, 101] and n− k [38, 62].
Furthermore, in contrast to Densest k-Subgraph and Sparest k-Subgraph, it
admits an FPT-algorithm for t [22, 133]. An FPT-algorithm with respect to ∆ + k
was provided by Raman and Saurabh [198]. Amini et al. [8] improved this result to
an FPT-algorithm for the parameter d + k with running time O((dk)k). Recently,
this result was improved by Panolan and Yaghoubizade to an algorithm with running
time 2O(dk) [187]. Furthermore, a factor 2-approximation was presented by Bshouty
and Burroughs [36]. Later, this ratio was improved by a factor depending on the
maximum degree [85, 104]. Also, genetic algorithms to solve the problem have been
investigated [235].

MinPVC is NP-hard [87, 126]. Furthermore, MinPVC is also W[1]-hard with
respect to k [38, 101] and also with respect to the dual parameter n − k [38, 62].
Bonnet et al. presented an FPT-algorithm for the parameter k+∆ [29]. Furthermore,
MinPVC admits an FPT-algorithm for parameter t [133]. There exists a factor 2-
approximation and this is tight: under standard assumptions no approximation with
factor (1− ϵ) for any ϵ > 0 is possible [86]. Furthermore, also FPT-approximations
are studied [102, 164].
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Max (k, n − k)-Cut is NP-hard [87, 126] and W[1]-hard with respect to the
standard parameter solution size k [38, 60]. Furthermore, W[1]-hardness was also
provided for the dual parameter n − k [38]. The problem is FPT with respect to
the parameter ∆+ k [29]. Also, for parameter t an FPT-algorithm was presented by
Bonnet et al. [29]. This algorithm was later improved by Saurabh and Zehavi [204].
Also, approximation algorithms for this problem were studied [1, 76].

Min (k, n − k)-Cut is NP-hard [87, 126] and W[1]-hard with respect to k and
also for the dual parameter n − k [38]. For parameterization with ∆ + k Bonnet
et al. [29] provided an FPT-algorithm, which was then improved by Saurabh and
Zehavi [204]. Furthermore, also for parameter t an FPT-algorithm was provided by
Cygan et al. [55]. A randomized approximation algorithm with ratio (1+εk)/ log(n)
for some fixed ε > 0 was presented by Feige, Krauthgamer, and Nissim [75]. This
ratio was later improved to O(log(n)) by Zhang [234].

We study the following general problem first defined by Bonnet et al. [29] that
contains all of the above problems as special case.1

Max α-Fixed Cardinality Graph Partitioning (Max α-FCGP)

Input: A graph G, k ∈ N, and t ∈ Q.
Question: Is there a set S of exactly k vertices such that

val(S) := (1− α) ·m(S) + α ·m(S, V (G) \ S) ≥ t ?

Here, α ∈ [0, 1], and m(S) denotes the number of edges with two endpoints in S
and m(S, V (G) \ S) denotes the number of edges with exactly one endpoint in S.
Naturally, one may also consider the minimization problem, denoted asMin α-Fixed
Cardinality Graph Partitioning (Min α-FCGP), where we are looking for a
set S such that val(S) ≤ t.

Furthermore, the value of α describes how strongly edges with exactly one end-
point in S influence the value of S relative to edges with two endpoints in S.
For α = 1/3, edges with two endpoints in S count twice as much as edges with
one endpoint in S and, thus, every vertex contributes exactly its degree to the value
of S. Hence, in this case, we simply want to find a vertex set with a largest or
smallest degree sum and thus the problems Max α-FCGP and Min α-FCGP can
be solved in polynomial time if α = 1/3.

1On the face of it, the definition of Bonnet et al. [29] seems to be more general as it has separate
weight parameters for the internal and outgoing edges. It can be reduced to our formulation by
adapting the value of t and thus our results also hold for this formulation.
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α

Densest(k-Subgraph

Sparsest(k-Subgraph

Max(Deg Sum

Min(Deg Sum

Max(PVC

Min(PVC

Max (k,n− k)-Cut

Min (k,n− k)-Cut

0 1/3 1/2 1

Figure 8.1: Problem definition cheat sheet.

More importantly, Max α-FCGP and Min α-FCGP contain all of the above-
mentioned problems as special cases (see Figure 8.1). For example, Partial Vertex
Cover (MaxPVC) is Max α-FCGP with α = 1/2 as all edges with at least one
endpoint in S count the same. Max (k, n−k)-Cut isMax α-FCGP with α = 1 and
Min (k, n−k)-Cut is Min α-FCGP with α = 1 since in both cases edges with both
endpoints in S are ignored. Sparsest k-Subgraph is Min α-FCGP with α = 0
and Densest k-Subgraph is Max α-FCGP with α = 0 as only the edges with
both endpoints in S count. As discussed above, there exist values of α such that
Max α-FCGP and Min α-FCGP are NP-hard and W[1]-hard on general graphs
with respect to the natural parameter k [38, 53, 63, 101]. This hardness makes
it interesting to study these problems on input graphs with special structure and
Bonnet et al. [29] and Shachnai and Zehavi [209] studied this problem on bounded-
degree graphs.

We continue this line of research and give a complete picture of the parameterized
complexity of Min α-FCGP and Max α-FCGP on several types of sparse graphs
that are described by structural parameters. In particular, we provide kernelization
algorithms and kernel lower bounds for these problems, see Figure 8.2 for an overview.

Our results. We provide a complete picture of the parameterized complexity of
Max α-FCGP and Min α-FCGP for all α with respect to the combination of k
and five parameters describing the graph structure: the maximum degree ∆ of G,
the h-index of G, the degeneracy of G, the c-closure of G, and the vertex cover
number vc of G. With the exception of the c-closure, all parameters are sparseness
measures. The c-closure, first described by Fox et al. [84], measures how strongly a
graph adheres to the triadic closure principle. Informally, the closure of a graph is
small whenever all vertices with many common neighbors are also neighbors of each
other. For a formal definition of all parameters refer to Section 2.1.

Our results are summarized by Figure 8.2. On a very general level, our main
finding suggests that the degrading problems are much more amenable to FPT-
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W[1]-hard wrt. k for constant p

FPT, no kg(p) kernel for any g

kO(p) kernel, no ko(p) kernel

(k + p)O(1) kernel

2p kernel, no (k + p)O(1) kernel

Vertex Cover Number vc Sec. 8.5 Max Degree ∆ Sec. 8.2

h-index Sec. 8.5

degeneracy d Sec. 8.4

c-closure Sec. 8.3

Parameter p Section with results

Figure 8.2: Overview over our results. Each box displays the parameterized results (see
also bottom right) with respect to k and the corresponding parameter p for all variants
(maximization, minimization, and all α ∈ [0, 1], see bottom left). Note that the split
of the boxes is not proportional to the corresponding values of α. See Section 2.1 for
the definitions of the parameters. A line from a box for parameter p to a box above for
parameter p′ implies that p ∈ O(p′) on all graphs. Thus, hardness results hold also for all
parameters below and tractability results for all parameters above.

algorithms and kernelizations than their non-degrading counterparts. No such dif-
ference is observed when considering the running time of FPT-algorithms for the
parameter k + ∆ but it becomes striking in the context of kernelization and when
using secondary parameters that are smaller than ∆. Given the importance of the
distinction between the degrading and non-degrading cases, we distinguish these sub-
cases of Max α-FCGP and Min α-FCGP by name (Degrading Max α-FCGP,
Non-Degrading Max α-FCGP, Degrading Min α-FCGP, Non-Degrading
Min α-FCGP).

Independent of our work, a polynomial compression for MaxPVC (the special
case of Max α-FCGP with α = 1/2) of size (dk)O(d) was recently discovered by
Panolan and Yaghoubizade [187]. This result, together with our kernel of size kO(d)

(Theorem 8.37), answers an open question of Amini, Fomin, and Saurabh [8]. They
asked whether MaxPVC admits a polynomial kernel in planar graphs. Note that

203



Chapter 8. Covering Many (or Few) Edges with k Vertices in Sparse Graphs

planar graphs have degeneracy 5.

On a technical level, by introducing an annotated version of the problem that
keeps track of removed vertices, we separate and unify arguments that deal with
vertices identified as (not) being part of a solution. In particular, we show that by
introducing vertex weights (called counter) we can deal with vertices whose contri-
bution is substantially below or above the average contribution that is necessary
to reach the threshold t. More precisely, if the contribution of a vertex v is much
above t/k, then we can add v to the solution and if it is much below t/k, then we
can remove v. As a consequence, we can show that the weights can be bounded
in the maximum degree of the annotated instance. This gives the kernels for the
parameter k +∆.

The main step in the more sophisticated kernelizations for the degeneracy d and
the c-closure is now to decrease the maximum degree of the instance as this allows us
to use the kernel for k+∆. To decrease the maximum degree, for these parameters,
we make use of Ramsey bounds. More precisely, the Ramsey bounds help to find
a large independent set I such that all vertices outside of I have only a bounded
number of neighbors in I. This then allows to prove by pigeonholing the following
for the vertex v of I with the currently worst contribution to the objective function:
No matter what the optimal solution selects outside of I, there is always some vertex
of I \ {v} that gives at least as good a contribution to the final solution as v. For
the parameter c, we also need an additional pigeonhole argument excluding large
cliques in order to apply the Ramsey bound. For the parameter d, we establish a
new constructive Ramsey bound for Ki,j-free graphs that may be of independent
interest.

We remark that when we describe the kernel size for α > 0 (for instance, Propo-
sition 8.11), the factor 1/α is hidden in the O notation. We would like to emphasize,
however, that the exponents in the kernel size such as O(c) and O(d) do not depend
on 1/α. On the other hand, the lower bounds such as Theorem 8.19 hold indeed for
all α in the range corresponding to the case.

We believe that this general approach could be useful for other parameterizations
that are not considered in this work. A somewhat surprising consequence of our
kernelizations is that Partial Vertex Cover and Max (k, n− k)-Cut not only
behave in the same way but that the kernels for both problems can also be obtained
by the same algorithms.

204



8.1. A Data Reduction Framework via Annotation

8.1 A Data Reduction Framework via Annotation

In this section, we introduce an annotated variant which gives more options for encod-
ing information in the instances, allowing easier handling for kernelization. Moreover,
to avoid repeating certain basic arguments, we provide general data reduction rules
and statements used in the subsequent sections. Finally, we describe how to reduce
from the annotated to the non-annotated problem variants in polynomial time.

In the annotated problem variant we encode that some vertices are decided to
be in the solution and some vertices are decided to not be in the solution. To this
end, we have additionally as input a (possibly empty) partial solution T ⊆ V (G).
Moreover, for each vertex we store a number counter : V → N which encodes the
number of deleted neighbors not in the solution. We will assume throughout the
paper that counter(v) = 0 for every v ∈ T . For a set S ⊆ V (G), we set

• counter(S) :=
∑︁

v∈S counter(v) and

• valG(S) := α(m(S, V (G) \ S) + counter(S)) + (1− α)m(S).

For a vertex v ∈ S, we set deg+c(v) := deg(v) + counter(v).

Annotated Max α-FCGP
Input: A graph G, T ⊆ V (G), counter : V (G)→ N, k ∈ N, and t ∈ Q.
Question: Is there a vertex set S of size k such that T ⊆ S ⊆ V (G)

and valG(S) ≥ t (Max) or valG(S) ≤ t (Min), respectively?

A vertex set S fulfilling these requirements is referred to as a solution. Now, we
define the contribution of a vertex. The contribution of a vertex v is a measure on
how much the value of a partial solution T increases if v is added to T . Note that
our definition slightly differs from that of Bonnet et al. [29].

Definition 8.1. For a vertex set T ⊆ V (G), we define the contribution of a vertex v
as

cont(v, T ) := α · (|N(v) \ T |+ counter(v)) + (1− 2α)|N(v) ∩ T |
= α deg+c(v) + (1− 3α)|N(v) ∩ T |.

The contribution is chosen so that the value val(S) of a vertex set S computes as
follows.

Lemma 8.2. Let G be a graph and S := {v1, . . . , vℓ} ⊆ V (G) a vertex set. Then, it
holds that val(S) =

∑︁
i∈[ℓ] cont(vi, {v1, . . . , vi−1}).
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Proof. Let Si = {v1, . . . , vi−1} and Si = {vi, . . . , vℓ} for each i ∈ [ℓ]. Observe that

m(S, V (G) \ S) =
∑︂
i∈[ℓ]

|N(vi) \ S| =
∑︂
i∈[ℓ]

|N(vi) \ Si−1| − |N(vi) ∩ Si| and

m(S) =
∑︂
i∈[ℓ]

|N(vi) ∩ Si−1| =
∑︂
i∈[ℓ]

|N(vi) ∩ Si|.

We thus have

val(S) = α(m(S, V (G) \ S) +m(S) + counter(S)) + (1− 2α) ·m(S)

=
∑︂
i∈[ℓ]

(︃
α[(|N(vi) \ Si−1| − |N(vi) ∩ Si|) + |N(vi) ∩ Si|+ counter(v)]

+ (1− 2α)|N(vi) ∩ Si−1|
)︃

=
∑︂
i∈[ℓ]

cont(vi, Si) =
∑︂
i∈[ℓ]

cont(vi, Si),

which proves the lemma.

For a vertex v and two sets X ⊆ Y ⊆ V (G), we have cont(v,X) ≥ cont(v, Y )
for α ∈ (1/3, 1] and cont(v,X) ≤ cont(v, Y ) for α ∈ [0, 1/3) by Definition 8.1. Note
that a function f : 2P → Q such that for each X, Y ⊆ P with X ⊆ Y and for each
element v ∈ P \ Y it holds that f(X ∪ {v}) − f(X) ≥ f(Y ∪ {v}) − f(Y ) is called
submodular and a function g : 2P → Q such that for each X, Y ⊆ P with X ⊆ Y and
for each element v ∈ P \ Y it holds that g(X ∪ {v})− g(X) ≥ g(Y ∪ {v})− g(Y ) is
called supermodular. By Lemma 8.2 we have valG(X ∪{v}) = valG(X)+ cont(v,X).
Hence, we conclude the following.

Observation 8.3. The function valG(·) is submodular for α ∈ (1/3, 1] and super-
modular for α ∈ [0, 1/3).

8.1.1 Main Reduction Rules & Basic Exchange Argument

Annotations are helpful for data reductions in the following way: If we identify a
vertex v that is (or is not) in a solution, then, we can simplify the instance as follows
using the annotations.

Reduction Rule 8.1 (Inclusion Rule). If there is a solution S with v ∈ S \ T ,
then add v to T . If there is a vertex v ∈ T with counter(v) > 0, then decrease t
by α · counter(v) and set counter(v) := 0.
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Reduction Rule 8.2 (Exclusion Rule). If there is a solution S with v /∈ S, then
for each u ∈ N(v) increase counter(u) by one and remove v from G.

The correctness of these two rules follows by the definitions of a partial solution
and of the counter. Note that we maintain the aforementioned invariant that every
vertex v ∈ T has counter(v) = 0 when applying the Inclusion Rule (Reduction
Rule 8.1). Furthermore, we observe the following.

Observation 8.4. The Inclusion Rule (Reduction Rule 8.1) and the Exclusion Rule
(Reduction Rule 8.2) do not increase the parameters maximum degree ∆, c-closure,
degeneracy d, vertex cover number vc, and h-index.

The reduction rules themselves are simple. The difficulty lies of course in identi-
fying vertices that are included in or excluded from some solution. In the respective
arguments, we use the following notion of better vertices.

8.1.2 Better Vertices

The following notion captures a situation that frequently appears in our arguments
for the annotated problem variant and allows for simple exchange arguments (see
Lemma 8.6).

Definition 8.5. A vertex v ∈ V (G) is better than u ∈ V (G) with respect to a
vertex set T ⊆ V (G) if cont(v, T ) ≥ cont(u, T ) for the maximization variant (if
cont(v, T ) ≤ cont(u, T ) for the minimization variant).

A vertex v ∈ V (G) is strictly better than u ∈ V (G) if for all T ⊆ V (G) of size at
most k we have cont(v, T ) ≥ cont(u, T ) for the maximization variant (cont(v, T ) ≤
cont(u, T ) for the minimization variant).

When we simply say that v is better than u, we mean that v is better than u with
respect to the empty set. The following lemma immediately follows from Lemma 8.2.

Lemma 8.6. Let S be a solution of an instance of Annotated α-FCGP. Suppose
that there are two vertices v ∈ S and v′ /∈ S such that v′ is better than v with respect
to S\{v} or v′ is strictly better than v. Then, S ′ := (S\{v})∪{v′} is also a solution.

Proof. We give a proof for the maximization variant; the minimization variant follows
analogously. By Lemma 8.2, we have val(S ′) = val(S \ {v}) + cont(v′, S \ {v}) ≥
val(S \ {v}) + cont(v, S \ {v}) = val(S). Here, the inequality follows from the fact
that v′ is better than v.
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Observe that the contribution of any vertex v differs from α deg+c(v) by at
most |(1 − 3α)k|. This observation allows us to identify some strictly better ver-
tices in the following. This is helpful when we wish to apply the second part of
Lemma 8.6 on strictly better vertices.

Lemma 8.7. Let u, v ∈ V (G). Vertex v is strictly better than u if

• (Maximization:) α deg+c(u) ≤ α deg+c(v)− |(1− 3α)k|.
• (Minimization:) α deg+c(u) ≥ α deg+c(v) + |(1− 3α)k|.

Proof. We give a proof for the maximization variant; the minimization variant fol-
lows analogously. By the definition of strictly better vertices, it suffices to show
that cont(v, T )− cont(u, T ) ≥ 0 for each T ⊆ V (G) of size at most k:

cont(v, T )− cont(u, T )

= α deg+c(v) + (1− 3α)|N(v) ∩ T | − α deg+c(u)− (1− 3α)|N(u) ∩ T |
= α(deg+c(v)− deg+c(u)) + (1− 3α)(|N(v) ∩ T | − |N(u) ∩ T |)
≥ |(1− 3α)k|+ (1− 3α)(|N(v) ∩ T | − |N(u) ∩ T |) ≥ |(1− 3α)k|+ (1− 3α)k ≥ 0.

This completes the proof.

8.1.3 Reduction to Non-annotated Variant

The following two lemmas (for the maximization and the minimization variant, re-
spectively) show that it is possible to remove annotations without blowing up the
instance size. However, the instance size after removing annotations will depend
on ∆T := maxv∈V (G)\T deg(v) and Γ := maxv∈V (G)\T counter(v) + 1. Note that the
maximum degree ∆ = maxv∈V (G) deg(V ) ≥ ∆T . We obtain an upper bound on Γ in
terms of k +∆ in the next section.

Lemma 8.8. Given an instance I := (G, T, counter, k, t) of Annotated Max α-
FCGP with α ∈ (0, 1], we can compute an equivalent instance I ′ of Max α-FCGP
of size O((∆T + Γ + α−1) · |V (G)|+ α−1k · |T |)) in polynomial time.

Proof. We may assume that G has at least k vertices (otherwise no solution for
Annotated Max α-FCGP exists and thus the empty graph and the same value of k
form a no-instance for Max α-FCGP). We construct an equivalent instance I ′ :=
(G′, k, t′) of Max α-FCGP. The graph G′ is obtained from G as follows:

1. Add counter(v) + ⌊α−1⌋ degree-one neighbors to every vertex v ∈ V (G).
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2. Additionally, add ℓ := ∆T + Γ + |α−1 − 3| · k + ⌊α−1⌋ degree-one neighbors to
every vertex v ∈ T .

We denote by Lv the set of degree-one vertices added to vertex v ∈ V (G) and we
denote by L :=

⋃︁
v∈V (G) Lv the set of all newly added leaf vertices. To conclude the

construction of I ′, we set t′ := t + α(ℓ · |T | + ⌊α−1⌋ · k). Since G has at most ∆T ·
|V (G)| edges and we add O((Γ + α−1) · |V (G)| + (∆T + Γ + α−1k) · |T |) edges, we
see that G′ has O((∆T + Γ + α−1) · |V (G)|+ α−1k · |T |) edges.

Next, we prove the equivalence between I and I ′. For a solution S of I, its value
in G′ is increased by α · ⌊α−1⌋ for every vertex in S and, additionally, by α · ℓ for
every vertex in T , amounting to t+ α(ℓ · |T |+ ⌊α−1⌋ · k).

Conversely, consider a solution S ′ of I ′. First, we show that there is a solution
containing all vertices of T and no leaf vertex of L using Lemma 8.6. Suppose that
for some vertex v ∈ V (G), one of its degree-one neighbors v′ ∈ Lv is in S ′ but
not v itself. We then have cont(v′, S ′ \ {v}) = α and cont(v, S ′ \ {v}) ≥ α, implying
that (S ′ \ {v′})∪ {v} is also a solution by Lemma 8.6. Thus, in the following we can
assume that S ′∩Lv = ∅ for every vertex v ∈ V (G)\S ′. If there is a vertex v′ ∈ S ′∩Lv

for some v ∈ S ′, then by the assumption that |V (G)| ≥ k, the pigeonhole principle
gives us a vertex w ∈ V (G)\S ′ with S ′∩Lw = ∅. Since |Lw| ≥ counter(w)+⌊α−1⌋ ≥
⌊α−1⌋, we have cont(w, S ′ \ {v′}) ≥ α · ⌊α−1⌋ ≥ α(α−1 − 1) = 1 − α. We thus
have cont(v′, S \ {v′}) = 1 − α ≤ cont(w, S ′ \ {v′}). Hence, (S ′ \ {v′}) ∪ {w} is a
solution, again by Lemma 8.6.

Thus, we may assume that S ′ consists only of vertices from V (G). Suppose that
some vertex v ∈ T is not in S ′. For any vertex v′ ∈ S ′\T , we have deg(v′) ≤ degG(v)+
counter(v)+⌊α−1⌋ ≤ ∆T+Γ+⌊α−1⌋. So we have deg(v′) ≥ ∆T+Γ+|α−1|·k+⌊α−1⌋ ≥
deg(v) + |α−1 − 3| · k. Applying Lemma 8.7 with counter(v) = counter(v′) = 0, we
obtain that v is strictly better than v′. Now, it follows from Lemma 8.6 that I ′ has
a solution S ′ such that T ⊆ S ′ ⊆ V (G′). Hence, S ′ is also a solution for I.

Lemma 8.9. Given an instance I := (G, T, counter, k, t) of Annotated Min α-
FCGP for α ∈ (0, 1], we can compute an equivalent instance I ′ of Min α-FCGP
of size O(α−2(∆ + Γ + k)2 + α−1(∆ + Γ + k) · |V (G)|) in polynomial time.

Proof. We may assume that G has at least k vertices (otherwise no solution for
Annotated Min α-FCGP exists and the thus the empty graph and parameter k are
a no-instance forMin α-FCGP). We construct an equivalent instance I ′ := (G′, k, t′)
of Min α-FCGP.

Let ℓ be the smallest integer greater than α−1(∆ + Γ + |(1 − 3α)k|). Let G′ be
the graph obtained from G as follows: We add a clique C on 2ℓ + 1 vertices. For
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every vertex v ∈ V (G) \ T , choose ℓ + counter(v) vertices of C arbitrarily and add
edges between v and the chosen vertices. To conclude the construction of I ′, we
set t′ := t + αℓ(k − |T |). Observe that we add O(α−1(∆ + Γ + k)) vertices and
O(α−2(∆ + Γ + k)2 + α−1(∆ + Γ + k) · |V (G)|) edges.

Next, we show that I and I ′ are equivalent. For a solution S of I its value in G′

is increased by αℓ for every vertex v ∈ V (G) \ T , amounting to t + αℓ(k − |T |).
Thus, S is also a solution of I ′.

Conversely, suppose that I ′ has a solution S ′. We show that there is a solution
that contains all vertices of T and no vertex of C. By construction, the following
holds:

1. degG′(v) = degG(v) ≤ ∆ for any vertex v ∈ T .

2. degG′(v) = degG(v)+ℓ+counter(v) ∈ [ℓ,∆+Γ+ℓ] for any vertex v ∈ V (G)\T .

3. degG′(v) ≥ 2ℓ for any vertex v ∈ C.

Since ℓ ≥ α−1(∆+Γ+ |(1−3α)k|), any vertex in T is strictly better than any vertex
in V (G) \ T and any vertex in V (G) \ T is strictly better than any vertex in C by
Lemma 8.7: To see the latter, consider v2 ∈ V (G) \ T and v3 ∈ C. Then we have:

α degG′(v3)− α degG′(v2) ≥ α2ℓ− α(∆ + Γ + ℓ)

= αℓ− α∆− αΓ

≥ ∆+ Γ + |(1− 3α)k| − α∆− αΓ ≥ |(1− 3α)k|.

Thus, by Lemma 8.6, I ′ admits a solution S ′ with T ⊆ S ′ ⊆ V (G′) and, hence, S ′ is
a solution of value at least t′ − αℓ(k − |T |) = t for I.

8.1.4 Dependence of the Kernel Sizes on α

To simplify notation, we will generally omit the polynomial factors in α−1 in the
following sections. Note that when we remove the annotations using Lemma 8.8 or
Lemma 8.9, a factor polynomial in α−1 appears in the size of the graph of the re-
sulting α-FCGP instance. In our kernelization, we apply Lemma 8.8 or Lemma 8.9
once after obtaining an instance of Annotated α-FCGP in which the maximum
degree ∆, the maximum counter Γ, and the graph G are all bounded by some (poly-
nomial) function of the parameter in question.

In Sections 8.2 (maximum degree), 8.3 (closure), and 8.4 (degeneracy) the bound
on ∆ and the size of G will not depend on α−1, while Γ has a term linearly dependent
on α−1 (see Lemma 8.16). Thus, the kernel size will be proportional to α−1 for the
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maximization variant (we remark that α−1 ≤ 3 for the degrading case) and α−4 for
the minimization variant in the worst case. In Section 8.5 (vertex cover number
and h-index), we make the dependence on α−1 explicit since many results have their
own approach to obtain an upper bound on ∆ and Γ.

8.2 Parameterization By Maximum Degree

8.2.1 Polynomial Kernels in Degrading Cases

Now, we present our framework to provide polynomial kernels of size ∆+k. For this,
it is essential to bound the largest counter of any vertex polynomial in ∆ + k. We
do this by first adding vertices with a contribution far above t/k for maximization
(and for below t/k for minimization) to the partial solution. Second, we remove
vertices with contribution far below t/k for maximization (and far above t/k for
minimization). We then show that this is sufficient to bound the counters.

To obtain a polynomial kernel for α-FCGP with respect to ∆+ k, we then show
that it is sufficient to remove a vertex v if polynomial in ∆ + k many vertices are
better than v. To obtain kernels for the smaller parameters c-closure (Section 8.3)
and degeneracy (Section 8.4) plus k it then remains to show that the maximum
degree can be bounded in the parameter plus k.

Recall that in the degrading cases we have α ∈ (1/3, 1] for maximization and α ∈
[0, 1/3) for minimization. Furthermore, recall that for two vertices u and v, v is said
to be better than u with respect to T if cont(v, T ) ≥ cont(u, T ) (vice versa for the
minimization variant).

Recall that we defined ∆T := maxv∈V (G)\T deg(v) for the annotated version. To
obtain the kernels in this section it is sufficient to use ∆ instead of ∆T in Reduc-
tion Rule 8.3. However, in Section 8.5 it is sometimes important to use ∆T in
Reduction Rule 8.3 to obtain the kernels.

Reduction Rule 8.3. Let I be an instance of Annotated Degrading α-FCGP.
If there are at least (∆T − 1)(k − 1) + 1 vertices that are better than v with respect
to T , then apply the Exclusion Rule (Reduction Rule 8.2) to v.

Lemma 8.10. Reduction Rule 8.3 is correct.

Proof. Let I ′ be the reduced instance. Clearly, if I ′ has a solution S ′, then S ′ is also
a solution for I. Conversely, suppose that I has a solution S. If v /∈ S, then S is
also a solution for I ′. In the following, we assume that v ∈ S.
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By the pigeonhole principle, there exists a vertex v′ better than v such that v /∈
N [S \ T ]. We claim that S ′ := (S \ {v}) ∪ {v′} is a solution for I ′. First, we
consider maximization. By Lemma 8.6, it suffices to show that cont(v′, S \ {v}) ≥
cont(v, S \ {v}). Since v′ /∈ N [S ′ \ T ], we have cont(v′, S \ {v}) = cont(v′, T ) ≥
cont(v, T ) ≥ cont(v, S \ {v}). Here, the last inequality follows from the fact that the
contribution is degrading.

Second, we consider minimization. By Lemma 8.6, it suffices to show that
cont(v′, S \ {v}) ≤ cont(v, S \ {v}). Since v′ /∈ N [S ′ \ T ], we have cont(v′, S \ {v}) =
cont(v′, T ) ≤ cont(v, T ) ≤ cont(v, S \{v}). Here, the last inequality follows from the
fact that the contribution is degrading.

Next, we show that the exhaustive application of Reduction Rule 8.3 yields a
polynomial kernel for Degrading α-FCGP.

Proposition 8.11. Degrading α-FCGP has a kernel of size

• O(∆2k) for maximization and α ∈ (1/3, 1], and

• O(∆k(∆ + k)) for minimization and α ∈ (0, 1/3).

Proof. Given an instance of Degrading α-FCGP, we transform it into an equiva-
lent instance of Annotated Degrading α-FCGP and apply Reduction Rule 8.3
exhaustively. Observe that since Reduction Rule 8.3 is applied, we have |V (G)| ≤
∆k + 1. Moreover, we have T = ∅ and Γ ≤ ∆ since each neighbor of a vertex can
increase its counter by at most one. By Lemma 8.8 (maximization) or Lemma 8.9
(minimization), we obtain an equivalent instance of α-FCGP of size O(∆2k) (max-
imization) or O(∆k(∆ + k)) (minimization).

Note that Proposition 8.11 does not cover the case α = 0 for minimization,
which is also called Sparsest k-Subgraph. The kernel for this case will be shown
in Section 8.4: Proposition 8.34 provides a kernel of size O(d2k) for Sparsest k-
Subgraph; since d ≤ ∆, this implies also a kernel of size O(∆2k).

Proposition 8.11 shows that given an instance of Degrading α-FCGP, we
can find in polynomial time an equivalent instance of Degrading α-FCGP of
size O(∆+k)O(1). In the following, in Proposition 8.18, we will show that an equiva-
lent instance of Degrading α-FCGP that has size (∆+ k)O(1) can be constructed
even if an instance of Annotated Degrading α-FCGP is given. Proposition 8.18
plays an important role in kernelizations in subsequent sections. Essentially, the task
of kernelization for k + c and k + d boils down to bound the maximum degree ∆ to
apply Proposition 8.18.
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As shown in the proof of Proposition 8.11, the number of vertices becomes poly-
nomial in k + ∆ by exhaustively applying Reduction Rule 8.3. Recall that in Sec-
tion 8.1, we presented a polynomial-time procedure to remove annotations with an
additional polynomial factor in ∆+Γ on the instance size, where Γ denotes the max-
imum counter. To prove Proposition 8.18, it remains to bound Γ for Annotated
Degrading α-FCGP.

Bounding the largest counter Γ. Throughout the section, let k′ := k − |T |
and t′ := t − val(T ). First, we identify some vertices which are contained in a
solution, if one exists.

Definition 8.12. Let I be a yes-instance of Annotated Degrading α-FCGP.
A vertex v ∈ V (G) \ T is called satisfactory if

• (Maximization:) cont(v, T ) ≥ t′/k′ + (3α− 1)(k − 1) and α ∈ (1/3, 1].

• (Minimization:) cont(v, T ) ≤ t′/k′ + (3α− 1)(k − 1) and α ∈ (0, 1/3).

Reduction Rule 8.4. Let I be an instance of Annotated Degrading α-FCGP
with α > 0 and let v ∈ V (G) \ T be a satisfactory vertex. Apply the Inclusion Rule
(Reduction Rule 8.1) on vertex v.

Lemma 8.13. Reduction Rule 8.4 is correct.

Proof. Let I ′ be the reduced instance. Clearly, if I ′ has a solution S ′, then S ′ is also
a solution for I. Conversely, suppose that I has a solution S. The lemma clearly
holds for v ∈ S. So we will assume that v /∈ S. We start with an auxiliary claim:

Claim 11. There is an ordering (v1, . . . , vk′) of the vertices of S \ T with

• ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓk′ for maximization and α ∈ (1/3, 1], and

• ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓk′ for minimization and α ∈ (0, 1/3),

where Si := T ∪ {v1, . . . , vi−1} and ℓi := cont(vi, Si) for every i ∈ [k′].

Proof of Claim. Consider an ordering of S \ T , where the i-th vertex vi is chosen in
such a way that cont(vi, Si) is maximized (minimized). Then, since the contribution
is degrading, we conclude that cont(vi, Si) ≥ cont(vi+1, Si) ≥ cont(vi+1, Si+1) for
maximization, and cont(vi, Si) ≤ cont(vi+1, Si) ≤ cont(vi+1, Si+1) for minimization,
respectively, for every i ∈ [k′ − 1]. ■

Note that Sk′ = S \ {vk′}. Now, consider the vertex set S ′ := Sk′ ∪ {v}. We
show that val(S ′) ≥ t for maximization and that val(S ′) ≤ t for minimization.
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By Lemma 8.2, we have val(S ′) = val(S) − ℓk′ + cont(v, Sk′). The definition of
contribution yields that

cont(v, Sk′) = α deg+c(v) + (1− 3α)|N(v) ∩ Sk′ |
= cont(v, T ) + (1− 3α)|N(v) ∩ (Sk′ \ T )|.

Since |Sk′ \ T | = k′ − 1 and cont(v, T ) ≥ t′/k′ + (3α − 1)(k − 1) for maximization
and cont(v, T ) ≤ t′/k′ + (3α− 1)(k − 1) for minimization, we have

cont(v, Sk′) ≥ [t′/k′ + (3α− 1)(k − 1)] + (1− 3α)(k′ − 1) ≥ t′/k′

for maximization and α ∈ (1/3, 1], and

cont(v, Sk′) ≤ [t′/k′ + (3α− 1)(k − 1)] + (1− 3α)(k′ − 1) ≤ t′/k′

for minimization and α ∈ (0, 1/3).

For maximization, if ℓk′ ≤ t′/k′, then we have ℓk′ ≤ cont(v, Sk′) and thus
val(S ′) ≥ val(S) ≥ t. Analogously, for minimization, if ℓk′ ≥ t′/k′, then we
have ℓk′ ≥ cont(v, Sk′) and thus val(S ′) ≤ val(S) ≤ t. Thus, in the following,
we assume that ℓk′ > t′/k′ for maximization and that ℓk′ < t′/k′ for minimization.
We obtain that

val(Sk′) = val(T ) +
k′−1∑︂
i=1

ℓi. Thus,

val(Sk′) ≥ val(T ) + (k′ − 1)ℓk′ ≥ val(T ) +
(k′ − 1)t′

k′ for maximization, and

val(Sk′) ≤ val(T ) + (k′ − 1)ℓk′ ≤ val(T ) +
(k′ − 1)t′

k′ for minimization.

Hence, for maximization val(S ′) = val(Sk′) + cont(v, Sk′) ≥ [val(T ) + (k′− 1)t′/k′] +
t′/k′ = t and for minimization val(S ′) = val(Sk′) + cont(v, Sk′) ≤ [val(T ) + (k′ −
1)t′/k′] + t′/k′ = t.

We henceforth assume that Reduction Rule 8.4 is exhaustively applied on every
satisfactory vertex. Next, we identify some vertices which are not contained in any
solution.

Definition 8.14. Let I be a yes-instance of Annotated Degrading α-FCGP.
A vertex v ∈ V (G) \ T is called needless if

• (Maximization:) cont(v, T ) < t′/k′−(3α−1)(k−1)2 for maximization and α ∈
(1/3, 1].
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• (Minimization:) cont(v, T ) > t′/k′− (3α−1)(k−1)2 for minimization and α ∈
(0, 1/3).

Reduction Rule 8.5. Let I be an instance of Annotated Degrading α-FCGP
with α > 0 and let v ∈ V (G) \ T be a needless vertex. Apply the Exclusion Rule
(Reduction Rule 8.2) on vertex v.

Lemma 8.15. Reduction Rule 8.5 is correct.

Proof. Let I ′ be the reduced instance. Clearly, if I ′ has a solution S ′, then S ′ is
also a solution for I. Conversely, suppose that I has a solution S. The lemma
clearly holds for v /∈ S. So we will assume that v ∈ S. Since Reduction Rule 8.4
is exhaustively applied to each satisfactory vertex v′, we obtain that cont(v′, T ) <
t′/k′ + (3α − 1)(k − 1) for maximization and cont(v′, T ) > t′/k′ + (3α − 1)(k − 1)
for minimization, for each vertex v′ ∈ V (G) \ T . Together with Lemma 8.2 we thus
obtain for maximization that

val(S) ≤ val(T ) + cont(v, T ) + (k′ − 1)[t′/k′ + (3α− 1)(k − 1)]

< val(T ) + [t′/k′ − (3α− 1)(k − 1)2] + (k′ − 1)[t′/k′ + (3α− 1)(k − 1)]

= val(T ) + t′ − (3α− 1)(k − 1)(k − k′) ≤ t since α ∈ (1/3, 1].

Similarly, for minimization, we obtain that

val(S) ≥ val(T ) + cont(v, T ) + (k′ − 1)[t′/k′ + (3α− 1)(k − 1)]

> val(T ) + [t′/k′ − (3α− 1)(k − 1)2] + (k′ − 1)[t′/k′ + (3α− 1)(k − 1)]

= val(T ) + t′ + (1− 3α)(k − 1)(k − k′) ≥ t since α ∈ (0, 1/3).

For maximization, this is a contradiction to val(S) ≥ t, and for minimization this is
a contradiction to val(S) ≤ t. Thus, S cannot contain the needless vertex v.

We henceforth assume that Reduction Rule 8.5 is applied on every needless vertex.
The following reduction rule decreases the counter of each vertex in V (G) \T . After
this rule is exhaustively applied, we may assume that counter(v) = 0 for at least one
vertex v ∈ V (G) \ T . Recall that we already have counter(v) = 0 for every vertex
in T .

Reduction Rule 8.6. If counter(v) > 0 for every vertex v ∈ V (G) \ T , then de-
crease counter(v) by 1 for every vertex v ∈ V (G) \ T and decrease t by αk′.

Next, we show that after the exhaustive application of Reduction Rule 8.6 the
counter of each vertex is bounded polynomially in terms of ∆ and k.
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Lemma 8.16. Let I be a reduced yes-instance of Annotated Degrading α-
FCGP with α > 0. We have counter(v) ∈ O(∆ + α−1k2) for every vertex v ∈
V (G) \ T .

Proof. First, observe that there exists at least one vertex u ∈ V (G) \ T with
counter(u) = 0, since otherwise Reduction Rule 8.6 is still applicable. Since Re-
duction Rule 8.5 is applied to each needless vertex, we conclude that every vertex
in V (G) \ T has contribution at least t′/k′ − (3α − 1)(k − 1)2 for maximization.
Furthermore, since Reduction Rule 8.4 is applied to each satisfactory vertex, we con-
clude that every vertex v ∈ V (G)\T has contribution at least t′/k′+(3α− 1)(k− 1)
for minimization. In particular, we have

cont(u, T ) ≥ t′/k′ − (3α− 1)(k − 1)2 for maximization, and

cont(u, T ) ≥ t′/k′ + (3α− 1)(k − 1) for minimization.

Since also cont(u, T ) = α · deg(u) + (1− 3α)|N(u) ∩ T | we obtain that

t′/k′ ≤ α · deg(u) + (1− 3α)|N(u) ∩ T |+ (3α− 1)(k − 1)2 for maximization, and
(8.1)

t′/k′ ≥ α · deg(u) + (1− 3α)[(k − 1) + |N(u) ∩ T |] for minimization. (8.2)

Moreover, since Reduction Rule 8.1 is applied to each satisfactory vertex, we conclude
that every vertex v ∈ V (G) \ T has contribution at most t′/k′ + (3α− 1)(k − 1) for
maximization. Furthermore, since Reduction Rule 8.2 is applied to each needless
vertex, we conclude that every vertex in V (G) \ T has contribution at most t′/k′ −
(3α− 1)(k − 1)2 for minimization. This implies that in particular

α · counter(v) ≤ t′/k′ + (3α− 1)(k − 1) for maximization, and. (8.3)

α · counter(v) ≤ t′/k′ − (3α− 1)(k − 1)2 for minimization. (8.4)

For maximization and α ∈ (1/3, 1] it then follows from Equations (8.1) and (8.3)
that

counter(v) ≤ deg(u) +
3α− 1

α
[k(k − 1)− |N(v) ∩ T |] ∈ O(∆ + α−1k2).

For minimization and α ∈ (0, 1/3) it then follows from Equations (8.2) and (8.4)
that

counter(v) ≤ deg(u) +
1− 3α

α
[k(k − 1) + |N(v) ∩ T |] ∈ O(∆ + α−1k2).

This concludes the proof.
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Putting everything together. For the kernels, we first transform the instance
into an equivalent instance of Annotated Degrading α-FCGP. Second, we apply
our reduction rules. For the third step, we use the following proposition to reduce
back to the unannotated version.

Proposition 8.17. Let α > 0.

• Given an instance (G, T, counter, k, t) of Annotated Degrading Max α-
FCGP, we can compute in polynomial time an equivalent Degrading Max
α-FCGP instance of size O(|V (G)|2 + α−1|V (G)|k2) ⊆ O(α−1|V (G)|3).

• Given an instance (G, T, counter, k, t) of Annotated Degrading Min α-
FCGP, we can compute in polynomial time an equivalent instance of De-
grading Min α-FCGP of size O(α−2(|V (G)|+ α−1k2)2) ⊆ O(α−4|V (G)|4).

Proof. Using Reduction Rules 8.1, 8.2, and 8.6 exhaustively yields, by Lemma 8.16,
an instance where counter(v) ∈ O(∆+α−1k2) ⊆ O(|V (G)|+α−1k2). For maximiza-
tion, by Lemma 8.8 we get an equivalent instance of Degrading Max α-FCGP
of size

O(|V (G)|2 + |V (G)|k2 + k2) ⊆ O(α−1|V (G)|3), and

for minimization, by Lemma 8.9 we get an equivalent instance of Degrading Min
α-FCGP of size

O(α−2(|V (G)|+ α−1k2)2+α−1(|V (G)|+ α−1k2)|V (G)|)
⊆ O(α−2(|V (G)|+ α−1k2)2)

⊆ O(α−4|V (G)|4).

Hence, the statement follows.

Proposition 8.18. Given an instance (G, T, counter, k, t) of Annotated Degrad-
ing α-FCGP with α > 0, we can compute in polynomial time an equivalent De-
grading α-FCGP instance of size (∆ + k)O(1).

Proof. First, we bound counter(v) by (∆ + k)O(1) due to Lemma 8.16. Second, we
obtain a kernel of size (∆+k)O(1) due to Proposition 8.11. Finally, we transform the
resulting instance in an equivalent instance of Degrading α-FCGP of size (∆ +
k)O(1) due to Lemma 8.8 (maximization) or Lemma 8.9 (minimization).
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8.2.2 No Polynomial Kernels in Non-Degrading Cases

Note that if α = 0, then Max α-FCGP corresponds to Densest k-Subgraph. It
is already known that Densest k-Subgraph does not admit a polynomial kernel
for ∆ + k [150]. We strengthen and generalize this result: First, we observe that
Densest k-Subgraph does not admit a polynomial kernel for k, even when ∆ = 3.
Second, we extend this negative result to Non-Degrading Max α-FCGP and
Non-Degrading Min α-FCGP when ∆ is a constant.

Theorem 8.19. Unless coNP ⊆ NP/poly,

1. For each α ∈ [0, 1/3), Non-Degrading Max α-FCGP on subcubic graphs
does not admit a polynomial kernel for k, and

2. For each α ∈ (1/3, 1], Non-Degrading Min α-FCGP on graphs with con-
stant maximum degree does not admit a polynomial kernel for k.

Proof. We present a polynomial-parameter transformation from Clique parame-
terized by the size of the largest connected component (this parameterization does
not admit a polynomial kernel which can be seen by an or-composition of disjoint
Clique instances with the same clique size) to Non-Degrading Max α-FCGP
(and Non-Degrading Min α-FCGP) parameterized by the solution size k. The
reduction is based on a reduction of Feige and Seltser [77] that shows NP-hardness
of Densest k-Subgraph on subcubic graphs with a subsequent reduction to Non-
Degrading Max α-FCGP and Non-Degrading Min α-FCGP, respectively.

The reduction from Clique to Densest k-Subgraph works as follows. Let
(G, ℓ) be an instance of Clique. Without loss of generality, we may assume that
every connected component of G has exactly n̂ vertices and more than

(︁
ℓ
2

)︁
edges.

For each connected component H of G perform the following construction. Let
{v1, . . . , vn̂} denote the vertex set of H. For each vertex vi of H create a cycle Ci :=
(v1i , . . . , v

n̂
i ) of length n̂. This cycle is called the vertex cycle of vi. Then, add a path

on n̂2 + 1 edges between vqr and vrq if vr and vq are adjacent in H. In the following,
this path is called connector path of vrq and vqr . To each newly added vertex on
this connector path, attach a degree-one vertex. Furthermore, attach a degree-one
vertex to each vertex on a vertex cycle which has no connector path. We call these
newly added degree-one vertices pendant. Observe that every non-pendant vertex
has degree three. Let G′ denote the constructed graph.

Claim 12. The graph G contains a clique of size ℓ if and only if G′ contains a k′ :=
ℓn̂+

(︁
ℓ
2

)︁
n̂2-vertex subgraph with at least δ′ := ℓn̂+

(︁
ℓ
2

)︁
(n̂2 + 1) edges.
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Proof of Claim. Suppose that G contains a clique K of size ℓ. Then, consider
the induced subgraph that contains the ℓ vertex cycles of the clique vertices and all
connector paths between them. This subgraph has the claimed number of vertices
and edges since the number of cycles is ℓ and since each pair of cycles is connected
via a path because K is a clique.

Conversely, assume that G′ contains a k′-vertex subgraph G′[S] with at least δ′

edges. First, observe that we may assume that S contains no pendant vertices:
By construction and the fact that each connected component of G′ has more than(︁
ℓ
2

)︁
edges, each non-pendant vertex of G′ is connected to more than k′ non-pendant

vertices. Hence, every pendant vertex of S can be replaced by a non-pendant neigh-
bor u /∈ S of some non-pendant vertex v ∈ S without decreasing the number of edges
in G′[S].

After this observation, the correctness proof can be carried out in the same man-
ner as in the proof of Feige and Seltser [77]. We sketch the details for sake of
completeness. First, observe that every degree-one vertex u of G′[S] may reach at
most one degree-3 vertex v of G′[S] via some path that contains only vertices that
have degree 2 in G′[S]. We say that the degree-one vertex u is associated with the
degree-3 vertex v. We call a degree-3 vertex good if it is not associated with any
degree-one vertex. A simple calculation shows that G′[S] must contain at least 2

(︁
ℓ
2

)︁
good degree-3 vertices to achieve the claimed number of edges (refer to Feige and
Seltser [77] for further details). If a degree-3 vertex is good, then G′[S] contains
its connector path completely. By the choice of k′ and the path length, G′[S] may
contain at most

(︁
ℓ
2

)︁
connector paths completely and thus both endpoints of a con-

nector path that is contained completely in G′[S] are good. Now, let P denote the
set of connector paths that are completely contained in G′[S] and let C denote the
collection of vertex cycles that contain a good vertex or, equivalently, that contain
an endpoint of a connector path in P .

We show that we may assume that every vertex cycle of C is completely contained
in G′[S]. Assume, towards a contradiction, that G′[S] does not contain all vertex
cycles of C completely and that G′[S] is a k′-vertex and δ′-edge subgraph of G with
the largest possible number of vertices of C. Choose some vertex cycle Cv of C that
is not contained completely in G′[S]. By definition of C, this vertex cycle contains a
good vertex u. Since Cv is not contained completely in G′[S], some vertex y of Cv

has degree one in G′[S] and is connected to u via a path of vertices of Cv. Since u
is good, there must be some vertex w on this path which has degree 3 in G′[S] but
which is not good. Thus, G′[S] contains some but not all vertices of the connector
path starting at w. Let x be the degree-one vertex on this connector path that is
contained in G′[S] and reachable from w via the connector path vertices. Removing x
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from G′[S] and adding the missing cycle neighbor of y gives a graph G̃ with the same
number of edges and vertices but with more cycle vertices, a contradiction to the
choice of G′[S].

Consequently, we may assume that G′[S] contains all cycles of C completely.
By the choice of k′ we have that |C| = ℓ. Thus, G′[S] contains ℓ vertex cycles
with

(︁
ℓ
2

)︁
connector paths between them. The vertex set of G corresponding to the

vertex cycles is thus a clique of size ℓ. ■
The proof of Claim 12 also implies the correctness of the following observation.

Claim 13. If G′ contains an ℓn̂+
(︁
ℓ
2

)︁
n̂2-vertex subgraph with at least ℓn̂+

(︁
ℓ
2

)︁(︁
n̂2+1

)︁
edges, then it contains one such subgraph that has no pendant vertices. In other
words, such a size ℓn̂+

(︁
ℓ
2

)︁
n̂2-vertex subgraph contains only vertices of degree 3.

No polynomial kernel for Non-Degrading Max α-FCGP Observe that the
size parameter k′ of the Densest-k-Subgraph instance depends only on n̂ and that
the maximum degree of G′ is 3. Moreover, Claim 12 shows the correctness of the
reduction. We thus have shown the theorem statement for Densest-k-Subgraph,
the special case of Non-Degrading Max α-FCGP with α = 0. We now provide a
polynomial-time transformation from theDensest-k-Subgraph instance (G′, k′, δ′)
to an instance (G′, k′, t) of Non-Degrading Max α-FCGP with arbitrary α ∈
[0, 1/3) by setting t := (1− α)δ′ + α(3k′ − 2δ′). Since G′ and k′ are not changed by
this transformation, it only remains to show its correctness.

Assume that (G′, k′, δ′) is a yes-instance, and let S be a size-k′ vertex set such
that G′[S] has at least δ′ edges. By Claim 13, we may assume that S contains only
vertices that have degree 3 in G′. Thus, in G′, we have val(S) = (1 − α)m(S) +
αm(S, V (G′) \ S) = (1 − α)m(S) + α(3k′ − 2m(S)) ≥ (1 − α)δ′ + α(3k′ − 2δ′)
since m(S) ≥ δ′ and (1− α) > 2α.

Conversely, let S be a size-k′ set with val(S) ≥ t = (1 − α)δ′ + α(3k′ − 2δ′)
in G′. First, observe that we may assume that S does not contain pendant vertices:
Each such vertex has degree one in G′ and thus degree at most one in G′[S]. Such
a vertex exists since each connected component of G has at least

(︁
ℓ
2

)︁
edges and

hence each connected component of G′ has at least k′ vertices. Consequently, it
can be replaced by some non-pendant neighbor of a vertex in S. Consequently,
val(S) = (1− α)m(S) + α(3k′ − 2m(S)). As in the proof of the forward direction, it
follows that m(S) ≥ δ′.

No polynomial kernel for Non-Degrading Min α-FCGP Finally, we pro-
vide a polynomial-parameter transformation from the Densest-k-Subgraph in-
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stance (G′, k′, δ′) to an equivalent instance (G′′, k′, t) of Non-Degrading Min α-
FCGP. In the construction, we distinguish whether α ∈ (1/3, 1) or α = 1. In both
cases, we add a gadget to each pendant vertex of G′ such that each size-k′ set S
with minimal value val(S) in G′′ contains only vertices that have degree at most 3
in G′′, which will be exactly the vertices of G′. Hence, for both cases it remains to
show that any solution with minimal value val(S) contains only non-pendant vertices
of G′. Afterwards, the proof of the equivalence of (G, ℓ) and (G′′, k′, t) is the same
as for Non-Degrading Max α-FCGP.

First, we show the statement for α ∈ (1/3, 1). Construct G′′ from G′ by adding
for each pendant vertex u in G′ a setKu on ⌈15/(1−α)⌉ vertices and makingKu∪{u}
a clique. Set t := (1−α)δ′+α(3k′−2δ′). Assume towards a contradiction that some
set S of minimal value contains a vertex u with deg(u) > 3 in G′′. By construction u
is part of some clique Ky where y is some pendant vertex of G′. Let Y := Ky ∩ S
and let r := |Y |. We show that for S ′ := (S \Y )∪Z for any vertex set Z ⊆ V (G′)\S
consisting of r non-pendant vertices we have val(S ′) < val(S), contradicting the
minimality of val(S). Observe that such a vertex set Z exists since each connected
component of G′ has at least

(︁
ℓ
2

)︁
edges and thus each connected component of G′′ has

at least k′′ non-pendant vertices. Since |Ky| = ⌈15/(1− α)⌉, we obtain that val(S \
Y ) ≤ val(S) − (1 − α)

(︁
r
2

)︁
− αr⌈15/(1 − α)⌉. Furthermore, observe that adding the

vertices in Z increases the objective value by at most 3r since each non-pendant
vertex has degree 3 in G′′. Also, note that removing Y from S may result in a new
outgoing edge of S which is incident with the neighbor of y in V (G′). Hence, we
obtain that

val((S \ Y ) ∪ Z) ≤ val(S)− (1− α)

(︃
r

2

)︃
− αr⌈15/(1− α)⌉+ 3r + α.

Now, if r ≤ ⌈15/(1−α)⌉−4, then −αr⌈15/(1−α)⌉+3r+α < 0 and thus val((S \
Y )∪Z) < val(S), a contradiction to the minimality of S. Otherwise, if r ≥ ⌈15/(1−
α)⌉ − 3, then (1 − α)

(︁
r
2

)︁
> (1 − α)⌈11/(1 − α)⌉⌈10/(1 − α)⌉/2 > 55/(1 − α) >

3 · ⌈15/(1 − α)⌉ + α and thus val((S \ Y ) ∪ Z) < val(S), a contradiction to the
minimality of S. Hence, S contains only vertices of G′.

Second, we show the statement for α = 1 which corresponds to Min (k, n −
k)-Cut. Construct G′′ from G′ by adding for each degree-one vertex u in G′ a
graph H to G′′ and making an arbitrary vertex h ∈ V (H) adjacent to u. The
graph H is a (|V (G′)|, q, ρ)-edge expander, that is, H has |V (G′)| vertices, is q-
regular for some constant q and every vertex set T ⊆ V (H) of size at most |V (G′)|/2
fulfills m(T, V (H) \ T ) ≥ ρq|T |. We choose the (|V (G′)|, q, ρ)-edge expander H in
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such a way that ρq ≥ 4. Note that such a graph H exists and can be constructed in
polynomial-time [9, 114]. Finally, we set t := (1−α)δ′+α(3k′−2δ′). Assume towards
a contradiction that some set S of minimal value contains a vertex u with deg(u) > 3
in G′′. By construction, u is part of some copy of H which was attached to a pendant
(degree-one) vertex y of G′. Let Y := H ∩ S and let r := |Y |.

Since H is a (|V (G′)|, q, ρ)-edge expander and since k′ < |V (G′′)|/2 we obtain
that m(Y, V (G′′) \ S) ≥ 4r. Since each vertex in G′ has degree at most 3, we thus
obtain for any set Z ⊆ V (G′) of size r that val((S \Y )∪Z) ≤ val(S \Y )− 4r+3r <
val(S), a contradiction to the minimality of S. Hence, S contains only vertices
of G′.

8.3 Parameterization by c-Closure

Now, we show that the maximum degree ∆ can be bounded by kO(c) in the degrading
variant. This then gives us a kernel of size kO(c). To prove this result we rely on
a polynomial bound on the Ramsey bound in c-closed graphs. Then, we show that
these kernels cannot be improved under standard assumptions. Finally, we provide
W[1]-hardness for the non-degrading variant.

8.3.1 A Tight kO(c)-size Kernel for the Degrading Case

We develop a tight kernel of size kO(c) for the degrading case.

A kO(c)-size kernel for the degrading case. To this end, we apply a series of
reduction rules to obtain an upper bound of kO(c) on the maximum degree. Then,
the kernel of size kO(c) follows from Proposition 8.18. In order to upper-bound the
maximum degree, we rely on a polynomial Ramsey bound for c-closed graphs [139].

Lemma 8.20 ([139, Lemma 3.1]). Any c-closed graph G on at least Rc(q, b) :=
(c−1) ·

(︁
b−1
2

)︁
+(q−1)(b−1)+1 vertices contains a clique of size q or an independent

set of size b. Moreover, a clique of size q or an independent set of size b can be found
in polynomial time.

Using a similar approach as Reduction Rule 8.3 (but exploiting the c-closure
instead of the maximum degree) yields the following.

Reduction Rule 8.7. Let I be an instance of Annotated Degrading α-FCGP.
Let v ∈ V (G) be some vertex and let Xv ⊆ N(v) be the set of vertices better than v.
If |Xv| > (c− 1)k, then apply the Exclusion Rule (Reduction Rule 8.2) to v.
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Lemma 8.21. Reduction Rule 8.7 is correct.

Proof. We provide a proof for the maximization version; the minimization version
follows analogously. Let S be a solution. Assume that v ∈ S (we are done otherwise).
We show that there is a vertex v′ ̸= v such that S ′ := (S \ {v}) ∪ {v′} constitutes a
solution. By Lemma 8.6, it suffices to show that cont(v′, S \ {v}) ≥ cont(v, S \ {v}).
Let S ′

v := S \N [v]. Each vertex in S ′
v is, by definition, non-adjacent to v, and hence

it shares at most c − 1 neighbors with v. This implies |Xv \ N(S ′
v)| ≥ |Xv| − (c −

1) · |S ′
v| > 0 as Xv ⊆ N(v). Thus, there exists a vertex v′ ∈ Xv \ N(S ′

v). Note
in particular that N(v′) ∩ S ′

v = ∅. Then, we have N(v′) ∩ (S \ {v}) ⊆ S ∩ N(v)
and thus |N(v′) ∩ (S \ {v})| ≤ |N(v) ∩ (S \ {v})|. Moreover, we have α deg+c(v′) ≥
α deg+c(v) (recall that v′ is better than v). Since α ∈ (1/3, 1], it follows that

cont(v′, S \ {v}) = α deg+c(v′) + (1− 3α)|N(v′) ∩ (S \ {v})|
≥ α deg+c(v) + (1− 3α)|N(v) ∩ (S \ {v})| = cont(v, S \ {v}).

Note that if there is a clique of size (c−1)k+1, then Reduction Rule 8.7 applies to
one of the vertices with the smallest contribution. Thus, applying Reduction Rule 8.7
exhaustively removes all cliques of size (c − 1)k + 1. By Lemma 8.20, if there is a
vertex v with sufficiently large neighborhood, then we find a large independent set
in N(v). We can then identify a vertex for which we can apply Reduction Rule 8.5.

Lemma 8.22. Suppose that ∆ ≥ Rc((c − 1)k + 1, (k + 1)kc−2). Then, we can find
in polynomial time a set X of i ∈ [c− 1] vertices and an independent set I with the
following properties:

1. The set I ⊆
⋂︁

x∈X N(x) is an independent set of size at least (k + 1)kc−i.

2. For every vertex u ∈ V (G) \X, it holds that |N(u) ∩ I| ≤ (k + 1)kc−i−1.

Proof. Let v be a vertex such that deg(v) ≥ Rc((c − 1)k + 1, (k + 1)kc−2). Since
there is no clique of size (c − 1)k + 1, there is, by Lemma 8.20, an independent
set Iv of size (k + 1)kc−2 in N(v), which can be found in polynomial time. Let X
be an inclusion-wise maximal set of i vertices including v such that |N∩(X) ∩ Iv| >
(k + 1)kc−i. Such a set can be found by the following polynomial-time algorithm:
We start with X := {v} and i := 1. We will maintain the invariant that |X| = i. If
there exists a vertex v′ ∈ V (G) \X with |N(v′)∩N∩(X)∩ Iv| > (k+ 1)kc−i−1, then
we add v′ to X and increase i by 1. We keep doing so until there remains no such
vertex v′.
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We show that this algorithm terminates for i = |X| ≤ c − 1. Assume to the
contrary that the algorithm continues for i = c − 1. We then have that |N(v′) ∩
N∩(X) ∩ Iv| > (k + 1)kc−i−1 = k + 1 ≥ 2 for some vertex v′ ∈ V (G) \X. Since Iv is
an independent set, the set N(v′) ∩N∩(X) ∩ Iv contains two non-adjacent vertices.
Note, however, that these two vertices have at least |X∪{v}| = c common neighbors,
contradicting the c-closure of G.

Finally, we show that the set X found by this algorithm and I := N∩(X) ∩ Iv
satisfy the three properties of the lemma. We have |N∩(x) ∩ Iv| = |N(v′) ∩N∩(X \
{v}) ∩ Iv| > (k + 1)kc−(i−1)−1 = (k + 1)kc−i, where v′ is the last vertex added to X.
Moreover, since X is inclusion-wise maximal, we have |N(u)∩ I| = |N(u)∩N∩(X)∩
Iv| ≤ (k + 1)kc−i−1 for every vertex u ∈ V (G) \X.

Reduction Rule 8.8. Let I be an instance of Annotated Degrading α-FCGP.
Let X, I be as specified in Lemma 8.22 and let v ∈ I be a vertex such that every
other vertex in I is better than v. If k ≥ 2, then apply the Exclusion Rule (Reduc-
tion Rule 8.2) to v.

Lemma 8.23. Reduction Rule 8.8 is correct.

Proof. Again, we show the proof for the maximization variant; the minimization vari-
ant follows analogously. For the sake of contradiction, assume that every solution S
contains v. By Lemma 8.22, every vertex u ∈ V (G) \ X has at most (k + 1)kc−i−1

neighbors in I. Moreover, since I is an independent set, we have |I ∩N [v′]| = 1 for
every vertex v′ ∈ I (including v). For S ′ := S \X, we have

|I \N [S ′]| ≥ |I| −
∑︂

u∈S′\{v}

|I ∩N [u]| − |I ∩N [v]|

≥ (k + 1)kc−i − (k − 1)(k + 1)kc−i−1 − 1 = kc−i + kc−i−1 − 1 > 0.

Let v′ be an arbitrary vertex in I \N [S ′]. We show that cont(v′, S\{v}) ≥ cont(v, S\
{v}). By Lemma 8.6, this will imply that (S\{v})∪{v′} is a solution not containing v.
Since v and v′ are both adjacent to all vertices of X and α ∈ (1/3, 1], we have |N(v)∩
(S \ {v})| > |X ∩ (S \ {v})|. We thus have

cont(v′, S \ {v}) = α deg+c(v′) + (1− 3α)|X ∩ (S \ {v})|
≥ α deg+c(v) + (1− 3α)|X ∩ (S \ {v})|
≥ α deg+c(v) + (1− 3α)|N(v) ∩ (S \ {v})| = cont(v, S \ {v}).

Here, the first inequality follows from the fact that v′ is better than v.
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By applying these reduction rules exhaustively, we obtain an instance with ∆ ≤
Rc((c− 1)k + 1, (k + 1)kc−2) ∈ kO(c). Proposition 8.18 then leads to the following:

Proposition 8.24. Degrading α-FCGP has a kernel of size kO(c).

Matching lower bounds. Next, we show that the kernel provided in Proposi-
tion 8.24 cannot be improved under standard assumptions.

Proposition 8.25. Degrading Max α-FCGP has no kernel of size O(kc−3−ϵ)
unless coNP ⊆ NP/poly.

We first prove the following technical lemma. This lemma is useful to obtain an
upper bound (maximization) or a lower bound (minimization) for val(S) if the set of
vertices (denoted as C∗ in the lemma) in the instance choice gadget is fixed and we
only have to choose vertices D∗ in the instance gadgets (the union of all the instance
vertices is D in the lemma).

Lemma 8.26. Let (G, k, t) be an instance of Degrading α-FCGP with a solu-
tion S fulfilling C∗ ⊆ S ⊆ C∗ ∪ D where D is a set of vertices of the same degree.
Let D∗ := S ∩D. Then:

1. For maximization, val(S) is maximal if m(D∗) +m(D∗, C∗) is minimal.

2. For minimization, val(S) is minimal if m(D∗) +m(D∗, C∗) is minimal.

Proof. Let z := deg(p) for each d ∈ D, let D∗ := {d1, . . . , dℓ}, and let Di := {dj | j <
i}. By Lemma 8.2 we obtain that

val(S) = val(C∗) +
ℓ∑︂

i=1

cont(di, C
∗ ∪Di)

= val(C∗) + αzℓ+ (1− 3α)
ℓ∑︂

i=1

|N(di) ∩ C∗|+ |N(di) ∩Di|

= val(C∗) + αzℓ+ (1− 3α)
(︁
m(D∗, C∗) +m(D∗)

)︁
Note that val(C∗)+αzℓ is a constant. Thus, for maximization in the degrading case
we obtain that val(S) is maximized if m(D∗, C∗) + m(D∗) is minimized since (1 −
3α) < 0. Furthermore, for minimization in the degrading case we obtain that val(S)
is minimized if m(D∗, C∗) +m(D∗) is minimized since (1− 3α) > 0.
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Proof of Proposition 8.25. We provide a weak q-composition from Independent
Set on 2-closed graphs to Degrading Max α-FCGP in (q + 3)-closed graphs.
Here, we assume that k > 3q + ⌈ α

3α−1
⌉.

Independent Set

Input: A graph G = (V,E) and an integer k.
Question: Is there an independent set of size exactly k?

Let [t]q be the set of q-dimensional vectors whose entries are in [t]. For a vector x ∈
[t]q we denote by xi the i-th entry of x. Assume that q ≥ 2 is a constant and that
we are given exactly [t]q instances Ix := (Gx, k) of Independent Set on 2-closed
graphs. Let Vx := V (Gx) for each x ∈ [t]q and let D :=

⋃︁
x∈[t]q Vx. We construct an

equivalent instance (H, k′, t′) of Degrading Max α-FCGP as follows.

Construction: First, for each x ∈ [t]q we add the graph Gx to H. In other words,
we added the instance gadgets to H. We then add a clique C (the instance choice
gadget) consisting of tq vertices toH. The vertices of C are denoted by wi

j with i ∈ [q]
and j ∈ [t]. Furthermore, for each x ∈ [t]q and v ∈ Vx, we add the edge vwi

xi
for

each i ∈ [q]. Fix an integer ℓ ≥ tq · n + (αk + k + 1) · α−1. We add leaf vertices so
that deg(wi

j) = ℓ + ⌈(3α − 1)tq · α−1⌉ for each vertex wi
j and deg(v) = ℓ for each

vertex v ∈ D. We denote the union of all these added leaf vertices by L. Finally, we
set k′ := k + tq − q and

t′ := (1− α)
(tq − q)(tq − q − 1)

2

+ α

[︃
kℓ+ (tq − q)

(︃
ℓ+

⌈︂(3α− 1)tq

α

⌉︂)︃
− (tq − q)(tq − q − 1)

]︃
.

Closure: We show that H is (q + 3)-closed. Since leaf vertices have degree one
and C is a clique, we only have to consider non-adjacent vertex pairs where one
vertex u is in D and the other vertex v is in C ∪D. Without loss of generality we
assume that u ∈ Vx for some x ∈ [t]q. Recall that N(u) ⊆ Vx ∪ C ∪ L and u has
exactly q neighbors in C. First, consider the case v ∈ C. By construction we obtain
from uv /∈ E that u′v /∈ E for each u′ ∈ Vx. Thus, |N(u) ∩ N(v)| = q. Second
consider the case v ∈ D. If v /∈ Vx, then |N(u)∩N(v)| ≤ q−1. Otherwise, if v ∈ Vx,
we obtain |N(u) ∩N(v)| ≤ q + 2 from the fact that Ix is 2-closed.
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Correctness: In the following, we prove that there exists an independent set of
size exactly k for some instance Ix with x ∈ [t]q if and only if there exists a vertex
set S of size exactly k′ in H such that val(S) ≥ t′.

Suppose that instance Ix has an independent set I of size exactly k for some x ∈
[t]q. By C∗ := C \ {wi

xi
| i ∈ [q]} we denote the non-neighbors of Vx in C. Note

that |C∗| = tq−q. We show that S := I∪C∗ is a solution of (H, k′, t′). Clearly, |S| =
k + tq − q = k′. Since no vertex of I is connected with any vertex in C∗, I is an
independent set, and since C∗ is a clique of size tq − q, we conclude that mH(S) =
(tq−q)(tq−q−1)/2. Furthermore, since each vertex in I has degree ℓ, and since each
vertex in C∗ has degree ℓ+ ⌈(3α− 1)tq · α−1⌉, we conclude that mH(S, V (H) \ S) =
kℓ + (tq − q)(ℓ + ⌈(3α − 1)tq · α−1⌉) − (tq − q)(tq − q − 1). Thus, val(S) = t′ and
hence (H, k′, t′) is a yes-instance of Degrading Max α-FCGP.

Conversely, suppose that (H, k′, t′) has a solution S ⊆ V (H) of size exactly k′

with val(S) ≥ t′. First, we show that we can assume that S ∩ L = ∅. Assume
that there exists a vertex v ∈ S ∩ L and let w ∈ (C ∪ D) \ S. We show that
for S ′ := S \ {v} ∪ {w} we have val(S ′) > val(S). Observe that val(S \ {v}) ≥
val(S) − 1. Furthermore, note that adding w may result into at most k new inner
edges and hence the value decreases by at most k. Simultaneously, since deg(w) ≥ ℓ,
at least ℓ−k new outer edges emerge such that the value increases by at least α(ℓ−k).
Since ℓ > (αk + k + 1) · α−1, we obtain val(S ′) > val(S).

Thus, in the following we can assume that S ∩L = ∅. Let C∗ := C ∩S, |C∗| = z,
and D∗ := S\C∗ ⊆ D. In the following, we show that z = tq−q and that there exists
an x ∈ [t]q such that N(Vx)∩C∗ = ∅. For this, we consider the cases that z < tq− q
and that z > tq − q. In both cases we verify that val(S) < t for each solution with
exactly z vertices in C.

Case 1: z ≤ tq− q− 1. In other words, z = tq− q− p for some p ∈ [tq− q]. Recall
that deg(v) = ℓ for each vertex v ∈ D. Thus, by Lemma 8.26, val(S) is maximized
if mH(D

∗) +mH(C
∗, D∗) is minimized. Since z = |C∗| < tq − q, it is possible that

no vertex of D∗ is adjacent to any vertex in C∗. Thus, val(S) is maximized if D∗ is
an independent set and if EH(C

∗, D∗) = ∅. Hence,

val(S) ≤ (1− α)
(tq − q − p)(tq − q − p− 1)

2

+ α

[︃
(k + p)ℓ+ (tq − q − p)

(︃
ℓ+

⌈︂(3α− 1)tq

α

⌉︂)︃]︃
− α(tq − q − p)(tq − q − p− 1) −: f(p).

Now, we obtain that the derivative f ′ of f is
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f ′(p) = (1− 3α)p+
3α− 1

2
(2tq − 2q − 1)− α

⌈︂(3α− 1)tq

α

⌉︂
.

Since (1− 3α) < 0 for α ∈ (1/3, 1], we obtain for p ≤ tq − q that

f ′(p) ≤ 3α− 1

2
(2tq − 2q − 1)− α

⌈︂(3α− 1)tq

α

⌉︂
≤ 3α− 1

2
(2tq − 2q − 1)− (3α− 1)tq = (1− 3α)(q + 1/2) < 0.

Since α ∈ (1/3, 1] we conclude that f(p) is a concave quadratic function. And
since f ′(p) < 0 for each p ≤ tq − q, we thus conclude that f(0) > f(p) for each p ∈
[tq − q], a contradiction to the assumption that f(p) = val(S) ≥ t′.

Case 2: z ≥ tq − q + 1. Let z = tq − q + p for some p ∈ [q]. By the pigeonhole
principle there exist at least p indices i ∈ [q] such that wi

j ∈ S for each j ∈ [t].
Recall that by construction, each vertex v ∈ D has exactly one neighbor in the
set {wi

j, j ∈ [t]}. Since |D∗| = k − p we conclude that mH(C
∗, D∗) ≥ (k − p)p.

Recall that deg(v) = ℓ for each vertex v ∈ D. Thus, by Lemma 8.26, val(S) is
maximal if mH(D

∗) + mH(C
∗, D∗) is minimal. Hence, D∗ is an independent set

and mH(C
∗, D∗) = (k − p)p. Thus,

val(S) ≤ (1− α)

[︃
(k − p)p+

(tq − q + p)(tq − q + p− 1)

2

]︃
+ α(k − p)(ℓ− p)

+ αp

[︃
ℓ+

⌈︂(3α− 1)tq

α

⌉︂
− tq + q − k + 1

]︃
+ α(t− 1)q

[︃
ℓ+

⌈︂(3α− 1)tq

α

⌉︂
− tq + q − p+ 1

]︃
−: f(p).

Now, we obtain that the derivative f ′ of f is

f ′(p) = (3α− 1)p+
(︂
1− 3α

)︂(︂
k + tq − q − 1

2

)︂
+ α

⌈︂(3α− 1)tq

α

⌉︂
.

Since α ∈ (1/3, 1] and since p ∈ [q], we obtain that

f ′(p) ≤ (3α− 1)q + (1− 3α)(k + tq − q − 1/2) + α
(︂(3α− 1)tq

α
+ 1

)︂
≤ (3α− 1)

(︂
2q + 1/2 +

α

3α− 1
− k

)︂
.
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Since k > 3q + ⌈ α
3α−1
⌉ and since α ∈ (1/3, 1], we obtain that f ′(p) < 0 for p ≤ q.

Furthermore, since α ∈ (1/3, 1] we see that f(p) is a convex quadratic function. Thus,
we conclude that f(0) > f(p) for each p ∈ [q], a contradiction to the assumption
that f(p) = val(S) ≥ t′.

Hence, |C∗| = tq − q and thus |D∗| = k. According to Lemma 8.26, val(S) is
maximal if mH(D

∗) +mH(C
∗, D∗) is minimal. Observe that if D∗ is an independent

set and if EH(C
∗, D∗) = ∅, then val(S) = t′. Otherwise, if EH(C

∗, D∗) ̸= ∅ or
if D∗ is no independent set, then val(S) < t′. Thus, EH(C

∗, D∗) = ∅ and D∗ is
an independent set. Now, if there exist two vertices u, v ∈ D∗ such that u ∈ Vx

and v ∈ Vy with x ̸= y for x, y ∈ [t]q, then (N(u) ∪N(v)) ∩ C ≥ q + 1. Since |C∗| =
tq − q this implies that EH(C

∗, D∗) ̸= ∅, a contradiction. Hence, D∗ ⊆ Vx for
some x ∈ [t]q. Since D∗ is an independent set, we conclude that the instance x
contains an independent set of size at least k.

Hence, we have a weak-q-composition from Independent Set to Degrading
Max α-FCGP in (q + 3)-closed graphs. Now, the statement of the proposition
follows by Lemma 2.14.

Proposition 8.27. For each α ∈ (0, 1/3), Min α-FCGP does not admit a kernel
of size O(kc−3−ϵ) unless coNP ⊆ NP/poly.

Proof. The proof is similar to the proof of Proposition 8.25: The main difference is
that we now cannot add leaf vertices to ensure that all vertices in the instance gadgets
(and also all vertices in the instance choice gadget) have the same degree since then
an optimal solution would simply pick these leaf vertices. Instead, we add large
cliques to ensure that all vertices in the instance gadgets (and also all vertices in the
instance choice gadget) have the same degree. We provide a weak q-composition from
Independent Set on 2-closed graphs to Min α-FCGP in (q + 3)-closed graphs.
Here, we assume that k > 3q + ⌈ α

1−3α
⌉.

Independent Set
Input: A graph G = (V,E) and an integer k.
Question: Is there an independent set of size exactly k?

Let [t]q be the set of q-dimensional vectors whose entries are in [t]. For a vector x ∈
[t]q we denote by xi the i-th entry of x. Assume that q ≥ 2 is a constant and that
we are given exactly [t]q instances Ix := (Gx, k) of Independent Set on 2-closed
graphs. Let Vx := V (Gx) for each x ∈ [t]q and let D :=

⋃︁
x∈[t]q Vx. We construct an

equivalent instance (H, k′, t′) of Min α-FCGP as follows.
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Construction: First, for each x ∈ [t]q we add the graph Gx to H. In other
words, we added the instance gadgets to H. We then add a clique C (the instance
choice gadget) consisting of tq vertices to H. The vertices of C are denoted by wi

j

with i ∈ [q] and j ∈ [t]. Furthermore, for each x ∈ [t]q and v ∈ Vx, we add the
edge vwi

xi
for each i ∈ [q]. Fix an integer ℓ ≥ tq · n+ ⌈(1− 3α)tq · α−1⌉. We add leaf

vertices so that deg(wi
j) = ℓ − ⌈(1 − 3α)tq · α−1⌉ for each vertex wi

j and deg(v) = ℓ
for each vertex v ∈ D. Next, for each added leaf vertex v, we add a clique Cv of
size ⌈3t′ ·α−1⌉ to H. By L we denote the set of newly added leaf vertices and vertices
in the cliques Cv for the new leaf vertices. Finally, we set k′ := k + tq − q and

t′ := (1− α)
(tq − q)(tq − q − 1)

2

+ α

[︃
kℓ+ (tq − q)

(︃
ℓ−

⌈︂(1− 3α)tq

α

⌉︂)︃
− (tq − q)(tq − q − 1)

]︃
.

Closure: We show that H is (q+3)-closed. Note that H[L] is a cluster graph, that
is, a graph in which each connected component is a clique, and thus has closure one.
Furthermore, observe that each vertex in L has at most one neighbor in V (H) \ L.
From now on the argumentation is completely analogous to the argumentation in
Proposition 8.25. We thus omit it.

Correctness: In the following, we prove that there exists an independent set of
size exactly k for some instance Ix with x ∈ [t]q if and only if there exists a vertex
set S of size exactly k′ in H such that val(S) ≤ t′.

Suppose that instance Ix has an independent set I of size exactly k for some x ∈
[t]q. By C∗ := C \ {wi

xi
| i ∈ [q]} we denote the non-neighbors of Vx in C. Note

that |C∗| = (t−1)q. We show that S := I∪C∗ is a solution of (H, k′, t′). Clearly, |S| =
k + tq − q = k′. Since no vertex of I is connected with any vertex in C∗, I is an
independent set, and since C∗ is a clique of size (t− 1)q, we conclude that mH(S) =
(tq−q)(tq−q−1)/2. Furthermore, since each vertex in I has degree ℓ, and since each
vertex in C∗ has degree ℓ− ⌈(1− 3α)tq · α−1⌉, we conclude that mH(S, V (H) \ S) =
kℓ + (tq − q)(ℓ − ⌈(1 − 3α)tq · α−1⌉) − (tq − q)(tq − q − 1). Thus, val(S) = t′ and
hence (H, k′, t′) is a yes-instance of Min α-FCGP.

Conversely, suppose that (H, k′, t′) has a solution S ⊆ V (H) of size exactly k′

with val(S) ≤ t′. First, we show that we can assume that S ∩ L = ∅. Assume that
there exists a vertex v ∈ S∩L. Since deg(v) = ⌈3t′·α−1⌉ we conclude thatmH({v}, S\
{v}) ≥ 2t′α and since val(S) ≥ α ·mH({v}, S \ {v}) we obtain that val(S) > t′, a
contradiction.
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Thus, in the following we can assume that S ∩L = ∅. Let C∗ := C ∩S, |C∗| = z,
and D∗ := S\C∗ ⊆ D. Next, we show that z = tq−q and that there exists an x ∈ [t]q

such that N(Vx) ∩ C∗ = ∅. To show that, we consider the cases that z < tq − q and
that z > tq − q. In both cases we verify that val(S) > t for each solution with
exactly z vertices in C.

Case 1: z ≤ tq−q−1. In other words, z = (t−1)q−p for some p ∈ [tq−q]. Recall
that deg(v) = ℓ for each vertex v ∈ D. Thus, by Lemma 8.26, val(S) is minimized
if mH(D

∗) +mH(C
∗, D∗) is minimized. Since z = |C∗| < tq − q, it is possible that

no vertex of D∗ is adjacent to any vertex in C∗. Thus, val(S) is minimized if D∗ is
an independent set and if EH(C

∗, D∗) = ∅. Hence,

val(S)) ≥ (1− α)
(tq − q − p)(tq − q − p− 1)

2

+ α

[︃
(k + p)ℓ+ (tq − q − p)

(︃
ℓ−

⌈︂(1− 3α)tq

α

⌉︂)︃]︃
− α(tq − q − p)(tq − q − p− 1) −: f(p).

Now, we obtain that the derivative f ′ of f is

f ′(p) = (1− 3α)p+
3α− 1

2

(︂
2tq − 2q − 1

)︂
+ α

⌈︂(1− 3α)tq

α

⌉︂
.

Since α ∈ (0, 1/3) and since p ≤ tq − q, we obtain that

f ′(p) ≥ 3α− 1

2

(︂
2tq − 2q − 1

)︂
+ α

(1− 3α)tq

α
= (1− 3α)(q + 1/2) > 0.

Since α ∈ [0, 1/3] we conclude that f(p) is a convex quadratic function. And
since f ′(p) > 0 for each p ≤ q, we thus conclude that f(0) < f(p) for each p ∈ [q], a
contradiction to the assumption that f(p) = val(S) ≤ t′.

Case 2: z ≥ tq − q + 1. Let z = tq − q + p for some p ∈ [q]. By the pigeonhole
principle there exist at least p indices i ∈ [q] such that wi

j ∈ S for each j ∈ [t].
Recall that by construction, each vertex v ∈ D has exactly one neighbor in the
set {wi

j, j ∈ [t]}. Since |D∗| = k − p we conclude that mH(C
∗, D∗) ≥ (k − p)p.

Recall that deg(v) = ℓ for each vertex v ∈ D. Thus, by Lemma 8.26, val(S) is
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minimal if mH(D
∗) + mH(C

∗, D∗) is minimal. Hence, D∗ is an independent set
and mH(C

∗, D∗) = (k − p)p. Thus,

val(S) ≥ (1− α)

[︃
(k − p)p+

(tq − q + p)(tq − q + p− 1)

2

]︃
+ α(k − p)(ℓ− p)

+ αp

[︃
ℓ−

⌈︂(1− 3α)tq

α

⌉︂
− tq + q − k + 1

]︃
+ α(tq − q)

[︃
ℓ−

⌈︂(1− 3α)tq

α

⌉︂
− tq + q − p+ 1

]︃
−: f(p).

Now, we obtain that the derivative f ′ of f is

f ′(p) = (3α− 1)p+
(︂
1− 3α

)︂(︂
k + tq − q − 1

2

)︂
− α

⌈︂(1− 3α)tq

α

⌉︂
.

From p ≤ q and 3α− 1 < 0 for α ∈ (0, 1/3), we obtain that

f ′(p) ≥ (3α− 1)q + (1− 3α)
(︂
k + tq − q − 1/2

)︂
− α

(︂(1− 3α)tq

α
+ 1

)︂
= (1− 3α)

(︂
k − 2q − 1/2− α

1− 3α

)︂
.

Since k > 3q + ⌈ α
1−3α
⌉ and since α ∈ (0, 1/3), we obtain that f ′(p) > 0 for p ≤ q.

Furthermore, since α ∈ (0, 1/3) we see that f(p) is a concave quadratic function.
Thus, we conclude that f(0) < f(p) for each p ∈ [q], a contradiction to the assump-
tion that f(p) = val(S) ≤ t′.

Hence, |C∗| = tq − q and thus |D∗| = k. According to Lemma 8.26, val(S) is
minimal if mH(D

∗) +mH(C
∗, D∗) is minimal. Observe that if D∗ is an independent

set and if EH(C
∗, D∗) = ∅, then val(S) = t′. Otherwise, if EH(C

∗, D∗) ̸= ∅ or
if D∗ is no independent set, then val(S) > t′. Thus, EH(C

∗, D∗) = ∅ and D∗ is
an independent set. Now, if there exist two vertices u, v ∈ D∗ such that u ∈ Vx

and v ∈ Vy with x ̸= y for x, y ∈ [t]q, then (N(u) ∪N(v)) ∩ C ≥ q + 1. Since |C∗| =
tq − q this implies that EH(C

∗, D∗) ̸= ∅, a contradiction. Hence, D∗ ⊆ Vx for
some x ∈ [t]q. Since D∗ is an independent set, we conclude that the instance x
contains an independent set of size at least k.

Hence, we have a weak-q-composition from Independent Set to Min α-FCGP
in (q + 3)-closed graphs. Now, the proposition follows by Lemma 2.14.
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Recall that Min α-FCGP for α = 0 is equivalent to Sparest k-Subgraph
which admits a kernel of size O(c2k3) [137].

Now, Propositions 8.24, 8.25, and 8.27 imply the following.

Theorem 8.28. Degrading α-FCGP admits a kernel of size kO(c). For α > 0,
Degrading α-FCGP does not admit a kernel of size ko(c) unless coNP ⊆ NP/poly.

8.3.2 Hardness for the Non-Degrading Case

In contrast to the degrading case, we show that the non-degrading case is intractable.

Theorem 8.29. Non-Degrading Max α-FCGP remains W[1]-hard with respect
to the solution size k even on 2-closed and 2-degenerate graphs.

Proof. We reduce from the W[1]-hard Densest-k-Subgraph problem in 2-closed
and 2-degenerate graphs [198]. Recall that Densest k-Subgraph is the special
case of Max α-FCGP with α = 0. Hence, it remains to show the theorem
for α ∈ (0, 1/3). Let (G, k, t) be an instance of Densest k-Subgraph. We construct
an equivalent instance (G′, k′, t′) of Max α-FCGP as follows: Initially, graphG′ con-
sists of a copy of G. Let Z denote the set of all vertices which are a copy of a vertex
in G. We add exactly n(G) − degG(v) many leaf-vertices to each vertex v ∈ Z.
We denote these vertices by Iv. By I :=

⋃︁
v∈V (G) Iv we denote the set of all these

leaf-vertices. Finally, we set k′ := k and t′ := α(kn(G)− 2t) + (1− α)t.
By construction, each vertex in I has degree 1. Since G is 2-closed and 2-

degenerate, we conclude that also G′ is 2-closed and 2-degenerate.
Let S ⊆ V (G) be such that |S| = k and that m(G[S]) ≥ t. Since

• each vertex v ∈ V (G′) ∩ Z has degree n(G),

• N(x) ∩N(y) ⊆ Z for each two vertices x, y ∈ Z, and

• m(G[S]) ≥ t,

we conclude that exactly x ≥ t edges have both endpoints in S and that ex-
actly kn(G)−2x ≤ kn(G)−2t edges have exactly one endpoint in S. Thus, val(S) ≥
α(kn(G)− 2t) + (1− α)t = t′ since α ∈ (0, 1/3).

Conversely, suppose that S ′ ⊆ V (G′) is set of exactly k vertices with val(S ′) ≥ t′.
By construction, each vertex in I has degree 1. Hence, cont(v) ≤ max(α, 1 − α) <
1 for each vertex v ∈ I. Furthermore, observe that for each vertex z ∈ Z we
have cont(w) ≥ αn(G) > 1 since α is a constant. Thus, cont(z) > cont(v) for each
vertex z ∈ Z and each v ∈ I. Hence, we can assume that S ′ ⊆ Z. Let x be the
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number of edges with both endpoints in S ′. Since each vertex in S ′ has degree n(G),
we conclude that exactly kn(G)− 2x edges have exactly one endpoint in S ′. Hence,
val(S ′) = α(kn(G)− 2x)+ (1−α)x. Since val(S ′) ≥ t′ and α ∈ (0, 1/3), we conclude
that x ≥ t. Hence, G[S ′] contains at least t edges.

Theorem 8.30. Non-Degrading Min α-FCGP remains W[1]-hard with respect
to the solution size k even on 2-closed graphs.

Proof. We reduce from the W[1]-hard Densest-k-Subgraph problem in 2-closed
graphs [198]. Let (G, k, t) be an instance of Densest k-Subgraph. We construct an
equivalent instance (G′, k′, t′) of Min α-FCGP as follows: Initially, graph G′ consists
of a copy of G. Let Z denote the set of all vertices which are a copy of a vertex in G.
For each vertex v ∈ Z we add a set Wv of exactly n(G)−degG(v) many vertices to G′

such that each vertex ofWv is adjacent with vertex v. ByW :=
⋃︁

v∈V (G) Wv we denote
the set of all these vertices. Next, for each vertex w ∈ W we add a clique Cw of size 4t′

to G′ such that each vertex of Cw is adjacent with w. By C :=
⋃︁

w∈W Cw we denote
the set of all these vertices. Finally, we set k′ := k and t′ := α(kn(G)−2t)+(1−α)t.

Observe that G′[W ∪ C] is a cluster graph, that is, a disjoint union of cliques.
Furthermore, observe that each vertex in W ∪ C has at most one neighbor in Z.
Since G[Z] is 2-closed, we conclude that G′ is 2-closed.

Let S ⊆ V (G) be such that |S| = k and that m(G[S]) ≥ t. Since

• each vertex v ∈ V (G′) ∩ Z has degree n(G),

• N(x) ∩N(y) ⊆ Z for each two vertices x, y ∈ Z, and

• m(G[S]) ≥ t,

we conclude that exactly x ≥ t edges have both endpoints in S and that ex-
actly kn(G) − 2x ≤ kn(G) − 2t edges have exactly one endpoint in S. Thus,
val(S) ≤ α(kn(G)− 2t) + (1− α)t = t′ since α ∈ (1/3, 1].

Conversely, suppose that S ′ ⊆ V (G′) is set of exactly k vertices with val(S ′) ≤ t′.
By construction, each vertex inW∪C has degree at least 2t′. If S ′ contains a vertex v
of W ∪ C, then v has at least 3t′ neighbors which are not in S ′ since t′ > k. Thus,
val(S ′) > α3t′ > t′, a contradiction to the assumption val(S ′) ≤ t′. Hence, S ′ ∩
(W ∪ C) = ∅. Let x be the number of edges with both endpoints in S ′. Since each
vertex in S ′ has degree n(G), we conclude that exactly kn(G)−2x edges have exactly
one endpoint in S ′. Hence, val(S ′) = α(kn(G) − 2x) + (1 − α)x. Since val(S ′) ≤ t
and α ∈ (1/3, 1], we conclude that x ≥ t. Hence, G[S ′] contains at least t edges.
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8.4 Parameterization by Degeneracy

We show that in the minimization variant we obtain an FPT-algorithm for each α.
For minimization in the degrading variant we even obtain polynomial kernels for d+k.
In contrast, for maximization in the degrading variant we provide a tight kernel of
size kO(d). To prove this result we again rely on a Ramsey bound.

8.4.1 Minimization Variant

We start with the minimization variant which turns out to be easier than the maxi-
mization variant. This is most likely because of the following bound on t.

Lemma 8.31. Let (G, k, t) be an instance of Min α-FCGP. If t ≥ dk, then (G, k, t)
is a trivial yes-instance..

Proof. If |V (G)| < k, then we have a trivial no-instance and the statement follows
immediately. Hence, in the following we assume that |V (G)| ≥ k. Next, we show
that there exists a solution S such that |F | ≤ dk where F is the set of edges with at
least one endpoint in S. Then, it follows that val(S) ≤ t in such instances of Min
α-FCGP and the statement is proven. Let σ be a degeneracy ordering of G and
let S := {v1, . . . , vk} consist of the first k vertices of σ. Each edge in F is of the
form xy where x < y with respect to σ. Since S consists of the first k vertices of σ
and G is d-degenerate, we conclude that for x = vi with i ∈ [k] there are at most d
edges in F of the form xy. Since |S| = k, F contains at most dk edges.

Shachnai and Zehavi [209] showed that Min α-FCGP with α ∈ (0, 1] admits an
FPT-algorithm with respect to k + t. Hence, we obtain the following.

Corollary 8.32. Min α-FCGP for α > 0 is FPT parameterized by d+ k.

Naturally, we may now ask whether this FPT result can be strengthened to a
polynomial kernel. As shown by Theorem 8.19, the non-degrading case of Min α-
FCGP does not admit a polynomial kernel even on graphs with constant maximum
degree which implies constant degeneracy. In contrast, the degrading variant has a
kernel whose size is polynomial in d+ k.

Theorem 8.33. Degrading Min α-FCGP admits a kernel of size (d+ k)O(1).

First, we consider the case α = 0. Recall that Sparsest k-Subgraph is the
special case of α-FCGP for minimization and α = 0.
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Proposition 8.34. Sparsest k-Subgraph admits a kernel with O(dk) vertices
and of size O(d2k).

Proof. Let (G, k, t) be an instance of Sparsest k-Subgraph. Assume that |V (G)| ≥
dk. Now, since G is d-degenerate, we obtain an independent set I of size at least k
in G. Observe that val(S) = 0 and thus (G, k, t) is a trivial yes-instance. Hence,
|V (G)| < dk. Since the number of edges in a d-degenerate graph is bounded
by d · |V (G)| the statement follows.

Now, we consider α ∈ (0, 1/3).

Lemma 8.35. Min α-FCGP for α ∈ (0, 1/3) admits a kernel of size O(d4k5).

Proof. Let I be an instance of Min α-FCGP for a fixed α ∈ (0, 1/3). First, we
transform I into an equivalent instance I ′ := (G, ∅, counter, k, t) of Annotated Min
α-FCGP with parameter α. Note that the upper bound for t from Lemma 8.32 still
holds for I ′. Observe that if G contains a vertex v such that α deg+c(v) ≥ t + k,
then we have for each solution S containing v that val(S) > t. Hence, if there
is a solution S for I ′, then v /∈ I. Thus, it is safe to apply the Exclusion Rule
(Reduction Rule 8.2) to vertex v. In the following, we assume that the Exclusion
Rule (Reduction Rule 8.2) is applied exhaustively.

Note that now we have ∆(G) < (t+ k) ·α−1 and also Γ(G) < (t+ k) ·α−1. Next,
we can apply Reduction Rule 8.3 exhaustively. Analogously to the proof of Proposi-
tion 8.11, after the exhaustive application of Reduction Rule 8.3 we have |V (G)| ≤
∆k. Afterwards, with the reduction described in Lemma 8.9, we can construct an
equivalent instance (G′, k, t′′) of Min α-FCGP of size O((∆(G) + Γ(G))3|V (G)|) =
O(d4k5).

Now, Proposition 8.34 and Lemma 8.35 lead to Theorem 8.33.

8.4.2 Maximization Variant

Recall that MaxPVC is the special case of Max α-FCGP with α = 1/2. Amini
et al. [8] showed that MaxPVC can be solved in O∗((dk)k) time. Adapting this
algorithm leads to an FPT-algorithm for α-FCGP with respect to d+ k for α ̸= 0.
The main distinction is that in our adaptation it is important to use the annotated
variant to keep track of vertices being contained in a partial solution.

Proposition 8.36. Degrading α-FCGP can be solved in O∗((dk)k) time for α ̸=
0.
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Proof. Note that it is sufficient to present an algorithm with running time O∗((dk)k)
for Annotated Degrading α-FCGP for α ̸= 0 since each instance (G, k, T )
of Degrading α-FCGP can be trivially transformed into an equivalent instance
(G, ∅, counter, k, t) of Annotated α-FCGP. We present a search-tree algorithm
with depth at most k such that each node has at most dk children. The root of the
search-tree corresponds to the instance (G, ∅, counter, k, t).

Now, we consider the instance I := (G, T, counter, k′, t′) instance of Annotated
Degrading α-FCGP with α ̸= 0. Let L := {v ∈ V (G) \ T | cont(v, T ) ≥ t′/k′}
(maximization) and L := {v ∈ V (G)\T | cont(v, T ) ≤ t′/k′} (minimization). Clearly,
if |L| ≥ dk, then there exists a subset I ⊆ L such that I induces an independent
set in G. For maximization we conclude from cont(v) ≥ t′/k′ for each vertex v ∈
I we that val(I) ≥ t′. Otherwise, |L| < dk and for minimization we conclude
from cont(v) ≤ t′/k′ for each vertex v ∈ I we that val(I) ≤ t′. Otherwise, |L| < dk.
By definition of L we have cont(u) < t′/k′ (maximization) and cont(u) > t′/k′

(minimization) for each u ∈ V (G)\ (L∪T ). Thus, k vertices from V (G)\ (L∪T ) are
not sufficient to obtain value at least (maximization) or at most (minimization) t′,
Hence, each solution contains at least one vertex of L. In other words, I is a yes-
instance if and only if at least one of the instance (G, T∪{v}, counter, k′−1, t′−cont(v)
for some v ∈ L is a yes-instance. Hence, each node in the enumeration tree has at
most dk children. Furthermore, since in each child of I the parameter k′ is reduced
by 1, the depth is bounded by k. Hence, we obtain an O∗((dk)k) for Annotated
α-FCGP.

The rest of this section is devoted to the proof of the next theorem.

Theorem 8.37. Degrading Max α-FCGP admits a kernel of size kO(d) but,
unless coNP ⊆ NP/poly, no kernel of size O(kd−2−ϵ).

In particular, this implies that MaxPVC admits a kernel of size kO(d). We
remark that a compression of size (dk)O(d) was obtained independently by Panolan
and Yaghoubizade [187].

A kernel for biclique-free graphs in the degrading case. We next develop a
kernelization algorithm with the size bound kO(d). In fact, our algorithm works for
biclique-free graphs—graphs that do not have a biclique Ka,b as a subgraph for a ≤
b ∈ N. Note that a d-degenerate graph has no Kd+1,d+1 as a subgraph, since every
vertex in a Kd+1,d+1 has degree d+ 1.

Note that a clique of size a+ b contains Ka,b as a subgraph. So given a graph G
with no occurrence of Ka,b on at least

(︁
a+b+k−2

k−1

)︁
∈ kO(a+b) vertices, one can find
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an independent set of size k in polynomial time (see Section 2.1). We show that
this upper bound on the number of vertices can be improved: the sum a + b in the
exponent can be replaced by min{a, b}.

Lemma 8.38. For a ≤ b ∈ N, let G be a graph that contains no Ka,b as a subgraph.
If G has at least R(k) vertices, then we can find in polynomial time an independent
set of size k, where R(k) ∈ (a+ b)O(a) · ka

Proof. We first show that if G has at least k+b
(︁
k
a

)︁
+
∑︁

ℓ∈[a−1]R(a+b, ℓ+1)
(︁
k
ℓ

)︁
vertices,

then it contains an independent set of size k. Afterwards, we give a polynomial-time
algorithm to find such an independent set of size k. Let I be a maximum independent
set in G. We assume for contradiction that |I| < k. We prove that there are at
most t

(︁
k
a

)︁
vertices that have at least a neighbors in I and that there are at most∑︁

ℓ∈[a−1]R(a+ b, ℓ+ 1) vertices that have at most a− 1 neighbors in I.
For each subset X ⊆ I of size exactly a, note that there are at most b vertices v

such that N(v) ⊇ X, since otherwise there is a Ka,b in G. It follows that the

number of vertices with at least a neighbors in I is at most t
(︁|I|
a

)︁
≤ b

(︁
k
a

)︁
. Consider

a set X ⊆ I of size ℓ ∈ [a − 1]. Let VX := {v ∈ V (G) \ I | N(v) ∩ I = X}.
Then, there is no independent set I ′ of size ℓ+ 1 in VX , since otherwise (I \X) ∪ I ′

is an independent set of size at least |I| + 1, contradicting the fact that I is an
independent set of maximum size. Moreover, there is no clique of size a + b in VX .
Thus, |VX | < R(a + b, ℓ + 1). The number of vertices with at most a − 1 neighbors
in I is then at most

∑︁
X⊆I,|X|=ℓ∈[a−1]R(a+ b, ℓ+1)

(︁|I|
ℓ

)︁
≤

∑︁
ℓ∈[a−1] R(a+ b, ℓ+1)

(︁
k
ℓ

)︁
.

We turn the argument above into a polynomial-time algorithm as follows. Sup-
pose that we have an independent set I ′ of size smaller than k. As discussed above,
there are at most b ·

(︁
k
a

)︁
vertices that have at least s neighbors in I ′. Hence, there is

a vertex set X ⊆ I ′ of size ℓ such that |VX | > R(a + b, ℓ + 1). Note that X can be
found in polynomial time, for instance, by counting the number of vertices v′ such
that N(v′)∩ I ′ = N(v)∩ I ′ for each vertex v ∈ V (G). We can then find an indepen-
dent set I ′′ of size ℓ + 1 in X (this can be done in polynomial time as discussed in
Section 2.1). This way, we end up with an independent set (I ′ \ X) ∪ I ′′ of size at
least |I ′|+ 1. Note that this procedure of finding an independent set of greater size
is repeated at most k times, and thus the overall running time is polynomial.

We remark that for fixed a ≤ b ∈ N, Lemma 8.38 gives us an O(n1−1/a)-
approximation algorithm for Independent Set that runs in nℓ time for some con-
stant ℓ not depending on a or b. An O(n1−1/a)-approximation algorithm is known
on graphs where Ka,b is excluded as an induced subgraph [30, 64]. However, these
algorithms have running time nΩ(a).

We now apply Lemma 8.38 to obtain a lemma analogous to Lemma 8.22.
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Lemma 8.39. Suppose that ∆ ≥ R(bka−1). Then, we can find in polynomial time a
set X of i ∈ [a− 1] vertices and an independent set I with the following properties:

1. The set I ⊆
⋂︁

x∈X N(x) is an independent set of size at least bka−i + 1.

2. For every vertex u ∈ V (G) \X, it holds that |N(u) ∩ I| ≤ bka−i−1.

Proof. Let v be a vertex with deg(v) ≥ R(bka−1). By Lemma 8.38, there is an
independent set Iv of size bkb−1 in N(v) (which can be found in polynomial time).
Let X be an inclusion-wise maximal set of i vertices containing v with |

⋂︁
x∈X N(x)∩

Iv| > bka−i. Such a set can be found by the following polynomial-time algorithm:
We start with X = {v} and i = 1. We will maintain the invariant that |X| = i. If
there exists a vertex v′ ∈ V (G) \X with |N(v′) ∩

⋂︁
x∈X N(x) ∩ Iv| > bka−i−1, then

we add v′ to X and increase i by 1. We keep doing so until there remains no such
vertex v′.

We show that this algorithm terminates for i = |X| ≤ a − 1. Assume to the
contrary that the algorithm continues for i = a − 1. We then have that |N(v′) ∩⋂︁

x∈X N(x) ∩ Iv| > bka−i−1 for some vertex v′ ∈ V (G) \ X. It follows that the
set X ∪ {v′} (which is of size a) has more than b common neighbors, contradicting
the fact that G has no Ka,b as a subgraph.

Finally, we show that the set X found by this algorithm and I :=
⋂︁

x∈X N(x)∩ Iv
satisfy the three properties of the lemma. We have |I| = |

⋂︁
x∈X N(x) ∩ Iv| =

|N(v′) ∩
⋂︁

x∈X\{v′}N(x) ∩ Iv| > bka−(i−1)−1 = bka−i, where v′ is the last vertex

added to X. Moreover, since X is inclusion-wise maximal, we have |N(u) ∩ I| =
|N(u) ∩

⋂︁
x∈X N(x) ∩ Iv| ≤ bka−i−1 for every vertex u ∈ V (G) \X.

Reduction Rule 8.9. Let I be an instance of Annotated Degrading α-FCGP.
Let X, I be as specified in Lemma 8.39 and let v ∈ I be a vertex such that every other
vertex in I is better than v. Then, apply the Exclusion Rule (Reduction Rule 8.2)
to v.

Lemma 8.40. Reduction Rule 8.9 is correct.

Proof. We show the proof for the maximization variant; the minimization variant
follows analogously. For the sake of contradiction, assume that every solution S
contains v. By Lemma 8.39, every vertex u ∈ V (G) \X has at most bka−i neighbors
in I. Moreover, since I is an independent set, we have |I ∩ N [v′]| = 1 for every
vertex v′ ∈ I (including v). For S ′ := S \X, we have

|I \N [S ′]| ≥ |I| − |I ∩N [v]| − |I ∩N [S ′ \ {v}]|
≥ (bka−i + 1)− (k − 1)bka−i−1 − 1 = bka−i−1 > 0.
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Let v′ be an arbitrary vertex in I \N [S ′]. We show that cont(v′, S\{v}) ≥ cont(v, S\
{v}). By Lemma 8.6, this would imply that (S \ {v}) ∪ {v′} is a solution not
containing v. Since v and v′ are both adjacent to all vertices of X and α ∈ (1/3, 1],
we have

cont(v′, S \ {v}) = α deg+c(v′) + (1− 3α)|X ∩ (S \ {v})|
≥ α deg+c(v) + (1− 3α)|X ∩ (S \ {v})|
≥ α deg+c(v) + (1− 3α)|N(v) ∩ (S \ {v})| = cont(v, S \ {v}).

Here, the first inequality follows from the fact that v′ is better than v.

By applying Reduction Rule 8.9 exhaustively, we end up with an instance with
maximum degree ∆ ≤ R(bka−1). The following proposition then follows from Propo-
sition 8.18 using the bound in Lemma 8.38:

Proposition 8.41. For any a ≤ b ∈ N, Degrading α-FCGP on graphs that do
not contain Ka,b as a subgraph has a kernel of size (R(bka−1) + k)O(1) ∈ bO(a)kO(a2).

Note that a d-degenerate graph contains no Kd+1,d+1 as a subgraph. Thus, we
obtain a kernel of size kO(d2) for fixed d. In fact, we obtain a smaller kernel using
the folklore fact that any d-degenerate graph on at least (d + 1)k vertices has an
independent set of size k.

Lemma 8.42. Degrading α-FCGP admits a kernel of size kO(d).

Proof. Since a d-degenerate graph has no Kd+1,d+1 as a subgraph, there is a kernel
of size (R(dkd−1) + k)O(1) by Proposition 8.41. Recall that for ℓ ∈ N, R(ℓ) denotes
an integer such that any graph on R(ℓ) vertices has an independent set of size ℓ.
Since R(ℓ) ≤ (d+1)ℓ for any d-degenerate graphs, there is a kernel of size (R(dkd−1)+
k)O(1) ∈ kO(d).

A matching Lower Bound. In the following, we show that significant improve-
ment in Lemma 8.42 is unlikely. This, together with Lemma 8.42, implies Theo-
rem 8.37.

Proposition 8.43. Degrading Max α-FCGP admits no kernel of size O(kd−2−ϵ)
unless coNP ⊆ NP/poly.

Proof. We provide a weak q-composition from Independent Set on 2-degenerate
graphs toDegrading Max α-FCGP in (q+2)-degenerate graphs. Here, we assume
that k > |c(α)|/(3α− 1) for some constant c(α) > 0 which will be specified below.
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Let [t]q be the set of q-dimensional vectors whose entries are in [t]. For a vector x ∈
[t]q we denote by xi the ith entry of x. Next, assume that q ≥ 2 is a constant and
that we are given exactly tq instances Ix := (Gx, k) of Independent Set on 2-
degenerate graphs. We construct an equivalent instance (H, k′, t′) of Degrading
Max α-FCGP as follows.

Construction: We add an independent set J (the instance choice gadget) consist-
ing of tq vertices to H. The vertices of J are denoted by wi

j with i ∈ [q] and j ∈ [t].
Next, for each x ∈ [t]q we add the graph Gx to H. In other words, we added the
instance gadgets to H. By D we denote the union of these vertices. Furthermore,
for each x ∈ [t]q and for each vertex v ∈ Vx we add the edge vwi

xi
for each i ∈ [q].

Now, we fix an integer ℓ > tq · n > k. For each vertex wi
j in the independent set D

we add leaf vertices such that deg(wi
j) = ℓ+ 1. Next, for each vertex v ∈ D we add

leaf vertices such that deg(v) = ℓ. By L we denote the union of all these added leaf
vertices. Finally, we set k′ := k + tq − q and t′ := α [kℓ+ (tq − q)(ℓ+ 1)].

Degeneracy: Next, we show that d(H) = q+2. Let F be any subgraph of H. We
have to show that F contains a vertex with degree at most d(H) = q + 2. Clearly,
if F contains a leaf vertex of L, then F contains a vertex of degree 1. Thus, in the
following we can assume that F ∩ L = ∅. If F ⊆ J then F is edgeless. Hence,
let FD := V (F ) ∩ D ̸= ∅ and let FD

x = FD ∩ Vx ̸= ∅ for some x ∈ [t]q. Since by
assumption Ix is 2-degenerate, there exists a vertex v ∈ FD

x such that |N(v)∩FD
x | ≤

2. By construction v has only neighbors in Vx and exactly q neighbors in J an no
neighbors in Vy for some y ̸= x. Thus, v has degree at most q + 2.

Correctness: In the following, we prove that there exists an independent set of
size exactly k for some instance Ix with x ∈ [t]q if and only if there exists a vertex
set S of size exactly k′ in H such that val(S) ≥ t′.

Suppose that instance Ix has an independent set I of size exactly k for some x ∈
[t]q. By J∗ := J\

⋃︁
i∈[q]{wi

xi
} we denote the non-neighbors of Vx in J . Note that |J∗| =

tq−q. We show that S := I∪J∗ is a solution of (H, k′, t). Clearly, |S| = k+tq−q = k′.
Since no vertex of I is connected with any vertex in J∗, I is an independent set,
and since J∗ is an independent set, we conclude that I ∪ J∗ is an independent set.
Thus, EH(S) = ∅. Furthermore, since each vertex in I has degree ℓ, and since each
vertex in J∗ has degree ℓ+1, we conclude that mH(S, V (H)\S) = kℓ+(tq−q)(ℓ+1).
Thus, val(S) = t′ and hence (H, k′, t′) is a yes-instance of Degrading Max α-
FCGP.
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Conversely, suppose that (H, k′, t′) has a solution S ⊆ V (H) of size exactly k′

with val(S) ≥ t′. First, we show that S cannot contain any leaf-vertex in L. Assume
towards a contradiction that S∩L ̸= ∅. Let v ∈ S∩L and let S ′ := S\{v}. According
to Lemma 8.26, val(S) is maximal if S ′ is an independent set and E(v, S ′) = ∅. Since
the maximum degree in H is ℓ + 1 and since deg(v) = 1, we obtain that val(S) ≤
α [1 + (k′ − 1)(ℓ+ 1)]. Hence,

t− val(S) ≥ αkℓ+ α(tq − q)(ℓ+ 1)− [α + αkℓ+ αk + α(tq − q)(ℓ+ 1)− α(ℓ+ 1)]

= α(ℓ− k) > 0

since ℓ > k. Hence, in the following we can assume that S ∩ L = ∅. Let J∗ :=
J ∩ S, |J∗| = z, and D∗ := S \ J∗ ⊆ D. In the following, we show that z = (t− 1)q
and that there exists an x ∈ [t]q such that N(Vx) ∩ J∗ = ∅. Therefore, we consider
the cases that z < tq−q and that z > tq−q. In both cases we verify that val(S) < t′

for each solution with exactly z vertices in J .

Case 1: z ≤ tq−q−1. Let p := tq−q−z. Note that p ∈ [tq−q]. Recall that deg(v) =
ℓ for each vertex v ∈ D. Thus, by Lemma 8.26, val(S) is maximized if mH(D

∗) +
mH(J

∗, D∗) is minimized. Since |J∗| < tq − q, it is possible that no vertex of D∗ is
adjacent to any vertex in J∗. Thus, val(S) is maximal if S is an independent set with
exactly tq − q − p vertices in J . Hence, val(S) ≤ α [(k + p)ℓ+ (tq − q − p)(ℓ+ 1)].
Now, we obtain that

t− val(S) ≥ αkℓ+ α(tq − q)(ℓ+ 1)− [αkℓ+ αpℓ+ α(tq − q)(ℓ+ 1)− αp(ℓ+ 1)]

= αp > 0.

Thus, t′ − val(S) > 0, a contradiction.

Case 2: z ≥ tq−q+1. Let p := z−tq+q. In other words p ∈ [q]. By the pigeonhole
principle there exist at least p indices i ∈ [q] such that wi

j ∈ S for each j ∈ [t].
Recall that by construction, each vertex v ∈ D has exactly one neighbor in the
set {wi

j, j ∈ [t]}. Since |D∗| = k− p we conclude that mH(J
∗, D∗) ≥ (k− p)p. Recall

that deg(v) = ℓ for each vertex v ∈ D. Thus, by Lemma 8.26, val(S) is maximized
if mH(D

∗) + mH(J
∗, D∗) is minimized. Hence, val(S) is maximal if mH(J

∗, D∗) =
(k − p)p and D∗ is an independent set. Since H[J ] is an independent set we obtain
that

val(S) ≤ (1− α)(k − p)p+ α [(k − p)(ℓ− p) + (t− 1)q(ℓ+ 1) + p(ℓ+ 1− k + p)] .
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Now, we obtain that

t− val(S) ≥ αkℓ+ α(tq − q)(ℓ+ 1)− kp

+ p2 + 3αkp− 3αp2 − αkℓ− α(tq − q)(ℓ+ 1)− αp

= −kp+ p2 + 3αkp− 3αp2 − αp

= (3α− 1)kp+ (1− 3α)p2 − αp.

From p ≥ 0 and 3α− 1 > 0 for α ∈ (1/3, 1], we obtain that

t− val(S) ≥ (3α− 1)k + (1− 3α)p2 − αp = (3α− 1)k + c′(α, p)

where c′(α, p) < 0 is a constant only depending on the parameters α, and p.
We set c(α) := maxp∈[q] c

′(α, p) which is a constant smaller than 0 only depending
on α. In other words, t − val(S) ≥ (3α − 1)k + c(α) > 0 since by assumption k >
|c(α)|/(3α− 1). A contradiction to the fact that val(S) ≥ t′.

Hence, |J∗| = tq − q and thus |D∗| = k. According to Lemma 8.26, val(S)
is maximal if mH(D

∗) + mH(J
∗, D∗) is minimal. Observe that if EH(J

∗, D∗) = ∅
and D∗ is an independent set, then val(S) = t′. Otherwise, if EH(J

∗, D∗) ̸= ∅
or if D∗ is no independent set, then val(S) < t′. Thus, EH(J

∗, D∗) = ∅ and D∗

is an independent set. Now, if there exist two vertices u, v ∈ D∗ such that u ∈ Vx

and v ∈ Vy with x ̸= y for x, y ∈ [t]q, then (N(u)∪N(v))∩J ≥ q+1. Since |J∗| = tq−q
this implies that EH(J

∗, D∗) ̸= ∅, a contradiction. Hence, D∗ ⊆ Vx for some x ∈ [t]q.
Furthermore, J∗ = J \N(D∗). Thus, the instance x contains an independent set of
size at least k.

Hence, we have a weak-q-composition from Independent Set to Degrading
Max α-FCGP in (d+2)-closed graphs. Now, the proposition follows by Lemma 2.14.

8.5 Parameterization by h-Index and Vertex Cover

Number

To complete the picture of the parameterized complexity landscape, we consider two
parameters that are larger than the degeneracy of G: the h-index of G and the vertex
cover number of G.

Our results in this section are based on two data reduction rules. The first rule
discards (according to the Exclusion Rule (Reduction Rule 8.2)) vertices with small
contribution when there are sufficiently many vertices with high contribution. The
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second rule adds vertices with very large contribution to a solution (according to the
Inclusion Rule (Reduction Rule 8.1)) assuming there are only few vertices with large
contribution. Below, we will specify when the contribution is small, or large.

Definition 8.44. Let I be an instance of Annotated α-FCGP and let x ∈ N.
Then Vx := {v ∈ V (G) | deg+c(v) ≥ x}.

This definition helps us to specify when the contribution is small, or large.

Lemma 8.45. Let I be a yes-instance of Annotated Max α-FCGP, let x ∈ N
with |Vx| ≥ k, and let v ∈ V (G) be a vertex with α · deg+c(v) < αx − |(1 − 3α)k|.
Then, there is a solution S with v /∈ S.

Proof. Assume towards a contradiction that v is contained in each solution S. Ob-
serve that v /∈ Vx. Since |S| = k it follows that there is a vertex u ∈ Vx \ S. We
claim that S ′ := (S \ {v}) ∪ {u} is also a solution. This follows from Lemmas 8.6
and 8.7.

Lemma 8.46. Let I be a yes-instance of Annotated Max α-FCGP, let x ∈ N
with |Vx| ≤ k, and let v ∈ V (G) be a vertex with α deg+c(v) ≥ αx + |(1 − 3α)k|.
Then, there is a solution S with v ∈ S.

Proof. Assume towards a contradiction that v is not contained in any solution S.
Since |S| = k, v ∈ Vx \ S, and |Vx| ≤ k it follows that there is a vertex u ∈ S \ Vx.
We claim that S ′ := (S \ {u})∪{v} is also a solution. This follows from Lemmas 8.6
and 8.7.

8.5.1 Parameterization by h-Index

We start with the maximization variant and the h-index. AsNon-Degrading Max
α-FCGP does not admit a polynomial kernel with respect to k even if ∆ is constant
(see Theorem 8.19), the same holds for the h-index. We show that in contrast, the
degrading case admits a polynomial kernel.

Proposition 8.47. Degrading Max α-FCGP admits a size O(α−2(h2k2 + k4))
kernel.

To show this result we make use of the two rules discarding (Lemma 8.45) and
adding (Lemma 8.46) vertices with small or large contribution, respectively.

Lemma 8.48. Let I = (G, k, t) be an instance of Max α-FCGP.
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1. If α > 0 and there are at least k vertices with degree at least h+1+ |(1−3α)k ·
α−1|, then an equivalent instance of size O(h2 + α−1hk2) can be computed in
polynomial time.

2. If α > 1/3 and there are less than k vertices with degree at least h + 1 +
|(1− 3α)k · α−1|, then an equivalent instance of size O(α−2(h2k2 + k4)) can be
computed in polynomial time.

Proof. First, we transform I into an equivalent instance (G, ∅, counter, k, t) of An-
notated Max α-FCGP where counter(v) = 0 for all v ∈ V (G). Then Vh+1

is the set of vertices of degree greater than h. By the definition of h-index, we
have |Vh+1| ≤ h. We set Y := V (G) \ Vh+1 to be the vertices with degree at most h.
Let x := h+ 1 + |(1− 3α)k · α−1| > h (recall α > 0). Then, we have Vx ⊆ Vh+1. We
will assume that |V (G)| > k.

(1): |Vx| ≥ k and α > 0. For each vertex v ∈ Y , we have deg(v) = deg+c(v) ≤
h < x−|(1−3α)k ·α−1|. Hence, by Lemma 8.45, there is a solution not containing v.
We thus can apply the Exclusion Rule (Reduction Rule 8.2) on v. Since this appli-
cation does not change deg+c(u) for any u ∈ Y , we can apply the Exclusion Rule
(Reduction Rule 8.2) on all vertices in Y to obtain a graph with h vertices (the
vertices in Vh+1).

Removing annotations by Lemma 8.8 results in an instance whose size is bounded
in terms of ∆ and Γ. Thus, we need to bound these two parameters since every vertex
not in Vh+1 has been deleted. We clearly have ∆ ≤ |V (G)| = h. To bound Γ, we apply
the following procedure: We apply Reduction Rule 8.6 exhaustively throughout. We
then end up with a vertex v with counter(v) = 0. If there exists a vertex u ∈ V (G)
with counter(u) > deg(v) + |(1− 3α)k · α−1|, then we can apply the Exclusion Rule
(Reduction Rule 8.2) on u because u is strictly better than v by Lemma 8.7. After
this procedure, we may assume that Γ ≤ h + |α−1 − 3|k. By Lemma 8.8, we obtain
an equivalent instance of size O((∆ + Γ + α−1) · |V (G)|) = O(h2 + α−1hk).

(2): |Vx| < k and α > 1/3. Consider the set Vx+|(1−3α)k·α−1| of vertices with degree
more than h+2|(1−3α)k ·α−1|. By Lemma 8.46 for each v ∈ Vx+|(1−3α)k·α−1| there is
a solution containing v. Thus, we can apply the Inclusion Rule (Reduction Rule 8.1)
on all vertices in Vx+|(1−3α)k·α−1| to obtain an instance with ∆T ≤ x+ |(1−3α)k ·α−1|
(recall that ∆T is the maximum degree over vertices not in T ). The exhaustive
application of Reduction Rule 8.3 results in a graph with at most

∆Tk+1 ≤ xk+ |(1−3α)k ·α−1|k+1 = (h+1)k+α−1|2/α−6|k2+1 = O(hk+α−1k2)

vertices. Since we are dealing with the degrading case, we can use Proposition 8.17
to obtain an instance for Max α-FCGP of size
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O(|V (G)|2 + α−1|V (G)|k2) ⊆ O((hk + α−1k2)2 + α−1(hk + α−1k2)k2)

= O(α−2(h2k2 + k4)).

Thus, the statement follows.

Lemma 8.48 implies Proposition 8.47 and thereby the existence of polynomial
kernel for α > 1/3: apply (1) if k vertices have degree at least h+1+ |(1− 3α) ·α−1|
and (2) otherwise. It is unlikely that Lemma 8.48 (2) can be extended to cover the
case α ∈ (0, 1/3). This would imply that Non-Degrading Max α-FCGP admits
a polynomial kernel with respect to k+h, contradicting Theorem 8.19 (which states
that Non-Degrading Max α-FCGP does not admit a polynomial kernel with
respect to k for constant ∆).

We complement this with showing fixed-parameter tractability for k + h.

Proposition 8.49. Non-Degrading Max α-FCGP is fixed-parameter tractable
with respect to k + h.

Proof. We first transform I into an equivalent instance (G, ∅, counter, k, t) of An-
notated Max α-FCGP where counter(v) = 0 for all v ∈ V (G). To make the
description of the algorithm easier, we redefine val by

valG(S) := α(m(S, V (G) \ S)) + counter(S) + (1− α)m(S),

that is, we do not multiply the counter by α but instead add correct multipliers when
updating the counter.

Now, let V>h be the set of vertices of degree at least h+ 1. For each subset T of
size at most k of V>h, branch into the case that T = S ∩ V>h. In each case, we may
now apply the Exclusion Rule (Reduction Rule 8.2) to remove the vertices of V>h\T .
Now the contribution of T depends on which vertices of V (G) \ V>h are contained
in S. This can be incorporated into the counters of V (G) \ V>h as follows. Pick any
vertex u ∈ T . Then, decrease t by counter(u)+(1−α)|N(u)\T |+α|N(u)∩T |. Now,
for each vertex v ∈ N(u) \ T = N(u) \ V>h, add (1−α)−α = 1− 2α to counter(v).
The correctness of this step can be seen as follows: if v is not contained in S, then
the contribution of uv is α and this contribution is already recorded in the decrease
of t. However, if we also add v to u, then the contribution of uv is 1−α, so this gives
a value of 1−α for the internal edge uv minus α for the fact that uv is no longer an
outgoing edge. Finally, remove u from G.

After this removal of vertices in T has been applied exhaustively, the remaining
graph has only vertices of degree at most h. Our aim is to find in this graph a
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vertex set S ′ of size k− |T | that maximizes val(S ′). Now this problem can be solved
in f(h, k) · nO(1) time since val fulfills a property of fixed-cardinality optimization
problems called component linear by Komusiewicz and Sorge [150]: First, val(S ∪
T ) ≤ val(S) + val(T ) because an internal edge counts twice as much as an outgoing
edge. Second, val(S ∪ T ) ≥ val(S) + val(T ) if there are no edges between S and T
in G.

Altogether, the running time is hk · nO(1) · f(h, k) since we create hk many cases
in the branching on V>h.

Minimization variant. Note that Degrading Min α-FCGP has a polynomial
kernel with respect to d+ k (see Theorem 8.33) and, thus, also with respect to h+
k. As Non-Degrading Min α-FCGP does not admit a polynomial kernel with
respect to k even if ∆ is constant (see Theorem 8.19), the same holds for the h-index.

8.5.2 Parameterization by Vertex Cover Number

We have shown that Max α-FCGP admits a polynomial kernel with respect to h+
k for α > 1/3. For the larger parameter vertex cover number vc, we achieve a
polynomial kernel for all α > 0.

Proposition 8.50. If α ̸= 0, then Max α-FCGP admits a kernel of size O(vc(vc+
α−1k)2).

Proof. We follow the proof of Lemma 8.48. As vc ≥ h, we only need to extend
the statement of Lemma 8.48 (2) concerning the case α ∈ (0, 1/3). Let (G, k, t)
be an instance of Max α-FCGP. First, we transform (G, k, t) into an equivalent
instance (G, ∅, counter, k, t) of Annotated Max α-FCGP where counter(v) = 0
for all v ∈ V (G). Then, let X be a vertex cover of size vc. We set I := V (G) \X to
be the independent set. Note that each vertex in I has degree at most vc. Moreover,
we set x := vc+ |(1− 3α)k · α−1| > vc since α > 0. Thus, Vx ⊆ X.

Case 1: |Vx| ≥ k. This case follows from Lemma 8.48 (1).

Case 2: |Vx| < k. Consider the set Vx+|(1−3α)k·α−1| of vertices with degree at
least vc+ 2|(1− 3α)k · α−1|. By Lemma 8.46, for each v ∈ Vx+|(1−3α)k·α−1| there is a
solution containing v. Thus, we can apply the Inclusion Rule (Reduction Rule 8.1)
on every vertex in Vx+|(1−3α)k·α−1| including it into T . (Recall that T is the set of
vertices fixed in the solution.) We then have ∆T ≤ x + |(1 − 3α)k · α−1|. Thus,
there are at most vc · ∆T ∈ O(vc2 + α−1vc · k) vertices in I that have at least one
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neighbor in X \ T . Denote these vertices by IT . The remaining vertices in I \ IT
have neighbors only in T . Hence, their contribution is fixed and we can get rid of all
but the k vertices in I \ IT with highest contribution using the Exclusion Rule (Re-
duction Rule 8.2). Thus, we are left with the vertices in X, in IT , and the k vertices
with highest contribution of I \ IT . These are O(vc2 + α−1vc · k) many vertices. We
remove the annotation using Lemma 8.8: we obtain an instance for Max α-FCGP
of size O((∆T + Γ + α−1)|V (G)|+ α−1k|T |) = O(vc(vc+ α−1k)2).

For α = 0, Max α-FCGP corresponds to Densest k-Subgraph and Clique
is one of its special cases (t =

(︁
k
2

)︁
). Since Clique does not admit a polynomial

kernel with respect to vc [25] (and any clique is of size at most vc + 1), Dens-
est k-Subgraph does not admit a polynomial kernel with respect to vc. However,
Densest k-Subgraph can be solved by a straightforward algorithm inO∗(2vc) time.
Thus, Densest k-Subgraph admits a kernel of size O(2vc).

Minimization variant. Recall thatDegrading Min α-FCGP has a polynomial
kernel with respect to d + k (see Theorem 8.33) and thereby vc + k. It remains to
consider Non-Degrading Min α-FCGP parameterized by vc+ k.

Proposition 8.51. Min α-FCGP admits a kernel of size O((α−2 + k)(vc+α−1vc ·
k)2) for α > 0 and of size O(vc2 + vc · k) for α = 0.

Proof. Let X be a vertex cover of size vc and let I := V (G) \ X be the indepen-
dent set. Without loss of generality we can assume that |I| ≥ k since otherwise we
already have a trivial vc + k-vertex kernel. If α = 0, we have a trivial yes-instance
as val(I ′) = 0 for all I ′ ⊆ I of size k. Thus, in the following, we assume that α > 0.
Let (G, k, t) be an instance of Min α-FCGP. We transform (G, k, t) into an equiva-
lent instance (G, ∅, counter, k, t) of Annotated Min α-FCGP where counter(v) = 0
for all v ∈ V (G).

Let x := vc+ |(1−3α)k ·α−1|. We first show that there is a solution that does not
contain any vertex in Vx: To this end, observe that deg(v) ≤ vc for each v ∈ I. Hence,
by Lemma 8.7, each vertex in I is strictly better than each vertex in Vx. Since |I| ≥ k,
it follows from Lemma 8.6 that there is a solution not containing any vertex from Vx.
Hence, we can apply the Exclusion Rule (Reduction Rule 8.2) on each vertex in Vx.
As a result, the remaining vertices in X form still a vertex cover and have degree less
than vc+ |(1−3α)k ·α−1|. Thus, less than vc(vc+ |(1−3α)k ·α−1|) vertices in I have
neighbors in X; the remaining vertices are isolated vertices. As the contribution of
each isolated vertex v in any solution is exactly α · counter(v), we can simply sort
the isolated vertices by their contribution and remove all but the k vertices with the
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lowest contribution. Thus, we end up with at most vc+vc(vc+|(1−3α)k ·α−1|)+k =
O(vc2 + α−1vc · k) vertices. Using Lemma 8.9 to remove the annotation, we get an
instance for Max α-FCGP of size

O(α−2(∆ + Γ + k)2 + α−1(∆ + Γ + k) · |V (G)|) = O((α−2 + k)(vc+ α−1vc · k)2)

Thus, the statement follows.

8.6 Conclusion

We provided a systematic parameterized complexity analysis for α-FCGP (see Fig-
ure 8.2). Thereby, we answered the open question of Amini, Fomin, and Saurabh on
whether MaxPVC (the special case of Max α-FCGP for α = 1/2) has a polyno-
mial kernel in planar graphs in the affirmative. This open question was independently
answered by Panolan and Yaghoubizade [187]. Furthermore, we also answered the
open question of Kanesh et al. [125] on whether MaxPVC admits an FPT-algorithm
with respect to k+ c in the affirmative. Arguably our most interesting observation is
that MaxPVC and Max (k, n−k)-Cut behave not only similarly in terms of fixed-
parameter tractability and kernelization with respect to the parameters considered
in this chapter but that these kernels can be obtained by the same algorithms.

We settled the existence of FPT-algorithms and polynomial kernels with respect
to various parameters combined with the solution size k. Our polynomial kernels
are, however, not optimized and thus the polynomials are of high degree. Looking
for smaller kernels is thus an obvious first task. Furthermore, it is interesting to
identify parameters for which the kernelization complexity of MaxPVC and Max
(k, n − k)-Cut behaves differently to see whether one of these problems is not just
a reformulation of the second problem.

We studied the parameterized complexity of the standard parameter k plus one
structural graph parameter. These additional graph parameters were maximum de-
gree, c closure, degeneracy, h-index, and vertex cover number. More precisely, we
presented a framework which lead to a polynomial kernel if the maximum degree is
bounded by a function of the additional structural graph parameter. It would be
interesting to see whether our framework can be exploited for other structural graph
parameters as well. One such prominent example is the treewidth of the graph [199].
Another interesting parameter is the weak-γ-closure [84] which is a smaller parame-
ter than the degeneracy and the c-closure. Obtaining a kernelization result for this
parameter in the degrading case would directly strengthen our results for degener-
acy (Theorem 8.37) and c-closure (Theorem 8.28). Our reduction rules for c-closure
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(and degeneracy) cannot easily be adapted for the weak γ-closure for the following
reason: For the kernel for the c-closure we showed that the maximal clique size is
bounded in a polynomial only depending on c+k. We achieved this by showing that
if a vertex w has sufficiently many neighbors which are better than w, then we can
remove w (Reduction Rule 8.7). This argument fails for the weak closure γ since
here the ordering of the vertices is important.

Furthermore, while we looked at parameters that are small in sparse graphs, can
similar results be achieved for dense graphs as considered for example by Lochet et
al. [159]?

Another interesting parameter to study is the budget t. The parameterized com-
plexity for this parameter is already settled for the most prominent problems of
α-FCGP. W[1]-hardness was shown for Densest k-Subgraph [62] and Spars-
est k-Subgraph [62]. Furthermore, FPT-algorithms were provided for Maximum
Partial Vertex Cover [22, 133], Minimum Partial Vertex Cover [133],
Max (k, n− k)-Cut [29, 204], and Min (k, n− k)-Cut [55]. Hence, it is interesting
to study the complexity of α-FCGP when α /∈ {0, 1/2, 1}. For the maximization
variant, FPT for α > 0 is trivial since t ≤ ∆k in non-trivial instances and these
problems admit an FPT-algorithm for ∆ + k [29, 209]. Thus, it is interesting to
study whether these problems admit a polynomial kernel with respect to t. A poly-
nomial kernel for t for Max (k, n − k)-Cut (the special case of Max α-FCGP
for α = 1) was presented by Saurabh and Zehavi [204]. It would be interesting to see
whether α = 1 is the only case which leads to a polynomial kernel. For the minimiza-
tion variant, similar arguments as for the maximization variant are not possible: here
only instances with t ≤ ∆k are non-trivial and existing algorithms for ∆+k [29, 209]
do not imply an FPT-algorithm for t.

It would also be interesting to study the problem Connected α-FCGP. In this
variant of α-FCGP we additionally require that the subgraph induced by the so-
lution is connected. Saurabh and Zehavi studied this problem in the maximization
variant with α = 1, that is, Max (k, n−k)-Cut in which the solution has to be con-
nected, under the name Multi-Node Hub (MNH) [205]. They noted that MNH
is W[1]-hard with respect to the standard parameter solution size k and provided
an FPT-algorithm for parameter t. Does MNH admit a polynomial kernel for t? It
would be interesting to study the generalized problem Connected α-FCGP.

The W[1]-hardness of Connected α-FCGP for each fixed α with respect to k
either follows directly by the existing reductions in the non-connected variant or by
a simple adaption of these reductions, for example by adding a universal vertex and
adapting the budget accordingly.

A first question is for which values of α Connected α-FCGP admits an FPT-
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algorithm for t. Some hardness results follow by existing reductions which showed
W[1]-hardness in the non-connected version: The W[1]-hardness for Densest k-
Subgraph for parameter k + t even in 2-degenerate and 2-closed graphs of Raman
and Saurabh also gives W[1]-hardness for this connected version since the constructed
solution is connected. The parameterized complexity for all remaining cases of the
maximization variant with α > 0 and all cases for the minimization variant remain
open. Similar to the non-connected variant, in the maximization case an FPT-
algorithm for ∆+k would imply also an FPT-algorithm t since t ≥ ∆k in non-trivial
instances.

A second question is the parameterized complexity with respect to ∆ + k. Note
that all these problems are FPT with respect to ∆ + k: The number of induced
subgraphs of size k is bounded by O((e(∆−1))(k−1) · (n/k)) [28, Equation 7]. Hence,
all possible solutions can be enumerated in FPT-time with respect to ∆ + k and
then the best induced subgraph can be outputted. Furthermore, a disjoint union of
2p instances leads to an or-composition, showing that a polynomial kernel for k +∆
is not possible under standard assumptions. Hence, in order to obtain polynomial
kernels other, bigger parameters than k +∆ have to be considered.

Furthermore, it would be interesting to verify experimentally the effectiveness of
our framework to include vertices with “high” contribution into our solution and to
remove vertices with “low” contribution. We think that applying these reduction
rules exhaustively simplifies the input instances significantly and thus leads to fast
implementations in practice. One reason for this is that in many social networks
the degrees are distributed according to a power law [180], that is, there are few
vertices with high degree and many vertices with low degree. With our framework
we would put some vertices with high degree into our solution and would remove a
huge number of vertices with small degree from the graph.
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Chapter 9

Conclusion

In this thesis, we studied various (connected) subgraph problems. These problems
have applications in community detection [40, 223] and in the identification of net-
work motifs [127, 227].

In Chapter 3, we studied the problem of enumerating all connected induced sub-
graphs of size k. We improved upon the previous best delay due to Elbassioni [67]
for enumerating all connected induced subgraphs. Furthermore, we provided an ex-
perimental evaluation of various algorithms for this task. In this thesis and also in
many other works [4, 67, 111], the focus was on enumeration problems on classic
graphs, so-called static graphs. Recently, some classic enumeration problems have
also been studied in temporal graphs [113, 189]. Roughly speaking, in temporal
graphs the edge set differs in various time steps. Temporal graphs are a popular tool
to model applications with changing edge sets, for example different social contacts
at different times during a week [169]. Also some enumeration problems have been
studied in temporal graphs: for example it was shown that network motifs [189] and
cliques [113] can also be efficiently enumerated in temporal graphs. Compared with
static graphs the number of studied enumeration problems in temporal graphs is
smaller. For future work, it is interesting to study further enumeration problems in
temporal graphs. One example, is the study of enumerating connected subgraphs in
temporal graphs.

Afterwards, in Chapter 4, we used the best algorithms of our study for enumer-
ating all connected induced subgraphs of size k (see Chapter 3) as a foundation for
our generic solver FixCon for Connected Fixed Cardinality Optimization
(CFCO). For FixCon we provided several generic pruning rules as speed-ups. We
showed that FixCon outperforms standard Integer Linear Programs (ILPs) for small
values of k. We observed that FixCon scales much better with the graph size than the
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standard ILPs, but the standard ILPs scale much better with the solution size than
FixCon. In the future, one might add further generic pruning rules to FixCon for
more speed-ups. With such additions, the above-mentioned advantages of FixCon
could be extended further and then FixCon could become a fast universal tool for
answering small queries, that is, asking for specific structures of k vertices, on big
networks.

In Chapter 5, we studied several clique relaxations in terms of their (parameter-
ized) complexity with respect to the parameter (weak) closure. The (weak) closure is
a newly discovered graph parameter based on the triadic closure principle [84]. Our
work extends previous works on clique relaxations parameterized by the maximum
degree [111, 143] and the degeneracy [70, 110, 111, 143].

Currently, the parameter c-closure was only exploited for the design of FPT-
algorithms [17, 125, 137, 140] (see also Chapters 5 and 8). One interesting route is
to study the approximation of clique relaxations in c-closed graphs. One starting
point could be the investigation of the approximation of Clique in c-closed graphs.
In general, Clique does not have a factor n1−ϵ approximation for each ϵ > 0,
unless P = NP [236]. Can this hardness result be extended to c-closed graphs or is
there a poly(c)-approximation?

The closure number of a vertex is the maximum number of common neighbors
with each other non-adjacent vertex. The closure number of a graph is the maximum
among all closure numbers of the vertices and the weak closure number of a graph
is the maximum among all minimal closure numbers of each induced subgraph of
the graph. In other words, the closure behaves like the maximum degree (taking
the maximum among all closure numbers) and the weak closure number behaves like
the degeneracy (taking the maximum of the minimum of each induced subgraph).
There is a parameter between the maximum degree and the degeneracy: the h-index
(the largest number h such that at least h vertices have degree at least h). Now,
one can define a closure parameter which behaves like the h-index. The η-closure
index is the largest number η such that at least η vertices have closure number at
least η. This parameter is smaller than the closure number c and larger than the weak
closure number γ. In future work, one could study the parameterized complexity of
classic graph problems with respect to η. More precisely, whenever one obtains an
FPT-algorithm for c and W[1]-hardness for γ, one should study the complexity with
respect to η to settle the structure which makes the problem hard.

Another new interesting research direction is the study of a distance to triviality
parameter in the context of (weakly) closed graphs. Distance from triviality param-
eters have been studied, for example, for the maximum degree. More precisely, the
deletion distance to degree t is the size of a smallest vertex set S such that G − S
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has maximum degree t. A similar parameter for closure can be defined as follows:
The deletion distance to closure number c is the size of a smallest vertex set S such
that G − S has closure number c. Note that this parameter is independent of the
above-defined h-index variant of the closure number. In future work, one could
study classic graph problems which are easy on c-closed graphs, that is, solvable in
polynomial time or in FPT-time, with respect to this parameter.

In Chapter 6, we studied the (parameterized) complexity of three variants of
s-Club (see Chapter 6). Two of these problems are motivated by the hub-and-
spoke behaviour of the s-club model [110]. We studied these two problems with
respect to the parameterized complexity of the standard parameter solution size k.
Afterwards, in Chapter 7 we provided an implementation which outperforms the
known ILP [3, 41] (only for one of these two problems an ILP is known).

In both of these models, only the structure of the solution S was important. In
other words, the structure of the cut corresponding to S was irrelevant. For future
work, it is interesting to also take this structure into account. For example, isolated
cliques were studied, that is, clique variants such that the number of edges having
exactly one endpoint in the clique is small [118, 144, 171]. This property can also
be added to our model. If this isolation requirement is high and also each vertex
is forced to be in many triangles, the detection of a vertex triangle s-club should
become easier.

Moreover, in these two models, we focused on problems related to detecting a
specific subgraph or a certain structure. It is interesting to study edge editing and
deletion variants or vertex deletion variants of the problems studied in this thesis.
For example, it is interesting to study variants of Vertex-Triangle s-Club in
which one has to edit or delete edges, or delete vertices such that each connected
component of the graph is a vertex triangle s-club. Until now, such variants have
been studied for cliques [18, 210], for s-plexes [100, 221] and for 2-clubs [158]. In
these problems one aims to cluster the input data, that is, one wants to classify
similar objects or agents.

The third problem we studied in Chapter 6 is motivated by detecting communi-
ties containing a fixed set of vertices [124, 230]. We are not aware of a comprehensive
study for clique relaxations with seeds. Hence, our work can be seen as a first step
in this research direction. For future work it is thus interesting to study other clique
relaxations with seed constraints. Seeded problems are also interesting in more gen-
eral settings: Clique relaxations are special properties of vertex sets. A very essential
class of properties are hereditary properties. In future work, one could study heredi-
tary problems with seeds. It is known that these are exactly those properties which
can be described with a forbidden subgraph characterization. Furthermore, it is
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known that if the forbidden subgraph characterization is finite, then the correspond-
ing vertex-deletion problem is solvable in FPT-time [37]. Clearly, the idea to branch
on the forbidden subgraphs can also be applied in the setting with seeds: simply
ignore the cases which correspond to the deletion of seeded vertices. The situation,
however, changes if one considers hereditary properties with an infinite forbidden
subgraph characterization: Then, no general FPT statement is known. For future
work it is interesting to study hereditary problems with a infinite forbidden subgraph
characterization with seeds. Can one identify properties which do behave differently
in the sense of FPT and W-hardness in the variant with and without seeds?

Finally, in Chapter 8 we studied the parameterized complexity of a general graph
partitioning problem generalizing many well-studied graph problems. We studied this
generic problem parameterized by the solution size k plus one additional structural
graph parameter like maximum degree ∆ or c-closure. We provide a dichotomy into
fixed-parameter tractable and W[1]-hard cases and we prove tight kernel bounds for
these parameters. Previously, only FPT-algorithms for the general problem for k +
∆ [29, 209] and results for special cases [22, 38, 74, 133, 187, 204] were known.

In our work, we only required that one side of the partition has size exactly k.
In another variant of Max (k, n− k)-Cut there is the additional requirement that
the partite set of size k is connected [205]. It is interesting to impose more of these
requirements for the general graph partitioning problem, that is, one could aim to
find a maximum (k, n−k)-cut of size at least t such that the side containing k vertices
is an independent set or is a clique.

Finally, we discuss some general directions for future research. An essential ques-
tion in theoretical computer science is how well theoretic results describe the success
of implementations. For the problems investigated in this thesis, the theoretic results
are not fully able to explain the speed of our implementations: For the enumeration
of connected induced subgraphs our theoretical results explain that not too much
time is spent in each branching tree node. For Vertex Triangle 2-Club, how-
ever, the situation is different: we showed that for each possible ℓ the problem can be
solved in 2n−knO(1) time. This result does not explain why Vertex Triangle 2-
Club can be solved much faster for large values of ℓ in real-world instances. One
reason for this is that for large ℓ our reductions rules are applied more often, but
this is not yet captured in the theoretic results. A subsequent question is: which
structure (measured by some parameter) can explain the success of this rule? Thus,
in future work one should try to detect these hidden structures to explain the suc-
cess of our implementations. This mismatch between theory and implementations
does not only exist for the problems studied in this thesis: For example, 2-Club
implementations are very fast [109] but the theory only provides Turing kernels and
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a similar 2n−knO(1) time algorithm which are not sufficient to explain their success.
Furthermore, in the design of FPT-algorithms the focus is often in making the

factor f(k) as small as possible and thereby accepting large polynomial factors. This
might not be useful in practice: Even a quadratic factor in the input size might
be too large if the graph is big. For example, for Vertex Triangle 2-Club the
exhaustive application of our reduction rules was the most time-consuming part in
our implementation. Thus, in future work one should further focus on designing
linear-time FPT-algorithms, that is, algorithms with running time f(k) · n. Such
algorithms have been designed for example for Odd Cycle Transversal [119]
and Dominating Set on planar graphs [220].

Finally, in this thesis we mainly focused on the parameter solution size k. Often,
there is a lower bound for k. Recently, above-guarantee parameterizations for various
problems have been studied [162, 177]. It is also interesting to follow this research
direction for the problems in this thesis: for example, is Seeded s-Club still FPT
for k − |W |, where W is the seed, or is Maximum Partial Vertex Cover still
FPT for t − q where q is the difference of the sum of the k vertices with highest
degree and

(︁
k
2

)︁
(this is a lower bound for the number of edges used twice)?
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[97] Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz, and Frank Som-
mer. Preventing small (s, t)-cuts by protecting edges. In Proceedings of the
47th International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG ’21), volume 12911 of Lecture Notes in Computer Science, pages
143–155. Springer, 2021. (Cited on p. 8)
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[145] Christian Komusiewicz, André Nichterlein, Rolf Niedermeier, and Marten
Picker. Exact algorithms for finding well-connected 2-clubs in sparse real-world
graphs: Theory and experiments. European Journal of Operational Research,
275(3):846–864, 2019. (Cited on pp. 19, 24, 137, 141, 173, 176, 177, 181, 184)

[146] Christian Komusiewicz and Frank Sommer. Enumerating connected induced
subgraphs: Improved delay and experimental comparison. In Proceedings of
the 45th International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM ’19), volume 11376 of Lecture Notes in Computer
Science, pages 272–284. Springer, 2019. (Cited on p. 8)

[147] Christian Komusiewicz and Frank Sommer. FixCon: A generic solver for fixed-
cardinality subgraph problems. In Proceedings of the Twenty-Second Work-
shop on Algorithm Engineering and Experiments (ALENEX ’20), pages 12–26.
SIAM, 2020. (Cited on p. 9)

[148] Christian Komusiewicz and Frank Sommer. Enumerating connected induced
subgraphs: Improved delay and experimental comparison. Discrete Applied
Mathematics, 303:262–282, 2021. (Cited on p. 8)

[149] Christian Komusiewicz and Manuel Sorge. Finding dense subgraphs of sparse
graphs. In Proceedings of the 7th International Symposium on Parameterized
and Exact Computation (IPEC ’12), volume 7535 of Lecture Notes in Computer
Science, pages 242–251. Springer, 2012. (Cited on pp. 39, 51)

[150] Christian Komusiewicz and Manuel Sorge. An algorithmic framework
for fixed-cardinality optimization in sparse graphs applied to dense sub-
graph problems. Discrete Applied Mathematics, 193:145–161, 2015. (Cited
on pp. 20, 21, 37, 38, 39, 41, 77, 79, 81, 82, 200, 218, 247, 285, 287)

[151] Christian Komusiewicz, Manuel Sorge, and Kolja Stahl. Finding connected
subgraphs of fixed minimum density: Implementation and experiments. In
Proceedings of the 14th International Symposium on Experimental Algorithms
(SEA ’15), volume 9125 of Lecture Notes in Computer Science, pages 82–93.
Springer, 2015. (Cited on pp. 21, 37, 81, 101)

[152] Donald L. Kreher and Douglas R. Stinson. Combinatorial Algorithms: Gener-
ation, Enumeration, and Search (Discrete Mathematics and Its Applications).
CRC Press, 1998. (Cited on p. 71)

275



Bibliography
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[175] Nils Morawietz, Niels Grüttemeier, Christian Komusiewicz, and Frank Som-
mer. Colored cut games. Theoretical Computer Science, 936:13–32, 2022.
(Cited on p. 7)
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Appendix A

Further Algorithms Used in the
Experiments for EnuCon

In this chapter, we the describe the other algorithms that we include in our experi-
mental comparison for EnuCon (see Chapter 3). For Exgen and Kavosh, we provide
a pruning rule that will be useful in the case where k is big. For Kavosh and BDDE,
we provide the the first running time bounds based on Lemma 3.1. Afterwards, we
describe the RSSP algorithm [4].

A.1 Exgen

The next algorithm, referred to as Exgen in the following, is a variant of Pivot. The
pseudocode of Exgen (including the new pruning rule (Lines 13 and 15)) is shown in
Algorithm A.1.

The Exgen algorithm was described by Komusiewicz and Sorge [150] since, com-
pared to Pivot, it was easier to bound the number of recursive calls by the number
of E-CISE solutions. The sets P , S, and F are defined as in Section 3.3, that
is, P contains the vertices of the subgraph set whose neighbors may still be added, S
contains the other vertices of the subgraph set, and F contains the vertices which
may not be added to the subgraph anymore. In each recursive call, we choose one
pivot vertex p from the set P and determine the set X of its neighbors which are
not in P ∪S ∪F . Next, we move the pivot vertex p from set P to set S, since in the
recursive calls of Exgen, no further neighbors of p may be added to the subgraph.
Afterwards, for each subset M of X which has at most k − |P ∪ S| vertices, we call
Exgen recursively with M added to the subgraph set P (the size bound comes from
the fact that we search for subgraphs of order k only). Note that M = ∅ is a valid
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Algorithm A.1: The Exgen algorithm; the initial call is Exgen({v}, ∅, ∅).
1 Algorithm Exgen(P, S, F)

2 if |P ∪ S| = k then
3 output P ∪ S
4 return True

5 hasIntLeaf := False

6 p := choose element of P
7 X := N(p) \ (P ∪ S ∪ F )
8 for i from k − |P ∪ S| down to 0 do
9 hasIntLeafi := False

10 foreach M ⊆ X such that |M | = i do
11 if Exgen(P ∪M \ {p}, S ∪ {p}, F ∪X)= True then
12 hasIntLeafi := True; hasIntLeaf := True

13 if hasIntLeafi = False then
14 return hasIntLeaf
15 ▷ Stop recursion if no new solution was found

16 return hasIntLeaf

choice, since a solution does not need to contain a neighbor of p.
Next, we introduce a similar pruning rule as we did it for Simple and Pivot.

To apply the rule, we enumerate all subsets M of the possible neighbors X in the
following way: We start by creating children for subsets of size i := k − |P ∪ S|. If
none of the children which correspond to these choices for M leads to an interesting
leaf, then we prune the enumeration tree, that is, we return to the parent of the
current search tree node. Otherwise, we decrease the size i of the subsets M of X
that we want to generate by one and continue.

Proposition A.1. The pruning rule performed in Lines 13–15 of Algorithm A.1 is
correct.

Proof. Consider a node T in the enumeration tree with vertex sets PT , ST , and FT

and current pivot vertex p. Furthermore, let XT be the set of neighbors of vertex p
which are not in PT ∪ ST ∪ FT . Now assume that for some size m, for each size m
set M ⊆ XT , the recursive call for PT ∪ M does not output any solution. Now
consider a child R of T for which |PR| − |PT | = m− 1 holds, that is, PR is obtained
by adding a set MR of size m − 1 to PT . By the choice of m, there exists some
child Q of T obtained by adding MQ to PT such that MQ \ MR = {v} for some
vertex v and Q does not lead to an interesting leaf. Now suppose that R leads to
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an interesting leaf. Consider a vertex u /∈ MR ∪ PT that is a leaf of some spanning
tree of the corresponding subgraph. Removing u and adding the vertex v to this
subgraph gives a connected subgraph that has to be enumerated in the enumeration
subtree rooted at Q. This contradicts that Q does not lead to an interesting leaf.
Hence, node R cannot lead to an interesting leaf. Consequently, no child obtained
by adding a set M of size m − 1 to PT leads to an interesting leaf. By applying
this argument inductively, we have that no child obtained by adding a set M of size
smaller than m leads to an interesting leaf.

This pruning rule is much weaker since it does not lead to a polynomial delay:
Consider a node T in the enumeration tree. Furthermore, letXT be the set of possible
neighbors, where |XT | ≤ ∆. The first time that we may return to the parent of T is
if no branch for M ⊆ X with |M | = k−|P ∪S|−1 leads to an interesting leaf. There
may be Θ(∆k−1) possibilities for choosing M which is not polynomial if k is not a
constant. Nevertheless, the pruning rule proved very useful in the case of large k.

The following running time bound was observed by Komusiewicz and Sorge [150]
and is stated only for the sake of comparison with the other running time bounds.

Theorem A.2 ([150]). Enumerate with Exgen enumerates each connected subgraph
of order at most k exactly once and has a worst-case running time of O((e(∆ −
1))k−1 · (∆ + k) · n/k time.

A.2 Kavosh

The next algorithm in our comparison is Kavosh [127]. It was introduced for the
computation of network motifs and is in some sense a mixture of Simple and Exgen;
the pseudocode is shown in Algorithm A.2.

In each search tree node, we have the sets P , S, and F as defined in Pivot and
Exgen, that is, P contains the vertices of the subgraph set whose neighbors may
still be added, S contains the other vertices of the subgraph set, and F contains the
vertices which may not be added to the subgraph anymore. The basic idea of Kavosh
is that instead of choosing one pivot vertex, we extend the subgraph set by creating
all possible subsets of the neighborhood of P . In other words, we now determine the
set X of neighbors of P which are not in P∪S∪F . Then, for each non-emptyM ⊆ X
of size at most k − |P ∪ S|, we call Kavosh recursively with M being the vertex set
whose neighbors are now considered, P being added to S, and with X being added
to F , since in this child aim to enumerate those subgraphs extending P ∪ S that
contain all vertices of M and no further vertices of X.
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Algorithm A.2: The Kavosh algorithm; the initial call is Kavosh({v}, ∅, ∅).
1 Algorithm Kavosh(P, S, F)

2 if |P ∪ S| = k then
3 output P ∪ S
4 return True

5 hasIntLeaf = False

6 X := N(P ) \ (P ∪ S ∪ F )
7 ▷ Add at least one vertex to the subgraph
8 for i from k − |P ∪ S| down to 1 do
9 hasIntLeafi := False

10 foreach M ⊆ X such that |M | = i do
11 if Kavosh(M,S ∪ P, F ∪X)= True then
12 hasIntLeafi := True; hasIntLeaf := True

13 if hasIntLeafi = False then
14 return hasIntLeaf
15 ▷ Stop recursion if no new solution was found

16 return hasIntLeaf

We provide a similar pruning rule for Kavosh as we did it for Exgen. That is, we
create the sets M in decreasing order of size; if for some size M , we do not obtain
interesting leafs for any of the recursive calls, then we return immediately to the
parent of the current search tree node. The proof of correctness of this pruning rule
follows similar arguments as the proof for Exgen.

Proposition A.3. The pruning rule performed in Lines 13–15 of Algorithm A.2 is
correct.

Proof. Consider a node T in the enumeration tree with vertex sets PT , ST , and FT .
Furthermore, let XT be the set of neighbors of PT which are not in PT ∪ ST ∪ FT .
Furthermore, consider some m such that for each subset M of XT of size m the
recursive call of Kavosh(M,PT ∪ ST , FT ∪ XT ) does not lead to an interesting leaf.
We show that any recursive call for a set M ′ ⊆ X of size less than m does not lead to
interesting leaves. Let R be a child of T which was obtained by such a recursive call
and assume R leads to an interesting leaf. Clearly, node T contains a child L created
by the recursive call Kavosh(M,PT ∪ ST , FT ∪XT ) where M ′ ⊊ M where |M | = m.
Since L does not lead to an interesting leaf and PR ⊂ PL, SL = SR, and FL = FR we
have that R cannot lead to an interesting leaf.
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As in the case of Exgen, this pruning rule does not make Kavosh a polynomial
delay algorithm for E-CISE. For example consider the star graph with one vertex v
of degree n − 1 and assume v is added in the root of the enumeration tree. After
trying all subsets of size k − 1 of N(v), the algorithm tries to add each subset of
size k − 2, none of which gives a solution. The number of these subsets is

(︁
n−1
k−2

)︁
which is not polynomial if k is not a constant. Hence, there is a superpolynomial
delay between the output of the last solution and the termination of the algorithm.
Nevertheless, in the experiments, this pruning rule proved to be critical in the case
of large k.

We conclude by bounding the overall running time of Enumerate with Kavosh.

Lemma A.4. Enumerate with Kavosh has a worst-case running time of O((e(∆−
1))(k−1) ·∆ · n).

Proof. Enumerate with Kavosh enumerates each connected subgraph of order at
most k exactly once [127]. This implies that for each pair of different nodes T
and Q in the enumeration tree with the respective sets PT , ST , PQ, and PT we
have that PT ∪ ST ̸= PQ ∪ SQ. That is, each enumeration tree node corresponds
to a different connected subgraph of order at most k. According to Lemma 3.1, the
overall number of nodes in the enumeration trees over all calls to Kavosh is O((e(∆−
1))(k−1) · (n/k)).

It remains to bound the time per node T in the enumeration tree. Determining
the neighbors XT of the subgraph set PT needs O(k∆) time since |PT | ≤ k and each
vertex has up to ∆ neighbors. For each subset M of XT of size at most k−|PT ∪ST |
we make a recursive call with parameters M,PT ∪ ST , FT ∪ XT . The recursive call
includes computing the three sets which can be done in O(k∆) time per call. By
charging this running time to the corresponding child in the enumeration tree, we
obtain a running time of O(k∆) per enumeration tree node. Outputting a solution
needs O(k) time. Hence, we obtain a delay of O(k∆) per node in the enumeration
tree. The overall running time follows.

A.3 BDDE: Breadth-First Discovery, Depth-First

Extension

A furthermore, seemingly more involved, enumeration algorithm in our comparison
is BDDE [167]. The pseudocode of BDDE is shown in Algorithm A.3. The idea is
to start with a vertex v and to enumerate all subgraphs of order at most k such
that each connected subgraph S that contains v is enumerated before S ′ if S ⊆ S ′.
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This algorithm was used to enumerate all connected subsets S such f(S) ≥ t for a
given function f and a fixed threshold t. In our case of enumerating all connected
subgraphs of order k, f(S) = |S| and t = k.

To enumerate for a given vertex v all connected induced subgraphs of order at
most k containing v in the order of their inclusion relation, the algorithm will copy
parts of the search tree. The algorithm consists of two functions: Depth to discover
new vertices, and Breadth to copy parts of the search tree.

In the enumeration tree T each node has a label id which represents exactly one
vertex in the graph G and each path from the root to a another node in the tree
represents a connected subgraph in G. Hence, the set of leaves in depth k corresponds
to the set of connected subgraphs of order k. Clearly, the root has id v. Consider
node x with id u in the enumeration tree. The set P is referred to as the set of
ids of the nodes in the enumeration tree which are predecessors of x. The exclusive
neighborhood X(u) := N(u) \N [P ] is the set of neighbors of u in the graph G which
are neither in P nor neighbors of the vertices in P and not in the set P .

Clearly, a sibling s of a node t in the search tree has many children similar to
children of t. The algorithm uses this fact as follows: Let r be a child of s. If r is not
an exclusive neighbor of t, copy the subtree which is rooted at r and call this copy r′.
Next, make r′ to a child of t. This will be achieved by the procedure Breadth.
Furthermore, procedure Depth will be used to add new edges and to discover new
vertices.

Now, we describe the procedures Depth and Breadth in further detail.

Depth has three parameters: The set P , which is the set of all names of prede-
cessors of p, the vertex u, which is the actual vertex we consider, and a list C which
stores all successors of nodes representing the last vertex in P . First, we make a
new node x in the enumeration tree with the name u and we create a new list C ′

for the branches of x. Second, with Breadth we copy the branches stored in C as
new branches of x. If we copy a branch x′ successfully we add an edge from x to x′

and append x′ to C ′. Third, for each vertex z ∈ X(u) we call Depth. If we created
a branch x′ successfully we create an edge from x to x′ and append x′ to C ′. In the
end we return x.

Breadth has three parameters: The set P is the set of all names of predecessors
of node x, the node x which is a sibling of the node this function will create, and the
set X is the exclusive neighborhood of the last node in the set P created from the
function Depth. The set X is needed, to avoid enumerating some subgraphs twice.
If the name of x is in the set X, we return. If not returned, we create a new node x′

which has the same name as node x. Then for each successor y of x in T , we call
Breadth recursively. If this call returns a node x∗, we make an edge from x′ to x∗.
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Algorithm A.3: The BDDE algorithm. Here, Tree is the enumeration tree
which is initially empty. The initial call is Depth([ ] , v, [ ]).

1 Procedure Depth(P, u, C)

2 X := N(u) \N [P ]; C ′ := [ ]
3 P := P ∪ {u}
4 x := Tree. number of vertices
5 Tree. add vertex(x, id = u)
6 if |P | = k then
7 output P
8 return −1
9 for y ∈ C do

10 x′ := Breadth(P, y,X)

11 if x′ ̸= −1 then
12 Tree. add edge(x, x′)
13 C ′.append(x′)

14 for z ∈ X do
15 x′ := Depth(P, z, C ′)

16 if x′ ̸= −1 then
17 Tree. add edge(x, x′)
18 C ′.append(x′)

19 return x

20 Procedure Breadth(P, x,X)

21 if Tree. vertex(x)[id] ∈ X then
22 return −1
23 P := P ∪ {Tree. vertex(x)[id]}
24 if |P | := k then
25 output P
26 return −1
27 x′ := Tree. number of vertices
28 Tree. add vertex(x′, id = id(x))
29 for y ∈ Tree. successor(x) do
30 x∗ := Breadth(P, y,X)

31 if x∗ ̸= −1 then
32 Tree. add edge(x′, x∗)

33 return x′
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In the end of this function, we return x′.
Now, we bound the running time of BDDE.

Lemma A.5. Enumerate with BDDE has a worst-case running time of O((e(∆ −
1))k · k ·∆ · n) time.

Proof. It was shown in [167, Lemma 5] that for two nodes T and S in the enumeration
trees of Enumerate with BDDE the vertex sets PT and PS are different. In other words,
each subgraph of size at most k is enumerated exactly once.

We now bound the running time for each call of the procedures Depth and
Breadth. We start with Depth with parameters P, u, and C. Since each vertex
has degree at most ∆, the size of the exclusive neighborhood X of u is bounded
by O(∆). By marking each vertex of N [P ] with a color, we can determine the ex-
clusive neighborhood X in O(∆) time. In each recursive call of Depth we enlarge C
by at least ∆, the size of X. Hence, there are at most k∆ recursive calls of Breadth.
Each recursive call of Breadth includes computing the new vertex which can be
done in O(∆) time. We charge this running time to the corresponding child in the
enumeration tree. Furthermore, there are at most ∆ calls of Depth. Similar, each re-
cursive call of Depth includes computing the new vertex which can be done in O(∆)
time. Again, we charge this running time to the corresponding child. Overall, Depth
needs O(∆) time to construct the next child.

Now, we consider Breadth with parameters P, x, and X. Checking existence of
the name of node x in the setX can be done in constant time. Since each vertex in the
graph has degree at most ∆, there are at most ∆ recursive calls for Breadth. Again,
we charge the running time of each recursive call to the corresponding children.
Overall, Breadth needs O(∆) time to construct the next child.

Since each solution can be output inO(k) time, we obtain a running time ofO(k+
∆) per enumeration tree node. The overall running time follows.

Since the basic idea of algorithm BDDE is to start with a vertex v and to enumerate
all connected subgraphs of order at most k such that each connected subgraph S
which contains v is enumerated before S ′ if S ⊆ S ′, algorithm BDDE does not yield
a polynomial delay for E-CISE. For example, consider the case k = n and G is
complete. Then BDDE enumerates each connected induced subgraph of order less
than k, before enumerating the graph G. Clearly, these are exponentially many.

A.4 RSSP

The last algorithm in our comparison is RSSP [4]. It was introduced to enumerate
all connected induced subgraphs and to mine all maximal cohesive subgraphs. The
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Algorithm A.4: The RSSP algorithm; the initial call is RSSP({v}, N(v)).

1 Algorithm RSSP(P,X)

2 s := first vertex of P
3 z := last vertex of P
4 if |P | = k then
5 output P
6 return

7 while X ̸= ∅ do
8 u := choose first vertex from X
9 delete u from X

10 remove invalid candidates from X
11 for w ∈ N(u) do
12 if dist(s, w) > dist(s, z) or (dist(s, w) = dist(s, z) and w > z)

then
13 X := X ∪ {w}
14 RSSP(P ∪ {u}, X)

15 return

pseudocode is shown in Algorithm A.4. Each search tree node Ti consists of a sub-
graph set P and a set X of vertices which can be added to P . Fix an ordering
on the vertices of V . For x, y ∈ P by dist(x, y) we denote the length of a shortest
path from x to y in G[P ]. Let z ∈ P be the vertex with smallest label with re-
spect to that ordering, and let W ⊆ P be the set of vertices of P which have the
longest shortest path in G[P ] to vertex v. Let u ∈ W be the vertex with maximal
index. The subgraph set of the parent Ti−1 of node Ti is P \ {u}. Let w ∈ N(P ).
If dist(z, w) > dist(u,w) or dist(z, w) = dist(u,w) and the index of w is larger than
the index of u, then node Ti has a child with subgraph set P ∪ {w}. To obtain the
search tree nodes Ti+1 and Ti−1 efficiently, all distances to vertex v and all parents are
saved. Due to the strict child definition, a vertex x ∈ Xi cannot be a valid candidate
to expand Pi+1. To this end, after adding vertex pi to Pi to obtain Pi+1, all vertices
in Xi are checked if they are still a valid candidate to expand Pi. Because of this
step, a similar pruning rule as introduced for Simple and Pivot is not possible since
the ordering of X changes during the exploration of the search tree.
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Appendix B

Details for FixCon

B.1 Implementation of Objective Functions

To demonstrate the ease-of-use of FixCon, we present the source code of the methods
for setting the function parameters and for computing the objective functions.

def set problem(prob, paras, k):

global problem

global parameters

global edge monotone

global vertex upper bound

global user ub

problem = Fco(prob)

parameters = paras

# densest k-subgraph

if problem == Fco.DENSEST:

edge monotone = True

vertex upper bound = k

user ub = k*(k-1)/2

# maximize min-degree

elif problem == Fco.MINDEG:

edge monotone = True

vertex upper bound = 1

user ub = k-1

# minimize max-degree

elif problem == Fco.MINMAXDEG:

edge monotone = False
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vertex upper bound = 0

user ub = -2

# find an acyclic graph

elif problem == Fco.ACYCLIC:

edge monotone = False

vertex upper bound = 0

user ub = 1

# find a triangle free graph

elif problem == Fco.TRIAFREE:

edge monotone = False

vertex upper bound = 0

user ub = 1

# maximize the diameter

elif problem == Fco.MAXDIAM:

edge monotone = False

vertex upper bound = 1

user ub = k-1

# find r-regular graph

elif problem == Fco.RREG:

edge monotone = False

vertex upper bound = 1

user ub = 1

# find graph with min-deg >= alpha and max-deg <= beta

elif problem == Fco.BOUNDDEG:

edge monotone = False

vertex upper bound = 1

user ub = 1

def evaluate(graph):

global problem

global parameters

if problem == Fco.DENSEST: # densest k-subgraph

return graph.ecount()

elif problem == Fco.MINDEG: # maximize min-degree

min deg = graph.vcount()

for i in range(graph.vcount()):
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min deg = min(graph.degree(i),min deg)

return min deg

elif problem == Fco.MINMAXDEG: # minimize max-degree

return -graph.maxdegree()

elif problem == Fco.ACYCLIC: # find an acyclic graph

if graph.ecount() == graph.vcount() - 1:

return 1

else:

return 0

elif problem == Fco.TRIAFREE: # find a triangle free graph

for edge in graph.es:

# check if neighborhoods of endpoints are not disjoint

if not set(graph.neighbors(edge.source)).

isdisjoint(set(graph.neighbors(edge.target))):

return 0

return 1

elif problem == Fco.MAXDIAM: # maximize the diameter

return graph.diameter(directed=False)

elif problem == Fco.RREG: # find r-regular graph

# r=parameters[0]

if graph.maxdegree() > parameters[0]:

return -sys.maxint

for i in range(graph.vcount()):

if parameters[0] > graph.degree(i):

return 0

return 1

elif problem == Fco.BOUNDDEG: # find graph with

# min-deg >= alpha and max-deg <= beta

alpha=parameters[0], beta=parameters[1]

if graph.maxdegree() > parameters[1]:

return -sys.maxint

for i in range(graph.vcount()):

if parameters[0] > graph.degree(i):

return 0

return 1
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B.2 Details for the ILP formulations

Densest Subgraph. We introduce a binary variable y{u,v} for each edge {u, v} ∈
E. The objective is

maximize
∑︂

{u,v}∈E

y{u,v}

subject to the constraints

y{u,v} ≤ xv ∀{u, v} ∈ E,

y{u,v} ≤ xu ∀{u, v} ∈ E.

We set the BestObjStop parameter of Gurobi to
(︁
k
2

)︁
so that it may stop after finding

a clique of size k.

Max Min Degree. We introduce an additional variable yδ. The objective is

maximize yδ

subject to the constraints

k · (1− xv) +
∑︂

u∈N(v)

xu ≥ yδ ∀v ∈ V

We set the BestObjStop parameter of Gurobi to k − 1 so that it may stop after
finding a clique of size k.

Min Max Degree. We introduce an additional variable y∆. The objective is

minimize y∆

subject to the constraints

k · (1− xv) +
∑︂

u∈N(v)

xu ≤ y∆ ∀v ∈ V

We set BestObjStop=2 so that Gurobi may stop after finding a graph with maximum
degree 2.

298



B.2. Details for the ILP formulations

Acyclic Subgraph. For each vertex of v that has at least two neighbors, we pick
two arbitrary neighbors u and w of v and check if u and w are adjacent. If this is
the case, we add the triangle constraint

xu + xv + xw ≤ 2.

Then, we add further cycle constraints in a lazy manner in callbacks. That is, at a
search tree node where some solution S has been computed, we compute the cycle
basis of the graph G[S] and for each cycle C in the cycle basis, we add the constraint∑︂

v∈C

xv ≤ |C| − 1.

The graph has a solution if and only if the ILP is feasible.

Triangle-Free Subgraph. For each vertex of v that has at least two neighbors,
we pick two arbitrary neighbors u and w of v and check if u, v, and w form a triangle.
If this is the case, we add the triangle constraint

xu + xv + xw ≤ 2.

Further triangle constraints are added in a lazy manner, whenever an intermediate
solution contains some triangles. The graph has a solution if and only if the ILP is
feasible.

Maximum-Diameter Subgraph. This problem was the most difficult to formu-
late. As finding a subgraph of diameter at least 2 is trivial for these values of k, we
assume that we are searching for subgraphs with diameter at least 3. This allows
adding the constraint

k · xv +
∑︂

u∈N(v)

xu ≤ 2k − 2 ∀v ∈ V

which enforces that the solution does not contain a vertex v plus k−1 neighbors of v.
To model the diameter-maximization we add a variable ydiam and set the objective
to

maximize ydiam.

The constraints ensuring that ydiam is the diameter of the solution are added
in a lazy manner. After computing an intermediate solution S, we compute the
diameter dS of G[S], and if G[S] is connected, that is, dS ≤ ∞ we add the constraint

ydiam +
∑︂
v∈S

k · xv ≤ k2 + dS

299



Appendix B. Details for FixCon

ensuring that ydiam ≤ dS if the solution equals S.

r-Regular Subgraph. We add the constraints

−rxv +
∑︂

u∈N(v)

xu ≥ 0 ∀v ∈ V,

k · xv +
∑︂

u∈N(v)

≤ k + r ∀v ∈ V

fixing the degree of every selected vertex to r. The graph has a solution if and only
if the ILP is feasible.

(α, β)-Degree-Constrained Subgraph. We add the constraints

−αxv +
∑︂

u∈N(v)

xu ≥ 0 ∀v ∈ V,

k · xv +
∑︂

u∈N(v)

≤ k + β ∀v ∈ V

fixing the degrees of every selected vertex to be in {a, . . . , b}. The graph has a
solution if and only if the ILP is feasible.

B.3 Further Experimental Results for FixCon

Table B.1 shows for each instance the largest value k∗ such that all eight problems
could be solved for all k ≤ k∗. Pivot and Simple are the respective algorithms
with all improvements up to the heuristic lower bound. Pivot+ has additionally the
problem-specific lower bounds described in Section 4.7. A value of N/A for the ILP
means that for all k, there is at least one problem which the ILP did not solve for
this graph.
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Table B.1: Detailed results of our algorithm compared with ILPs.

Size Name |V | |E| Pivot Simple Pivot+ ILP

Small moreno-zebra 27 111 20 20 20 20
ucidata-zachary 34 78 15 14 15 9
contiguous-usa 49 107 12 12 18 20
dolphins 62 159 9 9 18 15
ca-sandi-auths 86 124 11 12 18 15
adjnoun adjacency 112 425 6 6 12 17
arenas-jazz 198 2 742 6 6 20 16
inf-USAir97 332 2 126 6 5 17 10
ca-netscience 379 914 8 8 19 13
bio-celegans 453 2 025 6 5 13 11

Medium bio-diseasome 516 1 188 7 6 20 12
soc-wiki-Vote 889 2 914 6 5 12 15
arenas-email 1 133 5 451 6 5 13 16
inf-euroroad 1 174 1 417 10 10 13 18
bio-yeast 1 458 1 948 7 7 12 14
ca-CSphd 1 882 1 740 9 10 13 10
soc-hamsterster 2 426 16 630 6 5 20 12
inf-openflights 2 939 15 677 6 5 16 8
ca-GrQc 4 158 13 422 6 5 20 12
inf-power 4 941 6 594 8 8 17 18

Large soc-advogato 6 541 39 432 6 4 11 6
bio-dmela 7 393 25 569 6 4 8 5
ca-HepPh 11 204 117 619 6 5 20 13
ca-AstroPh 17 903 196 972 6 5 17 N/A
soc-brightkite 56 739 212 945 5 4 15 N/A
coAuthorsCiteseer 227 320 814 134 5 5 20 N/A
coAuthorsDBLP 299 067 977 676 5 5 16 N/A
soc-twitter-follows 404 719 713 319 4 4 5 N/A
coPapersCiteseer 434 102 16 036 720 6 5 20 N/A
coPapersDBLP 540 486 15 245 729 5 5 13 N/A

Dense bn-cat-mixed-species brain 1 65 730 7 6 14 11
robot24c1 mat5 404 14 261 12 6 11 13
econ-beause 507 39 428 6 5 20 6
bn-mouse retina 1 1 076 90 811 6 5 16 12
comsol 1 500 48 119 6 5 20 N/A
bn-fly-drosophila medulla 1 1 781 8 911 6 4 10 5
heart2 2 339 340 229 8 6 20 9
econ-orani678 2 529 86 768 6 6 11 N/A
psmigr 1 3 140 410 781 6 5 17 16
bn-human-BNU 1 0025890 177 584 15 669 037 5 5 9 N/A
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