Höhere Analysis I

Sommersemester 2018

Prof. Dr. D. Lenz

Blatt 5

Abgabe Donnerstag 17.05.2015

(1) Gegeben sei ein Vektorraum X mit einem Semi-Skalarprodukt $\langle \cdot, \cdot \rangle$ und $N := \{x \in X \mid \langle x, x \rangle = 0\}$. Zeigen Sie, dass auf dem Quotientenraum X/N durch

$$\langle [x], [y] \rangle := \langle x, y \rangle$$

für Elemente $[x], [y] \in X/N$ ein Skalarprodukt definiert wird.

(2) Sei V ein Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Sei $M \subset V$ beliebig und

$$M^{\perp} := \{ x \in V : \langle x, m \rangle = 0 \text{ für alle } m \in M \}.$$

Zeigen Sie:

- (a) Es ist M^{\perp} eine Unterraum (d.h. für $x, y \in M^{\perp}$ und $\alpha, \beta \in \mathbb{K}$ gilt $\alpha x + \beta y \in M^{\perp}$).
- (b) Es ist M^{\perp} abgeschlossen (d.h. ist (x_n) eine Folge in M^{\perp} und $x \in V$ mit $||x_n x|| \to 0, n \to \infty$, so folgt $x \in M^{\perp}$).
- (3) Zeigen Sie folgende Aussagen:
 - (a) Auf \mathbb{C}^N wird durch $\langle x, y \rangle := \sum_{j=1}^N \overline{x_j} y_j$ ein Skalarprodukt definiert.
 - (b) Auf

$$\ell^2(\mathbb{N}) := \{x : \mathbb{N} : \longrightarrow \mathbb{C} : \sum_{j=1}^{\infty} |x_j|^2 < \infty \}$$

wird durch

$$\langle x, y \rangle := \sum_{j=1}^{\infty} \overline{x_j} y_j$$

eine Skalarprodukt definiert. (Zeigen Sie dabei zunächst, daß die Summe in der Definition absolut konvergiert.)

(c) Sei (X, \mathcal{A}, μ) ein Maßraum. Dann wird auf $L^2(X, \mathcal{A}, \mu)$ durch

$$\langle f, g \rangle := \int \overline{f} g d\mu$$

ein Skalarprodukt definiert. (Begründen Sie zunächst, daß das Integral in der Definition existiert.)

b.w.

- (4) Finden Sie jeweils ein Beispiel eines Hilbertraumes $(H, \langle \cdot, \cdot \rangle)$ und einer Teilmenge $A \subseteq H$ mit einem $x \in H \setminus A$, so dass gilt:
 - (a) A ist konvex aber nicht abgeschlossen und es gibt keine beste Approximation von x in A.
 - (b) A ist abgeschlossen aber nicht konvex und es gibt mehr als eine beste Approximation von x in A.
 - (c) A ist abgeschlossen aber nicht konvex und es gibt keine beste Approximation von x in A.

Können Sie in (c) auch ein Beispiel mit einem endlich dimensionalen Hilbertraum angeben?