Sommersemester 2016

Prof. Dr. D. Lenz

Blatt 6

Besprechung Dienstag 14.06.2016

(1) Sei A ein selbstadjungierter Operator im Hilbertraum. Zeigen Sie

$$||A(A - \lambda i)^{-1}|| \le 1 \text{ und } |\lambda|||(A - \lambda i)|| \le 1$$

für alle $\lambda \in \mathbb{R} \setminus \{0\}$.

(Hinweis: Es reicht natuerlich (Warum?)

$$||A(A - \lambda i)^{-1}f||^2 + |\lambda|^2 ||(A - \lambda i)^{-1}f||^2 \le ||f||^2$$

für alle f aus dem Hilbertraum zu zeigen.)

- (2) Sei A ein selbstadjungierter Operator im Hilbertraum und B ein abschließbarer A -beschränkter Operator mit A-Schranke κ . Zeigen Sie die folgenden Aussagen:
 - (a) Es gilt $\kappa \leq ||B(A-z)^{-1}||$ für jedes $z \in \rho(A)$.
 - (b) Es gilt $\limsup_{\lambda \to \infty} \|B(A \lambda i)^{-1}\| \le \kappa$ und $\limsup_{\lambda \to -\infty} \|B(A \lambda i)^{-1}\| \le \kappa$. (Hinweis: Hier können Sie die Ergebnisse von Aufgabe 1 benutzen.)
 - (c) Es gilt $\lim_{\lambda \to \infty} \|B(A \lambda i)^{-1}\| = \kappa = \lim_{\lambda \to -\infty} \|B(A \lambda i)^{-1}\|$
- (3) Sei $g\in L^1(\mathbb{R},\lambda)$ und $p\in [1,\infty)$ beliebig. Zeigen Sie: Für jedes $f\in L^p(\mathbb{R},\lambda)$ existiert

$$\int_{\mathbb{R}} g(x-y)f(y)dy$$

fuer fast alle $x \in \mathbb{R}$, und die (fast ueberall) definierte Funktion

$$g * f : \mathbb{R} \longrightarrow \mathbb{C}, \ x \mapsto \int_{\mathbb{R}} g(x - y) f(y) dy,$$

gehoert zu $L^p(\mathbb{R}, \mu)$ und erfuellt $||g * f||_p \le ||g||_1 ||f||_p$.

(Hinweis: Es reicht (Warum?)

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |g(x-y)f(y)| dy \right)^p dx \le ||g||_1^p ||f||_p^p$$

zu zeigen. Es gilt natuerlich $|g| = |g|^{\frac{1}{p} + \frac{1}{q}}$ fuer q mit $\frac{1}{p} + \frac{1}{q} = 1$.)

(4) Definiere zu $\varepsilon>0$ die Funktion $q_{\varepsilon}:\mathbb{R}\longrightarrow [0,\infty), q_{\varepsilon}(t)=\frac{1}{\pi}\frac{1}{t^2+\varepsilon^2}$. Sei $p\in [1,\infty)$ beliebig. Zeigen Sie

$$q_{\varepsilon} * g \to g$$
 in $L^p(\mathbb{R}, \lambda)$ für $\varepsilon \to 0$

für alle $g \in L^p(\mathbb{R}, \lambda)$, wobei $q_{\varepsilon} * g$ aus Aufgabe (3) (und der Vorlesung) bekannt ist. (Hinweis: Aus der Vorlesung ist Ihnen $||q_{\varepsilon}||_1 = 1$ fuer alle $\varepsilon > 0$ bekannt. Nach Aufgabe (3) gilt dann also

$$||q_{\varepsilon} * g||_p \le ||g||_p$$

fuer alle $g \in L^p(\mathbb{R}, \lambda)$ und $\varepsilon > 0$. Zeigen Sie nun (Wie?)

$$q_{\varepsilon} * \phi \to \phi$$
 in $L^p(\mathbb{R}, \lambda)$ fuer $\varepsilon \to 0$

fuer alle $\phi \in C_c(\mathbb{R})$ und nutzen Sie die Dichtheit von $C_c(\mathbb{R})$ in $L^p(\mathbb{R}, \lambda)$.)